
Extracting Logical Hierarchical Structure of HTML
Documents Based on Headings

Tomohiro Manabe
∗

Graduate School of Informatics
Kyoto University

Sakyo, Kyoto 6068501 Japan

manabe@dl.kuis.kyotou.ac.jp

Keishi Tajima
Graduate School of Informatics

Kyoto University
Sakyo, Kyoto 6068501 Japan

tajima@i.kyotou.ac.jp

ABSTRACT
We propose a method for extracting logical hierarchical structure
of HTML documents. Because mark-up structure in HTML docu-
ments does not necessarily coincide with logical hierarchical struc-
ture, it is not trivial how to extract logical structure of HTML doc-
uments. Human readers, however, easily understand their logical
structure. The key information used by them is headings in the doc-
uments. Human readers exploit the following properties of head-
ings: (1) headings appear at the beginning of the corresponding
blocks, (2) headings are given prominent visual styles, (3) headings
of the same level share the same visual style, and (4) headings of
higher levels are given more prominent visual styles. Our method
also exploits these properties for extracting hierarchical headings
and their associated blocks. Our experiment shows that our method
outperforms existing methods. In addition, our method extracts not
only hierarchical blocks but also their associated headings.

1. INTRODUCTION
Since the wide-spread of the Internet, a huge amount of data have

been accumulated on the Web in the form of HTML documents. In
order to take full advantage of this huge valuable asset, information
extraction from these Web pages has become an important research
topic. There has also been extensive research on querying, ranking,
summarizing, and efficiently browsing these Web pages.

Because HTML documents are not plain text data, automatic un-
derstanding of the structure within them is important for improving
these HTML processing tasks. There has been much research on
the extraction of various types of structure in Web pages, such as
list or table structure [3, 23, 27, 30] and layout structure consisting
of a main body [16, 22, 28], side menus [19], and so on.

However, there remains one of the most prevalent types of struc-
ture in Web pages: logical hierarchical structure within their main
bodies. Logical hierarchical structure is important for correctly un-
derstanding documents. For example, suppose we want to extract
temporal information from some corpus, which includes a Web

∗Research Fellow of Japan Society for the Promotion of Science

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 21508097/15/08.

page shown in Figure 1. If we ignore the hierarchical structure
of this document and simply regard the document as a sequence of
words, the line for July 2010 can be mistaken as describing events
in July 2012 because the line is equally close to the word 2010 and
2012. For the same reason, the hierarchical structure of this docu-
ment is also important when we rank this page for the query “2012
Jul construction”. These are examples of HTML processing tasks
where recognition of hierarchical document structure is important.

However, there has not been sufficient research on the extraction
of logical hierarchical structure of HTML documents. The problem
may not seem difficult as HTML documents include explicit nested
mark-ups. These mark-ups, however, often describe physical lay-
outs or visual appearances of text data, and their nested structure
does not necessarily coincide with logical hierarchical structure.
For example, the mark-up structure of a HTML document consist-
ing of sections and subsections usually has no hierarchical structure
corresponding to the inclusion relationship between sections and
subsections. It instead includes many nested tags corresponding to
visual decoration of text fragments, and also includes even wrong
or abused usage of tags. Because of this discrepancy between mark-
up structure and logical hierarchical structure in HTML documents,
it is not trivial how to automatically extract the latter. Extraction of
logical hierarchical structure is thus a crucial yet non-trivial step
commonly required in various HTML processing tasks.

On the other hand, human readers easily recognize logical hier-
archical structure of these HTML documents. The key information
used by human readers is hierarchical headings in the documents.
For example, a search result of Google shown in Figure 2 includes
three types of items: ordinary Web pages, images, and videos.
Google search results may also include news, maps, recipes, Web
page with sitelinks, and so on, and they have heterogeneous struc-
tures. Human readers, however, can parse such a completely het-
erogeneous list simply because the items in the list have only one
common component: the headings. Human readers can also rec-
ognize the hierarchical structure of sections and subsections in the
document in Figure 1 because of their hierarchical headings.

Based on this observation, we develop a method that extracts
logical hierarchical structure of HTML documents by exploiting
hierarchical headings in them. This approach is expected to work
even if the document has many noisy or abused tags as long as it
is appropriately designed by the author so that human readers can
recognize its hierarchical structure by its headings.

However, identification of hierarchical headings in HTML doc-
uments is also a non-trivial task. According to our survey on our
data set (which will be explained in Section 5.1), only less than 1/3
of headings are marked up with the proper HTML tags for head-
ings, namely H1 to H6 and DT (definition term). The ratio may

1606

Kyoto Aquarium
Kyoto Aquarium is an aquarium in Kyoto, Japan.

Overview
Kyoto Aquarium is one of the largest inland aquariums.
It is exhibiting about 15,000 animals of about 250 species.

Information
See also: disclaimers

Holidays
Open throughout the year except for occasional holidays.

Opening Hours
From 9 a.m. to 5 p.m. Reception closes at 4 p.m.

History
See also: History of Kyoto Aquarium for details.

2010
• Jul. Construction started.

2012
• Feb. Construction finished.
• Mar. Opened just as planned.
• Jul. Welcomed the one-millionth visitor.

Figure 1: Example Web page with heading structure

depend on how we define “headings.” Our definition (which will
be explained in Section 3) is relatively loose (i.e., defined in a wider
sense), and if we adopt a tighter definition, the ratio may be higher
than 1/3. Our loose definition is, however, preferred for our pur-
pose, i.e., heading-based document segmentation, and as long as
this usage of headings is concerned, the naive method based on tag
names can extract only 1/3 of what we want.

In addition, H1–H6 or DT tags do not always represent headings.
According to our same survey, only about 2/3 of these tags really
represent headings even in our loose definition. There are many
pages where these tags are used for marking up some metadata
(e.g., author names and timestamps). There are also many pages
where text nodes marked up with these tags are not visually promi-
nent, which means they are not recognized as headings by human
readers. We suspect the main reason of such usage of heading tags
is search engine optimization (SEO); some search engines assign
heavier weights to text between heading tags. There are also pages
where heading tags are used to merely change visual styles.

Our method identifies hierarchical headings based on our as-
sumptions on the visual design of headings. When users read a doc-
ument with headings, they use each heading to determine whether
its associated block is relevant to their needs. If they determine that
the block is irrelevant, they skip it and jump to the next heading of
the same level. If they determine that it is relevant, they look into
it, and if it includes lower-level headings, they recursively repeat
the same process in order to further narrow down blocks to read.

In order to help this process, the authors design headings in a
special way: (1) they insert headings at the beginning of the cor-
responding blocks, (2) they give headings prominent visual styles,
(3) headings of the same level are given the same visual style, and
(4) headings at higher levels are given more prominent visual styles
than headings at lower levels. We explain the details in Section 3.2.

In this paper, we propose a method that extracts hierarchical
headings in HTML documents based on these properties of the
headings, and extracts logical hierarchical structure based on the
extracted headings. Our experiment shows that our method outper-
forms existing Web page segmentation methods.

In addition, our method can identify not only hierarchical blocks
but also their headings. Heading extraction is important in its own
right because they are important for understanding the information

Figure 2: Example of heterogeneous search results by Google
(http://www.google.com)

in their associated blocks. For example, we developed a block-
based Web search system upon our block extraction method, and
our experiment shows that we can significantly improve the rank-
ing of blocks by complementing blocks with words in their ancestor
headings. It is because words that have already appeared in some
ancestor headings are often omitted in a block. The details are be-
yond the scope of this paper, and will be reported in another paper.

Heading extraction is also useful for document summarization
and intra-document browsing support. For example, in the Accor-
dion Summarization method [4], each block in a Web page is first
represented only by its first line, and the whole block is shown upon
the users’ click on it. With our heading extraction method, we can
show its heading instead of its first line.

Our method relies on only a few properties specific to HTML,
and it can easily be adapted to other types of marked-up documents
as long as their headings are designed on the same principle. We
use the following HTML-specific knowledge: the knowledge on
which CSS properties affect visual styles of HTML nodes and the
knowledge that IMG elements represent images.

The remainder of the paper is organized as follows. In the next
section, we survey related work. In Section 3, we give our def-
initions of blocks and headings, and explain our assumptions on
properties and structure of them. We then explain our structure ex-
traction method in Section 4. In Section 5, we explain the result of
our experiment. Finally, we conclude the paper in Section 6.

2. RELATED WORK
HTML5 has tags for marking-up hierarchical block structure.

However, methods that rely on them cannot be applied to the huge
asset of existing Web pages that are not in HTML5 format. In ad-
dition, given that the ratio of headings described by proper tags is
not high, we cannot expect that most Web pages in future would be
marked-up with proper HTML5 tags for hierarchical structure.

Hierarchical structure extraction is a kind of document segmen-
tation. There have been several studies on Web page segmentation.
Cai et al. [5] proposed a method called VIPS, which recursively
divides a page mainly based on the margins between blocks in the
rendered page. Their method works well for typical top-level lay-
out structure of pages composed of main bodies, menu blocks, side-
bars, and so on, but it does not work well for the hierarchical struc-
ture inside main text bodies. For example, it cannot detect blocks
delimited by headings in bold fonts without any special margins.

1607

Kohlschutter and Nejdl [20] proposed a method based on text-
density. Their method can distinguish main bodies filled with full
sentences from menu blocks including only short phrases, and also
from advertisements mostly composed of images. Hattori et al. [17]
proposed a method that divides a page at points where the HTML
mark-up structure largely changes. Their method also works well
only for the top-level layout structure of Web pages.

Chakrabarti et al. [7] formulated the page segmentation problem
as an optimization problem on weighted graphs and showed how
to solve the problem by learning weights from manually labeled
data. Their method is also focused only on the top-level structure
of pages, and it is not clear how to adapt their labeling and learning
schemes to nested structure in the main bodies.

Debnath et al. [10] proposed a method of detecting main blocks
in pages, but they focused on how to choose important blocks, and
page segmentation is simply done by a predefined set of HTML
tags; they first segment a page by TABLE tags then by TR tags,
and so on. Lin and Ho [22] also proposed a method of estimating
the importance of blocks based on tabular tags. Song et al. [28]
used VIPS [5], explained above, for main block detection. Gupta et
al. [16] also proposed a method of main block detection, and Keller
and Nussbaumer [19] proposed a method of extracting side menus.

In summary, these page segmentation methods and main block
detection methods focus on the top-level page layout, while we
focus on structure inside the main body. These methods and our
method are, therefore, complementary to each other. Another dif-
ference between these methods and ours is that our method extracts
not only hierarchical blocks but also headings associated with them.

The SphereSearch engine [15] converts heterogeneous HTML
documents into XML documents for unified ranking, and their con-
version includes the detection of headings and their corresponding
blocks based on simple heuristic rules. Their rules, however, de-
pend on specific tags, such as H1 and B, and can work only for
well-structured HTML documents described by these tags.

El-shayeb et al. [11] proposed a method that extracts hierarchical
document structure by using the same information as ours: visually
prominent headings. Their method, however, examines each node
separately and determine if its visual style is likely to be a heading.
They do not use information on other nodes sharing the same visual
style, which is useful as explained in Section 5.4.5. Tatsumi and
Asahi [29] proposed a method that detects headings based on their
visual styles, but they also examine each node separately, and they
do not extract hierarchical relationship among them.

There are also heading extraction methods based on machine
learning [24, 26, 25]. These learning-based methods, however, can
detect a heading only when the training data set includes positive
examples of headings sharing the same features (e.g., visual style
and partial tree structure). In [24] and [26], the evaluations were
based on cross-validation, in which the training and test data sets
may share headings in the same format from the same page. In [25],
their method was evaluated on a data set consisting of top-ranked
pages by Google, which must contain many pages that are from the
same domain (e.g., Wikipedia) and have the same format.

There has been extensive research on the extraction of structured
data, such as lists and tables, from Web pages [3, 23, 27, 30, 1]
and from plain text [9]. All these methods exploit repetitive oc-
currences of tree patterns, tag sequences, word patterns, or visual
features. This strategy, however, cannot extract a list of items with
completely heterogeneous structures. As explained before, a re-
sult page of Google in Figure 2 includes items with heterogeneous
structures. Three top-level sections of the document in Figure 1
also have heterogeneous structures, i.e., “Overview” has no internal
structure, “Information” has two subsections, and “History” con-

tains a list of years “2010” and “2012”. Human readers can rec-
ognize these lists because they have only one common component:
headings with the same visual style. Our method can extract such
a heterogeneous list by detecting its homogeneous headings.

There have also been research on structure extraction from PDF
documents. Gao et al. [14] has proposed a method of extracting
hierarchical structure from the table of contents (ToC) of PDF doc-
uments. If a document does not have a ToC, they apply the same
method to the list of headings extracted from the main body [13].
Their method, however, assumes that the level of a heading is either
one-level lower, the same, or higher than the level of the immedi-
ately preceding heading. It holds for headings of sections, but does
not hold for headings in a wider sense. For example, an enumer-
ated list with headings appears at any level in section structure. If a
document includes at least one such heading, their method fails.

Anjewierden [2] has also proposed a method of extracting log-
ical structure from PDF documents. Their approach is to define
domain-specific grammars for parsing documents. It is not applica-
ble to a general Web corpus including diverse structure and design.

Chao and Fan [8] proposed a method of extracting text blocks
from PDF documents by merging neighboring lines with similar
styles. Their method, however, extracts disjoint blocks without hi-
erarchical relationship.

3. LOGICAL DOCUMENT STRUCTURE
In this section, we give our definitions of blocks and headings.

We then explain our assumptions on properties of headings, and
we also discuss the correspondence between logical hierarchical
structures and nested mark-up structure in HTML documents.

3.1 Definitions of Blocks and Headings
We first need to define blocks in order to clarify what we want to

extract, but there is no consensus on what are logical blocks in doc-
uments. For example, a sentence and paragraph should or should
not be a block depending on the application. Our main applications
are information extraction and information retrieval. In these appli-
cations, we want to extract a block that has different topic from its
neighboring blocks. In other words, we want to divide a document
at points where the topic changes [6].

For example, in Figure 1, the lines for 2010 and those for 2012
have different topics: year 2010 and 2012. Therefore, they should
be segmented into different blocks so that the lines for 2010 July
would not be mistaken as describing 2012 July.

The definition above, however, is still ambiguous. Topics have
hierarchical subtopics, and it is unclear what level of topic change
it means. In order to make it less subjective, we only consider topic
changes that are substantial enough that the author inserts a heading
in order to explicitly describe a new topic. Based on this discussion,
we define logical blocks in documents as follows.

DEFINITION 1. Blocks: A block is a coherent segment of a doc-
ument that has its own heading describing its topic.

We then need to define what are headings. We define it as follows.

DEFINITION 2. Headings: A heading is a visually prominent
segment of a document describing the topic of another segment.

We define headings as shown above because we made the following
observations on blocks and headings in documents.

OBSERVATION 1. When a document includes a block with its
own topic and the author inserts a heading describing the topic,
the author makes the heading visually prominent so that (1) readers
can easily distinguish the block from its neighbors, understand its

1608

topic, and correctly interpret the information in it, and (2) readers
can locate the information on that topic by scanning only headings.

For example, each block in the page shown in Figure 1 has its
heading describing what topic of the block, and the user can locate
relevant blocks by scanning only these headings.

Many pages have hierarchical topics. We also made the follow-
ing observation on headings in such pages.

OBSERVATION 2. When a page has hierarchical topics, its con-
tents are organized into hierarchical blocks with hierarchical head-
ings so that readers can locate information by a top-down recursive
scan of its hierarchical headings, and can understand the topic of
a block by its and its ancestors’ headings.

For example, suppose a user wants to find the information on the
opening hours of the Kyoto Aquarium in the document in Figure 1.
He/she first scans the top-level headings ”Overview”, ”Informa-
tion” and ”History” then reads the block associated with ”Informa-
tion”. Next, he/she scans the next-level headings ”Holidays” and
”Opening Hours” within the block then reads the block associated
with ”Opening Hours.” As shown in this example, each heading
corresponds to some significance level, and the scan starts from the
most significant headings and proceed to lower ones.

We regard an entire document as a block with regarding the doc-
ument title as its heading. Thus, all blocks in a document form a
hierarchy rooted by a block corresponding to the entire document.

3.2 Properties of Headings
Based on the observations above, we assume that appropriately

designed headings have the following properties. We will discuss
the validity of these assumptions through the analysis of our HTML
data set later in Section 5.4.5.

ASSUMPTION 1. Positions of Headings: Each heading
appears at the beginning of its corresponding block.

We assume that page authors insert headings at the beginning
of the corresponding blocks so that readers can start reading the
corresponding block soon after finding a relevant heading.

ASSUMPTION 2. Visual Styles of Headings: Headings and
non-heading segments never have the same visual style.

It is to help readers easily scan only headings without reading
the other parts of a document. A visual style consists of various
attributes, such as font size and font weight.

ASSUMPTION 3. Visual Styles of Heading Lists: Two head-
ings in hierarchical headings have the same visual style if and only
if they are at the same significance level.

It is to help readers easily jump from a heading to the next head-
ing of the same level in each step in a recursive scan.

ASSUMPTION 4. Visual Styles of Hierarchical Headings:
Headings at higher levels are given more prominent visual styles
than headings at lower levels.

It is to help top-down recursive scan of hierarchical headings.
We call a sequence of headings with the same visual style (and

therefore at the same significance level) a heading list. We also call
a sequence of blocks corresponding to a heading list a block list. A
block list in our definition has a broader sense than a list in prior re-
search on list extraction. A block list may consist of heterogeneous
items as long as their headings share the same visual style. For

Kyoto Aquarium(0)

Kyoto Aquarium is an aquarium in Kyoto, Japan.

Overview(1)

Kyoto Aquarium is one of the largest inland aquariums.
It is exhibiting about 15,000 animals of about 250 species.

Information(1)

See also: disclaimers

Holidays(2)
Open throughout the year except for occasional holidays.

Opening hours(2)
From 9 a.m. to 5 p.m. Reception closes at 4 p.m.

History(1)

See also: History of Kyoto Aquarium for details.

2010(3)

• Jul.(4) Construction started.

2012(3)

• Feb.(4) Construction finished.

• Mar.(4) Opened just as planned.

• Jul.(4) Welcomed the one-millionth visitor.

Figure 3: Heading structure of document in Figure 1. Sub-
scripts (0) to (4) of headings corresponds to five heading lists.

example, items in the page in Figure 2, and the three top-level sec-
tions in the document in Figure 1 form block lists in our definition
although they have completely different internal structures.

The hierarchical structure of the document in Figure 1 is shown
in Figure 3. Each rectangle represents a block, and a subscript of
a heading represents which heading list it belongs to. Note that
a block list in our definition may be interleaved by other compo-
nents. For example, four blocks corresponding to one event in 2010
and three events in 2012 are not siblings and are interleaved by the
higher-level heading “2012,” but they form a block list in our defi-
nition. Such an interleaved list is split into multiple sets of sibling
blocks when we later segment the page into hierarchical blocks.

We define the logical depth of a heading by the depth of its as-
sociated block in the logical block hierarchy. Note that headings
of the same significance level may not have the same logical depth.
For example, a subsection occurring inside some section and a sub-
section occurring immediately under a chapter without a section
have the same significance level but have different logical depths.

3.3 Correspondence between Logical Struc
ture and Markup Structure

Nested mark-ups in a HTML document form a tree called a DOM
tree, but it does not coincide with the logical hierarchy as men-
tioned before. We discuss correspondence between them below.

3.3.1 Headings and Nodes
We first discuss the correspondence between headings and DOM

trees. Although HTML has tags for headings, our survey shows that
only 1/3 of headings in our definition are marked up with these tags
as explained before. The other headings are expressed by a text
or IMG element with an explicit specification of the visual style.
Because a heading only describes the topic of some block, a single
text or image node is sufficient to express a heading in most cases.

1609

BODY

DD

text

DT

Opening
hours

DD

text

DT

Holidays

SMALLDIV

Information

Figure 4: Node sequence representing “Information” block in
HTML document in Figure 3. It consists of six sibling nodes in-
clusive of their descendants but not their parent node (BODY).

3.3.2 Blocks and Node Sequences
Next, we discuss how blocks are represented in a DOM tree. Be-

cause a block is a coherent segment, it corresponds to a contiguous
segment in the HTML source text. In addition, it is very rare that
a block only partially overlaps with a subtree in the DOM tree.
This is because a block is a semantic coherent unit, while a block
containing only the starting or ending tag of a tag pair is not a self-
contained HTML fragment. On the other hand, a block also never
partially overlaps with a text node because we cannot change the
visual style in the middle of a text node, which means it is difficult
to represent a boundary of a block in the middle of a text node. The
only sub-structure in a tree structure satisfying the three conditions
above is a node sequence consisting of adjoining sibling nodes (or
consisting of a single node) inclusive of their descendants. There-
fore, a block corresponds to a node sequence in the DOM tree.

Because a heading appears at the beginning of its block (As-
sumption 1) and is represented by a single text or image node, the
heading of a block is represented either by the first node of the cor-
responding node sequence or by its descendant.

Figure 4 shows a node sequence corresponding to the “Informa-
tion” block in the document in Figure 3. It consists of six sibling
nodes, and its heading is represented by the text node “Informa-
tion,” which is a descendant (child) of the first node of the sequence.

3.3.3 Nested Blocks and Block Lists
Lastly, we consider how nested blocks and block lists are rep-

resented in a DOM tree structure. When a block b1 represented
by a node sequence s1 includes another block b2 represented by a
node sequence s2, s2 is either a substring of s1 or a substring of the
children of a self-or-descendant of a member of s1.

A block list is represented by a set of node sequences that have
headings of the same visual style (Assumption 3). Blocks in a block
list may have different logical depths in the block hierarchy, as ex-
plained before. On the other hand, node sequences representing
blocks in a block list usually have the same depth in the DOM tree.
This is because they have headings with the same visual style, and
the visual style of an HTML node is affected by the tag paths of
the node, i.e., a sequence of tags along the path from the root to
the node. To add the same visual style to all headings in a heading
list, the author usually places them beneath the same tag path. If
two blocks in a block list are placed at different depths in the DOM
tree, the author cannot transpose them while maintaining the tag
paths of their headings. Therefore, all node sequences representing
blocks in a block list usually have the same depth in the DOM tree.

4. STRUCTURE EXTRACTION METHOD
In this section, we explain our structure extraction method, which

we call HEPS (HEading-based Page Segmentation). HEPS sim-
ulates the behavior of human readers described in Observation 2

textXtext

SMALL

for details.A

History of Kyoto Aquarium

See also:

Figure 5: General structure of a sentence-breaking node X (left)
and an example from the document in Figure 3 (right).

based on the assumptions explained in Section 3. It divides a doc-
ument into nested blocks by recursively detecting and scanning
headings in the order of their significance level. The method is
composed of three steps except for preprocessing. First, it clas-
sifies DOM nodes in a given document into node sets according
to their visual styles. Second, it tentatively assumes that every set
represents a heading list, and sorts the sets in the order of their pre-
sumed significance level based on their position in the DOM tree
and their visual prominence. Third, it determines a node set rep-
resenting top-level headings and divides the document into blocks.
It recursively repeats the last step for each obtained node set and
extracts the hierarchical logical structure of the document.

4.1 Preprocessing
Before the main steps, we remove two kinds of nodes: blank

nodes and sentence-braking nodes.
DOM trees of HTML documents may contain blank nodes, i.e.,

text nodes that only include whitespace characters (defined in Uni-
code 6.0). Because most blank nodes are used for indenting the
source text and not for describing information, we remove all blank
nodes from DOM trees before the other steps.

DOM trees also often contain subtrees corresponding to smaller
structures than a “sentence”. For example, link anchor tags and
emphasizing tags are often used for marking up only a part of a
sentence. They produce nodes that divide a sentence into multiple
text nodes. Such sentence-breaking nodes are rarely headings, but
our method often misread them for headings, and their removal sig-
nificantly improves the accuracy of our method (see Section 5.4.5).

We regard nodes satisfying the following two conditions illus-
trated in Figure 5 (left) as sentence-breaking nodes: (1) a sentence-
breaking node X must be an internal node, and (2) it must appear
between two sibling text nodes. The two conditions above, how-
ever, cannot detect sentence-breaking nodes at the beginning or end
of a text. To detect such nodes, we use their visual styles. Be-
cause sentence-breaking nodes often have specific visual styles, if
some nodes have the same visual style as some of the already-found
sentence-breaking nodes, we also regard them as sentence-breaking
nodes. The equivalence of visual styles is discussed in Section 4.2.

For example, the document in Figure 3 has two sentence-breaking
nodes represented by small font size and underlines. The one in
the “History” section satisfies the conditions above, as shown in
Figure 5 (right). As a result, the other one of the same style in the
“Information” section is also regarded as a sentence-breaking node.

We remove a sentence-breaking node by creating a text node
from its contents and concatenating it with adjoining text nodes.
We explain how to convert the contents into a string in Section 5.2.

4.2 Classification of Nodes by Visual Styles
In the first main step of HEPS, we classify nodes by their vi-

sual styles. As we discussed in Section 3.3.1, a heading is either
a text node or an IMG element. Therefore, we consider them as
candidate-heading nodes and classify them. To determine their vi-
sual styles, we use three types of information explained below.

1610

Tag path: The tag path of a node is a sequence of tag names
along the path from the root node to the node [23]. For example,
/HTML/BODY/TABLE/TR/TD/UL/LI/text() is a tag path. We use
tag paths to determine visual style because the visual style of a
HTML node is affected by its and all the ancestor nodes’ names.
For example, a text node with the tag path above is rendered with
an enclosing border by TD tags and a bullet attached by LI tags.
Computed style: In HTML, authors can also directly assign vi-
sual styles to nodes by using CSS. To include styles specified by
CSS, we also use the computed styles of nodes calculated by Web
browsers based on several factors, such as external style sheets and
style attributes of the nodes. Computed styles contain many prop-
erties, but according to our survey, only a few of them are used
for making headings prominent: font-size, font-style (to display in
italics), font-weight (in bold), text-decoration (sidelines) and color.
These properties are also effective for classifying image nodes be-
cause they specify the visual styles of their alternative texts.
Height of images: According to our experiments, height is also
useful for the classification of image nodes because the content of
an image used as a heading is usually characters, and the height of
such an image reflects the font-size of the characters.

We consider that two nodes have the same visual style if they
have the same tag path, the same values for the five CSS properties
above, and the same height if they are images. Because of Assump-
tion 2 and Assumption 3, each set produced by this classification is
either a heading list defined in Section 3.2 or a set of nodes that are
not headings. We call these node sets candidate-heading lists.

4.3 Sorting CandidateHeading Lists
The first step above produces a set of candidate-heading lists.

In the second step, we tentatively assume that all of them are true
heading lists and sort them in their presumed significance level or-
der. Those that are not heading lists will be removed later. We sort
them based on three factors: depth in the DOM trees, visual styles,
and the document order, in this priority order.

4.3.1 Sorting by Block Depth
To sort heading lists by their significance level, we first sort them

by the depth of their associated blocks in the DOM tree. Note that
all blocks in a block list must have the same depth (Section 3.3.3).

It corresponds to topological sorting by inclusion relationship
among block lists. Because the depth of a block is smaller than or
equal to the depth of its descendant blocks (Section 3.3.3), the sort-
ing by the depth of associated blocks never contradicts the ancestor-
descendant relationship between heading lists. On the other hand,
if two heading lists have no ancestor-descendant relationship in a
page, it makes no sense to sort them by the depth of their associated
blocks, but the ordering between them is unimportant anyway.

We determine the depth of the associated blocks of a heading list
by finding the least upper bound of two adjoining headings in the
heading list. We compute it by the following procedure.

Input: a candidate-heading list [e1, . . . , en]
1: if n = 1 return [p1] where p1 is document root node
2: a := [e1, . . . , en]
3: p := [p1, . . . , pn] where pi is parent node of ei
4: if pi = pj for some i ̸= j return a else a := p
5: jump to 3
Output: first nodes of blocks associated with [e1, . . . , en]

We call each node in the output of this procedure the front node of
the corresponding input heading node because it is the first (in doc-
ument order, i.e., preordering in the DOM tree) node in the block
associated with the input heading node. The depth of the front node
is the depth of the associated block.

DIV

UL

LI

textB

Jul.(4)

LI

textB

Mar.(4)

LI

textB

Feb.(4)

B

2012(3)

UL

LI

textB

Jul.(4)

B

2010(3)

Figure 6: Partial DOM tree of document in Figure 3. This
figure shows how we compute depth of blocks associated with
heading lists (3) and (4). Arrows represent node replacement
and double rectangles represent front nodes.

Figure 6 illustrates how this procedure works when the input is
the heading list (3) or (4) in Figure 3. When the input is the heading
list (3), two nodes “2010” and “2012” in the input are first replaced
with their parent nodes, which are B nodes. In the second round,
because their parents are the same DIV node, the procedure returns
an array of the two B nodes. They are the first nodes of the blocks
associated with the headings “2010” and “2012”, and their depth
is the depth of the associated blocks. When the input is heading
list (4), the four input nodes are replaced with B nodes in the first
round then by LI nodes in the second round. In the third round,
because some nodes share the same parent node, which is the UL
node at right, the procedure returns an array of the four LI nodes.
They are the first nodes of the blocks associated with the four input
headings, and their depth is the depth of the associated blocks.

All headings in a heading list have the same depth in the DOM
tree (Section 3.3.3). In each candidate-heading list produced in the
first step, all elements have the same depth in the DOM tree because
we used tag paths to classify nodes. Therefore, all front nodes in
the output of this procedure also have the same depth. Therefore,
we can sort heading lists by the depth of their front nodes.

The procedure above works only if there is a pair of adjoining
blocks. When there is such a pair of blocks, they correspond to
two adjoining node sequences in the DOM tree, and all top-most
nodes in these sequences have the same parent node. Therefore, the
procedure stops just before that parent node, i.e., at the top-most
nodes of the blocks. We start from the headings, each of which
must be the first node of the corresponding node sequence or its
descendant (Section 3.3.2). Therefore, the procedure returns the
first node in the node sequence representing the associated block.

However, when there is no pair of adjoining blocks, the proce-
dure above fails to return correct front nodes. It happens when a
candidate-heading list consists of only one node, and also when all
the associated blocks of the headings are interleaved by other com-
ponents. In the former case, we treat the document root as its front
node for convenience, but such a list is anyway removed in the next
step. The latter case is very rare, and we ignore it in this paper.

For each candidate-heading list produced in the first step, we
compute the depth of the associated blocks by this procedure, and
sort the lists in ascending order of the depth. When we have a tie,
we break it based on their visual styles, as explained below.

4.3.2 Sorting by Visual Style
HTML has tags for specifying multi-level headings (H1, H2, and

so on). Today’s popular Web browsers render upper headings with
a larger font, or a bold font of the same size. We assume that au-

1611

thors who directly specify the visual styles of headings follow this
convention so that readers can understand the relationship between
the headings. When we have two candidate-heading lists whose
front nodes have the same depth, we sort them first in descending
order of their font-size then in descending order of their font-weight.
All headings in a candidate-heading list have the same value for
these properties because we use them when we classify nodes.

If we still have a tie, we break it based on document order.

4.3.3 Sorting by Document Order
Because headings are placed at the beginning of the correspond-

ing blocks, when we have multi-level headings, the first heading of
higher significance level usually appears prior to the first heading
of lower significance level. Based on this observation, we finally
break ties by sorting the heading lists in the document order of the
first element of each list. Because all nodes in a document have
different positions in document order, we have no more ties.

4.4 Recursive Document Segmentation
Given a sorted list of candidate-heading lists produced in the sec-

ond main step, we first segment the document into top-level blocks
by using the first candidate-heading list then segment these blocks
by using the next candidate-heading list. We segment the document
into nested blocks by repeating this process, as human readers do.

In each step, we also determine whether the given candidate-
heading list is really a heading list. To determine this, we first try to
segment the given blocks by using the given candidate-heading list,
and if it produces an inappropriate block structure, we determine
that it is not really a heading list and skip it.

Because we use the document segmentation in that determining
process, we first explain how we segment documents then how we
determine whether a given list is really a heading list.

4.4.1 Segmentation Based on Headings
As explained in Section 4.3.1, a front node is the first node of a

node sequence representing a block associated with a given head-
ing. Therefore, we can extract the node sequence representing a
block by starting from the front node, scanning its following sib-
lings, then detecting the last node of the node sequence.

We use the following conditions for detecting the last node.
No following sibling: If there is no more following sibling, we
stop the scan and regard the current node as the last node.
Another front node: Front nodes produced from one candidate-
heading list represent the first nodes of blocks belonging to the
same block list. These blocks in the same block list never include
nor overlap each other. Therefore, if the following sibling is a front
node of another heading in the current candidate-heading list, we
stop the scan and regard the current node as the last node.
Node including already-found upper-level headings: Because a
heading appears at the beginning of its block, and two blocks never
share the same heading, a lower block never contains a heading of
any upper block. Therefore, if the next following sibling includes
any already-found upper-level headings, we regard the current node
as the last node. Because we determine headings and segment a
document in top-down manner, in each recursive step, all the upper-
level headings have already been determined.
Node not included in current upper block: When we scan sib-
ling nodes representing a block, its parent block has already been
determined because of our top-down procedure. As discussed in
Section 3.3.3, a node sequence of a block is contained by the node
sequence of its parent block. Therefore, if the next sibling is not
contained in the node sequence of the parent block of the current
block, we regard the current node as the last node.

DIV

UL

LI

textB

Jul.(4)

LI

textB

Mar.(4)

LI

textB

Feb.(4)

B

2012(3)

UL

LI

textB

Jul.(4)

B

2010(3)

Figure 7: Detection of blocks starting from front nodes found in
Figure 6. Scan proceeds along arrows and stop before dashed
arrows. Double rectangles represent front nodes.

BODY

DIV

History(1)

DD

text

DT

Opening
hours(2)

DD

text

DT

Holidays(2)

SMALLDIV

Information(1)

Figure 8: Scan starting from front node of heading “Opening
hours” stops at next DD node because the following sibling is
outside upper “Information” block, which corresponds to six
sibling nodes enclosed by rectangle in this figure.

Figure 7 shows how we detect a node sequence representing a
block starting at each front node found in Figure 6, which are rep-
resented by double rectangles. When we start from the left-most B
node, we stop at the next UL node because the following sibling,
i.e., the third B node from the left, is another front node for the
same candidate-heading list. When we start from the left-most LI
node, we stop immediately because there is no following sibling.

Figure 8 shows an example in which a scan stops at the last sib-
ling node within the upper block. Six children of the BODY node,
which are enclosed by a rectangle in this figure, correspond to the
“Information” block in the document in Figure 3. When we start
from the front node of the heading “Opening hours”, which is the
DT node on the right, we stop at the next DD node because the
following sibling is outside the upper “Information” block.

4.4.2 Determining Heading Lists
Next, we explain how we determine whether a given candidate-

heading list is really a heading list. We use five conditions below
for detecting non-heading nodes. For each condition, we compute
the ratio of the number of nodes satisfying it to the number of nodes
in the candidate-heading list, and if it is larger than a threshold θ
for any condition, we determine that the list is not a heading list.
1. Node whose front node includes upper-level headings: If
the front node of a candidate heading includes headings of upper
blocks, the block produced from the front node would also include
them. A block, however, never includes headings of upper blocks,
as explained before. Therefore, if a candidate heading has such a
front node, we determine that it is not really a heading.
2. Node producing empty block: Because a block must have a
heading and a heading must have an associate block by their defi-
nitions, we do not consider a block including no text or image node
except for its heading. Therefore, if we obtain such an empty block
from a candidate heading, we determine that it is not a heading.

1612

Table 1: Thresholds θ and t Optimized for Training Data Set
Condition Threshold θ

1. Including upper-level headings 0.1
2. Producing empty block 0.2
3. No sibling candidates 0.7
4. Non-unique contents 0.6
5. Too much content as a heading 0.3 (t = 1.5)

3. Node without sibling candidates: We call blocks that share
the same parent block sibling blocks. Similarly, we call nodes in
the same already-found parent block and in the same candidate-
heading list sibling candidate headings. Because headings are usu-
ally used to segment a block into multiple child blocks, it is rare that
a block has no sibling block. Therefore, we consider that a candi-
date heading without a sibling candidate heading is not a heading.
A candidate-heading list consisting of only one node, which was
discussed in Section 4.3.1, is always eliminated by this condition.
4. Node with non-unique contents: Because a heading describes
the topic of the associated block (Section 3.2), two sibling blocks
rarely have headings with the same content. On the other hand, two
blocks that are not siblings may have headings with the same con-
tent. For example, in the document in Figure 3, two blocks about
July 2010 and July 2012 have the same heading “Jul.”. Therefore,
we determine that a candidate heading is not a heading if there
is another sibling candidate heading with the same content. The
equivalence of content is determined after image-to-text conversion
and space normalization, which is explained in Section 5.2.
5. Node with too much content: As a heading describes the
topic of its associated block, if the length of the associated block /
length of a candidate heading < t, in other words, if the candidate
heading is too long compared with its associated block, we consider
that the candidate heading is not a heading. The length of nodes are
defined by the number of UTF-8 characters in them (after image-
to-text conversion and space normalization, see Section 5.2).

We optimized the thresholds t and θ for our training data set (see
Section 5.2) by a greedy algorithm. The result is shown in Table 1.

We first examine if the given list is eliminated by any of these
conditions, and if it is not, we also separately remove each candi-
date heading in the list satisfying conditions 1 or 2. We did not use
conditions 3, 4, 5 in this node-level filtering because node-level fil-
tering with these conditions significantly degraded the recall ratio
in our experiment with the training data set.

5. EVALUATION
In this section, we show the results of our experiments for evalu-

ating HEPS. Because there is no well-known data set or evaluation
measure for hierarchical structure extraction from documents, we
created a data set by manually labeling blocks and headings in Web
pages based on our definition explained in Section 3.1, and adopted
standard precision and recall measures based on exact matching.

In both the manual labeling and the extraction experiment, we
assume that we preprocess pages with some main body extraction
method, and we only consider their main bodies as the target data.
In our preliminary experiment, if we include headers, side bars,
and so on in the target data, the accuracy of our structure extraction
method is much higher. It is probably because structure in headers
or side bars are easier to extract than structures in the main bodies.

5.1 Document Collection
As a standard sample of general Web pages, we used the well-

known Web snapshot ClueWeb09 Category B document collection

Table 2: Assignment of Pages to Annotators and Data Sets
A B⋆ C D E F G Total

Training set 101 100 93 96 26 416
Test set 200 100 103 200 200 803

Total 101 300 193 199 26 200 200 1,219
⋆ One of authors.

(ClueWeb09B)1. It was created by random crawling and includes
many completely useless pages. In information extraction tasks
and information retrieval tasks, the performance over useful pages
are more important than the performance over all pages including
such useless pages. To select pages meaningful for these appli-
cations, we randomly chose pages relevant to at least one query in
TREC2 2009–2012 Web track ad-hoc tasks. There were 11,008 rel-
evant documents without duplication of URLs. We then removed
all Wikipedia articles, which share the same document structure
and amount to 2,728 articles (about 25%) in the collection, in order
to prevent their specific document structure from having too much
influence on the overall evaluation. We also removed pages known
to be redirecting pages3 and documents whose content type was not
text/html. We finally obtained 8,013 documents.

Because ClueWeb09B contains no external files, such as external
style sheets and images, which affect the visual styles of the pages,
we tried to re-download the obtained 8,013 documents and their
external files from Internet Archive4. To obtain a page data closest
to that in ClueWeb09B, we selected snapshots closest to February
29, 2009; when ClueWeb09 crawling finished. We could download
7,187 documents. After that, we randomly chose 1,393 of the 7,187
documents due to limited annotation resource.

5.2 Ground Truth and its Representation
Annotation process: The annotation for creating the ground truth
was done by seven participants including one of the authors. We
first explained our definitions of headings, heading lists, blocks,
and transitions (explained later) to the participants. We did not
explain our assumptions in Section 3.2 in order to prevent bias in
favor of our method. We also explained the definition of the con-
tent body of a page in prior research [16, 22, 28]: a content body
is a clearly specified coherent segment that necessarily and suffi-
ciently contains the information the author must have most wanted
to disseminate and which should differentiate the page from the
others in the same Web site. Each participant was asked to man-
ually extract the content body from the randomly assigned pages
and hand-annotate the hierarchical structure and the headings in-
side them with our original annotation tool.

To avoid over-fitting, we split the entire data set into a training
data set and a test data set, and optimized the choice of conditions
in Section 4.4.2 and their parameters in Table 1 with the training
data set. The breakdown of the assignment of pages in each data
set to annotators is shown in Table 2.

A block sometimes have more than one component that can be
regarded as its heading. In most of such cases found during the
annotation of the training data, a block is describing an entity, and
both its name and picture can be regarded as its heading. In real
applications, the users may regard either of them as the heading. To
express such situations, we allowed the annotators to mark multiple

1ClueWeb09 Wiki http://boston.lti.cs.cmu.edu/clueWeb09/wiki/
2Text REtrieval Conference Home Page http://trec.nist.gov/
3ClueWeb09 Wiki: Redirects http://boston.lti.cs.cmu.edu/
clueWeb09/wiki/tiki-index.php?page=Redirects
4Internet Archive https://archive.org/

1613

headings for a single block. During the annotation, we also found
that the borders of headings and blocks are sometimes ambiguous.
To express such cases, we allowed the annotators to mark some
ranges as transitions, which means that the components may or
may not be a part of the heading or block. For example, a horizontal
line between two blocks is a transition for both blocks.
Exceptions: During the annotation, we removed 174 pages (12.5%
of 1,393 pages) from the answer set because their structures were
difficult to extract even for human users. The most significant rea-
sons were redirecting page (2.6%) and too much content (2.5%). If
a page needed more than 15 minutes for annotation, we removed
it as a page with too much content to give priority to the number
of annotated pages. We also removed a few dynamic pages (0.4%)
because annotating dynamic content is difficult. Note that HEPS
itself can be applied to such dynamic pages at any point in time.
Data set statistics: Finally, we obtained annotations for 1,219
pages from 981 domains, which constitute our data set. The max-
imum number of pages from the same domain was only 9 pages,
and 841 pages (69.0% of 1,219 pages) had no other pages from the
same domain, which means the data set is sufficiently diversified.
Among them, 953 pages (78.2%) contained at least one block other
than the entire page, and 423 pages (34.7%) contained hierarchical
structures, i.e., at least one parent-child pair of blocks. This result
shows that both flat and hierarchical block structures are common
in general Web pages. The total number of blocks was 15,560, and
1,194 blocks (7.7%) contained two or more headings. The total
number of headings was 16,817. Transitions were assigned to only
171 headings (1.0%) and 124 blocks (0.8%). The medians of the
number of blocks were 6 per page and 3 per list.
Data representation: To represent the annotation results, we de-
fined the raw string of a page. It is obtained by joining all the text
nodes on the page in their document order. To simplify the discus-
sion, we handle an IMG element as a special text node containing
the element’s src (source) attribute value. We then replace adjoin-
ing whitespace characters (defined in Unicode 6.0) with a single
space and remove leading or training spaces. We ignore the con-
tent of SCRIPT and STYLE elements because they are not rendered
on browsers. We represent each heading or block as a set of ranges
in the raw string. We use a set of ranges instead of a range because
annotators sometimes mark some region that is not contiguous in
the raw string (e.g., a column of a table) as a heading or a block.

5.3 Evaluation Measures
In our evaluation, an extracted heading or block matches an an-

notated heading or block if and only if they are exactly the same
set of ranges except for those marked as transitions in the annota-
tion. However, if an extracted heading matches a heading of a block
that has multiple annotated headings, no other extracted heading
matches the remaining annotated headings of the same block.

By this definition of match, we can adopt the standard measures:
precision and recall. For a page from which at least one heading and
block pair was extracted, the precision of heading extraction and
block extraction, denoted by PH and PB , are defined as follows:

PH = |correctly extracted headings|/|all extracted headings|
PB = |correctly extracted blocks|/|all extracted blocks|.

Similarly, for a page containing at least one annotated pair of
a heading and a block, the recall of heading extraction and block
extraction, RH and RB , are defined as follows:

RH = |correctly extracted headings|/|all annotated headings|
RB = |correctly extracted blocks|/|all annotated blocks|.

Table 3: Accuracy of HEPS for Training/Test Data Sets
Data set PH RH FH PB RB FB

Training .691 .564 .621 .617 .539 .575
Test .638 .569 .602 .586 .563 .574

Total .656 .567 .608 .596 .555 .575

Although HEPS first extracts headings then extracts blocks based
on the extracted headings, PB and RB may exceed PH and RH ,
respectively, because HEPS may correctly extract blocks based on
incorrectly extracted headings.

In the calculation of precision and recall, we did not count the
entire content body as a block because its range is given. When
we count the number of all annotated headings, we count multiple
headings of a block as one heading.

Precision/recall over a data set are calculated by taking arith-
metic means of precision/recall for each page (excluding pages
with no extracted or annotated ones for the computation of preci-
sion or recall, respectively). We also calculate balanced F-measures
FH = 2PHRH/(PH + RH) and FB = 2PBRB/(PB + RB) to
integrate these two measures.

5.4 Experimental Results
In this section, we explain the result of our experiments.

5.4.1 Interannotator agreement
First, we discuss inter-annotator agreement because each page is

labeled by only one annotator. We calculated Fleiss’ Kappa coeffi-
cient [12] for five annotators of our test data set. For this purpose,
we collected another agreement data set containing 102 pages by
the same process as the training and test data sets explained before.
From these pages, annotator B extracted content bodies then the
five annotators labeled headings and blocks in the bodies.

We calculate Kappa coefficient by considering that annotators
make binary judgments whether each candidate is a heading (or a
block). Because it is impractical to count all the sets of ranges that
can be labeled by our annotation system as the candidates, we only
count text and IMG nodes as candidate headings, and only count
block-level elements of HTML 4.0 as candidate blocks. They cov-
ered 73.1–95.8% (depending on the annotator) of annotated head-
ings and 48.6–61.0% of annotated blocks in the agreement data set.

The arithmetic mean of Fleiss’ Kappa coefficient computed for
each page in this setting was 0.693 for heading annotation and
0.583 for block annotation. The former can be regarded as show-
ing a good [12] and substantial [21] agreement, and the latter can
be regarded as showing a fair to good agreement [12] or a moder-
ate to substantial [21] agreement. This fact supports validity of our
problem definition and reliability of our data sets.

5.4.2 OverFitting to Training Data
Because the conditions in Section 4.4.2 and their threshold val-

ues in Table 1 are chosen based on the experiment with the training
data set, we compared the results of HEPS for the training data set
and for the test data set to see if over-fitting occurred. Table 3 lists
the results. PH most significantly degraded (-0.053) for the test
data set, while FB remained the same. These results mean minor
over-fitting occurred especially in heading extraction.

5.4.3 Influence of Annotators
We also analyzed the influence of the annotators. Table 4 lists

the performance of HEPS for the data subset corresponding to each
annotator. Although annotator B is one of the authors, the heading

1614

Table 4: Accuracy of HEPS for Test Set by Each Annotator
Annotator pp. PH RH FH PB RB FB

B ⋆ 200 .692 .610 .648 .651 .603 .626
C 100 .616 .582 .599 .594 .589 .591
D 103 .556 .486 .519 .484 .468 .476
F 200 .573 .527 .549 .565 .548 .556
G 200 .705 .608 .653 .592 .579 .585

⋆ One of the authors.

Table 5: Comparison with Naive Method and Existing Methods
Method PH RH FH PB RB FB

Decision tree [24] .084 .884 .154
Hn & DT .668 .320 .433
VIPS [5] .215 .070 .106
HEPS .638 .569 .602 .586 .563 .574

extraction by HEPS worked best for the pages annotated by an-
notator G (+0.005 in FH followed by B). This proved that HEPS
does not over-fit to data by a specific annotator, which means that
its effectiveness does not depend on readers. For block extraction,
HEPS worked best for the pages annotated by B, but the difference
was small (+0.035 in FB , followed by C).

5.4.4 Comparison with Existing Methods
Next, we compare HEPS with some baselines. We first compare

the performance of heading extraction. We chose the decision tree
method [24] as the first baseline because its FH (0.852) is better
than FH (0.851) achieved by Sano et al.’s method [26] according
to the experiment reported in [24, 26], and detailed sets of rules or
features for the other methods [25, 29] are not available. Follow-
ing the description in [24], we constructed a decision tree by using
the J4.8 algorithm of the data mining tool Weka5, which is exactly
the implementation used in [24]. The J4.8 algorithm has several
parameters, e.g., the threshold for pruning, but the parameters used
in their experiment are not described in [24], so we used default
parameters. We trained it using all 5,379 headings and randomly
chosen 5,379 non-heading nodes in our training data set. Its FH by
10-fold cross validation with the training data set was 0.865, which
is close to 0.852 reported in [24]. This suggests that we reproduced
their results quite successfully. However, the decision tree trained
by the training data set worked poorly for the test data set, as shown
in Table 5. It was the best result of 10 attempts. This is probably
because our data set is diversified, while their data set was not.
As explained in Section 2, the evaluations in [24] were based on
cross-validation, in which the training and test data sets may share
headings in the same format from the same page.

We also tested a naive heading extraction method, Hn & DT,
which extracts elements with the proper HTML tags for headings,
namely H1 to H6 and DT. The RH value of the Hn & DT method
shown in Table 5 shows that only less than 1/3 of headings were
marked up with these proper tags, as explained in Section 1. Our
result also showed low PH ; around 1/3 of nodes marked up by them
are not headings. To determine the reason, we inspected 100 pages
with the worst PH . In 45 of those 100 pages, some (or all) of H1–
H6 and DT nodes mark up some metadata (e.g., author names and
timestamps). In 33 pages, most nodes marked up with H1–H6 and
DT were not so visually prominent and the annotators overlooked
them, which means those nodes do not actually work as headings

5Weka 3: Data Mining Software in Java
http://www.cs.waikato.ac.nz/ml/weka/

Table 6: Accuracy of Naive Methods and HEPS Variations
Method PH RH FH PB RB FB

HEPS .638 .569 .602 .586 .563 .574
(a) Extraction of candidate heading nodes

All text nodes .118 .871 .208
All IMG nodes .110 .086 .097
All text and IMG nodes .108 .896 .193
All HTML nodes .026 .928 .051

(b) Removal of sentence-breaking nodes
Leave breaking nodes .492 .578 .532 .453 .570 .505

(c) Classification of nodes by visual styles
Without tag path .647 .548 .593 .591 .541 .565
Without computed style .612 .539 .573 .562 .532 .547
Without image height .630 .571 .599 .579 .564 .571

(d) Sorting candidate heading lists
Only by document order .635 .568 .600 .566 .555 .560

(e) Determining actual heading lists
Without condition 1. .636 .573 .603 .581 .565 .573

2. .638 .582 .609 .583 .577 .580
3. .545 .563 .554 .361 .551 .436
4. .597 .562 .579 .561 .561 .561
5. .606 .574 .590 .550 .567 .558

for readers. As explained in Section 1, we suspect that such usage
of heading tags is related to search engine optimization (SEO).

The PH of HEPS was only slightly worse (-0.030) than that of
the Hn & DT method, which is quite satisfactory, given that the
Hn & DT method is focused only on explicit headings. Moreover,
HEPS achieved a far better RH (+0.249) than the Hn & DT method.
These results show that HEPS can extract many implicit headings
while maintaining satisfactory precision.

We next evaluate the performance of block extraction by HEPS.
We compared HEPS with VIPS [5]. VIPS is focused on a top-level
page structure while HEPS is focused on a hierarchical structure in
the main body as explained in Section 2. Nonetheless, we chose
VIPS because there is no available method focused on a hierarchi-
cal structure in the main body, and for extraction of top-level page
structure, VIPS [5] is most widely used [18, 19, 28]. The imple-
mentation of VIPS is available at Deng Cai’s Web site6.

VIPS has a parameter called degree of coherence (DoC) that de-
fines the granularity of blocks at which VIPS stops recursive seg-
mentation. The larger DoC is, the deeper level VIPS proceeds to.
When measuring PB , we used the DoC value that achieves the best
PB value for each page. (However, we did not allow too low DoC
values that make VIPS produce no block for pages that actually
have blocks. Otherwise, we can inflate average PB of VIPS by
eliminating all pages from the computation of average PB except
for the page with the highest PB .) On the other hand, when mea-
suring RB , we used the maximum DoC value, which makes VIPS
extract as many blocks as possible.

The result summarized in Table 5 shows that HEPS achieved far
better PB (+0.371) and RB (+0.493) than VIPS. It proves that hi-
erarchical heading structures are far different from top-level layout
structures targeted with the many existing methods. HEPS and ex-
isting methods are, therefore, complementary to each other.

5.4.5 Effects of Design Decisions and Assumptions
We next measure the effects of various design decisions in HEPS.

Heading candidate extraction: We assumed that a heading is
either a text node or an IMG node. If we extract all of them, RH is
0.896 (Table 6(a)). It is 0.928 (only +0.032) if we extract all HTML
nodes in the page, as in Okada and Arakawa [24] or Tatsumi and
6VIPS: a VIsion based Page Segmentation Algorithm
http://www.cad.zju.edu.cn/home/dengcai/VIPS/VIPS.html

1615

Table 7: Accuracy of Relationship Extraction with HEPS
Relationship PH RH FH PB RB FB

Baseline .638 .569 .602 .586 .563 .574

Ancestors .810 (+26.9%) .582 (+2.28%) .678 (+12.6%) .542 (-7.51%) .431 (-23.4%) .480 (-19.5%)
Parent .808 (+26.6%) .580 (+1.93%) .675 (+12.2%) .542 (-7.51%) .431 (-23.4%) .480 (-19.7%)
Siblings .879 (+37.7%) .813 (+42.8%) .845 (+40.4%) .757 (+29.1%) .719 (+27.7%) .737 (+28.4%)
Children .489 (-23.3%) .582 (+2.28%) .532 (-13.2%) .504 (-13.9%) .563 (+0.00%) .532 (-7.95%)
Descendants .476 (-25.3%) .585 (+2.81%) .525 (-14.6%) .504 (-13.9%) .567 (+0.71%) .534 (-7.56%)

Asahi [29]. These results show that our strategy of simply choosing
text and IMG nodes as candidates is reasonable. Table 6(a) also
shows RH values for all text nodes and all IMG nodes. Note that
their sum is not equal to RH for all text and IMG nodes because
there are blocks that have both a text heading and a IMG heading.
Removal of Sentence-breaking nodes: If we do not remove
sentence-breaking nodes, PH and RH with HEPS become 0.492 (-
0.146) and 0.578 (only +0.009), respectively (Table 6(b)). It means
that most sentence-breaking nodes are not headings and that HEPS
sometimes misread them for headings if we do not remove them.
Information on visual styles: To see if the three types of infor-
mation used in candidate heading classification are effective, we
ran HEPS without each of them. The FH is 0.593 (-0.009) without
tag paths (but, instead, with the length of tag paths), 0.573 (-0.029)
without computed styles, and 0.599 (-0.003) without image height
(Table 6(c)). These results show that all these types of information
are more or less useful for the classification.
Sorting candidate-heading lists: Even when we sort candidate-
heading lists only by their document order, FH dropped by only
.0002 (Table 6d). There are two purposes to sorting of candidate
lists: (1) processing the correct ones earlier and (2) processing the
upper-level headings earlier and the lower-level headings later. If
the step filtering out non-heading lists works well, only purpose (2)
is important, and the document order may be sufficient for that.
Segmentation based on headings: The precision PB of blocks
segmented by correctly extracted headings is 0.769. This supports
the validity of our idea of segmenting a document based on its head-
ings, and implies that we can improve the precision of block extrac-
tion by improving the precision of heading extraction.
Determining heading lists: We measured the effects of five con-
ditions for filtering out non-heading lists discussed in Section 4.4.2.
Table 6(e) shows the performance of HEPS without set-level filter-
ing with each condition. The values of FH increased for conditions
1 (including upper-level headings) and 2 (producing empty block).
We adopted these two because they were useful for the training data
set, but they may not be useful in general. On the other hand, FH

degrades when we remove condition 3, 4, and 5.
We also evaluate the validity of our assumptions in Section 3.1,

on which our method relies, by using all the true blocks and their
headings in both the training and test data set (1,219 pages).
Positions of Headings: In 94.6% of true blocks, their headings
appear at the beginning of the blocks. It validates our assumption.
Visual Styles of Headings: For each page, we computed the ra-
tio of headings that have no non-heading nodes with the same vi-
sual style within the page. The ratio averaged over 1,129 pages
was 73.6%, which is lower than expected. We examined the error
cases, and found that this assumption itself is valid even in most
error cases, but the set of visual features we used is not enough,
and could not distinguish some headings from non-heading nodes.
For example, some headings are distinguished from other texts by
centering horizontally, or by using some prominent markers, but
our method cannot recognize all of them. We should include more

visual features in our method, but some of them are not easy, e.g.,
the detection of horizontally centered text in two-column pages.
Visual Styles of Heading Lists: We also computed the ratio of
true heading lists whose all members have the same visual style.
Its average over 1,129 pages was 76.4%, which is also lower than
expected. According to our error analysis, this is because our defi-
nition of equivalence between visual styles is too strict. For exam-
ple, headings in the same list sometimes have slightly different font
size (e.g., smaller fonts for longer headings). It suggests that some
kind of clustering techniques may improve our method.

5.4.6 Accuracy of Hierarchical Structure Extraction
Finally, we measured the accuracy of hierarchical structure ex-

traction with HEPS. Although tree edit distance is the well-known
measure for comparing hierarchical structure, the edit distance is
not intuitive. We instead measured the accuracy by precision/recall
of the extracted relationships. To calculate them, we collect all
instances of the relationship between a correctly extracted head-
ing/block and another true or extracted headings/blocks, then calcu-
late precision/recall of the extracted ones. For example, to measure
the accuracy of ancestor block extraction, we collect all pairs of a
correctly extracted block and its true or extracted ancestor blocks,
then calculated PH and RH of the extracted ancestor blocks. Note
that it is not symmetric for the descendant side and the ancestor
side. Also note that one block is counted many times in the calcu-
lation of precision/recall of ancestor extraction when the block has
multiple descendant blocks. It is reasonable because such a block
is probably important as the ancestor block.

We evaluated HEPS for five types of relationship in a hierarchi-
cal structure, namely parent, ancestor (including parents), sibling
(excluding self), child and descendant (including children). The re-
sults are listed in Table 7. We also listed the accuracy of HEPS for
the entire test data set for comparison.

We can see three interesting properties in these results. First,
accuracy of sibling heading/block extraction is significantly better
than the others. It supports the validity of our observation on head-
ing/block lists in Section 3.3.3. Second, HEPS shows higher preci-
sion for ancestors and parents than for children and descendants. It
is probably because HEPS often incorrectly extract smaller struc-
ture as headings, e.g., sentence-breaking nodes which were not re-
moved by our preprocessing step. Third, the accuracy of ancestor
(or parent) block extraction is significantly worse than the overall
accuracy of HEPS in spite of high precision of ancestor (or parent)
heading extraction. It is probably because the block lists of higher
level tend to contain fewer blocks, and blocks of higher level is
more likely to have no next block in the same list, which is impor-
tant for determining the last node of the block.

6. CONCLUSION AND FUTURE WORK
We developed a method that extracts logical hierarchical struc-

ture from HTML documents. Our method first extracts hierarchical

1616

headings based on several assumptions on their design, and seg-
ment a document into hierarchical blocks by using these headings.
This approach is expected to work as long as the document is ap-
propriately designed so that human readers can recognize its hier-
archical structure based on its visually prominent headings.

We evaluated our method with a standard Web page corpus, and
our experiment shows that our method outperforms the existing
page segmentation method. The existing methods, however, fo-
cus on top-level page layout structure. The existing methods and
our method, therefore, are complementary to each other.

Our analysis on the experimental results suggests that we can
improve our method by introducing more visual features and some
clustering techniques for correctly classifying nodes.

We have implemented a Web search system on top of our method.
Our experiment, which will be reported in another paper, shows
that it significantly improves the ranking of search results by ex-
ploiting hierarchical blocks and headings extracted by our method.
It proves the usefulness of our method.

The reference implementation of our method and the data set
we used in our experiment is publicly available on GitHub (https:
//github.com/tmanabe). The data set consists of a list of Internet
Archive URLs, a list of XPaths representing the content body of
each page, and manually labeled heading structures.

Acknowledgment
This work was supported by JSPS KAKENHI Grant Number
13J06384, 26540163.

7. REFERENCES
[1] M. D. Adelfio and H. Samet. Schema extraction for tabular

data on the web. Proc. of VLDB, 6(6):421–432, 2013.
[2] A. Anjewierden. AIDAS: Incremental logical structure

discovery in PDF documents. In Proc. of ICDAR, pages
374–378, 2001.

[3] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In Proc. of SIGMOD, pages 337–348, 2003.

[4] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Accordion summarization for end-game browsing on PDAs
and cellular phones. In Proc. of CHI, pages 213–220, 2001.

[5] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: A
vision-based page segmentation algorithm. Technical Report
MSR–TR–2003–79, Microsoft Research, 2003.

[6] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Block-based web
search. In Proc. of SIGIR, pages 456–463, 2004.

[7] D. Chakrabarti, R. Kumar, and K. Punera. A graph-theoretic
approach to webpage segmentation. In Proc. of WWW Conf.,
pages 377–386, 2008.

[8] H. Chao and J. Fan. Layout and content extraction for PDF
documents. In Document Analysis Systems VI, volume 3163
of LNCS, pages 213–224. Springer-Verlag, 2004.

[9] E. Cortez, D. Oliveira, A. S. da Silva, E. S. de Moura, and
A. H. Laender. Joint unsupervised structure discovery and
information extraction. In Proc. of SIGMOD, pages
541–552, 2011.

[10] S. Debnath, P. Mitra, N. Pal, and C. L. Giles. Automatic
identification of informative sections of web pages. IEEE
Transaction on Knowledge and Data Engineering,
17(9):1233–1246, 2005.

[11] M. A. El-Shayeb, S. R. El-Beltagy, and A. A. Rafea.
Extracting the latent hierarchical structure of web
documents. In Proc. of SITIS 2006, volume 4879 of LNCS,
pages 305–313. Springer-Verlag, 2009.

[12] J. Fleiss, B. Levin, and M. Paik. Statistical Methods for Rates
and Proportions. Wiley, John and Sons, Inc., 3rd ed., 2003.

[13] L. Gao, Z. Tang, X. Lin, Y. Liu, R. Qiu, and Y. Wang.
Structure extraction from PDF-based book documents. In
Proc. of JCDL, pages 11–20, 2011.

[14] L. Gao, Z. Tang, X. Lin, X. Tao, and Y. Chu. Analysis of
book documents’ table of content based on clustering. In
Proc. of ICDAR, pages 911–915, 2009.

[15] J. Graupmann, R. Schenkel, and G. Weikum. The
SphereSearch engine for unified ranked retrieval of
heterogeneous XML and web documents. In Proc. of VLDB,
pages 529–540, 2005.

[16] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based
content extraction of HTML documents. In Proc. of WWW
Conf., pages 207–214, 2003.

[17] G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya. Robust
web page segmentation for mobile terminal using
content-distances and page layout information. In Proc. of
WWW Conf., pages 361–370, 2007.

[18] M. Keller and H. Hartenstein. GRABEX: A graph-based
method for web site block classification and its application
on mining breadcrumb trails. In Proc. of WI, pages 290–297,
2013.

[19] M. Keller and M. Nussbaumer. MenuMiner: Revealing the
information architecture of large web sites by analyzing
maximal cliques. In Proc. of WWW Conf., pages 1025–1034,
2012.

[20] C. Kohlschütter and W. Nejdl. A densitometric approach to
web page segmentation. In Proc. of CIKM, pages
1173–1182, 2008.

[21] J. R. Landis and G. G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33:159–174,
1977.

[22] S.-H. Lin and J.-M. Ho. Discovering informative content
blocks from web documents. In Proc. of KDD, pages
588–593, 2002.

[23] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.
Moser. Extracting data records from the web using tag path
clustering. In Proc. of WWW Conf., pages 981–990, 2009.

[24] H. Okada and H. Arakawa. Automated extraction of non
⟨h⟩-tagged headers in webpages by decision trees. In Proc. of
SICE Annual Conf., pages 2117–2120, 2011.

[25] F. C. Pembe and T. Güngör. A tree learning approach to web
document sectional hierarchy extraction. In Proc. of
ICAART, pages 447–450, 2010.

[26] H. Sano, S. Shiramatsu, T. Ozono, and T. Shintani. A web
page segmentation method based on page layouts and title
blocks. International Journal of Computer Science and
Network Security, 11(10):84–90, 2011.

[27] K. Simon and G. Lausen. ViPER: Augmenting automatic
information extraction with visual perceptions. In Proc. of
CIKM, pages 381–388, 2005.

[28] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
important models for web page blocks based on layout and
content analysis. SIGKDD Explorations Newsletter,
6(2):14–23, 2004.

[29] Y. Tatsumi and T. Asahi. Analyzing web page headings
considering various presentation. In Proc. of WWW Conf.,
pages 956–957, 2005.

[30] Y. Zhai and B. Liu. Web data extraction based on partial tree
alignment. In Proc. of WWW Conf., pages 76–85, 2005.

1617

