VLDB 2024: PhD Workshop



26Aug

9:00 – 9:10Welcome

Chairs 

9:10 – 10:30Keynote

How to Do Research for Fun and Profit Dr. Divesh Srivastava (AT&T)

10:30 – 11:00Coffee Break
11:00 – 12:30Session 1: Data Warehousing, Lakes, Spatio-temporal Data, Streaming Data, and Multi-modal Data

Chair: Wonseok Lee 

Towards Efficient Construction of a Traceable, Multimodal, and Heterogeneous Data Warehouse Antoine Gauquier (DI ENS, ENS, CNRS, PSL University & Inria)

AI-Powered Orchestration of Multi-Model Data Jáchym Bártík (Charles University)

Enhancing Security for Columnar Storage and Data Lakes Lotte Felius (CWI)

Table Discovery in Data Lakes Grace Fan (Northeastern University)

The Cases of Data Cleaning with Spatial and Temporal Awareness Yuchuan Huang (University of Minnesota - Twin Cities)

Efficient Stream Processing in Decentralized Networks Wang Yue (Hasso Plattner Institute, University of Potsdam)

12:30 – 14:00Lunch Break
14:00 – 15:30Session 2: ML for DB and DB for ML

Chair: Joohyung Yun 

Better Learning from Graph Structures: Research on Representation Learning for Knowledge Graph Reasoning Ke Liang (National University of Defense Technology)

On Efficient ML Model Training in Data Lakes Wenbo Sun (Delft University of Technology)

Towards Flexible Self-Tuning Data Stream Management Systems Wieger R. Punter (TU Eindhoven)

Instrumentation and Analysis of Native ML Pipelines via Logical Query Plans Stefan Grafberger (BIFOLD & TU Berlin)

Autonomous Hierarchical Storage Management via Reinforcement Learning Tianru Zhang (Uppsala University)

Automating Data Lineage and Pipeline Extraction Sebastian Eggers (Technische Universität Berlin)

15:30 – 16:00Coffee Break
16:00 – 17:30Session 3: Scalable, Efficient, and Interpretable Data Processing Techniques

Chair: Stefan Grafberger 

Time Series Analytics for Electricity Consumption Data Adrien Petralia (EDF)

Vector Search on Billion-Scale Data Collections Ilias Azizi (Mohammed VI Polytechnic University)

Parallel Algorithms Can Be Provably Fast and Scalable Xiaojun Dong (University of California, Riverside)

Advancements in Parallel Graph Algorithms for Data Science: Scalable, Fast and Space-Efficient Solutions Letong Wang (University of California, Riverside)

Towards Holistic Query Optimization for Datalog Nick Rassau (Johannes Gutenberg-Universität Mainz)

Interpretable Feature Engineering for Structured Data Mohamed BOUADI (Université Paris Cité, SAP Paris)

17:30 – 18:30Panel Discussion: Success in Ph.D. Journey

Moderator: Byungchul Tak (Kyungpook National University) Mohammad Javad Amiri (Stony Brook University), Anthony Tung (National University of Singapore), Eleni Tzirita Zacharatou (IT University of Copenhagen)