26. ICML 2009:
Montreal,
Quebec,
Canada
 Andrea Pohoreckyj Danyluk, Léon Bottou, Michael L. Littman (Eds.):
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009.
ACM International Conference Proceeding Series 382 ACM 2009, ISBN 978-1-60558-516-1  
  
  
  
  
 
- Ryan Prescott Adams, Zoubin Ghahramani:
 Archipelago: nonparametric Bayesian semi-supervised learning.
1
             
- Ryan Prescott Adams, Iain Murray, David J. C. MacKay:
 Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities.
2
             
- Fabio Aiolli, Giovanni Da San Martino, Alessandro Sperduti:
 Route kernels for trees.
3
             
- David Andrzejewski, Xiaojin Zhu, Mark Craven:
 Incorporating domain knowledge into topic modeling via Dirichlet Forest priors.
4
             
- Raphaël Bailly, François Denis, Liva Ralaivola:
 Grammatical inference as a principal component analysis problem.
5
             
- Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston:
 Curriculum learning.
6
             
- Alina Beygelzimer, Sanjoy Dasgupta, John Langford:
 Importance weighted active learning.
7
             
- Guillaume Bouchard, Onno Zoeter:
 Split variational inference.
8
             
- Abdeslam Boularias, Brahim Chaib-draa:
 Predictive representations for policy gradient in POMDPs.
9
             
- Craig Boutilier, Kevin Regan, Paolo Viappiani:
 Online feature elicitation in interactive optimization.
10
             
- Thomas Bühler, Matthias Hein:
 Spectral clustering based on the graph p-Laplacian.
11
             
- Michael C. Burl, Esther Wang:
 Active learning for directed exploration of complex systems.
12
             
- Alberto Giovanni Busetto, Cheng Soon Ong, Joachim M. Buhmann:
 Optimized expected information gain for nonlinear dynamical systems.
13
             
- Deng Cai, Xuanhui Wang, Xiaofei He:
 Probabilistic dyadic data analysis with local and global consistency.
14
             
- Cassio Polpo de Campos, Zhi Zeng, Qiang Ji:
 Structure learning of Bayesian networks using constraints.
15
             
- Nicolò Cesa-Bianchi, Claudio Gentile, Francesco Orabona:
 Robust bounds for classification via selective sampling.
16
             
- Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, Karthik Sridharan:
 Multi-view clustering via canonical correlation analysis.
17
             
- Jianhui Chen, Lei Tang, Jun Liu, Jieping Ye:
 A convex formulation for learning shared structures from multiple tasks.
18
             
- Yihua Chen, Maya R. Gupta, Benjamin Recht:
 Learning kernels from indefinite similarities.
19
             
- Chih-Chieh Cheng, Fei Sha, Lawrence K. Saul:
 Matrix updates for perceptron training of continuous density hidden Markov models.
20
             
- Weiwei Cheng, Jens C. Huhn, Eyke Hüllermeier:
 Decision tree and instance-based learning for label ranking.
21
             
- Youngmin Cho, Lawrence K. Saul:
 Learning dictionaries of stable autoregressive models for audio scene analysis.
22
             
- Myung Jin Choi, Venkat Chandrasekaran, Alan S. Willsky:
 Exploiting sparse Markov and covariance structure in multiresolution models.
23
             
- Stéphan Clémençon, Nicolas Vayatis:
 Nonparametric estimation of the precision-recall curve.
24
             
- Wenyuan Dai, Ou Jin, Gui-Rong Xue, Qiang Yang, Yong Yu:
 EigenTransfer: a unified framework for transfer learning.
25
             
- Samuel I. Daitch, Jonathan A. Kelner, Daniel A. Spielman:
 Fitting a graph to vector data.
26
             
- Hal Daumé III:
 Unsupervised search-based structured prediction.
27
             
- Jesse Davis, Pedro Domingos:
 Deep transfer via second-order Markov logic.
28
             
- Marc Peter Deisenroth, Marco F. Huber, Uwe D. Hanebeck:
 Analytic moment-based Gaussian process filtering.
29
             
- Ofer Dekel, Ohad Shamir:
 Good learners for evil teachers.
30
             
- Meghana Deodhar, Gunjan Gupta, Joydeep Ghosh, Hyuk Cho, Inderjit S. Dhillon:
 A scalable framework for discovering coherent co-clusters in noisy data.
31
             
- Carlos Diuk, Lihong Li, Bethany R. Leffler:
 The adaptive k-meteorologists problem and its application to structure learning and feature selection in reinforcement learning.
32
             
- Chuong B. Do, Quoc V. Le, Chuan-Sheng Foo:
 Proximal regularization for online and batch learning.
33
             
- Trinh Minh Tri Do, Thierry Artières:
 Large margin training for hidden Markov models with partially observed states.
34
             
- Finale Doshi-Velez, Zoubin Ghahramani:
 Accelerated sampling for the Indian Buffet Process.
35
             
- Gabriel Doyle, Charles Elkan:
 Accounting for burstiness in topic models.
36
             
- Lixin Duan, Ivor W. Tsang, Dong Xu, Tat-Seng Chua:
 Domain adaptation from multiple sources via auxiliary classifiers.
37
             
- John Duchi, Yoram Singer:
 Boosting with structural sparsity.
38
             
- Alireza Farhangfar, Russell Greiner, Csaba Szepesvári:
 Learning to segment from a few well-selected training images.
39
             
- M. Julia Flores, José A. Gámez, Ana M. Martínez, Jose Miguel Puerta:
 GAODE and HAODE: two proposals based on AODE to deal with continuous variables.
40
             
- Chuan-Sheng Foo, Chuong B. Do, Andrew Y. Ng:
 A majorization-minimization algorithm for (multiple) hyperparameter learning.
41
             
- Wenjie Fu, Le Song, Eric P. Xing:
 Dynamic mixed membership blockmodel for evolving networks.
42
             
- Rahul Garg, Rohit Khandekar:
 Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property.
43
             
- Roman Garnett, Michael A. Osborne, Stephen J. Roberts:
 Sequential Bayesian prediction in the presence of changepoints.
44
             
- Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
 PAC-Bayesian learning of linear classifiers.
45
             
- Fabian Gieseke, Tapio Pahikkala, Oliver Kramer:
 Fast evolutionary maximum margin clustering.
46
             
- Eduardo Rodrigues Gomes, Ryszard Kowalczyk:
 Dynamic analysis of multiagent Q-learning with ε-greedy exploration.
47
             
- John Guiver, Edward Snelson:
 Bayesian inference for Plackett-Luce ranking models.
48
             
- Peter Haider, Tobias Scheffer:
 Bayesian clustering for email campaign detection.
49
             
- Elad Hazan, C. Seshadhri:
 Efficient learning algorithms for changing environments.
50
             
- Verena Heidrich-Meisner, Christian Igel:
 Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search.
51
             
- Thibault Helleputte, Pierre Dupont:
 Partially supervised feature selection with regularized linear models.
52
             
- Junzhou Huang, Tong Zhang, Dimitris N. Metaxas:
 Learning with structured sparsity.
53
             
- Tzu-Kuo Huang, Jeff Schneider:
 Learning linear dynamical systems without sequence information.
54
             
- Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert:
 Group lasso with overlap and graph lasso.
55
             
- Tony Jebara, Jun Wang, Shih-Fu Chang:
 Graph construction and b-matching for semi-supervised learning.
56
             
- Nikolay Jetchev, Marc Toussaint:
 Trajectory prediction: learning to map situations to robot trajectories.
57
             
- Shuiwang Ji, Jieping Ye:
 An accelerated gradient method for trace norm minimization.
58
             
- Wei Jin, Hung Hay Ho:
 A novel lexicalized HMM-based learning framework for web opinion mining.
59
             
- Jason K. Johnson, Vladimir Y. Chernyak, Michael Chertkov:
 Orbit-product representation and correction of Gaussian belief propagation.
60
             
- Hetunandan Kamisetty, Christopher James Langmead:
 A Bayesian approach to protein model quality assessment.
61
             
- Nikolaos Karampatziakis, Dexter Kozen:
 Learning prediction suffix trees with Winnow.
62
             
- Balázs Kégl, Róbert Busa-Fekete:
 Boosting products of base classifiers.
63
             
- Stanley Kok, Pedro Domingos:
 Learning Markov logic network structure via hypergraph lifting.
64
             
- J. Zico Kolter, Andrew Y. Ng:
 Near-Bayesian exploration in polynomial time.
65
             
- J. Zico Kolter, Andrew Y. Ng:
 Regularization and feature selection in least-squares temporal difference learning.
66
             
- Risi Imre Kondor, Nino Shervashidze, Karsten M. Borgwardt:
 The graphlet spectrum.
67
             
- Wojciech Kotlowski, Roman Slowinski:
 Rule learning with monotonicity constraints.
68
             
- Matthieu Kowalski, Marie Szafranski, Liva Ralaivola:
 Multiple indefinite kernel learning with mixed norm regularization.
69
             
- Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:
 On sampling-based approximate spectral decomposition.
70
             
- Jérôme Kunegis, Andreas Lommatzsch:
 Learning spectral graph transformations for link prediction.
71
             
- Ondrej Kuzelka, Filip Zelezný:
 Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties.
72
             
- Yanyan Lan, Tie-Yan Liu, Zhiming Ma, Hang Li:
 Generalization analysis of listwise learning-to-rank algorithms.
73
             
- Tobias Lang, Marc Toussaint:
 Approximate inference for planning in stochastic relational worlds.
74
             
- John Langford, Ruslan Salakhutdinov, Tong Zhang:
 Learning nonlinear dynamic models.
75
             
- Neil D. Lawrence, Raquel Urtasun:
 Non-linear matrix factorization with Gaussian processes.
76
             
- Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng:
 Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.
77
             
- Bin Li, Qiang Yang, Xiangyang Xue:
 Transfer learning for collaborative filtering via a rating-matrix generative model.
78
             
- Ping Li:
 ABC-boost: adaptive base class boost for multi-class classification.
79
             
- Yu-Feng Li, James T. Kwok, Zhi-Hua Zhou:
 Semi-supervised learning using label mean.
80
             
- Percy Liang, Michael I. Jordan, Dan Klein:
 Learning from measurements in exponential families.
81
             
- Han Liu, Mark Palatucci, Jian Zhang:
 Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery.
82
             
- Jun Liu, Jieping Ye:
 Efficient Euclidean projections in linear time.
83
             
- Yan Liu, Alexandru Niculescu-Mizil, Wojciech Gryc:
 Topic-link LDA: joint models of topic and author community.
84
             
- Zhengdong Lu, Prateek Jain, Inderjit S. Dhillon:
 Geometry-aware metric learning.
85
             
- Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker:
 Identifying suspicious URLs: an application of large-scale online learning.
86
             
- Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro:
 Online dictionary learning for sparse coding.
87
             
- Takaki Makino:
 Proto-predictive representation of states with simple recurrent temporal-difference networks.
88
             
- Benjamin M. Marlin, Kevin P. Murphy:
 Sparse Gaussian graphical models with unknown block structure.
89
             
- André F. T. Martins, Noah A. Smith, Eric P. Xing:
 Polyhedral outer approximations with application to natural language parsing.
90
             
- Brian McFee, Gert R. G. Lanckriet:
 Partial order embedding with multiple kernels.
91
             
- Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, Markus Püschel:
 Bandit-based optimization on graphs with application to library performance tuning.
92
             
- Hossein Mobahi, Ronan Collobert, Jason Weston:
 Deep learning from temporal coherence in video.
93
             
- Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
 Regression by dependence minimization and its application to causal inference in additive noise models.
94
             
- Gerhard Neumann, Wolfgang Maass, Jan Peters:
 Learning complex motions by sequencing simpler motion templates.
95
             
- Hannes Nickisch, Matthias W. Seeger:
 Convex variational Bayesian inference for large scale generalized linear models.
96
             
- Sebastian Nowozin, Stefanie Jegelka:
 Solution stability in linear programming relaxations: graph partitioning and unsupervised learning.
97
             
- John William Paisley, Lawrence Carin:
 Nonparametric factor analysis with beta process priors.
98
             
- Wei Pan, Lorenzo Torresani:
 Unsupervised hierarchical modeling of locomotion styles.
99
             
- Jason Pazis, Michail G. Lagoudakis:
 Binary action search for learning continuous-action control policies.
100
             
- Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
 Detecting the direction of causal time series.
101
             
- Marek Petrik, Shlomo Zilberstein:
 Constraint relaxation in approximate linear programs.
102
             
- Nils Plath, Marc Toussaint, Shinichi Nakajima:
 Multi-class image segmentation using conditional random fields and global classification.
103
             
- Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan R. Sturtevant:
 Learning when to stop thinking and do something!
104
             
- Duangmanee Putthividhya, Hagai Thomas Attias, Srikantan S. Nagarajan:
 Independent factor topic models.
105
             
- Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, Hong-Jiang Zhang:
 An efficient sparse metric learning in high-dimensional space via l1-penalized log-determinant regularization.
106
             
- Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang, Lide Wu:
 Sparse higher order conditional random fields for improved sequence labeling.
107
             
- Ariadna Quattoni, Xavier Carreras, Michael Collins, Trevor Darrell:
 An efficient projection for l1,infinity regularization.
108
             
- Milos Radovanovic, Alexandros Nanopoulos, Mirjana Ivanovic:
 Nearest neighbors in high-dimensional data: the emergence and influence of hubs.
109
             
- Rajat Raina, Anand Madhavan, Andrew Y. Ng:
 Large-scale deep unsupervised learning using graphics processors.
110
             
- Sudhir Raman, Thomas J. Fuchs, Peter J. Wild, Edgar Dahl, Volker Roth:
 The Bayesian group-Lasso for analyzing contingency tables.
111
             
- Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Anna K. Jerebko, Charles Florin, Gerardo Hermosillo Valadez, Luca Bogoni, Linda Moy:
 Supervised learning from multiple experts: whom to trust when everyone lies a bit.
112
             
- Mark D. Reid, Robert C. Williamson:
 Surrogate regret bounds for proper losses.
113
             
- Sushmita Roy, Terran Lane, Margaret Werner-Washburne:
 Learning structurally consistent undirected probabilistic graphical models.
114
             
- Stefan Rueping:
 Ranking interesting subgroups.
115
             
- Mikkel N. Schmidt:
 Function factorization using warped Gaussian processes.
116
             
- Shai Shalev-Shwartz, Ambuj Tewari:
 Stochastic methods for l1 regularized loss minimization.
117
             
- Blake Shaw, Tony Jebara:
 Structure preserving embedding.
118
             
- David Silver, Gerald Tesauro:
 Monte-Carlo simulation balancing.
119
             
- Vikas Sindhwani, Prem Melville, Richard D. Lawrence:
 Uncertainty sampling and transductive experimental design for active dual supervision.
120
             
- Le Song, Jonathan Huang, Alexander J. Smola, Kenji Fukumizu:
 Hilbert space embeddings of conditional distributions with applications to dynamical systems.
121
             
- Andreas P. Streich, Mario Frank, David A. Basin, Joachim M. Buhmann:
 Multi-assignment clustering for Boolean data.
122
             
- Liang Sun, Shuiwang Ji, Jieping Ye:
 A least squares formulation for a class of generalized eigenvalue problems in machine learning.
123
             
- Ilya Sutskever:
 A simpler unified analysis of budget perceptrons.
124
             
- Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, Eric Wiewiora:
 Fast gradient-descent methods for temporal-difference learning with linear function approximation.
125
             
- Istvan Szita, András Lörincz:
 Optimistic initialization and greediness lead to polynomial time learning in factored MDPs.
126
             
- Arthur Szlam, Guillermo Sapiro:
 Discriminative k-metrics.
127
             
- Gavin Taylor, Ronald Parr:
 Kernelized value function approximation for reinforcement learning.
128
             
- Graham W. Taylor, Geoffrey E. Hinton:
 Factored conditional restricted Boltzmann Machines for modeling motion style.
129
             
- Tijmen Tieleman, Geoffrey E. Hinton:
 Using fast weights to improve persistent contrastive divergence.
130
             
- Robert E. Tillman:
 Structure learning with independent non-identically distributed data.
131
             
- Marc Toussaint:
 Robot trajectory optimization using approximate inference.
132
             
- Nicolas Usunier, David Buffoni, Patrick Gallinari:
 Ranking with ordered weighted pairwise classification.
133
             
- Manik Varma, Bodla Rakesh Babu:
 More generality in efficient multiple kernel learning.
134
             
- Xuan Vinh Nguyen, Julien Epps, James Bailey:
 Information theoretic measures for clusterings comparison: is a correction for chance necessary?
135
             
- Nikos Vlassis, Marc Toussaint:
 Model-free reinforcement learning as mixture learning.
136
             
- Maksims Volkovs, Richard S. Zemel:
 BoltzRank: learning to maximize expected ranking gain.
137
             
- Kiri L. Wagstaff, Benjamin Bornstein:
 K-means in space: a radiation sensitivity evaluation.
138
             
- Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, David M. Mimno:
 Evaluation methods for topic models.
139
             
- Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, Josh Attenberg:
 Feature hashing for large scale multitask learning.
140
             
- Max Welling:
 Herding dynamical weights to learn.
141
             
- Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, Yee Whye Teh:
 A stochastic memoizer for sequence data.
142
             
- Linli Xu, Martha White, Dale Schuurmans:
 Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning.
143
             
- Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, Irwin King:
 Non-monotonic feature selection.
144
             
- Liu Yang, Rong Jin, Jieping Ye:
 Online learning by ellipsoid method.
145
             
- Yi Sun, Daan Wierstra, Tom Schaul, Jürgen Schmidhuber:
 Stochastic search using the natural gradient.
146
             
- Chun-Nam John Yu, Thorsten Joachims:
 Learning structural SVMs with latent variables.
147
             
- Jia Yuan Yu, Shie Mannor:
 Piecewise-stationary bandit problems with side observations.
148
             
- Kai Yu, John D. Lafferty, Shenghuo Zhu, Yihong Gong:
 Large-scale collaborative prediction using a nonparametric random effects model.
149
             
- Xiaotong Yuan, Bao-Gang Hu:
 Robust feature extraction via information theoretic learning.
150
             
- Yisong Yue, Thorsten Joachims:
 Interactively optimizing information retrieval systems as a dueling bandits problem.
151
             
- Alan L. Yuille, Songfeng Zheng:
 Compositional noisy-logical learning.
152
             
- Peng Zang, Peng Zhou, David Minnen, Charles Lee Isbell Jr.:
 Discovering options from example trajectories.
153
             
- De-Chuan Zhan, Ming Li, Yu-Feng Li, Zhi-Hua Zhou:
 Learning instance specific distances using metric propagation.
154
             
- Kai Zhang, James T. Kwok, Bahram Parvin:
 Prototype vector machine for large scale semi-supervised learning.
155
             
- Wei Zhang, Akshat Surve, Xiaoli Fern, Thomas G. Dietterich:
 Learning non-redundant codebooks for classifying complex objects.
156
             
- Zhi-Hua Zhou, Yu-Yin Sun, Yu-Feng Li:
 Multi-instance learning by treating instances as non-I.I.D. samples.
157
             
- Jun Zhu, Amr Ahmed, Eric P. Xing:
 MedLDA: maximum margin supervised topic models for regression and classification.
158
             
- Jun Zhu, Eric P. Xing:
 On primal and dual sparsity of Markov networks.
159
             
- Jinfeng Zhuang, Ivor W. Tsang, Steven C. H. Hoi:
 SimpleNPKL: simple non-parametric kernel learning.
160
             
- Corinna Cortes:
 Invited talk: Can learning kernels help performance?
161
             
- Yoav Freund:
 Invited talk: Drifting games, boosting and online learning.
162
             
- John Mark Agosta, Russell Almond, Dennis M. Buede, Marek J. Druzdzel, Judy Goldsmith, Silja Renooij:
 Workshop summary: Seventh annual workshop on Bayes applications.
163
             
- Robert F. Murphy, Chun-Nan Hsu, Loris Nanni:
 Workshop summary: Automated interpretation and modelling of cell images.
164
             
- Kay Yu, Ruslan Salakhutdinov, Yann LeCun, Geoffrey E. Hinton, Yoshua Bengio:
 Workshop summary: Workshop on learning feature hierarchies.
165
             
- David Wingate, Carlos Diuk, Lihong Li, Matthew Taylor, Jordan Frank:
 Workshop summary: Results of the 2009 reinforcement learning competition.
166
             
- Chris Drummond, Nathalie Japkowicz, William Klement, Sofus A. Macskassy:
 Workshop summary: The fourth workshop on evaluation methods for machine learning.
167
             
- Jean-Yves Audibert, Peter Auer, Alessandro Lazaric, Rémi Munos, Daniil Ryabko, Csaba Szepesvári:
 Workshop summary: On-line learning with limited feedback.
168
             
- Matthias Seeger, Suvrit Sra, John P. Cunningham:
 Workshop summary: Numerical mathematics in machine learning.
169
             
- Özgür Simsek:
 Workshop summary: Abstraction in reinforcement learning.
170
             
- Douglas Eck, Dan Ellis, Philippe Hamel:
 Workshop summary: Sparse methods for music audio.
171
             
- Alina Beygelzimer, John Langford, Bianca Zadrozny:
 Tutorial summary: Reductions in machine learning.
172
             
- Eyal Even-Dar, Vahab S. Mirrokni:
 Tutorial summary: Convergence of natural dynamics to equilibria.
173
             
- Volker Tresp, Kai Yu:
 Tutorial summary: Learning with dependencies between several response variables.
174
             
- Manfred K. Warmuth, S. V. N. Vishwanathan:
 Tutorial summary: Survey of boosting from an optimization perspective.
175
             
- Yael Niv:
 Tutorial summary: The neuroscience of reinforcement learning.
176
             
- Paul N. Bennett, Misha Bilenko, Kevyn Collins-Thompson:
 Tutorial summary: Machine learning in IR: recent successes and new opportunities.
177
             
- Sanjoy Dasgupta, John Langford:
 Tutorial summary: Active learning.
178
             
- Jure Leskovec:
 Tutorial summary: Large social and information networks: opportunities for ML.
179
             
- Noah A. Smith:
 Tutorial summary: Structured prediction for natural language processing.
180
             
Copyright © Mon Mar 15 03:40:25 2010
 by Michael Ley (ley@uni-trier.de)