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ABSTRACT 

In data warehousing applications, the ability to efficiently delete 

large chunks of data from a table is very important. This feature is 

also known as Rollout or Bulk Deletes. Rollout is generally 

carried out periodically and is often done on more than one 

dimension or attribute. The ability to efficiently handle the 

updates of RID indexes while doing Rollouts is a well known 

problem for database engines and its solution is very important for 

data warehousing applications. DB2 UDB V8.1 introduced a new 

physical clustering scheme called Multi Dimensional Clustering 

(MDC) which allows users to cluster data in a table on multiple 

attributes or dimensions. This is very useful for query processing 

and maintenance activities including deletes. Subsequently, an 

enhancement was incorporated in DB2 UDB Viper 2 which 

allows for very efficient online rollout of data on dimensional 

boundaries even when there are a lot of secondary RID indexes 

defined on the table. This is done by the asynchronous updates of 

these RID indexes in the background while allowing the delete to 

commit and the table to be accessed. This paper details the design 

of MDC Rollout and the challenges that were encountered. It 

discusses some performance results which show order of 

magnitude improvements using it and the lessons learnt. 

1. INTRODUCTION 
Data warehouse sizes have been growing in leaps and bounds. An 

important concern is the storage costs associate with it. This is 

addressed by the periodic archiving of old data which might be 

accessed less often or by its summary removal from the database.  

Both methods require the mass delete of data from the warehouse. 

This is also known as Rollout or as Bulk Delete.  The space thus 

freed up is used to make way for new data that is available.  For 

example, a company might have a warehouse of 5 years of data. 

At the end of every month they might delete the oldest month of 

data and bring in data for the latest month. 

In the past, such mass deletes were usually done in a maintenance 

window when the system load was low, like after midnight. 

Recent trends indicate users are moving towards a shorter time 

frame to perform this type of maintenance activities. Customers 

want their systems to be available almost 24 X 7 - even for a 

warehouse.  Also, the amount of data being rolled out is becoming 

smaller but it is being done more frequently. These factors make 

an efficient online rollout mechanism very important for a 

database engine.  

A key challenge in making an efficient online rollout mechanism 

is being able to handle the updates of RID indexes defined on the 

tables well. This is a well known problem and has been described 

in previous research work [1] [2]. RID indexes have pointers to 

records and have to be updated whenever the record they point to 

are deleted. A table might have many such RID indexes defined 

on them. Updating them entails significant locking, logging, index 

page IO as well as CPU consumption and has a strong influence 

on the response time of the delete as well as concurrency. This is 

especially true when the RID indexes are badly clustered and most 

of the index page IO ends up being synchronous due to bad 

locality of reference.   

Another aspect of rollouts is that they might happen on more than 

one dimension. For example, one might want to rollout data based 

on shipdate at one time and orderdate on some other instance on 

the same table. One might want to remove data pertaining to a 

particular product or region etc. Also there might be further 

restrictions on these rollouts. For example, a user might ask to 

“delete orders older than 6 months provided they have been 

processed”. The multi dimensionality of rollouts is thus an 

important characteristic and has to be addressed. 

In DB2 UDB V8.1, a new data layout scheme called Multi 

Dimensional Clustering (MDC) [3] [4] [5] was introduced. This 

allows a table to be clustered on one or more orthogonal 

clustering attributes (or expressions). MDC initially supported a 

deletion capability based on the conventional delete mechanism of 

logging every row that was deleted and any indexes updated to 

reflect the delete. This works for mass deletes as well as single 

row deletes. Subsequently in DB2 UDB V8.2.2 Saturn [2], an 

enhancement called “Immediate Rollout” was incorporated, which 

allowed a user to more efficiently purge data from a table on 

dimensional boundaries by writing one log record for an entire 

block of data being deleted rather than one for every record. This 

technique greatly helps reduce logging requirements. It also 
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improves the response time of the deletes when there only 

dimensional block indexes defined on the table. However when 

there are badly clustered RID indexes defined, the cost of 

updating these indexes while doing the delete completely 

dominates the total cost of the delete.  Thus in these cases, the 

Saturn enhancement does not impact the response time of the 

delete much. 

In this paper we detail the design of a major enhancement to 

MDC deletes called “Deferred Rollout”, which was incorporated 

into DB2 UDB Viper 2. This facilitates very efficient bulk deletes 

of data even when one has a lot of badly clustered RID indexes 

defined on the table. This is done by the asynchronous updates of 

these RID indexes in the background while allowing the delete to 

commit and the table to be accessed. We discuss some of the key 

challenges encountered in the design and the lessons learnt. We 

also discuss a performance study of MDC rollout which shows an 

order of magnitude gain in response time and compares its 

characteristics against conventional delete mechanisms. 

The rest of the paper is structured as follows.  Section 2 describes 

the MDC feature introduced in DB2 UDB V8, Section 3 describes 

how MDC deletes and bulk deletes work, Section 4 compares this 

against other bulk delete mechanisms and related work, and 

Section 5 gives a high level overview of the MDC Deferred 

Rollout mechanism incorporated in DB2 UDB Viper 2. Section 6 

and 7 cover two important aspects of the Deferred Rollout -  the 

ROBB and the AIC - in detail. In Section 8 we discuss the 

performance results of MDC Rollout and delete and compare it 

against non MDC delete. We conclude in Section 9 after a 

discussion of the lessons learnt.  

2. MULTI DIMENSIONAL CLUSTERING 

IN DB2 
Multi Dimensional Clustering (MDC) in DB2 UDB V8.1, allows 

a user to physically cluster records in a table on multiple 

orthogonal attributes or dimensions. The dimensions are specified 

in an ORGANIZE BY DIMENSIONS clause on a create table 

statement. For example, the following DDL describes a Sales 

table organized by region, year(orderDate) and itemId.  

CREATE TABLE Sales( 

date orderDate, 

int    region, 

int    itemId, 

float price, 

int yearOd generated always as year(orderDate)) 

ORGANIZE BY DIMENSIONS (region, yearOd, itemId) 

Each of these dimensions may consist of one or more columns, 

similar to index keys. These could be base columns (like 

orderDate) or generated columns (like yearOd). In fact, a 

‘dimension block index’ will be automatically created for each of 

the dimensions specified and will be used to quickly and 

efficiently access data. A composite block index will also be 

created automatically if necessary, containing all dimension key 

columns, and will be used to maintain the clustering of data over 

insert and update activity. For single dimensional tables since the 

dimension block index and composite block index will turn out to 

be identical, only one block index is automatically created and 

used for all purposes. 

In our example, a dimension block index is created on each of the 

region, year(orderDate) and itemId attributes. An additional 

composite block index will be created on (region, yearOd, 

itemId). Each block index is structured in the same manner as a 

traditional B+ tree index except that at the leaf level the keys 

point to a block identifier (BID) instead of a record identifier 

(RID). A block is collection of pages. Currently block size is tied 

to the extent size of the tablespace on which the table is defined. 

Since each block contains potentially many records, the block 

indexes are much smaller than a corresponding RID index on a 

non MDC table.  In one instance, a block index was of 71 pages 

and 2 levels whereas a corresponding RID index for a non MDC 

table was of 222,054 pages and 4 levels [4]. 

Figure 1 illustrates these concepts. It depicts an MDC table 

clustered on the dimensions year(orderDate), region and itemID. 

The figure shows a simple logical cube with only two values for 

each dimension attribute. Logical cells are represented by sub-

cubes in the figure and blocks by shaded ovals. They are 

numbered according to the logical order of allocated blocks in the 

table. We show only a few blocks of data for a cell identified by 

the dimension values (1997,Canada, 2). A table (and a cell) can 

have upto 2^31 blocks. Note that a cell without any records will 

not have any physical representation in the table. 
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Figure 1:  Logical view within a MDC table  

A slice, or the set of blocks containing pages with all records 

having a particular key value as a dimension, will be represented 

in the associated dimension block index by a BID list for that key 

value. The following diagram illustrates slices of blocks for 

specific values of region and itemId dimensions, respectively. 

In the example above, to find the slice containing all records with 

‘Canada’ for the region dimension, we would look up this key 

value in the region dimension block index and find a key as 

shown in Figure 2(a). This key points to the exact set of BIDs for 

the particular value. 

The DB2 UDB implementation was chosen by its designers for its 

ability to co-exist with other database features such as row-based 

indexes (a.k.a RID indexes), table constraints, materialized query 

tables, high-speed load, mass delete, hash partitioned MPP as well 

as an SMP environment. 
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Figure 2:  Block Index Key entries  

 

MDC also introduced the concept of a Block Lock.  The Block 

Lock is a locking mechanism which is between the Table Lock 

and a Record Lock in granularity. It allows for a block to be 

locked in various modes. Block Locks could escalate to Table 

Locks just like Record Locks do. However escalation of Record 

Locks to Block Locks is not currently supported. 

Another data structure introduced in MDC was the Block Map. 

This stores information on the state of the blocks in a table. The 

information includes if the block is free, if it has been recently 

loaded, if it is a system block, requires Constraint enforcement 

etc. This information is used, among other things, during inserts 

and loads to select blocks to insert/load into. Figure 3 shows an 

example blockmap for a table. Element 0 in the block map 

represents block 0 in the MDC table.  Its availability status is ‘U’, 

indicating that it is in use. However, it is a special block and does 

not contain any user records. Blocks 2, 3, 9,10,13,14 and 17 are 

not being used in the table and are considered ‘F’ or free in the 

block map. Blocks 7 and 18 have recently been loaded into the 

table. Block 12 was previously loaded and requires constraint 

checking to be performed on it. 

0 1 2 3 4  5  6 7 8 9 10 11 12 13 14 15 16 17 18 19

 U  U  F  F  U  U  U  L  U  F  F  U  C  F  F  U  U  F  L ....

 

 

Figure 3:  Block Map entries 

A MDC dimension block index can be ANDed and ORed with 

other dimension block indexes as well as any record based index 

defined on the table.  A full description of how they can be 

combined can be found in [3], [4]. 

3. MDC DELETES  
A delete of a record of an MDC table, entailed logging of the 

entire record and updating any record indexes defined on the 

table. The record index updates were logged too.  The freed up 

space is available for reuse by the same unit of work even before 

the delete commits. After the commit, all transactions are free to 

reuse the space. If the delete ended up emptying the block in 

which the record resided, then the dimension block indexes were 

updated and logged.  Thus a dimension block index is updated 

very few times compared to a corresponding record index on a 

similar non MDC table delete in DB2. This has a positive impact 

on response time of the delete and amount of logging needed. 

In DB2 UDB V8.2.2 Saturn, a feature named Immediate Rollout 

was introduced which allows for a more efficient delete of data 

along cell boundaries for MDC tables. It builds on the good 

points of MDC delete and also is submitted via a conventional 

SQL Data Manipulation Language (DML) delete statements.  

Thus users don’t have to change their applications to tap this new 

feature. The compiler, under the covers, decides if the delete 

statement can be executed using this bulk delete mechanism. If it 

can be, then it generates a plan for its execution, else it switches to 

conventional MDC delete for that statement. 

Using this feature, multiple, full cells can be deleted in any 

combination as long as it can be described using delete DML 

statements. Figure 4 shows the result of 4 different deletes on the 

MDC table described in Figure 1. They depict the result of 

purging the table of individual cells to entire slices of data. While 

the rollout is executing, concurrent access to the table is permitted 

provided lock escalation to the table level has not occurred. The 

rollout itself acquires an intent exclusive Table Lock, and 

exclusive Block Locks on blocks being rolled out. It does not get 

any individual Record Locks on records being deleted. Thus the 

chances of lock escalation due to this type of delete are much 

reduced compared to non MDC and this has a positive impact on 

the concurrent access of the table when large rollouts occur. 
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2.1: delete from <table> where 
nation = ‘Mexico’ and itemId = 2 and 

year = 1997

2.2 : delete from <table> where 
itemId = 2 and year = 1997

2.4 : delete from <table> where itemId = 22.3: delete from <table> where (nation = ‘Mexico’ and 

itemId = 2 and year = 1997) or (nation=‘Mexico’ and 
itemId=1 and year = 1998) or (nation=‘Canada’ and 

itemId=1 and year = 1997) or (nation = ‘Canada’ and 
itemId=2 and year = 1998)

Figure 4:  Example of rollout in a MDC table  

For this type of delete, no record level logging is done as in 

conventional MDC delete. Instead, for all the records in the page, 

a single small log record is written. This indicates to the system 

that all records in the page have been deleted but the contents of 

the records themselves are not logged.  Further, meta information 

stored in the page as well as the first page of the block is updated 

to indicate all records have been deleted and thus the pages of the 

block are free.  This change is also logged.   

This type of delete tends to process a block at a time as described 

above. When a block is rolled out, its corresponding entry in the 

blockmap is marked rolled out and the InUse bit is reset.  This 

indicates that this block cannot be reused by the same transaction 

until the rollout is committed.  All the Dimension Block Indexes 

are updated to reflect the fact that the block is no longer 

associated with its cell. It is to be noted that the block is still 

associated with the table after a commit and is reusable for any 

cell.  It can be delinked from the table and returned to the 

tablespace by a table reorg. 

Any row based indexes defined on the table are updated one row 

at a time. For each row, its entry in all the RID indexes is removed 

and this change is logged. Unfortunately in a large segment of real 
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customer scenarios, one can expect a lot of RID indexes to be 

defined on the table. In these cases, while the enhancement helps 

with logging resource consumption, it is not a great help in 

bringing down the response time of the delete. This is because the 

cost of updating these RID indexes dominates the total cost of the 

delete. This is analyzed and described in detail in [2]. Figure 5 

which is taken from this paper shows the response time of a delete 

with various index clustering. Here the partkey and the receiptdate 

indexes have a cluster ratio of 4% and 38% respectively. While 

there is a 7 times performance improvement when we don’t have a 

RID index defined, it drops to 33% with the receiptdate index and 

to 2% with the partkey index.   
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 Figure 5:  Response time of a MDC Rollout and Delete with 

different index clustering 

The reasons for this can be deciphered from Figure 6 which is 

also taken from the same paper. It shows the logical and physical 

index page reads to be done as part of the index updates for 

rollout and delete. With the receiptdate index of 38% clustering, 

one ended up getting good bufferpool hit ratio for the index pages 

that were needed and thus the physical index page reads are lower. 

However, for the partkey index of 4% clustering, the amount of 

physical reads that needed to be done for almost the same number 

of logical reads was substantial. This accounted for the drop in 

response time for the partkey index. 
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Figure 6:  Index page reads for the delete in Figure 5  

The problem of index updates will get really aggravated when we 

have multiple RID indexes defined on the table. To tackle this 

important issue, a major enhancement to MDC delete called 

Deferred Rollout was introduced in DB2 UDB Viper 2. Here we 

asynchronously update these RID indexes in the background 

while allowing the delete to commit and the table to be accessed. 

This results in a huge improvement to the response time of the 

deletes along with a major reduction of log footprint and physical 

IO on the indexes. This major enhancement is the focus of this 

paper. 

4. THE CURRENT STATE OF THE ART 
The delete mechanism employed by database engines generally 

works horizontally, on a row at a time.  Each record is deleted and 

the defined indexes are updated one by one to reflect the delete of 

that record. For mass or multiple record deletes, one iterates over 

all records to be deleted in a similar fashion. The conventional 

MDC delete in DB2 UDB V8.1 is an example of that. While these 

are easy to implement, they are very inefficient for mass record 

deletes since the accompanying RID index updates results in 

random probes into the index. This translates to synchronous IO 

and is very costly. 

Other technologies in this area include the Detach mechanism for 

range partitioned tables. Range partitioning is available in some 

commercial database systems like DB2 zOS and LUW [6], Oracle 

[7] and MS SQL Server 2005 [8]. In this, a table is partitioned 

into ranges of values on a specified attribute. Detaching a 

partition would be the equivalent of delinking all the data of the 

partition from the table.  Any local indexes on that partition are 

also thrown out. If there are global indexes defined, these will 

have to be updated. Detach tends to be a Data Definition 

Language (DDL) level command and application have to 

explicitly specify they want to detach. This will, in most 

implementations, result in getting an exclusive lock on the table 

for the duration of the Detach. Thus, during the Detach, 

concurrent access to the table is generally disallowed.  

Some database engines implement the base table in the form of a 

B+ tree itself [7] [9]. Here, additional secondary indexes are 

allowed and will have to be updated on a delete. In some 

implementations, to speed this up, multiple indexes could be 

updated in parallel [9] [10] [11]. There have also been recent 

works [12] on efficient online bulk deletion of the base B+ tree 

table itself. Here, all locks needed for the bulk delete operation are 

acquired during the scan of the leaf pages covering the target key 

range. However, the records qualifying the delete are marked for 

delete only. These records are then physically deleted in a later 

rebalance phase that avoids visiting subtrees in which all records 

qualify for deletion. It should be noted that this work did not 

focus on optimizing the update of secondary indexes which might 

be defined on the table. 

A mechanism for bulk deletes was explained in [1]. The aim of 

this method was to improve the response time of the delete.  This 

is an important consideration for mass deletes. However, it did not 

address the issues of resource consumption for logging or locking 

or the response time of the rollback of the delete. It also assumed 

the base table would be exclusively locked and the indices would 

be offline for the duration of the delete. The method described, is 

based on vertical deletes of the base table and any rid indexes 

defined on it. This is to be contrasted with the conventional 

method of deleting the table record and updating the rid indexes 

iteratively for all qualifying records. 

Deferred maintenance was explored in [13]. Here, a differential 

file was used like a book errata list to identify and collect pending 

row changes. An up-to-date database view was effectively 

obtained by first consulting the differential file as the first step in 

data retrieval. In this scheme, one trades off increased access time 

for getting reduced database update costs. When the differential 

file grows sufficiently large, reorganization incorporates all 

changes into a new generation of the database. 
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It is to be noted that while not directly related to rollouts, there 

has been a lot of work on analysis and implementation of deletes 

on indices and related issues [14],[15]. Bulk load (also known as 

Rollin) is the opposite of Rollout. This has also been studied in a 

number of papers [16],[17],[18].  Deleting records from tables 

and the management of free space has been discussed in [19] 

5. OVERVIEW OF DEFERRED ROLLOUT 
The design goals of Deferred Rollout in DB2 UDB Viper 2 were 

to dramatically improve the response time of the Rollouts while 

keeping the table online and queryable. It also aimed to reduce the 

IO and logging involved in updating the RID indexes. The latter 

results in simplified applications since customers will now not 

have to break up their deletes into smaller parts using FFnRO 

(Fetch First n Rows Only) to work within their log space 

limitations. 

Figure 7 shows a high level overview of our approach.  When a 

delete that qualifies to be a rollout happens, the table records are 

deleted one by one as previously and one log record per page is 

written for them as before. However the RID indexes are not 

updated then and there with every record deleted. Rather, we mark 

the block they belong to as deleted in a new in-memory data 

structure called the Rollout Block Bitmap (ROBB). We also mark 

the corresponding entry in the on-disk block map with the InUse 

and Rollout bits turned on. When the cleanup of the records from 

the table is completed and the user wants to commit, the delete is 

committed as today.  This obviously will leave the RID indexes as 

dirty with pointers in them to records which have been deleted. To 

prevent queries which use these RID indexes from returning 

wrong results, the ROBB is used to filter out accesses to these 

deleted records.  

After the delete commits, Asynchronous Index Cleaners (AICs) 

are started in the background which go through these indexes and 

use the ROBB to identify deleted record entries, remove them 

from the indexes and log the index updates. This process will 

continue till it has cleaned all RID indexes of deleted record 

entries. Simultaneously the ROBB is also updated to mark the 

blocks cleaned as it happens. When cleaning is done, the ROBB is 

removed and queries using the RID indexes stop the extra step of 

filtering out records from them. 
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Figure 7:  High level overview of Deferred Rollout 

With this design, the tradeoff is that queries which use RID index 

scans will have to probe the ROBB to determine the state of the 

record while the indexes are being cleaned up. However table 

scans and block index scans will not be affected.  Another tradeoff 

is that blocks will become available for reuse only when all the 

indexes have been cleaned up rather than as and when a block is 

cleaned up.  

It is to be noted that this description of our approach is a very 

high level overview of the process and does not describe the 

concurrency and other issues that need to be addressed. In the 

subsequent subsections, we will describe each step and the 

challenges involved in greater detail.  

6. ROLLOUT BLOCK BITMAP (ROBB)   
The ROBB represents blocks which have been deleted from the 

table but have pointers in the RID indexes to them. A table can 

have up to 2^31 blocks and the ROBB needs to be able to handle 

them. As depicted in Figure 8, ROBBs are of two kinds namely 

the Master ROBB and the Local ROBB. The former represents 

the blocks which are deleted and committed but not yet cleaned 

by AIC. There is one Master ROBB at the maximum for a table 

object and it is used by all transactions to filter out access to 

deleted records from RID indexes in that table object.  

The Local ROBB represents the blocks which have been deleted 

but not yet committed or rolled back. There is one Local ROBB 

for the table in every transaction which does a delete and is 

accessible only by it. It may represent the cumulative result of 

more than one delete in that unit of work. RID index accesses 

from this transaction will have to filter out RIDs not only from the 

Master ROBB but also from the Local ROBB. When the 

transaction commits, its Local ROBB is then merged into the 

Master ROBB for the table. This then becomes the single point of 

truth for all RID index based accesses from all transactions 

including this one. 

 

Figure 8: Table level Master ROBB and transaction level Local 

ROBB when there are committed and uncommitted Rollouts  

6.1 Key Design Considerations 
The key design considerations for the ROBB include:  

1. Fast probes: Queries which use RID index accesses will be 

probing the ROBB on every RID to determine if the block the 

RID belongs to is deleted or not. A fast filtering mechanism is 

imperative to keep the query performance overhead low. This is 

especially true for index only scans where one accesses only the 

index and not the underlying table. This requirement means the 

ROBB has to be an in-memory structure and rules out a pure disk 

based structure. 

2. Memory consumption: In real customer situations, one tends to 

have many tables and there could be multiple deletes going on at 

the same time. Thus the memory consumption of a ROBB is an 
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important design consideration. It has to be kept to the minimum 

possible. Since a table could have up to 2^31 blocks, a simple in-

memory bitmap, where one has one bit for every possible block in 

the table pre allocated, is ruled out as impractical. Such a large 

bitmap would also mean that for random probes into the bitmap 

one would end up with a lot of data cache misses. 

3. Commit/Rollout memory restrictions: Generally a commit or 

rollback operation happens without extra memory being allocated 

during that time. This is because an inability to get that memory 

could lead to a critical failure. Moreover, rollback is often done to 

free up resources and thus asking for more memory would go 

against the reason for doing the rollback. Keeping these in mind, 

ROBB operations done during these two periods will have to 

work within available memory. 

6.2 ROBB Design 
The ROBB design we choose is based on the principle that in 

most real life scenarios, only a part of the table will be deleted and 

thus the probability of the probes returning block deleted would 

be low. Given this, a hierarchical bitmap, where each level is 

tailored for a level in the memory hierarchy and the bottom level 

represents only deleted blocks was used for the ROBB. For 

example, the top most level (of size n bits) would fit a register. 

Registers are generally of sizes 32, 64 or 128 bits.  Older 

machines had smaller registers and the newer ones have larger 

register sizes.  The next level of the bitmap (of size m bits) would 

fit in the data cache of the machine.  Machines could have 

multiple levels of the data cache like L1, L2, L3, etc., and we may 

have levels of the bitmap corresponding to one or some or all of 

the multiple levels of the data cache.  The lowest level of the 

bitmap may fit in main memory.  

FIG. 9 shows an example ROBB with four levels. Here the value 

of n and m is 64 and 8126 respectively.  It is designed so that 

level 1 fits in a 64 bit register, level 2 in a data cache like L1 or 

L2, level 3 in a data cache of level L3 and level 4 would in main 

memory. 

64 Bit ROBB Lvl 1

8192 Bit  ROBB Lvl 2

8192 Pointers in ROBB Lvl 3

Should fit in register

Should fit in the data cache

00001000100

1

1

1

1 1

Sub bitmaps
00001000100

00001000100
 

Figure 9:  An example hierarchical ROBB 

 

The lowest level sub bitmaps in FIG. 9 may have a maximum of m 

sub bitmaps each of round ((x/m) + 0.5) bits.  A sub bitmap would 

physically exist only if one or more blocks it represented is 

deleted but not yet cleaned.  In the example shown in Fig 8, there 

are three sub bitmaps materialized out of the m possible sub 

bitmaps.  Each of them is shown to have 2 bits turned on.  This 

means there are a total of 6 buckets deleted but not yet cleaned.  

The level above that (marked RobbLvl3) has m pointers to the sub 

bitmaps.  They may be non NULL if the bitmap it points to exists.  

In the above example, there are three pointers which are not 

NULL.  The levels above that (Robb Lvl2) have a bitmap of size 

m where there will be a 1 in a bit of position b if the pointer in the 

level below of that same number is non NULL.  In this case there 

is three bits marked 1.  The topmost level (marked RobbLvl1) has 

a bit s turned on if any of the bits ((s-1)* round (m/n) +0.5) to (s* 

round ((m/n) + 0.5)-1 of the level lower to it is on.  In the example 

described in FIG. 9, there are two bits turned on in the top most 

level.  The one on the left has two bits of the lower level 

corresponding to it turned on and one to the right has one. 

Thus, in this representation, a bit in the top level represents a 

number of bits in the next lower level.  If any one of the bits in the 

next lower level that the top level bit represents is turned on, then 

that top level bit is also turned on. The hierarchy may comprise 

any number of levels in similar manner depending on the design 

and system considerations.   

The following are some of the operations which need to be 

supported on the ROBB: 

6.2.1 Probe 
When a ROBB probe via a RID index access happens, if the bit 

corresponding to the block at the top most level is off, it indicates 

the bucket is definitely not deleted and thus the query can proceed 

ahead.  A scheme like this is ideal if the probability of a block 

being deleted is low, which happens in most real situations.  It is 

to be noted that the level may likely be in a register and thus 

would be very fast to access if most of them return not deleted.  If 

the register has a 1 for that bucket, then it would mean that there 

exists a probability of the bucket being deleted but not certain 

unless the lower levels are checked.  In such a case, the lower 

levels are accessed iteratively until it hits the lowest level and gets 

a confirmation for the bucket or at some level it determines that 

the bucket is not deleted. 

The probe is a very performance critical operation and happens 

very often. A RID index access will Probe the ROBB for every 

RID it encounters from the index. 

6.2.2 Set and Clear 
The Set and Clear operations on the ROBB are not very frequent. 

They will happen only when a block is deleted by a transaction or 

it is cleaned up by AIC respectively. So they are not very 

performance critical. 

When a delete of a block happens, its bit in the ROBB will be set 

to 1. If the sub bitmap it belongs to at the lowest level does not 

exist, it will be materialized before the bit is marked 1.  Further, 

the pointer at RobbLvl3 is set and the bits corresponding to the 

block at the higher level are iteratively turned on if they were not 

on already.  

As the AIC cleans up the rid indexes and the blocks, it will clear 

the bit corresponding to the block in the ROBB. That will entail 

turning its bit at the sub bitmap in the lowest level to 0. If that 

completely empties the sub bitmap of bits marked 1, then the sub 

bitmap is freed and the pointer at RobbLvl3 is turned off. Further 

we iteratively move up the hierarchy and check if the bits at the 

higher level can be turned off. This can be done if all the bits 

corresponding to that bit in the lower level are turned off.  
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6.2.3 Merge and Subtract 
A key design requirement for the ROBBs is that they should be 

easy to merge and subtract from each other. The merge operation 

is used at the time of commit when the transaction’s Local ROBB 

is merged to the Master ROBB of the table. The subtract 

operation is used during the rollback of an in-doubt transaction 

when we need to erase the effects of a transaction from the Master 

ROBB.  Since during commit and rollback, one cannot request for 

more memory, hence both the merge and subtract operations of 

the ROBB had to be designed to essentially work within the 

available memory of the Local and Master ROBB.  

An “in-doubt” transaction is one whose fate (committed or rolled 

back) is not known during and immediately after a database 

restart.  Its changes are tentatively reapplied to the database and 

locks are held on its behalf, until it is resolved.  The reapplying of 

a Deferred Rollout results in the creation of a Temporary ROBB 

(recording all the blocks that were rolled out), which is retained 

until the transaction is resolved, and in the setting of bits in the 

Master ROBB.  If the transaction commits, the Local ROBB is 

discarded.  It if rolls back, the Local ROBB are subtracted from 

the Master ROBB.  If the Master ROBB then becomes empty, it is 

discarded.  Subtraction is simply unsetting all the bits in the 

Master ROBB that correspond to bits that are set in the Local 

ROBB.  As sub bitmaps become empty, they are removed from 

the Master ROBB and corresponding bits at the higher level are 

unset. 

To accomplish a merge, both the Local and Master ROBB come 

out of the same memory heap. First, if a Master ROBB does not 

already exist, the Local ROBB simply becomes the new Master 

ROBB.  Otherwise, the Local ROBB is merged into the Master 

ROBB as follows: 

Step 1: The new level 1 bitmap is replaced with the bitwise OR of 

the old master level 1 bitmap and the temporary level 1 bitmap. 

Step 2: For each level that consists of a bitmap and corresponding 

pointers to lower level sub bitmaps, the bitmap is replaced with 

the bitwise OR of the old master bitmap at that level and the 

temporary bitmap at that level. For each pointer in the master 

bitmap's list of pointers, if the pointer is not null and the 

corresponding pointer in the temporary list is null, the pointer is 

not changed.  If the pointer is null, the corresponding pointer is 

copied from the temporary bitmap to the master bitmap, and the 

lower level sub bitmap that it points to will belong to the master 

bitmap, from then on.  If both the pointer in the master bitmap 

and the corresponding pointer in the temporary bitmap are not 

null, then the lower level sub bitmap is merged, either as in this 

step 2 (if it is also a combination of a bitmap and corresponding 

list of pointers) or as in step 3 (if it is the lowest level sub bitmap, 

consisting only of bits and no pointers). 

Step 3:  Each sub bitmap in the master for which a corresponding 

sub bitmap also exists in the temporary bitmap, as determined in 

step 2, is merged by bitwise ORing the two sub bitmaps, thus 

replacing the contents of the master sub bitmap with the result, 

and discarding the temporary sub bitmap (freeing the memory it 

occupies). 

6.2.4 Recreate 
This operation will recreate the ROBB during recovery after a 

system crash or normally when the AIC is suspended on a 

database deactivation. This is facilitated by the deleter marking 

every block it deletes with the Rollout bit in the on-disk block 

map and leaving the InUse bit on. When AIC frees up the block it 

will turn on the free bit of the block in the block map while 

resetting the InUse and rollout bits.  At the time of a system crash, 

recovery will walk through the block map and will recreate the 

ROBB by setting the corresponding bit in it for every block it 

finds marked InUse and Rollout in the block map. 

6.3 Prior Art on Hierarchical Bitmaps 
Hierarchical bitmaps have been used in the past for Operating 

System memory management.  Among other things they are used 

in some systems for allocation, deallocation, and reallocation of 

memory, and tracking the changes in the allocation states [20]. 

Hierarchical bitmaps have also been used in the communication 

industry ranging in applications from reporting reception result of 

packets [21], acknowledgement bitmaps in ARQ transmission 

protocols [22] as well as scheduling communication flows [23].   

These types of bitmaps also find use in thread activity for multi 

processors as well as file system management [24]. Hierarchical 

Bitmap Indexes have also being used for indexing set value 

attributes [25]. 

It is to be noted that Hierarchical Bitmaps are a very generic term. 

For the sample applications mentioned above, a very specific 

flavor of Hierarchical Bitmap, tailor made for that application area 

was used in each case.  

7. ASYNCHRONOUS INDEX CLEANUP 

(AIC) 
The key aim of Asynchronous Index Cleanup (AIC) is reducing 

the physical IO involved in cleaning up RID indexes. As shown in 

Fig 6, in conventional delete, the physical IO could be very large 

for badly clustered RID indexes. Another aim is to reduce the 

amount of logging needed to cleanup the RID indexes. Customers 

go to the pains of dividing their deletes into smaller ones using 

FFnRO clauses to circumvent their log space limitations. Any 

mechanism which significantly reduces log space requirement will 

help simplify applications. Customers generally desire that these 

be done without taking the index or the table offline and while 

other rollouts on the table are allowed to happen. They also need 

to control the priority of the AIC or even stop it if necessary, to 

make way for high priority queries which might come in 

To accomplish all these, when a delete commits and a Master 

ROBB is created, an AIC agent starts walking through the block 

map and stakes out its cleaning territory by marking blocks which 

have the InUse and Rollout turned on, with an additional cleaning 

bit. This allows it to differentiate between blocks it is cleaning 

and those which might be additionally rolled out while it is doing 

its job.  

Subsequently one AIC agent is earmarked for every RID index 

defined on the table. This agent walks through the leaf pages of 

the index and for every RID it encounters; it probes the ROBB to 

determine if it is deleted. It removes deleted record entries from 

the index and for every leaf page it has changed, it writes one log 

record.  After an extent has been thus processed, the AIC will 

commit its work. It will also prefetch index leaf pages ahead of 

where it is currently working to reduce IO waits. The agents will 

regularly also write its resume position into the index and log it. 

This is used to help a restart of the AIC.  In this way, multiple 
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AIC agents work in parallel on the different indexes to clean them 

all up.  

When the agents are done traversing their entire designated index, 

each agent waits at a wait-post till the last agent completes. The 

last agent out will walk through the block map and turn the blocks 

marked InUse, Rollout and Cleaning to free. It will also 

simultaneously clear the bit for that block in the Master ROBB.  

The blocks thus cleaned are now available for reuse. At this stage, 

the AIC is ready to do more work on the table. It will check the 

Master ROBB to see if any further rollouts have happened. If so, 

it starts all over again and takes care of all the pending rollouts in 

one single pass over the RID indexes.  

While AIC is in progress, if there was a system crash, then 

recovery starts off with first rebuilding the ROBB using the 

Recreate operation described in section 6.2.4. Then the AIC 

agents are started off cleaning from the last resume position 

written in the index. This way the previous work is preserved.   

This design fulfills all the initial aims of AIC. It trades off random 

probes of the index with a traversal of the index leaf pages and 

semi ordered probes of the ROBB.  Except for very tiny deletes, 

this scheme will win in physical IO over the conventional scheme. 

Even in that case, if multiple tiny deletes can be combined during 

the cleanup of the indexes by AIC, it will likely win. It also 

converts a per-RID logging of the index update to a per index 

page logging. Further, it allows the indexes to be processed in 

parallel. In DB2 LUW, apart from MDC tables, AIC has also been 

applied to Range Partitioned tables. Range Partitioned tables can 

be used in conjunction with MDC. 

This AIC design needs to be contrasted with just doing the job of 

index updates asynchronously in the background using the 

conventional “row at a time” mechanism. This could be done by 

walking through the block map and farming out full blocks to AIC 

agents to cleanup. For every record in the block, the agents could 

update the RID indexes iteratively. While this could help with 

reducing the response time of the rollout, it will not help in 

lowering the IO involved in updating the indexes nor would it 

reduce the log space.    

8. EXPERIMENTAL EVALUATION 
For the experimental evaluation, we used a setup similar to that 

used by some customers who run ERP solutions over MDC 

tables. We used a 2 dimensional MDC table with 9 RID indexes 

and 3 system defined block indexes on them. One of the RID 

indexes was a unique index. The table and indexes were defined 

on different tablespaces but shared the same bufferpool. This 

setting is common to some customers running ERP on MDC 

tables. Table 1 provides more details of the experimental setup. 

The evaluation was done using deletes with predicates on the time 

based MDC dimensions. Time is often used as an attribute for 

bulk deletes. The deletes ranged in size from 0.3% to 97% of the 

table. In this evaluation, all figures marked “Delete” in the charts 

denote the conventional “record at a time” delete. The Immediate 

Rollout denotes the algorithm used in DB2 V8.2.2 Saturn which 

was described in Section 3. The algorithm which is the focus of 

this paper is marked as Deferred Rollout. The figures marked 

Deferred Rollout + AIC is the cumulative time for the delete and 

for AIC to do the cleanup. 

To evaluate the design, a study of the response time of the rollout 

and the IO involved was clearly important. Equally important for 

an online mass delete mechanism are parameters like amount of 

logging. Also of interest is how queries which use RID index 

scans will behave when the indexes are dirty after the rollout and 

need the ROBB filtering. It is to be noted that locking is not being 

evaluated here since there is no change in locking between 

Immediate Rollout and Deferred Rollout. All MDC bulk deletes 

mechanisms tend to take a fraction of the locks that a non MDC 

delete would require [2]. 

Table 1:  Experimental setup details 

Hardware System IBM 7028-6C4 with 16GB of main 

memory 

Processors 4 x 64 bit PowerPC_POWER4 @  1453 

MHz 

L1 Data Cache 32KB 

L2 and L3 Cache 1.44MB and 32MB 

Operating System 64 bit AIX 5.3.0.0 

DB2 Instance DB2 UDB Viper 2 with 4 MLNs 

DB2 Registry 

Variables 

DB2_MDC_ROLLOUT=DEFER/YES/NO 

Tablespace Details Page size of 16KB; Extent size of 16 pages 

Table size 11 million rows in 134260 pages 

Index sizes Unique index (just 1 RID per index key)  : 

32716 pages 

Non unique indexes : ~ 4700 pages each 

Index Cluster 

Ratios (degree to 

which table data is 

clustered in relation 

to this index) 

3 RID indexes with below 5% clustering 

2 with clustering in the range of ~35%  

4 with above 95% clustering. 
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Figure 10:  Response time of the rollouts 

As seen in Figure 10, the response times of the deletes improve 

about 25 times with Deferred Rollout over Deletes. Even in 

comparison to Immediate Rollout, it is at least an order of 

magnitude faster. This is due to the costly index updates being 

done later. If one were to include the cost of the index updates 

done in the background (as seen in Deferred Rollout + AIC), one 

still sees huge response time improvements ranging from 2 to 5 
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times.  The gains are very heavy for the large rollouts and tend to 

lessen for the smaller once.  

The improvements are partly due to the fact that with AIC, we are 

very successful in prefetching the RID index pages for the index 

updates. This is not done in the conventional “record at a time” 

updates mechanism employed by both Delete and Immediate 

Rollout. Prefetching the index pages results in the 2 to 25 times 

lower IO waits seen in Figure 11. The IO wait decrease is more 

pronounced for the medium to large deletes. With pages now 

more easily available, the agents can do more useful work and that 

has a positive influence on the response time. 
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Figure 11:  IO Wait profile during rollouts 

We also replace the random probes into the index with a 

sequential scan of the index pages. This means the number of 

times an index page is needed is dramatically reduced. This is 

visible in Figure 12 which shows the index logical reads. The 

lower requirement for the page will mean lower load on the 

system and better performance.   
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Figure 12:  Index Logical Reads of the rollouts 

System performance is also influenced by the reduction in the 

amount of logging we have to do. Figure 13 shows the log space 

consumed by the deletes. For most of the cases, the log space 

consumed is 3 to 20 times lower for the Deferred Rollout in 

comparison to the Rollout Immediate. The figures for the standard 

Delete are much higher. These gains are due to writing one log 

record for every index page updated rather than one for every 

index rid being updated. 

Lower log space consumed will translate to lower number of 

transactions which might rollback due to log full. It will also 

mean applications will not have to use FFnRO to break big 

deletes into smaller parts to work with available log space. This 

will make writing applications simpler apart from having a 

positive impact to the overall system performance. 
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Figure 13:  Log space consumption of the rollouts 

To analyze the impact of Deferred Rollout on query processing, a 

set of delete followed by query sequences were executed for both 

Deferred Rollout as well as Immediate Rollout. The queries were 

exercising table scans, block index scans, RID index scans as well 

as RID index only plans.  The timings taken were for both the 

deletes and as well as the queries. In the case of Deferred Rollout, 

the queries and the AIC cleanup overlapped to some extent. This 

comparison would represent what a user would experience while 

using both methods. As we see in Figure 14, the queries finished 

with significant gains for the Deferred Rollout case in all query 

plans. For the RID index only query, the timing was 80% better.  

For the RID index scan queries, the numbers were about 15% 

better.  Both these types would probe the ROBB. The CPU 

overheads of the ROBB probes turned out to be a tiny fraction of 

the total CPU cost of the RID index scan queries. For badly 

clustered indexes it was in the order of 3% and for others it was in 

the order of 1-2% only.    
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Figure 14: Query performance after deletes with both timed 

9. CONCLUSION 
The MDC Deferred Rollout mechanism provides a very efficient 

and usable online bulk delete mechanism for MDC tables in DB2 

Viper 2. Apart from providing a fast response time for deletes, it 

also helps keep the logging and locking resource consumption 

low. This enhances concurrent read/write access to the table by 

dramatically reducing the chances of lock escalation and out of 

log space situations while the delete is in progress. It also enables 

simplification of applications by not needing big deletes to be 

broken into smaller parts using mechanisms like FFnRO etc and 

by being able to work out of the standard DML delete statements. 

In this paper, we have detailed the design of MDC Rollout and the 

challenges that needed to be addressed. We also shared 

performance results which show that MDC Deferred Rollout 

meets its design goals very efficiently.  
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