Ask others: ACM DL/Guide - - CSB - MetaPress - Google - Bing - Yahoo

2009 | ||
---|---|---|

12 | Jakob Creutzig, Steffen Dereich, Thomas Müller-Gronbach, Klaus Ritter: Infinite-Dimensional Quadrature and Approximation of Distributions. Foundations of Computational Mathematics 9(4): 391-429 (2009) | |

2007 | ||

11 | Thomas Müller-Gronbach, Klaus Ritter: Lower Bounds and Nonuniform Time Discretization for Approximation of Stochastic Heat Equations. Foundations of Computational Mathematics 7(2): 135-181 (2007) | |

10 | Jakob Creutzig, Thomas Müller-Gronbach, Klaus Ritter: Free-knot spline approximation of stochastic processes. J. Complexity 23(4-6): 867-889 (2007) | |

2006 | ||

9 | Thomas Müller-Gronbach, Erich Novak, Knut Petras: Special issue. J. Complexity 22(1): 3 (2006) | |

2005 | ||

8 | Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub: Algorithms and Complexity for Continuous Problems, 26. September - 1. October 2004 IBFI, Schloss Dagstuhl, Germany 2005 | |

2004 | ||

7 | Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub: 04401 Abstracts Collection - Algorithms and Complexity for Continuous. Algorithms and Complexity for Continuous Problems 2004 | |

6 | Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub: 04401 Summary - Algorithms and Complexity for Continuous Problems. Algorithms and Complexity for Continuous Problems 2004 | |

5 | Klaus Ritter, Thomas Müller-Gronbach: Lower Bounds and Non-Uniform Time Discretization for Approximation of Stochastic Heat Equations. Algorithms and Complexity for Continuous Problems 2004 | |

4 | Norbert Hofmann, Thomas Müller-Gronbach: On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations. J. Complexity 20(5): 732-752 (2004) | |

2002 | ||

3 | Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: Linear vs Standard Information for Scalar Stochastic Differential Equations. J. Complexity 18(2): 394-414 (2002) | |

2001 | ||

2 | Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: The Optimal Discretization of Stochastic Differential Equations. J. Complexity 17(1): 117-153 (2001) | |

2000 | ||

1 | Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comput. 69(231): 1017-1034 (2000) |

1 | Jakob Creutzig | [10] [12] |

2 | Steffen Dereich | [12] |

3 | Norbert Hofmann | [1] [2] [3] [4] |

4 | Erich Novak | [6] [7] [8] [9] |

5 | Knut Petras | [6] [7] [8] [9] |

6 | Klaus Ritter | [1] [2] [3] [5] [10] [11] [12] |

7 | J. F. Traub (Joseph F. Traub) | [6] [7] [8] |