
Schema-Agnostic Indexing with Azure DocumentDB
Dharma Shukla, Shireesh Thota, Karthik Raman,
Madhan Gajendran, Ankur Shah, Sergii Ziuzin,

Krishnan Sundaram, Miguel Gonzalez Guajardo,
Anna Wawrzyniak, Samer Boshra,
Renato Ferreira, Mohamed Nassar,

Michael Koltachev, Ji Huang

Microsoft Corporation

Sudipta Sengupta, Justin Levandoski,
David Lomet

Microsoft Research

ABSTRACT

Azure DocumentDB is Microsoft’s multi-tenant distributed

database service for managing JSON documents at Internet scale.

DocumentDB is now generally available to Azure developers. In

this paper, we describe the DocumentDB indexing subsystem.

DocumentDB indexing enables automatic indexing of documents

without requiring a schema or secondary indices. Uniquely,

DocumentDB provides real-time consistent queries in the face of

very high rates of document updates. As a multi-tenant service,

DocumentDB is designed to operate within extremely frugal

resource budgets while providing predictable performance and

robust resource isolation to its tenants. This paper describes the

DocumentDB capabilities, including document representation,

query language, document indexing approach, core index support,

and early production experiences.

1. INTRODUCTION
Azure DocumentDB [1] is Microsoft’s multi-tenant distributed

database service for managing JSON [2] documents at Internet

scale. Several large Microsoft applications, including Office,

Skype, Active Directory, Xbox, and MSN, have been using

DocumentDB, some since early 2012. DocumentDB was recently

released for general availability to Azure developers.

In this paper, we describe DocumentDB’s indexing subsystem.

The indexing subsystem needs to support (1) automatic indexing of

documents without requiring a schema or secondary indices, (2)

DocumentDB’s query language, (3) real-time, consistent queries in

the face of sustained high document ingestion rates, and (4) multi-

tenancy under extremely frugal resource budgets while (5) still

providing predictable performance guarantees and remaining cost

effective.

The paper is organized as follows: The rest of this section provides

a short overview of DocumentDB’s capabilities and architecture as

well as, the design goals for indexing. Section 2 discusses schema-

agnostic indexing. Section 3 describes the logical nature of

DocumentDB’s JSON derived index terms. Section 4 deals with the

indexing method and discusses index maintenance, replication,

recovery and considerations for effective resource governance. In

Section 5, we substantiate design choices we have made with key

metrics and insights harvested from our production clusters.

Section 6 describes the related commercial systems, and Section 7

concludes the paper.

1.1 Overview of the Capabilities
DocumentDB is based on the JSON data model [2] and JavaScript

language [3] directly within its database engine. We believe this is

crucial for eliminating the “impedance mismatch” between the

application programming languages/type-systems and the database

schema [4]. Specifically, this approach enables the following

DocumentDB capabilities:

 The query language supports rich relational and hierarchical

queries. It is rooted in JavaScript’s type system, expression

evaluation and function invocation model. Currently the query

language is exposed to developers as a SQL dialect and

language integrated JavaScript query (see [5]), but other

frontends are possible.

 The database engine is optimized to serve consistent queries

in the face of sustained high volume document writes. By

default, the database engine automatically indexes all

documents without requiring schema or secondary indexes

from developers.

 Transactional execution of application logic provided via

stored procedures and triggers, authored entirely in JavaScript

and executed directly inside DocumentDB’s database engine.

We exploit the native support for JSON values common to

both the JavaScript language runtime and the database engine

in a number of ways - e.g. by allowing the stored procedure to

execute under an implicit database transaction, we allow the

JavaScript throw keyword to model a transaction abort. The

details of transactions are outside the scope of this paper and

will be discussed in future papers.

 As a geo-distributed database system, DocumentDB offers

well-defined and tunable consistency levels for developers to

choose from (strong, bounded-staleness, session and eventual

[6]) and corresponding performance guarantees [1, 7].

 As a fully-managed, multi-tenant cloud database service, all

machine and resource management is abstracted from users.

We offer tenants the ability to elastically scale both the

throughput and SSD-backed document storage, and take full

responsibility of resource management, cost effectively.

This work is licensed under the Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain permission prior to

any use beyond those covered by the license. Contact copyright holder by
emailing info@vldb.org. Articles from this volume were invited to present their

results at the 41st International Conference on Very Large Data Bases, August

31st – September 4th 2015, Kohala Coast, Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

1668

Figure 1. DocumentDB system topology and components.

1.2 Resource Model
A tenant of DocumentDB starts by provisioning a database account

(using an Azure subscription). A database account manages one or

more DocumentDB databases. A DocumentDB database in-turn

manages a set of entities: users, permissions and collections. A

DocumentDB collection is a schema-agnostic container of arbitrary

user generated documents. In addition to documents, a

DocumentDB collection also manages stored procedures, triggers,

user defined functions (UDFs) and attachments. Entities under the

tenant’s database account – databases, users, collections,

documents etc. are referred to as resources. Each resource is

uniquely identified by a stable and logical URI and is represented

as a JSON document. Developers can interact with resources via

HTTP (and over a stateless TCP protocol) using the standard HTTP

verbs for CRUD (create, read update, delete), queries and stored

procedures. Tenants can elastically scale a resource of a given type

by simply creating new resources which get placed across resource

partitions. Each resource partition provides a single system image

for the resource(s) it manages, allowing clients to interact with the

resources within the partition using their stable, logical URIs. A

resource partition is made highly available by a replica set.

1.3 System Topology
The DocumentDB service is deployed worldwide across multiple

Azure regions [8]. We deploy and manage DocumentDB service on

clusters of machines each with dedicated local SSDs. Upon

deployment, the DocumentDB service manifests itself as an

overlay network of machines, referred to as a federation (Figure 1)

which spans one or more clusters. Each machine hosts replicas

corresponding to various resource partitions within a fixed set of

processes. Replicas corresponding to the resource partitions are

placed and load balanced across machines in the federation. Each

replica hosts an instance of the DocumentDB’s database engine,

which manages the resources (e.g. documents) as well as the

associated index. The DocumentDB database engine in-turn

consists of components including replicated state machine (RSM)

for coordination, the JavaScript language runtime, the query

processor, and the storage and indexing subsystems responsible for

transactional storage and indexing of documents.

To provide durability and high availability, DocumentDB’s

database engine persists data on local SSDs and replicates it among

the database engine instances within the replica set respectively.

Persistence, replication, recovery and resource governance are

discussed in the context of indexing in Section 4.

1.4 Design Goals for Indexing
We designed the indexing subsystem of DocumentDB’s database

engine with the following goals:

 Automatic indexing: Documents within a DocumentDB

collection could be based on arbitrary schemas. By default, the

indexing subsystem automatically indexes all documents

without requiring developers to specify schema or secondary

indices.

 Configurable storage/performance tradeoffs: Although

documents are automatically indexed by default, developers

should be able to make fine grained tradeoffs between the

storage overhead of index, query consistency and write/query

performance using a custom indexing policy. The index

transformation resulting from a change in the indexing policy

must be done online for availability and in-place for storage

efficiency.

 Efficient, rich hierarchical and relational queries: The index

should efficiently support the richness of DocumentDB’s

query APIs (currently, SQL and JavaScript [5]), including

support for hierarchical and relational projections and

composition with JavaScript UDFs.

 Consistent queries in face of sustained volume of document

writes: For high write throughput workloads requiring

consistent queries, the index needs to be updated efficiently

and synchronously with the document writes. The crucial

requirement here is that the queries must be served with the

consistency level configured by the developer without

violating performance guarantees offered to developers.

 Multi-tenancy: Multi-tenancy requires careful resource

governance. Thus, index updates must be performed within

the strict budget of system resources (CPU, memory, storage

and IOPS) allocated per replica. For predictable placement

and load balancing of replicas on a given machine, the worst-

case on-disk storage overhead of the index should be bounded

and predictable.

Individually and collectively, each of the above goals pose

significant technical challenges and require careful tradeoffs. We

asked ourselves two crucial questions while considering the above

goals: (1) what should be the logical and physical representations

of the index? (2) what is the most efficient technique to build and

maintain the index within a frugal budget of system resources in a

multi-tenant environment? The rest of this paper discusses how we

answered these questions when building the DocumentDB

indexing subsystem. But first, we define what is meant by schema-

agnostic indexing.

2. SCHEMA AGNOSTIC INDEXING
In this section, we explore the key insight to make the

DocumentDB’s database engine schema-agnostic, which in-turn is

crucial for enabling automatic indexing and many other features.

2.1 No Schema, No Problem!
The schema of a document describes the structure and the type

system of the document independent of the document instance. For

example, the XML Schema specification [9] provides the language

for representing schemas for XML documents [10]. Unlike XML,

no such widely adopted schema standard exists for JSON. In

contrast to XML, JSON’s type system is a strict subset of the type

systems of many modern programming languages, most notably

JavaScript. The simplicity of the JSON grammar is one the reasons

for its ubiquitous adoption despite the lack of a schema

specification.

With a goal to eliminate the impedance mismatch between the

database and the application programming models, DocumentDB

exploits the simplicity of JSON and its lack of a schema

specification. It makes no assumptions about the documents and

1669

Figure 2. JSON documents as trees.

allows documents within a DocumentDB collection to vary in

schema, in addition to the instance specific values. In contrast to

other document databases, DocumentDB’s database engine

operates directly at the level of JSON grammar, remaining agnostic

to the concept of a document schema and blurring the boundary

between the structure and instance values of documents. This, in-

turn, enables it to automatically index documents without requiring

schema or secondary indices.

2.2 Documents as Trees
The technique which helps blurring the boundary between the

schema of JSON documents and their instance values, is

representing documents as trees. Representing JSON documents as

trees in-turn normalizes both the structure and the instance values

across documents into a unifying concept of a dynamically encoded

path structure (see Figures 2 and 3; details are covered in Section

3). For representing a JSON document as a tree, each label

(including the array indices) in a JSON document becomes a node

of the tree. Both the property names and their values in a JSON

document are all treated homogenously - as labels in the tree

representation. We create a (pseudo) root node which parents the

rest of the (actual) nodes corresponding to the labels in the

document underneath. Figure 2 illustrates two example JSON

documents and their corresponding tree representations. Notice that

the two example documents vary in subtle but important ways in

their schema. In practice, the documents within a DocumentDB

collection can vary subtly or widely in both their structures and

instance values.

2.3 Index as a Document
With automatic indexing, (1) every path in a document tree is

indexed (unless the developer has explicitly configured the

indexing policy to exclude certain path patterns). (2) Each update

of a document to a DocumentDB collection leads to update of the

structure of the index (i.e., causes addition or removal of nodes).

One of the primary requirements of automatic indexing of

documents is to ensure that the cost to index and query a document

with deeply nested structure, say 10 levels, is the same as that of a

flat JSON document consisting of key-value pairs just one level

deep. Therefore a normalized path representation is the foundation

upon which both automatic indexing and query subsystems are

built.

There are two possible mappings of document and the paths: (a)

forward index mapping, which keeps a map of (document id, path)

tuples and (b) inverted index mapping, which keeps a map of (path,

document id) tuples. Given the fact that the DocumentDB query

language operates over paths of the document trees, the inverted

index is a very efficient representation. An important implication of

treating both the schema and instance values uniformly in terms of

paths is that logically, just like the individual documents, the

Figure 3. The resulting inverted index of the two documents

from Figure 2 shown as a tree and path-to-document id map.

inverted index is also a tree and in fact, the index can be serialized

to a valid JSON document! The index tree is a document which is

constructed out of the union of all of the trees representing

individual documents within the collection (Figure 3). The index

tree grows over time as new documents get added or updated to the

DocumentDB collection. Each node of the index tree is an index

entry containing the label and position values (the term), and ids of

the documents (or fragments of a document) containing the specific

node (the postings). Notice from Figure 2 and Figure 3, that with

the notable exception of arrays, the interior nodes represent the

structure/schema of the document and the leaf nodes represent the

values/instance. Both the size and number of index entries are a

function of the variance contributed by the schema (interior nodes)

and values (leaf nodes) among documents within a DocumentDB

collection.

Having looked at how the index can be viewed as a union of tree

representations of documents, let us look at how DocumentDB

queries operate over the tree representation of documents.

2.4 DocumentDB Queries
Despite being schema-agnostic, we wanted the query language to

provide relational projections and filters, spatial queries,

hierarchical navigation across documents, and invocation of UDFs

written entirely in JavaScript. Developers can query DocumentDB

collections using queries written in SQL and JavaScript [5]. Both

SQL and JavaScript queries get translated to an internal

intermediate query language called DocumentDB Query IL. The

Query IL supports projections, filters, aggregates, sort, flatten

operators, expressions (arithmetic, logical, and various data

transformations), system provided intrinsics and user defined

functions (UDFs). The Query IL (a) is designed to exploit the JSON

and JavaScript language integration inside DocumentDB’s

database engine, (b) is rooted in the JavaScript type system, (c)

follows the JavaScript language semantics for expression

evaluation and function invocation and (d) is designed to be a target

of translation from multiple query language frontends (currently,

SQL and JavaScript). The translated query eventually gets

compiled into an imperative program using an approach similar to

Steno [13] and optimized using a rule based optimizer. The result

of the compilation is an assembly of op-codes which ultimately get

executed by a stack based virtual machine, which is a part of the

DocumentDB’s query engine.

One unique aspect of the DocumentDB’s queries is that since they

operate directly against the tree representation (instead of rows and

columns in a relational table). They allow one to refer to properties

1670

Figure 4. Point query example.
in JSON documents at any arbitrary depth, including wildcard paths

such as "/location/*/France". Figure 4 provides an example of a

point lookup query against a company collection consisting of two

documents, which we saw earlier in Figure 2 and Figure 3. The

query asks for the location (city and country) for all

companies with a location "France". Note that this query navigates

only the paths under the "locations" subtree of the input

documents (through use of the IN company.locations clause).

The query returns the resulting JSON document containing

country ("France") and city ("Paris"). Figure 5 provides an

example of a range query specifying a predicate for all locations

with revenue greater than “100”.

Notice here the query navigates only the "locations" subtree of

the input documents. This query also invokes a UDF named

GermanTax that calculates the tax on the revenue value for each

valid location returned. This function is specified in the select

clause and executed within the JavaScript language runtime hosted

directly within the DocumentDB’s database engine.

To illustrate the multiple query languages all getting translated to

the Query IL, consider the following query expressed natively in

JavaScript (inspired by underscore.js [11]):

function businessLogic() {

 var country = "Belgium";

 _.filter(function(x){

 return x.headquarter===country;});

}

The filter is a logical equivalent of the SQL WHERE clause with

the implicit projection returning the entire document. Besides filter,

DocumentDB’s JavaScript query API [5] provides map, flatten,

every, some, pluck, contains, sort, min, max, average, group-by,

first, last, etc. Notice that the variable country is captured and is

used using within the filter. The following JavaScript snippets

are logically equivalent of the query in Figure 4.
function businessLogic() {

 _.chain(thisCollection().locations)

 .filter(function(location){

 return location.country==="France";})

 .map(function(location){return location;})

 .value();

}

The above examples were aimed to convey how the queries in

DocumentDB operate on the tree representation of documents and

that the multiple query language frontends are layered atop the

query IL, which is rooted in JavaScript and JSON. We now discuss

the details of the index organization.

Figure 5. Range query example.

3. LOGICAL INDEX ORGANIZATION
In Section 2 we looked at how the tree representation of the JSON

documents allows the database engine to treat the structure of the

document as well as the instance values homogeneously. The index

is a union of all the documents and is also represented as a tree

(Figure 3). Each node of the index tree contains a list of document

ids corresponding to the documents containing the given label

value. The tree representation of documents and the index enables

a schema-agnostic database engine. Finally we looked at how

queries also operate against the index tree. For cost effective on-

disk persistence, the index tree needs to be converted into a storage

efficient representation. The logical representation of index (Figure

3) can be viewed as an ordered set of key-value tuples, each is

referred to as an index entry (Figure 6). The key consists of a term

representing the encoded path information of the node in the index

tree, and a PES (posting entry selector, described in Section 3.2)

that helps partition the postings horizontally. The value consists of

postings list collectively representing the encoded document (or

document fragment) ids.

Figure 6. Index Entry.

3.1 Directed Paths as Terms
A term represents a unique path (including both the position and

label values) in the index tree. So far we have assumed that the path

representation in a document or index tree is undirected. For

specifying the path information we need to consider the direction

of the edges connecting the nodes of the document tree. For

instance, forward path starting from each node in the tree to a leaf,

or reverse path from leaf to the root etc. The direction of the path

has associated tradeoffs including, (1) storage cost - measured by

the number of paths generated for the index structure, (2) indexing

maintenance cost - resources consumed for index maintenance

corresponding to a batch of document writes, (3) cost of lookup

queries - e.g.: SELECT * FROM root r WHERE

r.location[0].country = "France", (4) cost of wildcard

lookup queries - e.g.: SELECT c FROM c JOIN w IN

c.location WHERE w = "France", and, (5) cost of range queries

- e.g.: SELECT * FROM root r WHERE r.Country <

"Germany".

1671

Figure 7. Various path representations.

Figure 7 shows four path representations that we evaluated and

their tradeoffs. We settled on a combination of partial forward path

representation for paths where we need range support while

following partial reverse path representation for paths needing

equality (hash) support.

3.1.1 Encoding Path Information
The number of segments in each term is an important choice in

terms of the trade-off between query functionality, performance

and indexing cost. We default to three segments for two primary

reasons: (1) most of the JSON documents have root, a key and a

value in most of the paths which fit in three segments and (2) The

choice of three segments helps distinguish various paths from each

other and yet keep each path small enough to be able to reduce

storage cost. Empirically this choice has helped us strike a good

balance between storage cost and query performance. We do

provide a way to dynamically choose the number of segments to

reduce the storage at the cost of query features like wild card

searches. The choice of encoding scheme for the path information

significantly influences the storage size of the terms and

consequently the overall index. By default, we use a five byte path

encoding scheme for both styles of partial forward and partial

reverse paths, wherein we use one byte each for grand-parent &

parent segment, while using three bytes for the leaf node, as

depicted in Figure 8.

3.1.2 Partial Forward Path Encoding Scheme
The partial forward path encoding involves parsing of the

document from the root and selecting three suffix nodes

successively to yield a distinct path consisting of exactly three

segments. We use separate encoding functions for each of these

segments to maximize uniqueness across all paths. This scheme is

used to do range and spatial indexing. Query features like inequality

filter search and ORDER BY need this scheme to efficiently serve

the results. The encoding of a segment is done differently for

numeric and non-numeric labels. For non-numeric values, each of

the three segments are encoded based on all the characters. The

least significant byte of the resultant hash is assigned for the first

and second segments. For the last segment, lexicographical order is

preserved by storing the full string or a smaller prefix based on the

precision specified for the path. For the numeric segment appearing

as the first or second segments, we apply a special hash function

which optimizes for the non-leaf numeric values. The hash function

exploits the fact that most non-leaf numeric values (e.g.

enumerations, array indices etc.) are frequently concentrated

between 0-100 and rarely contain negative or large values. The

hashing yields highly precise values for the commonly occurring

numbers and progressively lower precision for larger values. A

numeric segment occurring in the third position is treated similar to

any non-numeric segment appearing in the third position – the most

significant n bytes (n is the numeric precision specified for the path)

of the 8 byte hash are applied, to preserve order (see Figure 8, right).

Figure 8. Encoding path segments into terms.

 The encoding we use for numbers is based on the IEEE754

encoding format.

3.1.3 Partial Reverse Path Encoding Scheme
The partial reverse path encoding scheme is similar to the partial

forward scheme, in that it selects three suffix nodes successively to

yield a distinct path consisting of exactly three segments. The term

generated is, however, in the reverse order, with the leaf having

higher number of bits in the term, placed first. This scheme is

suitable for point query performance. This scheme also serves

wildcard queries like finding any node that contains the value

"Athens" since the leaf node is the first segment. The key thing to

note is that the intermediate nodes of each path, across all the

documents are generally common while the leaves of the paths tend

to be unique. In the inverted index, there are fewer terms

corresponding to the interior nodes of the index tree with dense

postings. The terms mapping the last suffix path (containing leaves)

tend to contain relatively fewer postings. The index exploits this

behavior to contain the explosion in storage corresponding to, the

many suffix paths.

3.2 Bitmaps as Postings Lists
A postings list captures the document ids of all the documents

which contain the given term. The size of the postings list is a

function of the document frequency - the number of documents in

the collection that contains a given term as well as the pattern of

occurrence of document ids in the postings list. As an example, a

document id space of 8 bytes allows for up to 2 ^ 64 documents in

a collection. A fixed sized/static scheme will require 8 bytes to

represent a single posting and 8 x document frequency (t) to

represent a single index entry for a term t! We require a

representation of a postings list that is dynamic (i.e. does not use a

fixed sized/static scheme or pre-reserve space), compact (thereby

minimizing storage overhead) and yet capable of computing fast set

operations, e.g., to test for document presence during query

processing. To this end, we apply two techniques:

Partitioning a Postings List. Each insertion of a new document to

a DocumentDB collection is assigned a monotonically increasing

document id. To avoid static reservation of id space to store the

postings list for a given range of document ids, we partition the

postings list into postings entries. Additionally, partitioning also

helps, to determine the maximum size of pages and split policy of

the B+-tree [14] page sizes used as the physical access method. A

postings entry is an ordered set of one or more postings words of

documents within a specific document id range. A single postings

entry represents up to 16K consecutive posting ids. For instance, a

1672

posting list can be easily represented as an ordered list of integers

(2 byte words) or as bit array with a length of 16K bits. The postings

list for a given term consists of a variable length collection of

postings entries partitioned by postings entry selector (PES). A PES

is a variable length (1-7 bytes), offset into the postings entry. The

number of postings entries for a given size of a PES is a function of

document frequency for the document id range which falls within

the PES range. Document ids within 0-16K will use the first

postings entry, document ids from 16K-4M will use the next 256

posting entries, document ids from 4M-1B will use the next 64K

postings entries and so on. The number of PES bytes is a function

of the number of documents in a collection. For instance, a

collection with 2M documents will not use more than 1 byte of PES

and will only ever use up to 128 postings entries within a postings

list.

Dynamic Encoding of Posting Entries. Within a single partition

(pointed by a PES), each document needs only 14 bits which can

be captured with a short word. This marks the upper bound on the

postings list within a bucket: we should never need more than 32KB

to capture a bucket that is densely packed with all possible ids

mapped to the bucket. However, to spend two bytes for each id is

still expensive, especially given DocumentDB’s goal to index all

(or most) paths of all documents. Depending on the distribution,

postings words within a postings entry are encoded dynamically

using a set of encoding schemes including (but not restricted to)

various bitmap encoding schemes inspired primarily by WAH

(Word-Aligned Hybrid) [15]. The core idea is to preserve the best

encoding for dense distributions (like WAH) but to efficiently work

for sparse distributions (unlike WAH).

3.3 Customizing the Index
The default indexing policy automatically indexes all properties of

all documents and provides consistent queries (meaning the index

is updated synchronously with each document write). Developers

can customize the trade-offs between storage, write/query

performance, and query consistency, by overriding the default

indexing policy on a DocumentDB collection and configuring the

following aspects.

Including/Excluding documents and paths to/from index.
Developers can choose certain documents to be excluded or

included in the index at the time of inserting or replacing them to

the collection. Developers can also choose to include or exclude

certain paths (including wildcard patterns) to be indexed across

documents which are included in an index.

Configuring Various Index Types. We have designed the index

to support four different indexing types: hash, range, spatial, and

text. For each of the included paths, developers can also specify (a)

the type of index they require over a collection based on their data

and expected query workload and (b) the numeric/string

“precision” used to specify the number of bytes used for encoding

each path into a term. The storage overhead associated with precise

hashing of paths may not be desirable if the application is not going

to query a particular path.

Configuring Index Update Modes. DocumentDB supports three

indexing modes which can be configured via the indexing policy

on a DocumentDB collection: 1) Consistent. If a DocumentDB

collection’s policy is designated as “consistent”, the queries on a

given DocumentDB collection follow the same consistency level as

specified for the point-reads (i.e. strong, bounded-staleness, session

or eventual). The index is updated synchronously as part of the

document update (i.e. insert, replace, update, and delete of a

document in a DocumentDB collection). Consistent indexing

supports consistent queries at the cost of possible reduction in write

throughput. This reduction is a function of the unique paths that

need to be indexed and the “consistency level”. The “consistent”

indexing mode is designed for “write quickly, query immediately”

workloads. 2) Lazy. To allow maximum document ingestion

throughput, a DocumentDB collection can be configured with lazy

consistency; meaning queries are eventually consistent. The index

is updated asynchronously when a given replica of a DocumentDB

collection’s partition is quiescent (i.e. resources are available to

index the documents in a rate limited manner without affecting the

performance guarantees offered for the user requests). For “ingest

now, query later” workloads requiring unhindered document

ingestion, “lazy” indexing mode may be suitable. 3) None. A

collection marked with index mode of “None” has no index

associated with it. Configuring the indexing policy with “None” has

the side effect of dropping any existing index.

A change in indexing policy on a DocumentDB collection can lead

to a complete change in the shape of the logical index including the

paths can be indexed, their precision, as well as the consistency

model of the index itself. Thus a change in indexing policy,

effectively requires a complete transformation of the old index into

a new one. The index transformation is done both, online and in-

situ without requiring an additional “shadow” on-disk storage. We

will cover the design of index transformation in a future paper.

4. PHYSICAL INDEX ORGANIZATION
Having looked at the “logical” organization of the index and

various aspects of the index that developers can customize, we now

discuss the “physical” organization of the index, both in-memory

and on-disk.

4.1 The “Write” Data Structure
Consistent indexing in DocumentDB provides fresh query results

in the face of sustained document ingestion. This poses a challenge

in a multi-tenant setting with frugal budgets for memory, CPU and

IOPS. Index maintenance must be performed against the following

constraints:

1. Index update performance must be a function of the arrival

rate of the index-able paths.

2. Index update cannot assume any path locality among the

incoming documents. In fact, our experience of running

DocumentDB service for several first-party applications has

proven that the probability of paths across documents being

localized on a single page on the disk is extremely rare

especially for the paths containing leaf nodes.

3. Index update for documents in a collection must be done

within the CPU, memory and IOPS budget allocated per

DocumentDB collection.

4. Each index update should have the least possible write

amplification (ideally <= 1).

5. Each index update should incur minimal read amplification

(ideally <= 1). By its nature, an update to the inverted index

requires merging of postings list for the term. This implies that

a naïve solution, would result into a read IO for every term

update!

Early on, we learnt that the use of a classical B+ tree was hopelessly

inefficient for meeting any of the aforementioned constraints.

Efficient maintenance of the document index without any prior

knowledge of document schemas is dependent on choosing the

most “write-efficient” data structure to manage the index entries. In

addition to the above requirements for the index update, the index

data structure should be able to serve point lookup, range and

wildcard queries efficiently – all of which are key to the

DocumentDB query language.

1673

Figure 9. Latch-free and cache-friendly operations.

4.2 The Bw-Tree for DocumentDB
After several attempts, we eventually concluded that by extending

the Bw-Tree [16, 17] we could meet the requirements we described

earlier. This implementation is used as the foundational component

of DocumentDB’s database engine for several reasons. The Bw-

Tree uses latch-free in-memory updates and log structured storage

for persistence. It exploits two trends in modern hardware: (i) multi-

core processors with multi-level memory/cache hierarchy, and (ii)

flash memory based SSDs with fast random reads (order of ~10-

100 micro-sec). The latch-free property ensures that threads do not

block and readers do not conflict with writers, thus supporting a

high degree of concurrency. In memory it is up to 4x faster than

latch-free skiplists (see [16]), a competitive state-of-the-art range

index solution. The log-structured storage organization of the Bw-

tree [17] is designed to work around inefficient random write

performance on flash and is suitable for hard disks as well. This

technique is similar to that proposed for file systems [18], but with

a crucial difference – unlike the log structured file systems, the Bw-

Tree completely decouples the logical pages from their physical

counterparts. This enables numerous optimizations including

reduction in the write amplification. Its technique of updating pages

by prepending delta records avoids “in-place updates” and harvests

benefits across both memory and flash – (a) it reduces cache

invalidation in the memory hierarchy, and (b) it reduces write

amplification on flash.

The original Bw-Tree design was extended in numerous ways to

facilitate DocumentDB specific requirements. (1) To deliver

sustained rapid writes for DocumentDB, the Bw-Tree was extended

to support blind incremental updates which allows DocumentDB’s

database engine to utilize full storage write bandwidth for index

updates (i.e., writes are not slowed down by reads) and is described

in Section 4.3.2. (2) Efficient index recovery in DocumentDB

required a CPU and IOPS efficient restart of the “cold” tree, as well

as first class support for “streaming” backup/restore of the Bw-

Tree. (3) DocumentDB’s database engine also needed first class

support for flexible resource governance in a multi-tenant setting

that plugs into the overall DocumentDB architecture. To that end,

many changes were made including (a) the Bw-tree’s LSS (log

structured store) subsystem needed to support dynamic resizing of

its secondary storage file based on the accurate calculation of index

size, (b) rate limited log flushing to prevent write stalls even under

extremely low resource situations and (c) a new CPU efficient

cooperative page consolidation algorithm using leases to avoid any

redundant consolidation work across threads.

Figure 10. Incremental page flushing to the Bw-Tree log

structured storage.

4.2.1 High Concurrency
In a classical B+-Tree, a page is (read or write) latched before

access. A write latch does not allow concurrent reads or writes to

the page, hence threads that need to do conflicting operations on

the page block. Also, acquiring and releasing a latch involves two

expensive operations. Moreover, an update to the page is done in-

place; this is not cache-friendly in a multi-core environment as it

invalidates the copy of the page in the caches of other cores. The

Bw-Tree operates in a latch-free manner, allowing a high degree of

concurrency in a natural manner. A modification to a page is done

by appending a delta record on top of the existing portion of the

page, as shown in Figure 9. This requires the starting location of

the page to change after every update. For this reason, all page

references use a level of indirection through the mapping table. The

mapping table provides the translation from logical page ID to

physical page location. It also serves as the central data structure

for concurrency control. Delta record updates to the page are

installed using a compare-and-swap (CAS) operation, which is a

single expensive operation (versus two in the latched case). When

multiple concurrent threads attempt to append delta records to the

same (prior) state of the page, exactly one thread wins and the

others have to retry. Thus, threads doing conflicting updates to the

page do not block. Moreover, the delta updating methodology

preserves the (unmodified) portion of the page in the caches of

other cores. When delta chains get large (beyond some threshold),

page access efficiency suffers. The page is then consolidated,

applying the deltas to produce a new optimized base page. Because

such a reconfiguration occurs in batch instead of after every update

to the page, it is much more efficient than in classical B+-trees. The

consolidated page is also installed in the mapping table using the

same CAS mechanism.

4.2.2 Write Optimized Storage Organization
In a classical B+-Tree, storage is organized into fixed size pages

(say, ~8KB-32KB). When a page needs to be updated, it is read into

memory, updated in-place, and subsequently written back to

storage (in-whole). When the insert workload has no locality in the

key space, and the size of the index is larger than a replica’s fixed

and small memory budget, as is the case with DocumentDB, this

leads to many random read and write I/Os. This slows down the

rate of insertions. Moreover, update-in-place mechanisms increase

write amplification on flash based SSDs, slowing down the device

due to background garbage collection activity. This also reduces

the lifetime of the device. The Bw-tree addresses this issue from

1674

Figure 11. The new Bw-Tree access method for DocumentDB:

Blind Incremental Updates.

two aspects: (1) Bw-tree storage is organized in a log-structured

manner; and (2) Bw-tree pages are flushed in an incremental

manner. On flash, the portions of a page are linked backward in the

log, as shown in Figure 10, with the most recently flush delta record

appearing later in the log and pointing to the chain of previously

flushed delta records. The mapping table also serves as the data

structure for recording the starting offset of a page on flash. When

a page on flash needs to be updated, and is not already in the main

memory, the Bw-Tree reads it into memory and prepends a delta

record to it. When the Bw-Tree flushes this page, only the

unflushed portion of the page, consisting of possibly multiple delta

records, is copied as a single contiguous delta record (C-delta) into

a flush buffer. Two flush buffers are used in a ping-pong manner

and are maintained in a latch-free manner. A flush buffer is large

(of the order of 4 MB). When full, it typically contains 1,000 –

10,000 page flushes and is appended to the end of the log on flash

with a single write I/O. This is key to achieving write efficiency.

4.3 Index Updates
The following sections looks at various aspects of updating the

index starting with document analysis and describing the two types

of (consistent and lazy) of index updates.

4.3.1 Document Analysis
The first step in the index update is document analysis performed

by the document analyzer in the indexing subsystem. The document

analysis function A takes the document content D corresponding

to a logical timestamp when it was last updated, and the indexing

policy I and yields a set of paths P.

A (D, I) => P

The document analyzer provides basic operators to add two

document instances:

A1 (D1, I1) + A2 (D2, I2) => P1+2

As well as, subtract two document instances

A1 (D1, I1) - A2 (D2, I2) => P1-2

These operators are extremely powerful and provide the foundation

for index maintenance in DocumentDB. Specifically, given that the

consistent indexing is done synchronously with the incoming

document writes, during the index update, the diff of the index

terms corresponding to the older versions of the deleted or replaced

documents is still available. The document analyzer supports the

“minus” operator to create the diff of the before and after images of

the paths in the two documents. This vastly simplifies the

processing of delete and replace operations in consistent indexing.

4.3.2 Efficient and Consistent Index Updates
Recall that an index stores term-to-postings list mappings, where a

postings list is a set of document (or document fragment) ids. Thus,

a new document insertion (or, deletion) requires updating of the

postings lists for all terms in that document.

In a classical B+-tree, each such index update would be done as a

read-modify-update. This involves a read of the respective B-tree

page, followed by modification in memory. Because the terms in a

document have no locality pattern and because memory budget is

meagre, this would almost always require a read I/O for every term

update in the index. To make room for the read pages, some

updated pages would need to be flushed from the cache. For

document indexing, we observe that such an index update only adds

(deletes) a document id to (from) the existing postings list. Hence,

these updates could be done, logically, without knowing the

existing value (postings list) of the key (term). To achieve this, the

Bw-Tree in DocumentDB was extended to support a new blind

incremental update operation. This allows any record to be partially

updated without accessing the existing value of the key and without

requiring any coordination across multiple callers.

When a page is swapped out (e.g., to adhere to a memory budget),

a slim page stub is left behind in memory that describes the start

offset of the page on flash and some other metadata (e.g., high key,

side pointer) so as to facilitate key lookups). A blind incremental

update of a key prepends a delta record that describes the update to

the relevant page. In the case of document ingestion in

DocumentDB, such a delta record describes the mapping td+,

where d is the document id, t is a term, and “+” denotes addition

(similarly, “-“ would denote deletion). This delta record append

operation does not involve any read I/O to retrieve the page from

storage. The blind incremental process is depicted in Figure 11.

When a lookup comes to a Bw-Tree page on a given key k, the

whole page is read from storage and the multiple fragments of the

page describing base value and updates to key k (on base page and

delta records) are combined using a merge callback function to

obtain the final value that is returned.

DocumentDB’s database engine uses the same merge function to

consolidate Bw-Tree pages by combining fragments of key values

across base page and delta records. Note that due to the latch free

nature of the Bw-Tree, the postings (value) for a given term (key)

can get updated out of order. Therefore, the merge callback needs

to provide commutative (and idempotent) merge of the delta values

for a given key in the face of out of order updates for a given key.

To illustrate this, consider the document with a lone property called

"status" which can have two possible values, "on" or "off":

{"status":"on"}. For the purposes of this example, assume

that the document gets updated concurrently by multiple users with

the "status" toggled between "on" or "off" in rapid succession with

the final value as "off". If the updates to the keys were sequential,

the transient and final values corresponding to the key "$/status/on"

would have been {id+, id-, id+, id-} and {} respectively. Similarly,

the transient and the final values for the "$/status/off" would be

{id+, id-, id+} and {id+} respectively. However, latch free updates

may lead to transient values for the key "status/on" as {id+, id-, id+,

id-} and "$/status/off" as {id+, id+, id-}. To complicate the matters,

the merge callback may get dispatched with partial values of the

delta updates – e.g. "$/status/on" with {id+, id-, id-} or

"$/status/off" with {id+, id+}. The merge callback therefore needs

to detect the out of order delivery of the delta values by inspecting

the polarity of each delta value and applying cancelation of

opposite polarities. However, since the merge callback can get

invoked with partial delta values, the callback needs to maintain a

“holdout” (which is also encoded as a delta value) of the non-

cancellable deltas for a future merge. The polarity based merge of

the postings with the holdout is crucial for accurate computation of

1675

the postings list and the query accuracy in the face of allowing latch

free updates.

4.3.3 Lazy Index Updates with Invalidation Bitmap
Unlike consistent indexing, index maintenance of a DocumentDB

collection configured with the lazy indexing mode is performed in

the background, asynchronously with the incoming writes – usually

when the replica is quiescent (e.g. either when there is an absence

of user requests or sufficient surplus resources available to the

indexing subsystem). Since we do not maintain previous document

images for deleted/replaced documents and since the index

maintenance in case of lazy indexing is done asynchronously - we

cannot assume the availability of the before and after images of the

terms which are being indexed. This has two downsides: (1) the

indexing subsystem can return false positives, causing an additional

I/O penalty to serve a query and (2) Bw-Tree pages accumulate

stale entries for the deleted/replaced documents in the postings lists

and bloat memory and on-disk layout. To avoid these, we maintain

a counting invalidation bitmap which is a bitmap representing the

document ids corresponding to the deleted and replaced document

images and a count representing the number of times the document

update has been recorded. The bitmap is consulted and updated to

filter out the results from within the merge callback while serving

a query. The bitmap is also consulted and updated during the

invocation of the merge function during page consolidation.

For the “cold terms” on the pages which lay on disk waiting to be

consolidated or for which the queries were never issued, we

schedule a “compaction scan” for the leaf pages in the background

in a rate limited manner. The compaction cycle is triggered when

either the invalidation bitmap or the on-disk Bw-Tree file size have

reached a configurable threshold. The compaction scan ensures that

all delta updates as of some point in logical time (corresponding to

a document update) to Bw-Tree pages are consolidated into new

compact base pages. Doing this ensures that the merge callback

function (used to merge the deltas into its base pages) has seen the

appropriate invalidation bitmap entries. Once the compaction scan

completes, memory for the old invalidation bitmap entries can be

re-used (or de-allocated).

4.4 Index Replication and Recovery
DocumentDB follows a single master model for writes; clients

issue writes against the distinguished primary replica of the replica

set, which in-turn propagates the client’s request guaranteeing a

total order to the secondary replicas in the set. The primary

considers the write operation successful if it is durably committed

to local disk by a subset called the write quorum (W) of replicas.

Similarly, for a read/query operation the client contacts the subset

of replicas, called the read quorum (R) to determine the correct

version of the resource; the exact size of read quorum depends on

the default consistency policy configured by the tenant for the

database account (which can be overridden on a per request basis).

4.4.1 Index Replication
During the steady state, the primary replica receiving the writes

analyzes the document and generates the terms. The primary replica

applies it to its database engine instance as well as sending the

stream containing the terms to the secondaries. Each secondary

applies the terms to its local database instance. A replica (primary

or secondary) applying the terms to its database instance effectively

provides the after image that will result in the creation of a series

of delta updates. These in turn will eventually be reconciled with

the before image of the terms when the merge callback is invoked.

The DocumentDB resource governance model divides resource

budgets among the primary and secondaries in a non-uniform

manner with the primary carrying the bulk of the write

responsibilities and secondaries serving the reads/queries; the cost

of analyzing the document is paid only on the primary. After a

failover, when the new replica joining the quorum needs to be

rebuilt from scratch, the primary sends multiple physical streams to

the secondary directly from the Bw-Tree LSS. On the other hand,

if the newly joining replica needs to catch-up with the existing

primary by only a few documents, the secondary simply analyzes

and regenerates the terms locally and applies them to its database

instance - in this particular case, the cost of local term generation

for a small number of documents is cheaper compared to the

coordination, IO and transmission overhead needed to fully rebuild

a replica.

4.4.2 Index Recovery
The Bw-Tree exposes an API that allows the upper layer in the

indexing subsystem to indicate that all index updates below some

LSN should be made stable. Since the recovery time can adversely

influence the service level agreement (SLA) for availability, the

index checkpointing design is optimized to ensure that the crash

recovery requires minimum amount of index to be rebuilt (if at all).

Periodically, the DocumentDB database engine starts a Bw-Tree

checkpointing procedure to make all index updates stable up to a

highest LSN corresponding to the document update. This process

involves scanning the mapping table and incrementally flushing

pages to flush buffers (if needed). The highest checkpointed LSN

corresponding to the document update is persisted in flush buffer

headers. Additionally, The Bw-Tree log-structured storage (LSS)

layer checkpoints at configurable intervals of log size growth [17].

The aim of this approach is to limit the amount of the log that needs

to be scanned during Bw-Tree recovery, and hence time.

End-to-end recovery of the index happens in two phases: In the first

phase, the Bw-Tree is recovered. This restores a valid and

consistent tree that is described by a root logical page ID and

mapping table containing offsets to Bw-Tree pages on flash. This

also recovers the highest stable LSN (call this LSN-S) up to which

all updates have been made stable in the local database engine

instance. In the second phase, documents with updates higher than

LSN-S are re-indexed by the indexing subsystem of the database

engine and inserted into the Bw-Tree. This brings the index to a

state that is consistent and up-to-date with documents. During this

phase, the index updates are applied in an idempotent fashion and

applying the invalidation bitmap technique similar to the one

explained in 4.3.3. Finally, to support replica rebuild as well as

disaster recovery scenarios, the Bw-Tree in DocumentDB is

extended to support online streaming. For both, efficient network

usage and storage efficiency, the backup stream produced by the

Bw-Tree includes only the active portion of the log (approximately

75% of the on-disk file on the primary site). The streaming support

is designed to provide a consistent snapshot in presence of writes

and while the physical file size is undergoing changes.

4.5 Index Resource Governance
As a document database system, DocumentDB offers richer access

functionality than a key-value store (e.g. get/put). Therefore, it

needs to provide a normalized model for accounting, allocation and

consumption of system resources for various kinds of access,

request/response sizes, query operators etc. This is done in terms of

an abstract rate based currency called a Request Unit (RU/second),

which encapsulates a chunk of CPU, memory and IOPS.

Correspondingly, RU/second provides the normalized unit for

accounting, provisioning, allocating and consuming throughput

guarantees. The system must ensure that it can provide the

throughput that was configured for a given DocumentDB

collection. We learned early on that the key to providing predictable

1676

Figure 12. Document Frequency and Unique path lengths

across collections.

performance guarantees is to build the entire service with resource

governance from the ground up. A DocumentDB replica uniquely

belongs to a tenant and is designed to operate within a fixed budget

of system resources in terms of RU/second. Each DocumentDB

process may host database engine instances corresponding to the

replicas belonging to various tenants, and is monitored for CPU,

IOPS and memory consumption. Further, the database engine

instance corresponding to a replica within the process manages its

own thread-pool, memory and IO scheduling. All subsystems

hosted within the database engine instance are allocated fixed

budgets of memory, CPU and IOPS from the replica’s overall

resource budget for a given time slice. The budget corresponds to

the RUs/sec rate assigned to a replica to meet the performance

guarantees promised to the tenant.

4.5.1 Index Resource Governance
All operations within a DocumentDB’s database engine are

performed within the quota allocated for CPU, memory, storage

IOPS and the on-disk storage. Additionally, like all DocumentDB

components, the database engine honors the throttling signals from

the resource governor. Inside DocumentDB, the Bw-Tree GC

operates in a rate limited manner with short and frequent cycles

within the pre-allocated budget of IOPS, CPU, storage and

memory.

CPU resources. As described previously, a DocumentDB database

engine instance manages its thread scheduler. All subsystems

within DocumentDB are designed to be fully asynchronous and

written to never block a thread which in-turn allows the number of

threads in the thread pool to remain low (e.g., equal to the number

of cores on the machine). Since the in-memory operations of the

Bw-Tree are completely latch-free, the synchronous path is very

efficient since a thread traversing the index or updating a page in

memory will never run into a lock (or latch). In fact, except for the

following three cases of asynchronous IO, all of Bw-Tree

operations complete synchronously: (1) Reading a page not in

memory, (2) Writing a sealed flush buffer and awaiting its IO

completion. (3) Waiting for the LSS garbage collector to free the

storage space. In all three cases, the usage of continuation style

programming model within the database engine implementation

allows for making progress without blocking any threads.

Memory resources. An instance of DocumentDB’s database

engine and its components including the Bw-Tree, operates within

a given memory budget that can be adjusted dynamically. The

memory limit for the Bw-Tree is maintained by swapping out

memory cache resident Bw-Tree pages whenever memory pressure

is detected. Pages are selected for swapout using a variant of the

LRU cache eviction algorithm called CLOCK [19]. Page swapout

functionality is distributed across threads (using latch-free

techniques) so that it scales with concurrent index activity. Every

thread that accesses the Bw-Tree first performs some page swapout

work (if needed) before executing the actual access method

operation.

Storage IOPS resources. A DocumentDB database engine

instance needs to operate within a given IOPS budget. Its Bw-Tree

maintains a running average of IOPS usage over time. Just before

issuing an I/O, it checks whether the I/O would lead to IOPS budget

violation. If so, the I/O is delayed and then attempted again after a

computed time interval. Because the Bw-Tree organizes storage in

a log-structured manner, write I/Os are large and much fewer

compared to read I/Os; hence, they are unlikely to create IOPS

bottlenecks (but may create storage bandwidth bottlenecks).

Moreover, flush buffer writes are necessary for progress in many

parts of the system (e.g., page swapout, checkpointing, garbage

collection). Hence, write I/Os are not subject to IOPS resource

governance. The Bw-Tree propagates internal resource usage levels

upward to the resource controller of the database engine so that

when budget violation is imminent, request throttling can happen

further upstream in the database engine.

On-disk storage. The size of a single consolidated logical index

entry I(t), is given by the following formula:

𝐼(𝑡) = (𝑁
𝑇𝑒𝑟𝑚

+ {1 − 7} × 8⏟
𝑃𝐸𝑆

 + 𝐶 × 𝑑(𝑡)⏟
𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠 𝐸𝑛𝑡𝑟𝑦

)

where N as the number of bytes per term (default is 3 bytes), the

Postings Entry Selector (PES) can vary from 1 to 7 bytes (that is

where 8 in the above formula comes from), d (t) is the document

frequency, defined as the number of documents in the collection

containing term t, C is the compression factor and represents the

average number of bytes required to encode one posting of the d (t)

and I (t) is the size of a single index entry. In practice, index entries

are unconsolidated and the size of a single unconsolidated logical

index entry I’(t) includes this transient overhead due to D delta

updates.

𝐼′(𝑡) = ∑𝐼 (𝑡)

𝑖=𝐷

𝑖=0

Eventually, when the delta updates for the term t gets consolidated

(when the postings for a given term t across the delta updates get

merged via the merge callback invoked as part of page

consolidation), I’(t) will become I(t). The cumulative cost of the

entire logical index S for K unique index terms within a collection,

is calculated by the following formula

𝑆 = ∑(𝐼′(𝑡))

𝑡=𝐾

𝑡=0

The biggest contributor of the overall logical index size is the

number of unique terms K among the documents within a

collection. The value of K in-turn is a function of the variance

among the schemas (interior nodes) and values (leaf nodes) all the

documents in a collection. In general, the variance among

documents is maximum among the leaf nodes (property values) and

progressively diminishes to zero as we approach the root node. The

on-disk index size is directly proportional to S plus a fixed

additional headroom for GC run effectively (currently set to 66.6%

of S, making the on-disk file size as 1.5xS). For efficient storage

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000

N
u

m
b

e
r

o
f

T
e
rm

s
 (

lo
g

 s
c
a
le

)

Document Frequency (log scale)

1677

Figure 13. Schema Variance across DocumentDB collections of

various sizes.

utilization across multiple replicas on the machine (and for load

balancing across the federation), the on-disk Bw-Tree file for a

given database instance is required to dynamically grow and shrink

proportional to the logical index size S.

5. INSIGHTS FROM THE PRODUCTION

WORKLOADS
Over the past two years, we have been continuously validating and

making improvements to our logical index organization and

maintenance based on the telemetry collected from the

DocumentDB service clusters running production workloads for

Microsoft (MSN, Xbox, Skype and others) and third party

applications across six different geographical regions. While we

collect and analyze numerous indexing related metrics from

DocumentDB service deployed worldwide in Azure datacenters,

here we present a selected set of metrics which guided some of the

design decisions we presented earlier in the paper.

5.1 Document Frequency Distribution
Across all our clusters, regardless of the workloads and the sizes of

documents or DocumentDB collections, we observe that document

frequency distribution for the unique terms universally follow

Zipf’s Law [20] (Figure 12). While this fact has been universally

observed for document corpora in various IR systems, it validates

many of the decisions we have made for the DocumentDB’s logical

index organization in the context of JSON documents. Specifically,

the design of logical index entry and the byte allocation for PES

boundary, choice of various encoding schemes for postings and the

ability to dynamically change the encoding based on the changes to

distribution, as well as, application of semantic aware deduplication

techniques, were all influenced by the observation.

5.2 Schema Variance
Recall that we represent JSON documents as trees, with schema

represented by the interior nodes and the instance values

represented by the leaves. Figure 13 illustrates this across a random

sample of DocumentDB collections grouped by their sizes (100MB

to 10GB) and containing documents ranging from 1KB to 1MB. As

shown in the graph, regardless of the workload, document or

collection size, the number of unique leaf nodes (instance values)

completely dwarf the number of interior nodes (schema). We use

this insight (a) for designing the logical index layout including the

partial forward and reverse paths and encoding of path segments

and (b) for deduplication in the document ingestion path.

Figure 14. Query Performance vs. Index Size.

5.3 Query Performance
We define query precision in terms of the number of false positives

in postings for a given term lookup. Query precision therefore is a

good proxy for query performance. The highest value of query

precision, we can ever get is 1 – this is when we load only those

documents which contain the results of the query. Put differently,

if the terms in the logical index were hashed perfectly, the query

precision will be 1. As depicted in Figure 14, for the same number

of bytes allocated to a term, the query precision decreases as the

size of the DocumentDB collection grows. For a 10GB collection,

5-6 bytes yields the best query precision/performance. Figure 14

also illustrates the storage size (contributed by the bytes allocated

to hash a term) to query performance tradeoff.

5.4 On-Disk Index overhead
Figure 15 validates our design choice for making automatic

indexing as the default option. The graph shows the average and

99nth percentile index overhead (uncompressed logical index size

S compared to size of documents) across DocumentDB tenants in

various datacenters.

Figure 15. Index Overhead In Practice.

5.5 Blind Incremental Updates
Doing highly performant index updates within an extremely frugal

memory and IOPS budget is the key reason behind the blind

incremental update access method. This is evident in Figure 16

which shows the IO efficiency (defined as, the total number of IOs

issued for updating index of a given size) of the blind incremental

0

5

10

15

20

Index Overhead (Average)

Index Overhead (99%)

99.105 99.231 99.247 99.31 99.33

0.895 0.769 0.753 0.69 0.67

0

20

40

60

80

100

120

100 MB 0.5 GB 1 GB 5 GB 10 GB

%
 o

f
T

o
ta

l
T

e
rm

s

DocumentDB Collection Size

% of Leaves in Index % of Non-Leaves in Index

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

9
9
 p

e
rc

e
n

ti
le

 Q
u

e
ry

 H
it

s
(E

x
p

e
c
te

d
 h

it
 =

 1
)

Term Size/Precision (Bytes)

10GB 5GB 1GB 500MB 100MB

1678

Figure 16. IO efficiency was the main reason for inventing the

Blind Incremental Update access method in DocumentDB.

update access method for updating the index during document

ingestion of documents varying from 1KB-10KB, each containing

10-20 unique terms and within a strict memory budget of 4MB!

Note that in case of blind incremental updates, the read IOs

completely dominate the total number of IOs. This is because due

to the large and elastic flushes, the write IOs contribute a tiny and

constant percentage of the overall IOs issued. In contrast, with the

classical update method and without any term locality, each write

has an associated read. The key reason for introducing the new

blind incremental updates access methods should be evident from

Figure 16: compared to the classical update method, it is extremely

IO efficient even in the face of index growth.

6. Related Commercial Systems
Currently, there are two types of commercial NoSQL storage

systems broadly available in the market:

1. Non-document oriented NoSQL storage systems (e.g. [21,

22]) which are designed and operated as multi-tenant cloud

services with SLAs.

2. Document databases (e.g. [23, 24]) designed as single tenant

systems which run either on-premises or on dedicated VMs in

the cloud. These databases have the luxury of using all of the

available resources of a (physical or virtual) machine. These

systems were neither designed to be operated as a fully-

managed, multi-tenant cloud services in a cost effective

manner nor designed to provide SLAs (for consistency,

durability, availability and performance). Hence, operating the

database engine and offering database capabilities under a

frugal amount of system resources while still providing

performance isolation across heterogeneous tenants is not

even a concern of these systems.

We believe that the design constraints under which DocumentDB

is designed to operate and the capabilities it offers (see Section 1.1)

are fundamentally different than either of the two types of systems

above. Neither of the two types of systems above provide a fully

resource governed and schema agnostic database engine to provide

automatic indexing (without requiring schema or secondary

indices) under sustained and rapid rates of document updates while

still serving consistent queries, as described in the paper.

7. CONCLUSION
This paper described the design and implementation of the indexing

subsystem of DocumentDB, a multi-tenant distributed document

database service for managing JSON documents at massive scale.

We designed our database engine to be schema-agnostic by

representing documents as trees. We support automatic indexing of

documents, serve consistent queries in the face of sustained write

volumes under an extremely frugal resource budget in a multi-

tenant environment. Our novel logical index layout and a latch-free,

log-structured storage with blind incremental updates are key to

meet the stringent requirements of performance and cost

effectiveness. DocumentDB is also capable of performing online

and in-situ index transformations, as well as handle index

replication and recovery in DocumentDB’s distributed architecture.

The indexing subsystem described here is currently supporting

production workloads for several consumer scale applications

worldwide.

8. REFERENCES
[1] Azure DocumentDB Documentation.

http://azure.microsoft.com/en-

us/documentation/services/documentdb/

[2] Javascript Object Notation (JSON).

http://www.ietf.org/rfc/rfc4627.txt

[3] ECMAScript Language Specification, http://www.ecma-

international.org/publications/standards/Ecma-262.htm

[4] T. Neward. The Vietnam of Computer Science.

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+C

omputer+Science.aspx

[5] DocumentDB Query Language.

http://msdn.microsoft.com/en-us/library/dn782250.aspx

[6] D. B. Terry. Replicated Data Consistency Explained Through

Baseball. Commun. ACM, 56(12): 82-89, 2013.

[7] D. Abadi. Consistency Tradeoffs in Modern Distributed

Database Systems Design: CAP is Only Part of the Story.

IEEE Computer, 45(2): 37-42, 2012.

[8] Microsoft Azure. http://www.windowsazure.com/en-us/

[9] XML Schema specification.

http://www.w3.org/XML/Schema

[10] XML Infoset. http://www.w3.org/TR/xml-infoset/

[11] Underscore.js. http://underscorejs.org

[12] LINQ (Language Integrated Query).

http://msdn.microsoft.com/en-us/library/bb397926.aspx

[13] D. G, Murray M. Isard, and Y. Yu. Steno: Automatic

Optimization of Declarative Queries. In PLDI, pages 121-

131, 2011.

[14] D. Comer. The Ubiquitous B-tree. ACM Comput. Surv.,

11(2): 121-137, 1979.

[15] K. Wu, K. Stockinger, and A. Shoshani. Breaking the Curse

of Cardinality on Bitmap Indexes. In SSDBM, pages 348–

365, 2008.

[16] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A

B-tree for New Hardware Platforms. In ICDE, 2013, pages

302-313, 2013.

[17] J. Levandoski, D. Lomet, S. Sengupta. LLAMA: A

Cache/Storage Subsystem for Modern Hardware. PVLDB,

6(10): 877-888, 2013.

[18] M. Rosenblum and J. Ousterhout. The Design and

Implementation of a Log Structured File System. ACM

TOCS, 10(1): 26-52, 1992.

[19] F. J. Corbato. A Paging Experiment with the Multics System.

MIT Project MAC Report MAC-M-384, May, 1968.

[20] Zipf’s Law, http://en.wikipedia.org/wiki/Zipf%27s_law

[21] Amazon DynamoDB. http://aws.amazon.com/dynamodb/

[22] Google Cloud Datastore. https://cloud.google.com/datastore/

[23] MongoDB. http://mongodb.com/

[24] Couchbase. http://couchbase.com/

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f

IO
s

Index Size (MB)

Update Blind Update

1679

