
Efficient Bulk Deletes for Multi Dimensional Clustered
Tables in DB2

Bishwaranjan Bhattacharjee,
 Timothy Malkemus

 IBM T.J. Watson Research Center
Hawthorne, NY, USA

{bhatta, malkemus}
@us.ibm.com

Sherman Lau,

Sean McKeough,
Jo-anne Kirton,

IBM Toronto Laboratories
Markham, Ontario, Canada

{sherman, mckeough, kirton}

@ca.ibm.com

Robin Von Boeschoten,
John P Kennedy

IBM Toronto Laboratories
Markham, Ontario, Canada

{vboescho, kennedyj}

@ca.ibm.com

ABSTRACT

In data warehousing applications, the ability to efficiently delete

large chunks of data from a table is very important. This feature is

also known as Rollout or Bulk Deletes. Rollout is generally

carried out periodically and is often done on more than one

dimension or attribute. The ability to efficiently handle the

updates of RID indexes while doing Rollouts is a well known

problem for database engines and its solution is very important for

data warehousing applications. DB2 UDB V8.1 introduced a new

physical clustering scheme called Multi Dimensional Clustering

(MDC) which allows users to cluster data in a table on multiple

attributes or dimensions. This is very useful for query processing

and maintenance activities including deletes. Subsequently, an

enhancement was incorporated in DB2 UDB Viper 2 which

allows for very efficient online rollout of data on dimensional

boundaries even when there are a lot of secondary RID indexes

defined on the table. This is done by the asynchronous updates of

these RID indexes in the background while allowing the delete to

commit and the table to be accessed. This paper details the design

of MDC Rollout and the challenges that were encountered. It

discusses some performance results which show order of

magnitude improvements using it and the lessons learnt.

1. INTRODUCTION
Data warehouse sizes have been growing in leaps and bounds. An

important concern is the storage costs associate with it. This is

addressed by the periodic archiving of old data which might be

accessed less often or by its summary removal from the database.

Both methods require the mass delete of data from the warehouse.

This is also known as Rollout or as Bulk Delete. The space thus

freed up is used to make way for new data that is available. For

example, a company might have a warehouse of 5 years of data.

At the end of every month they might delete the oldest month of

data and bring in data for the latest month.

In the past, such mass deletes were usually done in a maintenance

window when the system load was low, like after midnight.

Recent trends indicate users are moving towards a shorter time

frame to perform this type of maintenance activities. Customers

want their systems to be available almost 24 X 7 - even for a

warehouse. Also, the amount of data being rolled out is becoming

smaller but it is being done more frequently. These factors make

an efficient online rollout mechanism very important for a

database engine.

A key challenge in making an efficient online rollout mechanism

is being able to handle the updates of RID indexes defined on the

tables well. This is a well known problem and has been described

in previous research work [1] [2]. RID indexes have pointers to

records and have to be updated whenever the record they point to

are deleted. A table might have many such RID indexes defined

on them. Updating them entails significant locking, logging, index

page IO as well as CPU consumption and has a strong influence

on the response time of the delete as well as concurrency. This is

especially true when the RID indexes are badly clustered and most

of the index page IO ends up being synchronous due to bad

locality of reference.

Another aspect of rollouts is that they might happen on more than

one dimension. For example, one might want to rollout data based

on shipdate at one time and orderdate on some other instance on

the same table. One might want to remove data pertaining to a

particular product or region etc. Also there might be further

restrictions on these rollouts. For example, a user might ask to

“delete orders older than 6 months provided they have been

processed”. The multi dimensionality of rollouts is thus an

important characteristic and has to be addressed.

In DB2 UDB V8.1, a new data layout scheme called Multi

Dimensional Clustering (MDC) [3] [4] [5] was introduced. This

allows a table to be clustered on one or more orthogonal

clustering attributes (or expressions). MDC initially supported a

deletion capability based on the conventional delete mechanism of

logging every row that was deleted and any indexes updated to

reflect the delete. This works for mass deletes as well as single

row deletes. Subsequently in DB2 UDB V8.2.2 Saturn [2], an

enhancement called “Immediate Rollout” was incorporated, which

allowed a user to more efficiently purge data from a table on

dimensional boundaries by writing one log record for an entire

block of data being deleted rather than one for every record. This

technique greatly helps reduce logging requirements. It also

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1197

improves the response time of the deletes when there only

dimensional block indexes defined on the table. However when

there are badly clustered RID indexes defined, the cost of

updating these indexes while doing the delete completely

dominates the total cost of the delete. Thus in these cases, the

Saturn enhancement does not impact the response time of the

delete much.

In this paper we detail the design of a major enhancement to

MDC deletes called “Deferred Rollout”, which was incorporated

into DB2 UDB Viper 2. This facilitates very efficient bulk deletes

of data even when one has a lot of badly clustered RID indexes

defined on the table. This is done by the asynchronous updates of

these RID indexes in the background while allowing the delete to

commit and the table to be accessed. We discuss some of the key

challenges encountered in the design and the lessons learnt. We

also discuss a performance study of MDC rollout which shows an

order of magnitude gain in response time and compares its

characteristics against conventional delete mechanisms.

The rest of the paper is structured as follows. Section 2 describes

the MDC feature introduced in DB2 UDB V8, Section 3 describes

how MDC deletes and bulk deletes work, Section 4 compares this

against other bulk delete mechanisms and related work, and

Section 5 gives a high level overview of the MDC Deferred

Rollout mechanism incorporated in DB2 UDB Viper 2. Section 6

and 7 cover two important aspects of the Deferred Rollout - the

ROBB and the AIC - in detail. In Section 8 we discuss the

performance results of MDC Rollout and delete and compare it

against non MDC delete. We conclude in Section 9 after a

discussion of the lessons learnt.

2. MULTI DIMENSIONAL CLUSTERING

IN DB2
Multi Dimensional Clustering (MDC) in DB2 UDB V8.1, allows

a user to physically cluster records in a table on multiple

orthogonal attributes or dimensions. The dimensions are specified

in an ORGANIZE BY DIMENSIONS clause on a create table

statement. For example, the following DDL describes a Sales

table organized by region, year(orderDate) and itemId.

CREATE TABLE Sales(

date orderDate,

int region,

int itemId,

float price,

int yearOd generated always as year(orderDate))

ORGANIZE BY DIMENSIONS (region, yearOd, itemId)

Each of these dimensions may consist of one or more columns,

similar to index keys. These could be base columns (like

orderDate) or generated columns (like yearOd). In fact, a

‘dimension block index’ will be automatically created for each of

the dimensions specified and will be used to quickly and

efficiently access data. A composite block index will also be

created automatically if necessary, containing all dimension key

columns, and will be used to maintain the clustering of data over

insert and update activity. For single dimensional tables since the

dimension block index and composite block index will turn out to

be identical, only one block index is automatically created and

used for all purposes.

In our example, a dimension block index is created on each of the

region, year(orderDate) and itemId attributes. An additional

composite block index will be created on (region, yearOd,

itemId). Each block index is structured in the same manner as a

traditional B+ tree index except that at the leaf level the keys

point to a block identifier (BID) instead of a record identifier

(RID). A block is collection of pages. Currently block size is tied

to the extent size of the tablespace on which the table is defined.

Since each block contains potentially many records, the block

indexes are much smaller than a corresponding RID index on a

non MDC table. In one instance, a block index was of 71 pages

and 2 levels whereas a corresponding RID index for a non MDC

table was of 222,054 pages and 4 levels [4].

Figure 1 illustrates these concepts. It depicts an MDC table

clustered on the dimensions year(orderDate), region and itemID.

The figure shows a simple logical cube with only two values for

each dimension attribute. Logical cells are represented by sub-

cubes in the figure and blocks by shaded ovals. They are

numbered according to the logical order of allocated blocks in the

table. We show only a few blocks of data for a cell identified by

the dimension values (1997,Canada, 2). A table (and a cell) can

have upto 2^31 blocks. Note that a cell without any records will

not have any physical representation in the table.

year(o
rderD

ate)itemId

1997,
Mexico,

1

1997,
Canada,

2

1997,
Canada,

1

1997,
Mexico,

2

1998,
Canada,

2

1998,
Mexico,

21997,
Mexico,

2

re
g
io

n

1997

1998 1

 2

Mexico

Canada

31

45

127

Figure 1: Logical view within a MDC table

A slice, or the set of blocks containing pages with all records

having a particular key value as a dimension, will be represented

in the associated dimension block index by a BID list for that key

value. The following diagram illustrates slices of blocks for

specific values of region and itemId dimensions, respectively.

In the example above, to find the slice containing all records with

‘Canada’ for the region dimension, we would look up this key

value in the region dimension block index and find a key as

shown in Figure 2(a). This key points to the exact set of BIDs for

the particular value.

The DB2 UDB implementation was chosen by its designers for its

ability to co-exist with other database features such as row-based

indexes (a.k.a RID indexes), table constraints, materialized query

tables, high-speed load, mass delete, hash partitioned MPP as well

as an SMP environment.

1198

 C a n a d a 2 1 3 1 4 5 7 7 1 2 7 3 7 6 5 0 1 7 1 9

 1 2 7 2 0 6 5 1 0 1 2 7 3 2 7 4 4 7 6

K e y

K e y

B ID L is t

B ID L is t

D im e n s io n B lo c k In d e x e n try fo r R e g io n 'C a n a d a '

D im e n s io n B lo c k In d e x e n try fo r ite m Id = 1

Figure 2: Block Index Key entries

MDC also introduced the concept of a Block Lock. The Block

Lock is a locking mechanism which is between the Table Lock

and a Record Lock in granularity. It allows for a block to be

locked in various modes. Block Locks could escalate to Table

Locks just like Record Locks do. However escalation of Record

Locks to Block Locks is not currently supported.

Another data structure introduced in MDC was the Block Map.

This stores information on the state of the blocks in a table. The

information includes if the block is free, if it has been recently

loaded, if it is a system block, requires Constraint enforcement

etc. This information is used, among other things, during inserts

and loads to select blocks to insert/load into. Figure 3 shows an

example blockmap for a table. Element 0 in the block map

represents block 0 in the MDC table. Its availability status is ‘U’,

indicating that it is in use. However, it is a special block and does

not contain any user records. Blocks 2, 3, 9,10,13,14 and 17 are

not being used in the table and are considered ‘F’ or free in the

block map. Blocks 7 and 18 have recently been loaded into the

table. Block 12 was previously loaded and requires constraint

checking to be performed on it.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 U U F F U U U L U F F U C F F U U F L

Figure 3: Block Map entries

A MDC dimension block index can be ANDed and ORed with

other dimension block indexes as well as any record based index

defined on the table. A full description of how they can be

combined can be found in [3], [4].

3. MDC DELETES
A delete of a record of an MDC table, entailed logging of the

entire record and updating any record indexes defined on the

table. The record index updates were logged too. The freed up

space is available for reuse by the same unit of work even before

the delete commits. After the commit, all transactions are free to

reuse the space. If the delete ended up emptying the block in

which the record resided, then the dimension block indexes were

updated and logged. Thus a dimension block index is updated

very few times compared to a corresponding record index on a

similar non MDC table delete in DB2. This has a positive impact

on response time of the delete and amount of logging needed.

In DB2 UDB V8.2.2 Saturn, a feature named Immediate Rollout

was introduced which allows for a more efficient delete of data

along cell boundaries for MDC tables. It builds on the good

points of MDC delete and also is submitted via a conventional

SQL Data Manipulation Language (DML) delete statements.

Thus users don’t have to change their applications to tap this new

feature. The compiler, under the covers, decides if the delete

statement can be executed using this bulk delete mechanism. If it

can be, then it generates a plan for its execution, else it switches to

conventional MDC delete for that statement.

Using this feature, multiple, full cells can be deleted in any

combination as long as it can be described using delete DML

statements. Figure 4 shows the result of 4 different deletes on the

MDC table described in Figure 1. They depict the result of

purging the table of individual cells to entire slices of data. While

the rollout is executing, concurrent access to the table is permitted

provided lock escalation to the table level has not occurred. The

rollout itself acquires an intent exclusive Table Lock, and

exclusive Block Locks on blocks being rolled out. It does not get

any individual Record Locks on records being deleted. Thus the

chances of lock escalation due to this type of delete are much

reduced compared to non MDC and this has a positive impact on

the concurrent access of the table when large rollouts occur.

1

Canada

Mexico

1997

1998

21

Canada

Mexico

1997

1998

2 1

Canada

Mexico

1997

1998

21

Canada

Mexico

1997

1998

2

Canada

Mexico

1997

1998Canada

Mexico

1997

1998

1

Canada

Mexico

1997

1998

21

Canada

Mexico

1997

1998

2

2.1: delete from <table> where
nation = ‘Mexico’ and itemId = 2 and

year = 1997

2.2 : delete from <table> where
itemId = 2 and year = 1997

2.4 : delete from <table> where itemId = 22.3: delete from <table> where (nation = ‘Mexico’ and

itemId = 2 and year = 1997) or (nation=‘Mexico’ and
itemId=1 and year = 1998) or (nation=‘Canada’ and

itemId=1 and year = 1997) or (nation = ‘Canada’ and
itemId=2 and year = 1998)

Figure 4: Example of rollout in a MDC table

For this type of delete, no record level logging is done as in

conventional MDC delete. Instead, for all the records in the page,

a single small log record is written. This indicates to the system

that all records in the page have been deleted but the contents of

the records themselves are not logged. Further, meta information

stored in the page as well as the first page of the block is updated

to indicate all records have been deleted and thus the pages of the

block are free. This change is also logged.

This type of delete tends to process a block at a time as described

above. When a block is rolled out, its corresponding entry in the

blockmap is marked rolled out and the InUse bit is reset. This

indicates that this block cannot be reused by the same transaction

until the rollout is committed. All the Dimension Block Indexes

are updated to reflect the fact that the block is no longer

associated with its cell. It is to be noted that the block is still

associated with the table after a commit and is reusable for any

cell. It can be delinked from the table and returned to the

tablespace by a table reorg.

Any row based indexes defined on the table are updated one row

at a time. For each row, its entry in all the RID indexes is removed

and this change is logged. Unfortunately in a large segment of real

1199

customer scenarios, one can expect a lot of RID indexes to be

defined on the table. In these cases, while the enhancement helps

with logging resource consumption, it is not a great help in

bringing down the response time of the delete. This is because the

cost of updating these RID indexes dominates the total cost of the

delete. This is analyzed and described in detail in [2]. Figure 5

which is taken from this paper shows the response time of a delete

with various index clustering. Here the partkey and the receiptdate

indexes have a cluster ratio of 4% and 38% respectively. While

there is a 7 times performance improvement when we don’t have a

RID index defined, it drops to 33% with the receiptdate index and

to 2% with the partkey index.

15
22

826

2

14

810

No Rid Index Receiptdate Partkey

1

10

100

1000

10000

R
e

s
p

o
n

s
e

 T
im

e
 (

in
 s

e
c
o

n
d

s
)

MDC Rollout MDC Delete

 Figure 5: Response time of a MDC Rollout and Delete with

different index clustering

The reasons for this can be deciphered from Figure 6 which is

also taken from the same paper. It shows the logical and physical

index page reads to be done as part of the index updates for

rollout and delete. With the receiptdate index of 38% clustering,

one ended up getting good bufferpool hit ratio for the index pages

that were needed and thus the physical index page reads are lower.

However, for the partkey index of 4% clustering, the amount of

physical reads that needed to be done for almost the same number

of logical reads was substantial. This accounted for the drop in

response time for the partkey index.

332

3203083 3198995

42

2225

568494

No Rid Index Receiptdate Partkey

1

10

100

1000

10000

100000

1000000

10000000

In
d

e
x
 P

a
g

e
 R

e
a

d
s

Physical

Logical

Figure 6: Index page reads for the delete in Figure 5

The problem of index updates will get really aggravated when we

have multiple RID indexes defined on the table. To tackle this

important issue, a major enhancement to MDC delete called

Deferred Rollout was introduced in DB2 UDB Viper 2. Here we

asynchronously update these RID indexes in the background

while allowing the delete to commit and the table to be accessed.

This results in a huge improvement to the response time of the

deletes along with a major reduction of log footprint and physical

IO on the indexes. This major enhancement is the focus of this

paper.

4. THE CURRENT STATE OF THE ART
The delete mechanism employed by database engines generally

works horizontally, on a row at a time. Each record is deleted and

the defined indexes are updated one by one to reflect the delete of

that record. For mass or multiple record deletes, one iterates over

all records to be deleted in a similar fashion. The conventional

MDC delete in DB2 UDB V8.1 is an example of that. While these

are easy to implement, they are very inefficient for mass record

deletes since the accompanying RID index updates results in

random probes into the index. This translates to synchronous IO

and is very costly.

Other technologies in this area include the Detach mechanism for

range partitioned tables. Range partitioning is available in some

commercial database systems like DB2 zOS and LUW [6], Oracle

[7] and MS SQL Server 2005 [8]. In this, a table is partitioned

into ranges of values on a specified attribute. Detaching a

partition would be the equivalent of delinking all the data of the

partition from the table. Any local indexes on that partition are

also thrown out. If there are global indexes defined, these will

have to be updated. Detach tends to be a Data Definition

Language (DDL) level command and application have to

explicitly specify they want to detach. This will, in most

implementations, result in getting an exclusive lock on the table

for the duration of the Detach. Thus, during the Detach,

concurrent access to the table is generally disallowed.

Some database engines implement the base table in the form of a

B+ tree itself [7] [9]. Here, additional secondary indexes are

allowed and will have to be updated on a delete. In some

implementations, to speed this up, multiple indexes could be

updated in parallel [9] [10] [11]. There have also been recent

works [12] on efficient online bulk deletion of the base B+ tree

table itself. Here, all locks needed for the bulk delete operation are

acquired during the scan of the leaf pages covering the target key

range. However, the records qualifying the delete are marked for

delete only. These records are then physically deleted in a later

rebalance phase that avoids visiting subtrees in which all records

qualify for deletion. It should be noted that this work did not

focus on optimizing the update of secondary indexes which might

be defined on the table.

A mechanism for bulk deletes was explained in [1]. The aim of

this method was to improve the response time of the delete. This

is an important consideration for mass deletes. However, it did not

address the issues of resource consumption for logging or locking

or the response time of the rollback of the delete. It also assumed

the base table would be exclusively locked and the indices would

be offline for the duration of the delete. The method described, is

based on vertical deletes of the base table and any rid indexes

defined on it. This is to be contrasted with the conventional

method of deleting the table record and updating the rid indexes

iteratively for all qualifying records.

Deferred maintenance was explored in [13]. Here, a differential

file was used like a book errata list to identify and collect pending

row changes. An up-to-date database view was effectively

obtained by first consulting the differential file as the first step in

data retrieval. In this scheme, one trades off increased access time

for getting reduced database update costs. When the differential

file grows sufficiently large, reorganization incorporates all

changes into a new generation of the database.

1200

It is to be noted that while not directly related to rollouts, there

has been a lot of work on analysis and implementation of deletes

on indices and related issues [14],[15]. Bulk load (also known as

Rollin) is the opposite of Rollout. This has also been studied in a

number of papers [16],[17],[18]. Deleting records from tables

and the management of free space has been discussed in [19]

5. OVERVIEW OF DEFERRED ROLLOUT
The design goals of Deferred Rollout in DB2 UDB Viper 2 were

to dramatically improve the response time of the Rollouts while

keeping the table online and queryable. It also aimed to reduce the

IO and logging involved in updating the RID indexes. The latter

results in simplified applications since customers will now not

have to break up their deletes into smaller parts using FFnRO

(Fetch First n Rows Only) to work within their log space

limitations.

Figure 7 shows a high level overview of our approach. When a

delete that qualifies to be a rollout happens, the table records are

deleted one by one as previously and one log record per page is

written for them as before. However the RID indexes are not

updated then and there with every record deleted. Rather, we mark

the block they belong to as deleted in a new in-memory data

structure called the Rollout Block Bitmap (ROBB). We also mark

the corresponding entry in the on-disk block map with the InUse

and Rollout bits turned on. When the cleanup of the records from

the table is completed and the user wants to commit, the delete is

committed as today. This obviously will leave the RID indexes as

dirty with pointers in them to records which have been deleted. To

prevent queries which use these RID indexes from returning

wrong results, the ROBB is used to filter out accesses to these

deleted records.

After the delete commits, Asynchronous Index Cleaners (AICs)

are started in the background which go through these indexes and

use the ROBB to identify deleted record entries, remove them

from the indexes and log the index updates. This process will

continue till it has cleaned all RID indexes of deleted record

entries. Simultaneously the ROBB is also updated to mark the

blocks cleaned as it happens. When cleaning is done, the ROBB is

removed and queries using the RID indexes stop the extra step of

filtering out records from them.

Canada

Mexico

1

2

AI

CLOG

Rollout Block

Bitmap Pointer
Rid Index

AIC

1991 1992

Canada

Mexico

1

2Canada

Mexico

1

2

AI

CLOG

Rollout Block

Bitmap Pointer
Rid Index

AIC

1991 1992

Figure 7: High level overview of Deferred Rollout

With this design, the tradeoff is that queries which use RID index

scans will have to probe the ROBB to determine the state of the

record while the indexes are being cleaned up. However table

scans and block index scans will not be affected. Another tradeoff

is that blocks will become available for reuse only when all the

indexes have been cleaned up rather than as and when a block is

cleaned up.

It is to be noted that this description of our approach is a very

high level overview of the process and does not describe the

concurrency and other issues that need to be addressed. In the

subsequent subsections, we will describe each step and the

challenges involved in greater detail.

6. ROLLOUT BLOCK BITMAP (ROBB)
The ROBB represents blocks which have been deleted from the

table but have pointers in the RID indexes to them. A table can

have up to 2^31 blocks and the ROBB needs to be able to handle

them. As depicted in Figure 8, ROBBs are of two kinds namely

the Master ROBB and the Local ROBB. The former represents

the blocks which are deleted and committed but not yet cleaned

by AIC. There is one Master ROBB at the maximum for a table

object and it is used by all transactions to filter out access to

deleted records from RID indexes in that table object.

The Local ROBB represents the blocks which have been deleted

but not yet committed or rolled back. There is one Local ROBB

for the table in every transaction which does a delete and is

accessible only by it. It may represent the cumulative result of

more than one delete in that unit of work. RID index accesses

from this transaction will have to filter out RIDs not only from the

Master ROBB but also from the Local ROBB. When the

transaction commits, its Local ROBB is then merged into the

Master ROBB for the table. This then becomes the single point of

truth for all RID index based accesses from all transactions

including this one.

Figure 8: Table level Master ROBB and transaction level Local

ROBB when there are committed and uncommitted Rollouts

6.1 Key Design Considerations
The key design considerations for the ROBB include:

1. Fast probes: Queries which use RID index accesses will be

probing the ROBB on every RID to determine if the block the

RID belongs to is deleted or not. A fast filtering mechanism is

imperative to keep the query performance overhead low. This is

especially true for index only scans where one accesses only the

index and not the underlying table. This requirement means the

ROBB has to be an in-memory structure and rules out a pure disk

based structure.

2. Memory consumption: In real customer situations, one tends to

have many tables and there could be multiple deletes going on at

the same time. Thus the memory consumption of a ROBB is an

Rollout Block
Bitmap
Master ROBB Rid Index Scan from Same

UOW as Rollout

Canad

Mexic

1
2

1991

Canad

Mexic

1
2 Canad

Mexic

1
2

1991

 Local ROBB

1201

important design consideration. It has to be kept to the minimum

possible. Since a table could have up to 2^31 blocks, a simple in-

memory bitmap, where one has one bit for every possible block in

the table pre allocated, is ruled out as impractical. Such a large

bitmap would also mean that for random probes into the bitmap

one would end up with a lot of data cache misses.

3. Commit/Rollout memory restrictions: Generally a commit or

rollback operation happens without extra memory being allocated

during that time. This is because an inability to get that memory

could lead to a critical failure. Moreover, rollback is often done to

free up resources and thus asking for more memory would go

against the reason for doing the rollback. Keeping these in mind,

ROBB operations done during these two periods will have to

work within available memory.

6.2 ROBB Design
The ROBB design we choose is based on the principle that in

most real life scenarios, only a part of the table will be deleted and

thus the probability of the probes returning block deleted would

be low. Given this, a hierarchical bitmap, where each level is

tailored for a level in the memory hierarchy and the bottom level

represents only deleted blocks was used for the ROBB. For

example, the top most level (of size n bits) would fit a register.

Registers are generally of sizes 32, 64 or 128 bits. Older

machines had smaller registers and the newer ones have larger

register sizes. The next level of the bitmap (of size m bits) would

fit in the data cache of the machine. Machines could have

multiple levels of the data cache like L1, L2, L3, etc., and we may

have levels of the bitmap corresponding to one or some or all of

the multiple levels of the data cache. The lowest level of the

bitmap may fit in main memory.

FIG. 9 shows an example ROBB with four levels. Here the value

of n and m is 64 and 8126 respectively. It is designed so that

level 1 fits in a 64 bit register, level 2 in a data cache like L1 or

L2, level 3 in a data cache of level L3 and level 4 would in main

memory.

64 Bit ROBB Lvl 1

8192 Bit ROBB Lvl 2

8192 Pointers in ROBB Lvl 3

Should fit in register

Should fit in the data cache

00001000100

1

1

1

1 1

Sub bitmaps
00001000100

00001000100

Figure 9: An example hierarchical ROBB

The lowest level sub bitmaps in FIG. 9 may have a maximum of m

sub bitmaps each of round ((x/m) + 0.5) bits. A sub bitmap would

physically exist only if one or more blocks it represented is

deleted but not yet cleaned. In the example shown in Fig 8, there

are three sub bitmaps materialized out of the m possible sub

bitmaps. Each of them is shown to have 2 bits turned on. This

means there are a total of 6 buckets deleted but not yet cleaned.

The level above that (marked RobbLvl3) has m pointers to the sub

bitmaps. They may be non NULL if the bitmap it points to exists.

In the above example, there are three pointers which are not

NULL. The levels above that (Robb Lvl2) have a bitmap of size

m where there will be a 1 in a bit of position b if the pointer in the

level below of that same number is non NULL. In this case there

is three bits marked 1. The topmost level (marked RobbLvl1) has

a bit s turned on if any of the bits ((s-1)* round (m/n) +0.5) to (s*

round ((m/n) + 0.5)-1 of the level lower to it is on. In the example

described in FIG. 9, there are two bits turned on in the top most

level. The one on the left has two bits of the lower level

corresponding to it turned on and one to the right has one.

Thus, in this representation, a bit in the top level represents a

number of bits in the next lower level. If any one of the bits in the

next lower level that the top level bit represents is turned on, then

that top level bit is also turned on. The hierarchy may comprise

any number of levels in similar manner depending on the design

and system considerations.

The following are some of the operations which need to be

supported on the ROBB:

6.2.1 Probe
When a ROBB probe via a RID index access happens, if the bit

corresponding to the block at the top most level is off, it indicates

the bucket is definitely not deleted and thus the query can proceed

ahead. A scheme like this is ideal if the probability of a block

being deleted is low, which happens in most real situations. It is

to be noted that the level may likely be in a register and thus

would be very fast to access if most of them return not deleted. If

the register has a 1 for that bucket, then it would mean that there

exists a probability of the bucket being deleted but not certain

unless the lower levels are checked. In such a case, the lower

levels are accessed iteratively until it hits the lowest level and gets

a confirmation for the bucket or at some level it determines that

the bucket is not deleted.

The probe is a very performance critical operation and happens

very often. A RID index access will Probe the ROBB for every

RID it encounters from the index.

6.2.2 Set and Clear
The Set and Clear operations on the ROBB are not very frequent.

They will happen only when a block is deleted by a transaction or

it is cleaned up by AIC respectively. So they are not very

performance critical.

When a delete of a block happens, its bit in the ROBB will be set

to 1. If the sub bitmap it belongs to at the lowest level does not

exist, it will be materialized before the bit is marked 1. Further,

the pointer at RobbLvl3 is set and the bits corresponding to the

block at the higher level are iteratively turned on if they were not

on already.

As the AIC cleans up the rid indexes and the blocks, it will clear

the bit corresponding to the block in the ROBB. That will entail

turning its bit at the sub bitmap in the lowest level to 0. If that

completely empties the sub bitmap of bits marked 1, then the sub

bitmap is freed and the pointer at RobbLvl3 is turned off. Further

we iteratively move up the hierarchy and check if the bits at the

higher level can be turned off. This can be done if all the bits

corresponding to that bit in the lower level are turned off.

1202

6.2.3 Merge and Subtract
A key design requirement for the ROBBs is that they should be

easy to merge and subtract from each other. The merge operation

is used at the time of commit when the transaction’s Local ROBB

is merged to the Master ROBB of the table. The subtract

operation is used during the rollback of an in-doubt transaction

when we need to erase the effects of a transaction from the Master

ROBB. Since during commit and rollback, one cannot request for

more memory, hence both the merge and subtract operations of

the ROBB had to be designed to essentially work within the

available memory of the Local and Master ROBB.

An “in-doubt” transaction is one whose fate (committed or rolled

back) is not known during and immediately after a database

restart. Its changes are tentatively reapplied to the database and

locks are held on its behalf, until it is resolved. The reapplying of

a Deferred Rollout results in the creation of a Temporary ROBB

(recording all the blocks that were rolled out), which is retained

until the transaction is resolved, and in the setting of bits in the

Master ROBB. If the transaction commits, the Local ROBB is

discarded. It if rolls back, the Local ROBB are subtracted from

the Master ROBB. If the Master ROBB then becomes empty, it is

discarded. Subtraction is simply unsetting all the bits in the

Master ROBB that correspond to bits that are set in the Local

ROBB. As sub bitmaps become empty, they are removed from

the Master ROBB and corresponding bits at the higher level are

unset.

To accomplish a merge, both the Local and Master ROBB come

out of the same memory heap. First, if a Master ROBB does not

already exist, the Local ROBB simply becomes the new Master

ROBB. Otherwise, the Local ROBB is merged into the Master

ROBB as follows:

Step 1: The new level 1 bitmap is replaced with the bitwise OR of

the old master level 1 bitmap and the temporary level 1 bitmap.

Step 2: For each level that consists of a bitmap and corresponding

pointers to lower level sub bitmaps, the bitmap is replaced with

the bitwise OR of the old master bitmap at that level and the

temporary bitmap at that level. For each pointer in the master

bitmap's list of pointers, if the pointer is not null and the

corresponding pointer in the temporary list is null, the pointer is

not changed. If the pointer is null, the corresponding pointer is

copied from the temporary bitmap to the master bitmap, and the

lower level sub bitmap that it points to will belong to the master

bitmap, from then on. If both the pointer in the master bitmap

and the corresponding pointer in the temporary bitmap are not

null, then the lower level sub bitmap is merged, either as in this

step 2 (if it is also a combination of a bitmap and corresponding

list of pointers) or as in step 3 (if it is the lowest level sub bitmap,

consisting only of bits and no pointers).

Step 3: Each sub bitmap in the master for which a corresponding

sub bitmap also exists in the temporary bitmap, as determined in

step 2, is merged by bitwise ORing the two sub bitmaps, thus

replacing the contents of the master sub bitmap with the result,

and discarding the temporary sub bitmap (freeing the memory it

occupies).

6.2.4 Recreate
This operation will recreate the ROBB during recovery after a

system crash or normally when the AIC is suspended on a

database deactivation. This is facilitated by the deleter marking

every block it deletes with the Rollout bit in the on-disk block

map and leaving the InUse bit on. When AIC frees up the block it

will turn on the free bit of the block in the block map while

resetting the InUse and rollout bits. At the time of a system crash,

recovery will walk through the block map and will recreate the

ROBB by setting the corresponding bit in it for every block it

finds marked InUse and Rollout in the block map.

6.3 Prior Art on Hierarchical Bitmaps
Hierarchical bitmaps have been used in the past for Operating

System memory management. Among other things they are used

in some systems for allocation, deallocation, and reallocation of

memory, and tracking the changes in the allocation states [20].

Hierarchical bitmaps have also been used in the communication

industry ranging in applications from reporting reception result of

packets [21], acknowledgement bitmaps in ARQ transmission

protocols [22] as well as scheduling communication flows [23].

These types of bitmaps also find use in thread activity for multi

processors as well as file system management [24]. Hierarchical

Bitmap Indexes have also being used for indexing set value

attributes [25].

It is to be noted that Hierarchical Bitmaps are a very generic term.

For the sample applications mentioned above, a very specific

flavor of Hierarchical Bitmap, tailor made for that application area

was used in each case.

7. ASYNCHRONOUS INDEX CLEANUP

(AIC)
The key aim of Asynchronous Index Cleanup (AIC) is reducing

the physical IO involved in cleaning up RID indexes. As shown in

Fig 6, in conventional delete, the physical IO could be very large

for badly clustered RID indexes. Another aim is to reduce the

amount of logging needed to cleanup the RID indexes. Customers

go to the pains of dividing their deletes into smaller ones using

FFnRO clauses to circumvent their log space limitations. Any

mechanism which significantly reduces log space requirement will

help simplify applications. Customers generally desire that these

be done without taking the index or the table offline and while

other rollouts on the table are allowed to happen. They also need

to control the priority of the AIC or even stop it if necessary, to

make way for high priority queries which might come in

To accomplish all these, when a delete commits and a Master

ROBB is created, an AIC agent starts walking through the block

map and stakes out its cleaning territory by marking blocks which

have the InUse and Rollout turned on, with an additional cleaning

bit. This allows it to differentiate between blocks it is cleaning

and those which might be additionally rolled out while it is doing

its job.

Subsequently one AIC agent is earmarked for every RID index

defined on the table. This agent walks through the leaf pages of

the index and for every RID it encounters; it probes the ROBB to

determine if it is deleted. It removes deleted record entries from

the index and for every leaf page it has changed, it writes one log

record. After an extent has been thus processed, the AIC will

commit its work. It will also prefetch index leaf pages ahead of

where it is currently working to reduce IO waits. The agents will

regularly also write its resume position into the index and log it.

This is used to help a restart of the AIC. In this way, multiple

1203

AIC agents work in parallel on the different indexes to clean them

all up.

When the agents are done traversing their entire designated index,

each agent waits at a wait-post till the last agent completes. The

last agent out will walk through the block map and turn the blocks

marked InUse, Rollout and Cleaning to free. It will also

simultaneously clear the bit for that block in the Master ROBB.

The blocks thus cleaned are now available for reuse. At this stage,

the AIC is ready to do more work on the table. It will check the

Master ROBB to see if any further rollouts have happened. If so,

it starts all over again and takes care of all the pending rollouts in

one single pass over the RID indexes.

While AIC is in progress, if there was a system crash, then

recovery starts off with first rebuilding the ROBB using the

Recreate operation described in section 6.2.4. Then the AIC

agents are started off cleaning from the last resume position

written in the index. This way the previous work is preserved.

This design fulfills all the initial aims of AIC. It trades off random

probes of the index with a traversal of the index leaf pages and

semi ordered probes of the ROBB. Except for very tiny deletes,

this scheme will win in physical IO over the conventional scheme.

Even in that case, if multiple tiny deletes can be combined during

the cleanup of the indexes by AIC, it will likely win. It also

converts a per-RID logging of the index update to a per index

page logging. Further, it allows the indexes to be processed in

parallel. In DB2 LUW, apart from MDC tables, AIC has also been

applied to Range Partitioned tables. Range Partitioned tables can

be used in conjunction with MDC.

This AIC design needs to be contrasted with just doing the job of

index updates asynchronously in the background using the

conventional “row at a time” mechanism. This could be done by

walking through the block map and farming out full blocks to AIC

agents to cleanup. For every record in the block, the agents could

update the RID indexes iteratively. While this could help with

reducing the response time of the rollout, it will not help in

lowering the IO involved in updating the indexes nor would it

reduce the log space.

8. EXPERIMENTAL EVALUATION
For the experimental evaluation, we used a setup similar to that

used by some customers who run ERP solutions over MDC

tables. We used a 2 dimensional MDC table with 9 RID indexes

and 3 system defined block indexes on them. One of the RID

indexes was a unique index. The table and indexes were defined

on different tablespaces but shared the same bufferpool. This

setting is common to some customers running ERP on MDC

tables. Table 1 provides more details of the experimental setup.

The evaluation was done using deletes with predicates on the time

based MDC dimensions. Time is often used as an attribute for

bulk deletes. The deletes ranged in size from 0.3% to 97% of the

table. In this evaluation, all figures marked “Delete” in the charts

denote the conventional “record at a time” delete. The Immediate

Rollout denotes the algorithm used in DB2 V8.2.2 Saturn which

was described in Section 3. The algorithm which is the focus of

this paper is marked as Deferred Rollout. The figures marked

Deferred Rollout + AIC is the cumulative time for the delete and

for AIC to do the cleanup.

To evaluate the design, a study of the response time of the rollout

and the IO involved was clearly important. Equally important for

an online mass delete mechanism are parameters like amount of

logging. Also of interest is how queries which use RID index

scans will behave when the indexes are dirty after the rollout and

need the ROBB filtering. It is to be noted that locking is not being

evaluated here since there is no change in locking between

Immediate Rollout and Deferred Rollout. All MDC bulk deletes

mechanisms tend to take a fraction of the locks that a non MDC

delete would require [2].

Table 1: Experimental setup details

Hardware System IBM 7028-6C4 with 16GB of main

memory

Processors 4 x 64 bit PowerPC_POWER4 @ 1453

MHz

L1 Data Cache 32KB

L2 and L3 Cache 1.44MB and 32MB

Operating System 64 bit AIX 5.3.0.0

DB2 Instance DB2 UDB Viper 2 with 4 MLNs

DB2 Registry

Variables

DB2_MDC_ROLLOUT=DEFER/YES/NO

Tablespace Details Page size of 16KB; Extent size of 16 pages

Table size 11 million rows in 134260 pages

Index sizes Unique index (just 1 RID per index key) :

32716 pages

Non unique indexes : ~ 4700 pages each

Index Cluster

Ratios (degree to

which table data is

clustered in relation

to this index)

3 RID indexes with below 5% clustering

2 with clustering in the range of ~35%

4 with above 95% clustering.

0.3% 1.5% 3% 30% 97%

Percentage of table deleted

0

20

40

60

80

100

120

R
e
la

ti
v
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

In
 %

)

Delete

Rollout (Immediate)

Rollout (Deferred) + AIC

Rollout (Deferred)

Figure 10: Response time of the rollouts

As seen in Figure 10, the response times of the deletes improve

about 25 times with Deferred Rollout over Deletes. Even in

comparison to Immediate Rollout, it is at least an order of

magnitude faster. This is due to the costly index updates being

done later. If one were to include the cost of the index updates

done in the background (as seen in Deferred Rollout + AIC), one

still sees huge response time improvements ranging from 2 to 5

1204

times. The gains are very heavy for the large rollouts and tend to

lessen for the smaller once.

The improvements are partly due to the fact that with AIC, we are

very successful in prefetching the RID index pages for the index

updates. This is not done in the conventional “record at a time”

updates mechanism employed by both Delete and Immediate

Rollout. Prefetching the index pages results in the 2 to 25 times

lower IO waits seen in Figure 11. The IO wait decrease is more

pronounced for the medium to large deletes. With pages now

more easily available, the agents can do more useful work and that

has a positive influence on the response time.

0.3% 1.5% 3% 30% 97%

Percentage of table deleted

0

50

100

150

200

R
e
la

ti
v
e

IO

W
a
it
s
 (

In
 %

)

Delete

Rollout (Immediate)

Rollout (Deferred)

Figure 11: IO Wait profile during rollouts

We also replace the random probes into the index with a

sequential scan of the index pages. This means the number of

times an index page is needed is dramatically reduced. This is

visible in Figure 12 which shows the index logical reads. The

lower requirement for the page will mean lower load on the

system and better performance.

0.3% 1.5% 3% 30% 97%

Percentage of table deleted

0

10

20

30

40

50

60

70

M
ill

io
n
s

In
d
e
x
 L

o
g
ic

a
l
R

e
a
d
s

Delete

Rollout (Immediate)

Rollout (Deferred + AIC)

Figure 12: Index Logical Reads of the rollouts

System performance is also influenced by the reduction in the

amount of logging we have to do. Figure 13 shows the log space

consumed by the deletes. For most of the cases, the log space

consumed is 3 to 20 times lower for the Deferred Rollout in

comparison to the Rollout Immediate. The figures for the standard

Delete are much higher. These gains are due to writing one log

record for every index page updated rather than one for every

index rid being updated.

Lower log space consumed will translate to lower number of

transactions which might rollback due to log full. It will also

mean applications will not have to use FFnRO to break big

deletes into smaller parts to work with available log space. This

will make writing applications simpler apart from having a

positive impact to the overall system performance.

0.3% 1.5% 3% 30% 97%

Percentage of table deleted

0

20

40

60

80

100

120

R
e
la

ti
v
e
 L

o
g
 S

p
a
c
e
 C

o
n
s
u
m

p
ti
o
n
 (

In
 %

)

Delete Rollout (Immediate) Rollout
(Deferred+AIC)

Figure 13: Log space consumption of the rollouts

To analyze the impact of Deferred Rollout on query processing, a

set of delete followed by query sequences were executed for both

Deferred Rollout as well as Immediate Rollout. The queries were

exercising table scans, block index scans, RID index scans as well

as RID index only plans. The timings taken were for both the

deletes and as well as the queries. In the case of Deferred Rollout,

the queries and the AIC cleanup overlapped to some extent. This

comparison would represent what a user would experience while

using both methods. As we see in Figure 14, the queries finished

with significant gains for the Deferred Rollout case in all query

plans. For the RID index only query, the timing was 80% better.

For the RID index scan queries, the numbers were about 15%

better. Both these types would probe the ROBB. The CPU

overheads of the ROBB probes turned out to be a tiny fraction of

the total CPU cost of the RID index scan queries. For badly

clustered indexes it was in the order of 3% and for others it was in

the order of 1-2% only.

table scan
rid iscan fetch

block iscan fetch
rid iscan fetch

rid iscan only

ti
m

e

Immediate Rollout Deferred Rollout

Figure 14: Query performance after deletes with both timed

9. CONCLUSION
The MDC Deferred Rollout mechanism provides a very efficient

and usable online bulk delete mechanism for MDC tables in DB2

Viper 2. Apart from providing a fast response time for deletes, it

also helps keep the logging and locking resource consumption

low. This enhances concurrent read/write access to the table by

dramatically reducing the chances of lock escalation and out of

log space situations while the delete is in progress. It also enables

simplification of applications by not needing big deletes to be

broken into smaller parts using mechanisms like FFnRO etc and

by being able to work out of the standard DML delete statements.

In this paper, we have detailed the design of MDC Rollout and the

challenges that needed to be addressed. We also shared

performance results which show that MDC Deferred Rollout

meets its design goals very efficiently.

1205

10. REFERENCES
[1] Gartner, A., Kemper, A., Kossman, D., Zeller, B., “Efficient

Bulk Deletes in Relational Databases”, Proceedings of the

ICDE 2001

[2] Bhattacharjee, B., “Performance Study of Rollout for Multi

Dimensional Tables in DB2”, First ACM International

Workshop on Performance and Evaluation of Data

Management Systems (EXPDB) 2006

[3] Padmanabhan, S., Bhattacharjee, B., Malkemus, T., Cranston

L., Huras, M., “Multi-Dimensional Clustering: A New Data

Layout Scheme in DB2”, Proceedings of SIGMOD 2003.

[4] Bhattacharjee, B., Padmanabhan, S., Malkemus, T., Lai, T.,

Cranston, L., Huras, M., “Efficient Query Processing for

Multi-Dimensionally Clustering Tables in DB2”,

Proceedings of VLDB 2003

[5] Lightstone, S., Bhattacharjee, B., “Automating the design of

multi-dimensional clustering tables in relational databases”,

Proceedings of VLDB 2004

[6] http://www-306.ibm.com/software/data/db2

[7] http://www.oracle.com

[8] http://www.microsoft.com/sql/default.mspx

[9] http://www.hp.com/go/nonstop

[10] Leslie, H., Jain, R., Birdsall., D., Yaghmai, H., “Efficient

Search of Multi-Dimensional B-Trees”, Proceedings of the

VLDB 1995

[11] Englert, S., Gray, J., Kocher, T., Shah, P., “A Benchmark of

NonStop SQL Release 2 Demonstrating Near-Linear

Speedup and Scaleup on Large Databases”, Technical Report

89.4, Tandem Part No 27469, May 1989

[12] Lilja, T., Saikkonen, R., Sippu, S., Soisalon-Soininen, E.,

“Online Bulk Deletion”, Proceedings of ICDE 2007

[13] Severance, D.G, Lohman, G.M, “Differential Files: Their

Application to the Maintenance of Large Databases”, ACM

Transaction on Database Systems, Vol. 1, No. 3, 1976

[14] Jannink, J., “Implementing deletion in B+trees”, SIGMOD

Record, Mar. 1995.

[15] Johnson, T., Shasha, D., “B-trees with inserts and deletes:

Why free-at-empty is better than merge-at-half”, Journal of

Computer and Systems Sciences, 1993

[16] Van den Bercken, J., Seeger, B., Widmayer, P., “ A generic

approach to bulk loading multidimensional index

structures.”, Proceedings of the VLDB 1997

[17] Wiener, J., Naughton. J., “Bulk loading into an OODB: A

performance study”, Proceedings of the VLDB 1994

[18] Wiener, J., Naughton. J., “OODB bulk loading revisited: The

partitioned-list approach”, Proceedings of the VLDB 1995

[19] McAuliffe, M., Carey, M., Solomon, M., “Towards effective

and efficient free space management”, Proceedings of the

SIGMOD, 1988

[20] Forin et al, “Hierarchical bitmap-based memory manager”,

Patent no. 6175900, Microsoft Corp

[21] Jang et al, “Method for reporting reception result of packets

in mobile communication systems”, Patent application

20060034277, Samsung Electronics Co Ltd

[22] Chen et al, “System and methods for implementing

hierarchical acknowledgement bitmaps in an ARQ protocol”,

Patent no. 6658619, Ericsson Inc

[23] Ward et al, “Mechanism for efficient scheduling of

communication flows”, Patent no. 6037611, Sun

Microsystems Inc

[24] Burgess et al, “Method and system for monitoring file

attributes using bitmaps to determine group membership of

files and to determine which files have been processed”,

patent no 5504889, Microsoft Corp

[25] Morzy, M., Morzy T., Nanopoulos, A., Manolopoulos,

Y.,”Hierarchical Bitmap Index: An Efficient and Scalable

Indexing Technique for Set-Valued Attributes”, 7th East

European Conference on Advances in Database and

Information Systems, 2003

1206

