3. KDD 1997:
Newport Beach,
California,
USA
 David Heckerman,
Heikki Mannila,
Daryl Pregibon (Eds.):
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97),
Newport Beach,
California,
USA,
August 14-17,
1997. AAAI Press,
1997,
ISBN 1-57735-027-8 
Plenary Papers
 
- Mark Derthick, John Kolojejchick, Steven F. Roth:
An Interactive Visualization Environment for Data Exploration.
2-9 
 
 
 
 
 - Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu:
Density-Connected Sets and their Application for Trend Detection in Spatial Databases.
10-15 
 
 
 
 
 - Ronen Feldman, Willi Klösgen, Amir Zilberstein:
Visualization Techniques to Explore Data Mining Results for Document Collections.
16-23 
 
 
 
 
 - Eamonn J. Keogh, Padhraic Smyth:
A Probabilistic Approach to Fast Pattern Matching in Time Series Databases.
24-30 
 
 
 
 
 - Bing Liu, Wynne Hsu, Shu Chen:
Using General Impressions to Analyze Discovered Classification Rules.
31-36 
 
 
 
 
 - Gholamreza Nakhaeizadeh, Alexander Schnabl:
Development of Multi-Criteria Metrics for Evaluation of Data Mining Algorithms.
37-42 
 
 
 
 
 - Foster J. Provost, Tom Fawcett:
Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions.
43-48 
 
 
 
 
 - Y. Dan Rubinstein, Trevor Hastie:
Discriminative vs Informative Learning.
49-53 
 
 
 
 
 - Padhraic Smyth, David Wolpert:
Anytime Exploratory Data Analysis for Massive Data Sets.
54-60 
 
 
 
 
 - Padhraic Smyth, Michael Ghil, Kayo Ide, Joseph Roden, Andrew Fraser:
Detecting Atmospheric Regimes Using Cross-Validated Clustering.
61-66 
 
 
 
 
 - Ramakrishnan Srikant, Quoc Vu, Rakesh Agrawal:
Mining Association Rules with Item Constraints.
67-73 
 
 
 
 
 - Salvatore J. Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee, Dave W. Fan, Philip K. Chan:
JAM: Java Agents for Meta-Learning over Distributed Databases.
74-81 
 
 
 
 
 - Ramesh Subramonian, Ramana Venkata, Joyce Chen:
A Visual Interactive Framework for Attribute Discretization.
82-88 
 
 
 
 
 - Xiong Wang, Jason Tsong-Li Wang, Dennis Shasha, Bruce A. Shapiro, Sitaram Dikshitulu, Isidore Rigoutsos, Kaizhong Zhang:
Automated Discovery of Active Motifs in Three Dimensional Molecules.
89-95 
 
 
 
 
 - Kunikazu Yoda, Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, Takeshi Tokuyama:
Computing Optimized Rectilinear Regions for Association Rules.
96-103 
 
 
 
 
 - Jan M. Zytkow:
Knowledge = Concepts: A Harmful Equation.
104-109 
 
 
 
 
 
KDD-97 Poster Papers
 
- Gediminas Adomavicius, Alexander Tuzhilin:
Discovery of Actionable Patterns in Databases: The Action Hierarchy Approach.
111-114 
 
 
 
 
 - Kamal Ali, Stefanos Manganaris, Ramakrishnan Srikant:
Partial Classification Using Association Rules.
115-118 
 
 
 
 
 - John M. Aronis, Foster J. Provost:
Increasing the Efficiency of Data Mining Algorithms with Breadth-First Marker Propagation.
119-122 
 
 
 
 
 - Roberto J. Bayardo Jr.:
Brute-Force Mining of High-Confidence Classification Rules.
123-126 
 
 
 
 
 - Ulla Bergsten, Johan Schubert, Per Svensson:
Applying Data Mining and Machine Learning Techniques to Submarine Intelligence Analysis.
127-130 
 
 
 
 
 - Christoph Breitner, Jörg Schlösser, Rüdiger Wirth:
Process-Based Database Support for the Early Indicator Method.
131-134 
 
 
 
 
 - Clifford Brunk, James Kelly, Ron Kohavi:
MineSet: An Integrated System for Data Mining.
135-138 
 
 
 
 
 - Jesús Cerquides, Ramon López de Mántaras:
Proposal and Empirical Comparison of a Parallelizable Distance-Based Discretization Method.
139-142 
 
 
 
 
 - Jaturon Chattratichat, John Darlington, Moustafa Ghanem, Yike Guo, Harald Hüning, Martin Köhler, Janjao Sutiwaraphun, Hing Wing To, Dan Yang:
Large Scale Data Mining: Challenges and Responses.
143-146 
 
 
 
 
 - Steve A. Chien, Forest Fisher, Helen Mortensen, Edisanter Lo, Ronald Greeley:
Using Artificial Intelligence Planning to Automate Science Data Analysis for Large Image Databases.
147-150 
 
 
 
 
 - Dennis DeCoste:
Mining Multivariate Time-Series Sensor Data to Discover Behavior Envelopes.
151-154 
 
 
 
 
 - Pedro Domingos:
Why Does Bagging Work? A Bayesian Account and its Implications.
155-158 
 
 
 
 
 - Harris Drucker:
Fast Committee Machines for Regression and Classification.
159-162 
 
 
 
 
 - Robert Engels, Guido Lindner, Rudi Studer:
A Guided Tour through the Data Mining Jungle.
163-166 
 
 
 
 
 - Ronen Feldman, Yonatan Aumann, Amihood Amir, Amir Zilberstein, Willi Klösgen:
Maximal Association Rules: A New Tool for Mining for Keyword Co-Occurrences in Document Collections.
167-170 
 
 
 
 
 - Gehad Galal, Diane J. Cook, Lawrence B. Holder:
Improving Scalability in a Scientific Discovery System by Exploiting Parallelism.
171-174 
 
 
 
 
 - Udo Hahn, Klemens Schnattinger:
Deep Knowledge Discovery from Natural Language Texts.
175-178 
 
 
 
 
 - Ira J. Haimowitz, Özden Gür-Ali, Henry Schwarz:
Integrating and Mining Distributed Customer Databases.
179-182 
 
 
 
 
 - Jukka Hekanaho:
GA-Based Rule Enhancement in Concept Learning.
183-186 
 
 
 
 
 - Thomas H. Hinke, John A. Rushing, Heggere S. Ranganath, Sara J. Graves:
Target-Independent Mining for Scientific Data: Capturing Transients and Trends for Phenomena Mining.
187-190 
 
 
 
 
 - K. M. Ho, Paul D. Scott:
Zeta: A Global Method for Discretization of Continuous Variables.
191-194 
 
 
 
 
 - David Jensen, Matthew D. Schmill:
Adjusting for Multiple Comparisons in Decision Tree Pruning.
195-198 
 
 
 
 
 - George H. John, Brian Lent:
SIPping from the Data Firehose.
199-202 
 
 
 
 
 - Jonghyun Kahng, Wen-Hsiang Kevin Liao, Dennis McLeod:
Mining Generalized Term Associations: Count Propagation Algorithm.
203-206 
 
 
 
 
 - Micheline Kamber, Jiawei Han, Jenny Chiang:
Metarule-Guided Mining of Multi-Dimensional Association Rules Using Data Cubes.
207-210 
 
 
 
 
 - Hillol Kargupta, Ilker Hamzaoglu, Brian Stafford:
Scalable, Distributed Data Mining - An Agent Architecture.
211-214 
 
 
 
 
 - A. Ketterlin:
Clustering Sequences of Complex Objects.
215-218 
 
 
 
 
 - Edwin M. Knorr, Raymond T. Ng:
A Unified Notion of Outliers: Properties and Computation.
219-222 
 
 
 
 
 - Stefan Kramer, Bernhard Pfahringer, Christoph Helma:
Mining for Causes of Cancer: Machine Learning Experiments at Various Levels of Detail.
223-226 
 
 
 
 
 - Brian Lent, Rakesh Agrawal, Ramakrishnan Srikant:
Discovering Trends in Text Databases.
227-230 
 
 
 
 
 - Ted Mihalisin, John Timlin:
Fast Robust Visual Data Mining.
231-234 
 
 
 
 
 - Michael J. Pazzani, Subramani Mani, William Rodman Shankle:
Beyond Concise and Colorful: Learning Intelligible Rules.
235-238 
 
 
 
 
 - Foster J. Provost, Venkateswarlu Kolluri:
Scaling Up Inductive Algorithms: An Overview.
239-242 
 
 
 
 
 - J. Sunil Rao, William J. E. Potts:
Visualizing Bagged Decision Trees.
243-246 
 
 
 
 
 - Arno Siebes, Martin L. Kersten:
KESO: Minimizing Database Interaction.
247-250 
 
 
 
 
 - Stephen Soderland:
Learning to Extract Text-Based Information from the World Wide Web.
251-254 
 
 
 
 
 - Timothy M. Stough, Carla E. Brodley:
Image Feature Reduction through Spoiling: Its Application to Multiple Matched Filters for Focus of Attention.
255-258 
 
 
 
 
 - Einoshin Suzuki:
Autonomous Discovery of Reliable Exception Rules.
259-262 
 
 
 
 
 - Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, Sanjay Ranka:
An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases.
263-266 
 
 
 
 
 - Michael J. Turmon, Saleem Mukhtar, Judit Pap:
Bayesian Inference for Identifying Solar Active Regions.
267-270 
 
 
 
 
 - Ke Wang, Huiqing Liu:
Schema Discovery for Semistructured Data.
271-274 
 
 
 
 
 - Ke Wang, Suman Sundaresh:
Selecting Features by Vertical Compactness of Data.
275-278 
 
 
 
 
 - Paul Xia:
Knowledge Discovery in Integrated Call Centers: A Framework for Effective Customer-Driven Marketing.
279-282 
 
 
 
 
 - Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li:
New Algorithms for Fast Discovery of Association Rules.
283-286 
 
 
 
 
 - Oren Zamir, Oren Etzioni, Omid Madani, Richard M. Karp:
Fast and Intuitive Clustering of Web Documents.
287-290 
 
 
 
 
 - Ning Zhong, Chunnian Liu, Yoshitsugu Kakemoto, Setsuo Ohsuga:
KDD Process Planning.
291-294 
 
 
 
 
 - Djamel A. Zighed, Ricco Rakotomalala, Fabien Feschet:
Optimal Multiple Intervals Discretization of Continuous Attributes for Supervised Learning.
295-298 
 
 
 
 
 - Blaz Zupan, Marko Bohanec, Ivan Bratko, Bojan Cestnik:
A Dataset Decomposition Approach to Data Mining and Machine Discovery.
299-302 
 
 
 
 
 
Invited Talk
 
- Peter J. Huber:
From Large to Huge: A Statistician's Reactions to KDD & DM.
304-308 
 
 
 
 
 
Copyright © Fri Mar 12 17:18:01 2010
 by Michael Ley (ley@uni-trier.de)