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ABSTRACT
Entity Resolution matches mentions of the same entity. Being an
expensive task for large data, its performance can be improved by
blocking, i.e., grouping similar entities and comparing only entities
in the same group. Blocking improves the run-time of Entity Res-
olution, but it still involves unnecessary comparisons that limit its
performance. Meta-blocking is the process of restructuring a block
collection in order to prune such comparisons. Existing unsuper-
vised meta-blocking methods use simple pruning rules, which of-
fer a rather coarse-grained filtering technique that can be conserva-
tive (i.e., keeping too many unnecessary comparisons) or aggres-
sive (i.e., pruning good comparisons). In this work, we introduce
supervised meta-blocking techniques that learn classification mod-
els for distinguishing promising comparisons. For this task, we
propose a small set of generic features that combine a low extrac-
tion cost with high discriminatory power. We show that supervised
meta-blocking can achieve high performance with small training
sets that can be manually created. We analytically compare our su-
pervised approaches with baseline and competitor methods over 10
large-scale datasets, both real and synthetic.

1. INTRODUCTION
Entity Resolution (ER) is the process of finding and linking dif-

ferent instances (profiles) of the same real-world entity [9]. It is an
inherently quadratic task, since, in principle, each entity profile has
to be compared with all others. For Entity Resolution to scale to
large datasets, blocking is used to group similar entities into blocks
so that profile comparisons are limited within each block. Blocking
methods may place each entity profile into only one block, forming
disjoint blocks, or into multiple blocks, creating redundancy [4].

Redundancy is typically used for reducing the likelihood of missed
matches – especially for noisy, highly heterogeneous data [9, 21]. In
particular, redundancy-positive blocking is based on the intuition
that the more blocks two entities share, the more likely they match [22].
To illustrate, consider the profiles in Figure 1(a): profiles p1 and p3

correspond to the same person and so do p2 and p4. As an ex-
ample of a redundancy-based blocking method, let us consider To-
ken Blocking [21], which creates one block for every distinct token
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p1  FullName : John A. Smith 
job : autoseller 

p3  full name : John Smith 
Work : car seller 

p5  Full name : James Jordan 
job : car seller 

p2 name : Richard Brown 
profession : vehicle vendor 

p4 Richard Lloyd Brown 
car seller 

p6  name : Nick Papas 
profession : car dealer 

Figure 1: (a) A set of entity profiles, and (b) the redundancy-
positive block collection produced by Token Blocking.

that appears in at least two profiles. The resulting block collection
is shown in Figure 1(b). We observe that both pairs of matching
profiles can be detected, as they co-occur in at least one block.

However, redundancy brings about repeated comparisons between
the same entity profiles in different blocks. In the example of Fig-
ure 1(b), block b2 repeats the comparison contained in block b1,
while b5 repeats the comparison in b4. Hence, b2 and b5 contain one
redundant comparison each. Furthermore, there are several com-
parisons between non-matching entities, which we call superfluous
comparisons. Block b3 entails 3 superfluous comparisons between
the non-matching profiles p3, p4 and p5. In b6, all 3 comparisons in-
volving p6 are superfluous, while the rest are redundant, repeated in
b3. Overall, while blocking improves entity resolution times, it still
involves unnecessary comparisons that limit its performance: su-
perfluous ones between non-matching entities, and redundant ones,
which repeatedly compare the same entity profiles. In our example,
the total number of comparisons in the blocks of Figure 1(b) is 13
compared to 15 of the brute-force method. This number could be
further reduced – without affecting the recall of blocking-based ER
– by avoiding the redundant and the superfluous comparisons.

Meta-blocking is a method that takes as input a redundancy-
positive block collection and transforms it into a new block col-
lection that generates fewer comparisons, but keeps most of the de-
tected duplicates [22]. To achieve this, existing meta-blocking tech-
niques operate in two phases. First, they map the input block collec-
tion to a graph, called blocking graph; its nodes are the entity pro-
files, while its edges connect two nodes if the corresponding pro-
files co-occur in at least one block. By definition, the graph elimi-
nates all redundant comparisons: each pair of co-occurring profiles
is connected with a single edge, which means that they will be com-
pared only once. In the second phase, meta-blocking techniques
use the graph to prune superfluous comparisons. For this task, each
edge is assigned a weight leveraging the fundamental property of
redundancy-positive block collections that the similarity of two en-
tity profiles is proportional to their co-occurrences in blocks. High
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Figure 2: (a) A blocking graph mapping the blocks in Figure 1,
(b) possible pruned blocking graph, (c) the derived blocks.

weights are given to the matching edges (i.e., edges likely connect-
ing duplicates) and lower weights to the non-matching ones.

As an example, the blocks in Figure 1(b) can be mapped to the
blocking graph depicted in Figure 2(a). The edge weights are typ-
ically defined in the interval [0,1] through normalization, but for
simplicity, we consider that each edge weight in this example is
equal to the absolute number of blocks shared by its adjacent enti-
ties. Different pruning algorithms can be used to remove edges with
low weights and hence discard part of the superfluous comparisons.
For example, one such strategy, called Weight Edge Pruning, dis-
cards all edges having a weight lower than the average edge weight
across the entire graph [22]. For the blocking graph of Figure 2(a),
the average edge weight is 1.625. The resulting pruned blocking
graph is shown in Figure 2(b). The output block collection is gen-
erated from the pruned blocking graph by placing the adjacent en-
tities of every edge into a separate block as shown in Figure 2(c).
As the result of meta-blocking, the new block collection contains
just 5 comparisons and does not miss any matches.

Existing meta-blocking methods use simple pruning rules such
as “if weight<threshold then discard edge” for removing com-
parisons. Consequently, they face two challenges: assigning rep-
resentative weights to edges and choosing a good threshold for re-
moving edges. We argue that determining if an edge is a good
candidate for removal is in fact a multi-criteria decision problem.
Combining these criteria into a single scalar value inevitably misses
valuable information. Furthermore, pruning based on a single thresh-
old on the weights is a rather coarse-grained filtering technique that
can be conservative (i.e., keeping many superfluous comparisons)
or aggressive (i.e., pruning good comparisons). In our example in
Figure 2(c), the final block collection retains 3 superfluous com-
parisons in b′3, b′4 and b′5; increasing the threshold so as to further
reduce these comparisons would prune the matching comparisons,
as well, because they have the same weight as the superfluous ones.

In this paper, we argue that accurate identification of non-matching
edges requires learning composite pruning models from the data.
We formalize meta-blocking as a binary classification task, where
the goal is to identify matching and non-matching edges. We pro-
pose supervised meta-blocking techniques that compose generic,
schema-agnostic information about the co-occurring entities into
comprehensive feature vectors, instead of summarizing it into uni-
lateral weights, as unsupervised methods do.

For example, the blocks of Figure 1(b) can be mapped to the
blocking graph of Figure 3(a), where each edge is associated with
a feature vector [a1, a2]. The feature a1 is the number of common
blocks shared by the adjacent entities, and a2 is the total number
of comparisons contained in these blocks. The resulting feature
vectors are fed into a classification algorithm that learns compos-
ite rules (or models) to effectively distinguish matching and non-
matching edges. In our example, a composite rule could look like
“if a1≤2 & a2>5 then discard edge”, capturing the intuition that
the more blocks two profiles share and the smaller these blocks
are, the more likely the profiles match. Figure 3(b) shows the graph

Figure 3: (a) A blocking graph mapping the blocks in Figure 1,
(b) a possible pruned blocking graph, (c) the derived blocks.

generated by this rule, and Figure 3(c) depicts the resulting blocks;
compared to the blocks in Figure 2(c), they have no superfluous
comparisons, thus achieving higher efficiency for the same recall.

We identify and examine three aspects that determine the per-
formance of supervised meta-blocking techniques: (a) the set of
features annotating the edges of the blocking graph, (b) the train-
ing data, and (c) the classification algorithm and its configuration.

Using more features may help make the pruning of the non-
matching edges more accurate. However, the computational cost
for meta-blocking gets higher. Moreover, the classification features
should be generic enough to apply to any redundancy-positive block
collection. With these issues in mind, we propose a small set of
generic features that combine a low extraction cost with high dis-
criminatory power and we evaluate their performance using real
data. Furthermore, to facilitate the understanding of the space of
possible features, we divide it according to five dimensions.

Selecting training data, we face two issues. The first one is a class
imbalance problem: the vast majority of the edges in a blocking
graph are non-matching. In order to build representative training
sets, we select the most suitable technique for our task among es-
tablished solutions. The second issue regards the training set size. In
general, large training sets increase the accuracy and robustness of
the learned model. However, they yield complex, inefficient classi-
fiers that require time-consuming training. In addition, the manual
creation of large training sets in the absence of ground-truth is a
painful and challenging process. We show that we can achieve high
performance with small training sets that can be manually created
making supervised meta-blocking a practical solution.

We consider a representative sample of state-of-the-art classi-
fiers: Naı̈ve Bayes, Bayesian Networks, Decision Trees and Sup-
port Vector Machines. We show that our supervised techniques are
robust with respect to different classifiers and their configurations
by examining their performance over several large-scale datasets.

Finally, we evaluate the performance of supervised meta-blocking
by comparing to (a) the brute-force Entity Resolution, which exe-
cutes all comparisons included in the input set of blocks, (b) the
top-performing unsupervised meta-blocking methods [22], and (c)
the iterative blocking [25]. Note that the iterative blocking consti-
tutes the only other method in the literature that, similarly to meta-
blocking, receives an existing block collection and aims at process-
ing it in a way that improves its original performance: it propa-
gates every detected pair of duplicates to all associated blocks in
order to identify additional matches and to save unnecessary com-
parisons. We perform a scalability analysis, which involves 7 large-
scale synthetic datasets of various sizes, ranging from 10 thousand
to 2 million entities. Our experiments demonstrate that our super-
vised techniques exhibit significantly better time efficiency than the
best alternatives, while achieving equivalent recall.

In summary, this paper makes the following contributions:
• We formalize supervised meta-blocking as a classification prob-
lem and we demonstrate how it can be used to significantly enhance
the quality of a redundancy-positive block collection.
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•We map the space of possible classification features along five di-
mensions and we select a small set of generic features that combine
a low extraction cost with high discriminatory power. We evaluate
their performance using real data.
•We show that small training sets, which can be manually created,
can achieve high performance, making supervised meta-blocking a
practical solution for Entity Resolution.
• We show that our supervised techniques are robust with respect
to different classifiers and their configurations by examining their
performance over several large-scale datasets.
• We perform a thorough scalability analysis, comparing super-
vised meta-blocking against the best competitor approaches.

The rest of the paper is structured as follows. Section 2 presents
related work, Section 3 provides a brief overview of unsupervised
meta-blocking, Section 4 introduces supervised meta-blocking, and
Section 5 describes the real-world datasets and the metrics used in
the evaluation. Sections 6 and 7 cover feature and training set selec-
tion, while in Section 8, we fine-tune the classification algorithms.
Section 9 experimentally compares supervised meta-blocking with
competitor techniques and finally, Section 10 concludes the paper.

2. RELATED WORK
There is a large body of work on Entity Resolution [9, 19]. Block-

ing techniques group similar entities into blocks so that profile
comparisons are limited within each block. These methods can be
distinguished into schema-based and schema-agnostic ones.

Schema-based methods (e.g., Sorted Neighborhood [12], Suf-
fix Array [7], HARRA [14], Canopy Clustering [17], and q-grams
blocking [10]) group entities based on knowledge about the se-
mantics of their attributes. These approaches are only suitable for
homogeneous information spaces, like databases, where the qual-
ity of the schema is known a-priori. In contrast, schema-agnostic
blocking techniques cluster entities into blocks without requiring
any knowledge about the underlying schema(ta). For instance, in
Token Blocking [21], every token that is shared by at least two en-
tities creates an individual block. Total Description [20] improves
on Token Blocking by considering the most discriminative parts of
entity URIs instead of all their tokens. In the same category fall
Attribute Clustering [21] and TYPiMatch [16]. These techniques
are preferred in the context of heterogeneous information spaces,
which involve large volumes of noisy, semi-structured data that are
loosely bound to various schemata [11].

Both schema-based and schema-agnostic blocking methods usu-
ally produce redundancy-positive block collections [22]. Meta-
blocking operates on top of them, improving the balance between
precision and recall by restructuring the block collection [22].

All the aforementioned approaches rely on an unsupervised func-
tionality. Supervised learning has been applied to blocking-based
ER with the purpose of fine-tuning the configuration of schema-
based blocking methods: in [1, 18], the authors propose methods
for learning combinations of attribute names and similarity met-
rics that are suitable for extracting and comparing blocking keys.
Supervised learning has also been applied to generic ER in order
to classify pairs of entities into matching and non-matching, by
adapting similarity metrics and the corresponding thresholds to a
particular domain [2, 6, 8, 24]. Other works introduce methods for
facilitating the construction of the training set [23], while in [3], the
authors propose supervised techniques for combining the decisions
of multiple ER systems into an ensemble of higher performance.
No prior work has applied supervised learning techniques to the
task of meta-blocking.

3. PRELIMINARIES
In this section, we introduce the main concepts and notation used

in the paper and we provide a brief overview of existing unsuper-
vised meta-blocking techniques. Table 1 summarizes notation.

An entity profile p is a uniquely identified collection of informa-
tion described in terms of name-value pairs. An entity collection E
is a set of entity profiles. Two profiles pi, p j ∈ E are duplicates or
matches (pi≡p j) if they represent the same real-world object.

Entity Resolution comes in two forms. Clean-Clean ER receives
as input two duplicate-free but overlapping entity collections and
returns as output all pairs of duplicate profiles they contain. Dirty
ER receives as input a single entity collection that contains dupli-
cates in itself and returns the set of matching entity profiles. Block-
ing can be used to scale both forms of ER to large entity collections
by clustering similar profiles into blocks so that comparisons are re-
stricted among the entity profiles within each block bi.

The quality of a block collection B can be measured in terms
of two competing criteria, namely precision and recall, which are
estimated through the following established measures [1, 7, 18, 21]:

(i) Pairs Quality (PQ) assesses precision, i.e., the portion of non-
redundant comparisons between matching entities. It is defined as:
PQ(B) = |D(B)|/||B||, where D(B) represents the set of detectable
matches, i.e. the pairs of duplicate profiles that co-occur in at least
one block, and |D(B)| stands for its size. ||B|| is called aggregate
cardinality and denotes the total number of comparisons contained
in B: ||B|| =

∑
bi∈B ||bi||, where ||bi|| is the cardinality of bi (i.e.,

the number of pair-wise comparisons it entails). PQ takes values
in [0, 1], with higher values indicating higher precision for B, i.e.,
fewer superfluous and redundant comparisons.

(ii) Pair Completeness (PC) assesses recall, i.e., the portion of
duplicates that share at least one block and, thus, can be detected.
It is formally defined as: PC(B) = |D(B)|/|D(E)|, whereD(E) rep-
resents the set of duplicates contained in the input entity collection
E, and |D(E)| stands for its size. PC values are in the interval [0, 1],
with higher values indicating higher recall for B.

Note that we follow a known best practice [1, 4, 18, 25], ex-
amining the quality of a block collection independently of profile
matching techniques. In particular, we assume an oracle exists that
correctly decides whether two entity profiles match or not. Thus,
D(B) is equivalent to the set of matching comparisons in B. The
rationale of this approach is that a block collection with high pre-
cision and high recall guarantees that the quality of a complete ER
solution is as good as that of the selected entity matching algorithm.

There is a clear trade-off between the precision and the recall
of B: as more comparisons are executed (i.e., higher ||B||), its re-
call increases (i.e., higher |D(B)|), but its precision decreases, and
vice versa. The redundancy-positive block collections achieve high
PC at the cost of lower PQ, as they place every entity profile into
multiple blocks. Meta-blocking aims at improving this balance by
restructuring a redundancy-positive block collection B into a new
one B′ of higher precision but equivalent recall. More formally:

Problem 1 (Meta-blocking). Given a redundancy-positive block
collection B, the goal of meta-blocking is to restructure B into a
new collection B′ that achieves significantly higher precision, while
maintaining the original recall (PQ(B′)�PQ(B), PC(B′)≈PC(B)).

Existing meta-blocking techniques rely their functionality on the
weighted blocking graph (GB), a data structure that models the
block assignments in the block collection B. As illustrated in Fig-
ure 2(a), GB is formed by creating a node for every entity profile
in B and an undirected edge for every non-redundant pair of co-
occurring profiles. Formally, this structure is defined as follows:
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pi an entity profile
B, |B|, ||B|| a block collection, its size (# of blocks), its cardinality (# of comparisons)
bi, |bi |, ||bi || a block, its size (# of entities), its cardinality (# of comparisons)
GB, VB, EB the generalized blocking graph of B, its nodes and its edges
Gvi , Vvi , Evi the neighborhood of node vi, its nodes and its edges.
Bi⊆B, |Bi | the set of blocks containing pi and its size (# of blocks)
Bi, j⊆B the set of blocks shared by the pi and p j (Bi, j=Bi∩B j)
|Bi, j | the size of Bi, j, i.e., # of comparisons between pi and p j
D(B),|D(B)| the set of detected duplicates in B and its size
pi.comp() the set of comparisons entailing pi (including the redundant ones)

Table 1: Summary of main notation.

Definition 1 (Weighted Blocking Graph). Given a block col-
lection B, its weighted blocking graph is a graphGB = {VB,EB,WB},
whereVB is the set of its nodes such that ∀pi∈B ∃ni∈VB, EB⊆VB×VB

is the set of undirected edges between all pairs of co-occurring en-
tity profiles in B, and WB is the set of edge weights that take values
in the interval [0, 1] such that ∀ei, j∈EB ∃wi, j∈WB.

As explained in Section 1, the blocking graph enhances preci-
sion by eliminating all redundant comparisons without any impact
on recall, since it contains no parallel edges. Then, meta-blocking
applies a pruning algorithm in order to discard part of the super-
fluous comparisons at a small cost in recall. These algorithms are
distinguished into four categories, based on their functionality and
the type of threshold they incorporate [22]:
• Cardinality Edge Pruning (CEP) sorts all edges in descending
order of their weight and retains those in the top K ranking posi-
tions. Therefore, K constitutes a global cardinality threshold that is
applied to the entire graph.
• Cardinality Node Pruning (CNP) does the same, but retains the
top k edges for each node. k is also a global cardinality threshold,
but is applied to the neighborhood of each node.
• Weight Edge Pruning (WEP) discards all edges of the blocking
graph that have a weight lower than a global weight threshold (the
average edge weight in our case).
• Weight Node Pruning (WNP) applies a local weight threshold
to the neighborhood of each node, discarding those adjacent edges
with a weight lower than it.

4. SUPERVISED META-BLOCKING
We consider that a comparison between profiles pi and p j can be

captured by a feature vector fi, j=[a1(pi, p j), a2(pi, p j), . . . , an(pi, p j)],
where {a1, a2, . . . , an} is a set of features, and ak(pi, p j){k = 1...n}
is the value of feature ak for this pair. For instance, the number
of common blocks the adjacent profiles share could be such a fea-
ture. By replacing edge weights with feature vectors, we extend the
weighted blocking graph GB into the generalized blocking graph
GB, formally defined as follows:

Definition 2 (Generalized Blocking Graph). Given a block col-
lection B, its generalized blocking graph is a graph GB = {VB, EB, FB},
where VB is the set of nodes such that ∀pi∈B ∃ni∈VB, EB⊆VB×VB is
the set of undirected edges between all pairs of co-occurring entity
profiles in B, and FB is the set of feature vectors that are assigned
to every edge such that ∀ei, j∈EB ∃ fi, j∈FB.

The elements of FB are fed to a classifier that labels all edges
of the blocking graph as likely match or unlikely match, if they
are highly likely to connect two matching or non-matching entity
profiles, respectively. We measure the performance of this process
using the following notation:
• T P(EB) denotes the true positive edges of EB, which connect
matching profiles and are correctly classified as likely match.
• FP(EB) are the false positive edges of EB, which are adjacent to
non-matching profiles, but are classified as likely match.

• T N(EB) are the true negative edges of EB, which connect non-
matching profiles and are correctly categorized as unlikely match.
• FN(EB) are the false negative edges of EB, which connect match-
ing profiles, but are categorized as unlikely match.

After classifying all edges, supervised meta-blocking derives the
pruned blocking graph Gcl

B by discarding those edges labeled as
unlikely match (i.e., T N(EB) and FN(EB)). The edges retained in
Gcl

B belong to the sets T P(EB) and FP(EB): Ecl
B = T P(EB)∪FP(EB)

= EB−(T N(EB)∪FN(EB)). The output of supervised meta-blocking
is the block collection Bcl that is derived from Gcl

B by creating a
block of minimum size for every retained edge ei, j∈Ecl

B . Thus, its
PC and PQ can be expressed in terms of the edges in Ecl

B as follows:

PC(Bcl) =
|D(Bcl)|
|D(E)|

=
|T P(EB)|
|D(E)|

=
|D(B)| − |FN(EB)|

|D(E)|
,

PQ(Bcl) =
|D(Bcl)|
||Bcl ||

=
|T P(EB)|

|T P(EB)| + |FP(EB)|
.

We now formally define the task of supervised meta-blocking as:

Problem 2 (SupervisedMeta-blocking). Given a redundancy-
positive block collection B, its generalized blocking graph GB =

{VB, EB, FB}, the classes C={likely match, unlikely match}, and a
training set Etr = {<ei, j,ck>:ei, j∈EB∧ck∈C}, the goal of supervised
meta-blocking is to learn a classification model that minimizes the
cardinality of the sets FN(EB) and FP(EB) so that the block collec-
tion Bcl resulting from the pruned graph Gcl

B achieves higher preci-
sion than B (i.e., PQ(Bcl)�PQ(B)), while maintaining the original
recall (i.e., PC(Bcl)≈PC(B)).

4.1 Classification Algorithms
In principle, any algorithm for supervised learning can be used

for edge classification in supervised meta-blocking. However, it
should have a limited overhead for correctly categorizing most edges
of the blocking graph. Further, it should be compatible with the
pruning algorithm at hand. Supervised meta-blocking learns global
pruning models that apply to the entire blocking graph and not to a
specific neighborhood. Thus, it can be applied to CEP, CNP and
WEP, substituting their thresholds with a classification model. In
the first two cases, though, the output of the classification model
should sort the edges of the blocking graph in ascending order of
the likelihood that they belong to the class likely match. Given that
most classifiers simply produce a category label for every instance,
this is only possible with probabilistic classifiers: they associate ev-
ery instance with the probability that it belongs to every class, thus
enabling their sorting. Note, though, that supervised meta-blocking
is not compatible with WNP: applying a global threshold or clas-
sification model to WNP renders it equivalent to WEP.

Based on the above, we have selected four state-of-the-art ap-
proaches that are commonly used in classification tasks [26]: (i)
Naı̈ve Bayes (NB), (ii) Bayesian Networks (BN), (iii) C4.5 deci-
sion trees, and (iv) Support Vector Machines (SVM). For their im-
plementation, we used the open-source library WEKA, version 3.6.
Unless stated otherwise, we employ their default configuration, as
provided by WEKA.

These approaches encompass two probabilistic classification al-
gorithms that are compatible with CEP and CNP, namely Naı̈ve
Bayes and Bayesian Networks. In addition, they involve func-
tionalities of diverse sophistication. On the one extreme, SVM
involves complex statistical learning, while on the other extreme,
Naı̈ve Bayes relies on simple probabilistic learning. The latter ac-
tually operates as a benchmark for deciding whether the additional
computational cost of the advanced classifiers pays off: compara-
ble performance across all algorithms provides strong indication
for the robustness of our classification features.
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To solve the supervised meta-blocking problem, we need to de-
termine the features to annotate the edges of the blocking graph
(Section 6) and the appropriate training set, both in terms of size
and composition (Section 7). In Section 5, we introduce the datasets
and metrics to be used for the evaluation of the proposed solution.

5. DATASETS & METRICS
Datasets. We consider both Clean-Clean and Dirty ER and we

employ the real-world datasets used in the earlier meta-blocking
work [22]. Table 2 summarizes the characteristics of the entity
collections and their blocks for each dataset.

Dmovies is a collection of 50,000 entities shared among the in-
dividually clean sets of IMDB and DBPedia movies. The ground
truth for this dataset stems from the “imdbid” attribute in the pro-
files of the DBPedia movies. Its blocks were created using Token
Blocking (cf. Section 2) in conjunction with Block Purging, which
discards blocks containing more comparisons than a dynamically
determined threshold [21]. The resulting block collection exhibits
nearly perfect recall at the cost of 27 million comparisons. Out
of them, 22 million comparisons are non-redundant, forming the
edges of the blocking graph.

Our second Clean-Clean ER dataset, Din f oboxes, consists of two
different versions of the DBPedia Infobox dataset1. They contain
all name-value pairs of the infoboxes in the articles of Wikipedia’s
English version, extracted at October 2007 for DBPedia1 and Oc-
tober 2009 for DBPedia2. The large time period that intervenes
between the two collections renders their resolution challenging,
since they share only 25% of all name-value pairs among the com-
mon entities [21]. As matching entities, we consider those with the
same URL. For the creation of blocks, we applied Token Blocking
and Block Purging. The resulting block collection entails 40 billion
comparisons; 34 billion of them are non-redundant.

Finally, our Dirty ER dataset DBTC09 comprises more than 250,000
entities from the Billion Triple Challenge 2009 (BTC09) data col-
lection2. Its ground-truth consists of 10,653 pairs that were identi-
fied through their identical value for at least one inverse functional
property. Its blocks correspond to a subset of those derived by ap-
plying the Total Description approach [20] (cf. Section 2) to the
entire BTC09 data collection (see [22] for more details on how we
selected this subset). They achieve very high PC at the cost of 130
million comparisons, out of which 78 million are non-redundant.

Metrics. To assess the impact of supervised meta-blocking on
blocking effectiveness, we consider the relative reduction in PC,
formally defined as: ∆PC =

PC(Bcl)−PC(B)
PC(B) · 100%, where PC(B)

and PC(Bcl) denote the recall of the original and the restructured
block collection, respectively. Negative values indicate that meta-
blocking reduces PC, while positive ones indicate higher recall.

To assess the impact of supervised meta-blocking on blocking
efficiency, we use the following metrics:
• Classification time CT is the average time (in milliseconds) re-
quired by the learned model to categorize an individual edge of the
blocking graph – excluding the time to build its feature vector.
• Overhead time OT is the total time required by meta-blocking to
process the input blocks, i.e., to train the model, build the feature
vectors of all edges, classify them and produce the new blocks.
• Resolution time RT is the sum of OT and the time required to ex-
ecute all comparisons that are classified as likely match using an
entity matching technique. As such, we employ the Jaccard simi-
larity of all tokens in the values of two entity profiles – regardless
of the associated attribute names.

1http://wiki.dbpedia.org/Datasets
2http://km.aifb.kit.edu/projects/btc-2009

Dmovies Dinfoboxes DBTC09DBP IMDB DBP1 DBP2

Entities 27,615 23,182 1,19·106 2,16·106 253,353
Name-Value Pairs 186,013 816,012 1.75·107 3.67·107 1,60·106

Existing Matches 22,405 892,586 10,653

Blocks 40,430 1.21·106 106,462
PC 99.39% 99.89% 96.94%
Comparisons in Blocks 2.67·107 3.98·1010 1.31·108

Brute-force RT 26 min ∼320 hours 64 min

Edges 2.26·107 3.41·1010 7.77·107

Nodes 5.06·104 3.33·106 2.53·105

Table 2: Overview of the real-world datasets.

• CMP denotes the absolute number of comparisons contained in
the restructured block collection (i.e., ||Bcl||).

For these metrics, the lower their value is, the higher is the effi-
ciency of meta-blocking. Note that OT and RT do not consider the
time to randomly select the training set, due to its negligible com-
putational cost (see Section 7). We also estimate efficiency using
PQ, with higher values indicating more efficient meta-blocking.

6. FEATURES FOR META-BLOCKING
Features for supervised meta-blocking describe the edges of the

generalized blocking graph and should pertain to the corresponding
comparisons or to the adjacent entities. These features should ad-
here to the following principles: (i) they should be generic, so that
they are not tailored to a specific application; (ii) they should be
effective, so that they yield high classification accuracy distinguish-
ing between likely and unlikely matches; (iii) they should be effi-
cient, involving low extraction cost and overhead, so that the clas-
sification time is significantly lower than the comparison time of its
adjacent entities, and (iv) they should be minimal, in the sense that
incorporating additional features has marginal benefit on the per-
formance of meta-blocking. Similar principles were defined in [3]
for classification tasks related to Entity Resolution (see Section 2).

Feature Categorization. To help understand candidate features
for supervised meta-blocking and their appropriateness, we divide
their space along five dimensions: schema-awareness, source of
evidence, target, complexity and scope (see Figure 4).

Schema awareness. Classification features can be divided into
schema-agnostic and schema-based ones.

Schema-agnostic features rely on the structural information of
the blocking graph and the characteristics of the blocks.

Schema-based features rely on the quality and the semantics of
the attribute names that describe the input entity profiles. Thus,
they exclusively consider blocks and parts of the blocking graph
that are associated with specific attributes.

Source of evidence. Given a block collection B, there are two
main sources for extracting classification features: the blocks con-
tained in B and the blocking graph GB. Block-based features ex-
clusively consider evidence of the former type, while graph-based
ones rely on topological information about the blocking graph. Iter-
ative features are graph-based features associated with a node that
depend on the scores assigned to its neighboring nodes. Similarly
to link analysis techniques, such as PageRank, these features may
be computed by assigning a prior value to every node (or edge) and
iteratively adjusting it, processing the entire blocking graph accord-
ing to a mathematical formula until convergence.

Target. Depending on the part of the graph they annotate, classi-
fication features are divided into edge-specific, which pertain to in-
dividual edges and node-specific, which pertain to individual nodes.

Complexity. Classification features can be categorized into raw
and derived ones. The raw attributes encompass atomic informa-
tion that is explicitly available in the input block collection or its
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Figure 4: Categorization of classification features.

blocking graph; on the other hand, the derived features combine
multiple features into a single, composite feature.

Scope. Classification features are local when they consider infor-
mation that is directly related to the annotated item (i.e., the edge
or its adjacent nodes). Global features consider information from
the entire blocking graph.

Most criteria (with the exception of complexity) define two com-
plementary categories. Thus, features from both categories can be
combined into hybrid ones, which may exhibit higher performance.

6.1 Candidate Features
We introduce our candidate features and explain their appropri-

ateness for our meta-blocking problem (notation is in Table 1).
Common Blocks. A schema-agnostic, block-based feature is

Common Blocks, i.e., the number of blocks shared by two profiles:
Common Blocks(ei, j) = |Bi, j |.

This feature captures the inherent trait of redundancy-positive block
collections that the more blocks two entity profiles share, the more
likely they are to match.

Based on Common Blocks, we could define schema-based fea-
tures that take into account the subset of common blocks stemming
from the values of specific attributes (e.g., Common Blockstitle for
the attribute “Title”). However, such schema-based features are
application-specific and have limited generality. In addition, they
are crafted for homogeneous information spaces, like databases,
and cannot handle heterogeneous ones, characterized by very di-
verse schemata (e.g., Web of Data) and constituting the most com-
mon source of redundancy-positive blocking [22]. Therefore, we
focus hereafter on schema-agnostic classification features, which
are completely decoupled from the nature and the semantics of the
attributes describing the input entity collections.

Entity Blocks. Another block-based feature is Entity Blocks,
which is inversely proportional to the number of blocks containing
a specific entity/node:

Entity Blocks(vi) = log
|B|
|Bi |
.

This feature is inspired from the inverse document frequency (IDF)
that is commonly used in Information Retrieval (IR). The rationale
behind it is that the higher its value is (i.e., lower |Bi|), the more
likely pi is to match with one of its co-occurring entity profiles. In
contrast, a profile that is contained in an excessively high number
of blocks is highly likely to contain noise. For instance, it could
be the result of falsely merging several profiles that correspond to
different real-world objects.

Node Degree. This is a graph-based feature and it is equal to the
degree of node vi ∈ VB:

Node Degree(vi) = |Vvi |.

In essence, Node Degree is equivalent to the number of non-redundant
comparisons involving the entity pi that corresponds to the node vi.
The intuition here is that the lower its degree is, the more likely pi

is to match with one of its co-occurring entity profiles.
Iterative Degree. This is an iterative, graph-based feature that

is based on the following premise: for every node vi, the lower the
degrees of its neighboring nodes are, the higher is the likelihood

that pi is matching with one of them and, thus, the higher the score
of vi should be. It is similar to Node Degree, as it initially associates
every node with a prior score equal to the portion of non-redundant
comparisons involving it (i.e., |Vvi |/|EB|). They differ though in that
the Iterative Degree gradually modifies the score of a node vi,
ID(vi), according to the following formula:

ID(vi) = ID0(vi) +
∑

vk∈Vvi

ID(vk)
|Vvk |

,

where ID0(vi) is the prior score assigned to vi and vk ∈ Vvi are the
nodes connected with vi on the blocking graph. This formula is
similar to the one defining PageRank with priors, where the damp-
ing factor d, which determines the behavior of the random surfer,
is set equal to 0. It can be calculated using a simple iterative al-
gorithm; after converging, nodes connected with many nodes of
high degree receive the lowest scores, while the highest scores are
assigned to nodes connected with few nodes of low degree.

The extraction of such iterative, graph-based features is compu-
tationally expensive and it does not scale well to blocking graphs
with millions of nodes and billions of edges. Nevertheless, we in-
clude Iterative Degree in our approach and we investigate whether
its low efficiency is counterbalanced by high discriminatory power.

Transitive Degree. A possible surrogate of higher efficiency is
the Transitive Degree feature. It lies in the middle of Node Degree
and Iterative Degree, considering the aggregate degrees of the
nodes that lie within the neighborhood of vi as follows:

Transitive Degree(vi) =
∑

vk∈Vvi

|Vvk |.

Common Neighbors. This graph-based feature amounts to the
portion of adjacent entity profiles shared by a pair of co-occurring
profiles. More formally, it is defined as follows:

Common Neighbors(ei, j) =
|Vvi ∩ Vv j |

|Vvi ∪ Vv j |
.

High values indicate that pi and p j co-occur with the same entities,
either in their common blocks or in blocks they do not share. In the
latter case, the common neighbors actually help deal with patterns
missed due to noise in entity profiles. For example, consider the en-
tity profiles p1={<name,John>, <surname,S mith>}, p2={<name,Jon> ,
<surname, S mit>} and p3={<name, John>,<surname, S mit>}, where
(p1≡p2).p3; Token Blocking [21] (cf. Section 2) yields two blocks
bJohn={p1, p3} and bS mit={p2, p3}, with p1 and p2 co-occurring in
none of them. Nevertheless, Common Neighbors provides strong ev-
idence for their match.

Jaccard Similarity. This feature captures the portion of all com-
parisons (including the redundant ones) that involve a specific pair
of entity profiles:

Jaccard Sim(ei, j) =
|pi.comp() ∩ p j.comp()|
|pi.comp() ∪ p j.comp()|

=
|Bi, j |

|pi.comp()| + |p j.comp()| − |Bi, j |
.

Higher values of this ratio indicate a stronger pattern of co-occurrence
for pi and p j and, hence, the more likely pi and p j are to match.

Note that on the target dimension, Entity Blocks, Node Degree,
Iterative Degree and Transitive Degree are node-specific, while
Common Blocks, Common Neighbors and Jaccard Sim are edge-specific
features. Although the distinction between edge- and node-specific
features seems trivial, there are two major qualitative differences
between them. First, a feature vector has to include two values
for every node-specific feature – one for each of the adjacent en-
tities – thus broadening the search space by two dimensions. In
contrast, edge-specific attributes are computed only once per fea-
ture vector, adding a single dimension to the search space. Second,
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Figure 5: Categorization of the features of our approach.

edge-specific features are expected to exhibit higher discriminatory
power than the node-specific ones, because every value of the latter
participates in as many feature vectors as the degree of the corre-
sponding node; in contrast, every value of the edge-specific features
pertains to a single feature vector.

(Reciprocal) Aggregate Cardinality of Common Blocks. From
the aforementioned features, only Common Blocks and Node Degree
are raw. In general, there is no rule-of-thumb for a-priori determin-
ing which form of features achieves the best performance in prac-
tice. Even different forms of derived features may lead to signifi-
cant differences in classification accuracy. As an example, consider
two edge-specific features that use the same information, but in dif-
ferent forms: the Aggregate Cardinality of Common Blocks (ACCB)
and the Reciprocal Aggregate Cardinality of Common Blocks (RACCB)
attributes. The former sums the cardinalities of the blocks shared
by the adjacent entities (raw feature): ACCB(ei, j) =

∑
bk∈Bi, j

||bk ||.
The latter sums the inverse of the cardinalities of common blocks
(derived feature):

RACCB(ei, j) =
∑

bk∈Bi, j

1
||bk ||
.

Both features rely on the premise that the smaller the blocks two
entities co-occur in, the more likely they are to be matching. Hence,
the lower the value of ACCB is, the more likely the co-occurring en-
tities match, and vice versa for RACCB. Preliminary experiments,
though, demonstrated that ACCB achieves significantly lower classi-
fication accuracy than RACCB, due to its low discriminativeness: it
assigns identical or similar values to pairs of co-occurring entities
that share blocks of totally different cardinalities. For instance, con-
sider two pairs of entities: the first co-occurs in 3 blocks containing
1,2 and 4 comparisons, while the second shares 2 blocks with 2 and
5 comparisons; ACCB takes the same value for both edges (7), while
RACCB amounts to 1.75 and 0.70 for the first and the second pair,
respectively, favoring the entities that are more likely to match.

Co-occurrence Frequency-Inverse Block Frequency. Derived
features can come in more advanced forms than RACCB, combining
multiple features through linear or non-linear functions. However,
they should be used with caution for several reasons: (i) they in-
volve a higher extraction cost than the comprising raw features; (ii)
their form might be too complex to be interpretable; (iii) they are
usually correlated with the raw features they comprise and, thus,
are incompatible with them, when applied to classifiers with strong
independence assumptions (e.g., Naı̈ve Bayes); (iv) some classi-
fication algorithms may operate better with raw features, learning
themselves the linear or non-linear associations between the input
features. For these reasons, the derived features should involve a
low extraction cost and transform as few raw features as possible.

Here, we combine Common Blocks and Entity Blocks into a fea-
ture inspired from the TF-IDF measure employed in IR. We call
it Co-occurrence Frequency-Inverse Block Frequency (CF IBF)
and formally define it as:

CF IBF(ei, j) = |Bi, j | · log
|B|
|Bi |
· log

|B|
|B j |
.

FS 1: CF IBF,RACCB,Node Degree
FS 2: CF IBF,RACCB,Transitive Degree
FS 3: CF IBF,RACCB,Node Degree,Transitive Degree
FS 4: CF IBF,RACCB,Jaccard Sim,Transitive Degree
FS 5: CF IBF,RACCB,Jaccard Sim,Node Degree
FS 6: CF IBF,RACCB,Transitive Degree,Iterative Degree
FS 7: CF IBF,RACCB,Node Degree,Iterative Degree
FS 8: CF IBF,RACCB,Jaccard Sim,Node Degree,Transitive Degree
FS 9: CF IBF,RACCB,Jaccard Sim,Node Degree,Iterative Degree
FS 10: CF IBF,RACCB,Jaccard Sim,Transitive Degree,Iterative Degree

Table 3: Top 10 feature sets selected.

Experiments showed that this form outperforms the individual fea-
tures, because Entity Blocks is of limited usefulness when used in-
dependently, but it is valuable for extending Common Blocks, which
otherwise suffers from low discriminativeness (it amounts to 1 or
2 for the vast majority of edges). In this way, we also restrict the
dimensionality of our approach by two degrees.

Approach Overview. Our approach considers all the candi-
date features, except for ACCB due to low discriminativeness, and
Common Neighbors, which violates the requirement for generality,
as it does not apply to Clean-Clean ER. In this case, the resulting
blocking graph is bipartite, since every entity of the one collec-
tion is exclusively connected with entities from the other collection
(only comparisons between different collections are allowed) [22].
As a result, every pair of co-occurring entities shares no neighbors.

On the whole, our approach annotates every edge of the blocking
graph with the following nine-feature vector:
[ CF IBF(ei, j), Jaccard Sim(ei, j), RACCB(ei, j),
Node Degree(vi), Node Degree(v j),
Iterative Degree(vi), Iterative Degree(v j),
Trasitive Degree(vi), Transitive Degree(v j) ].
We selected these features because they cover all feature cate-

gories (as illustrated in Figure 5), they are schema-agnostic, ap-
plying to any block collection (generality principle), and they form
a limited search space that allows for rapidly training classifica-
tion models of low complexity and overhead (efficiency principle).
Most of them also involve a low extraction cost.

Note also that most of the aforementioned features are local with
respect to their scope; the exceptions are Entity Blocks, which in-
volves a hybrid functionality that combines local with global in-
formation, and Iterative Degree and Transitive Degree, which
consider global information about the neighbors of a specific node.
In the general case, local features are expected to exhibit higher ef-
fectiveness and efficiency than the global ones, because the latter
consider more general information and convey a higher extraction
cost. As an example, consider a boolean global feature that sorts all
edges of EB in descending order of Common Blocks and returns true
for those ranked in the top 1% positions and false otherwise.

6.2 Feature Selection
To satisfy the minimality principle, we examine the relative per-

formance of each combination of features, called feature set (FS ),
in order to identify the one achieving the best balance between ef-
fectiveness and efficiency. There is a clear trade-off here: fewer fea-
tures mean less complex and less time-consuming learned model
(higher efficiency), but lower effectiveness.

The selected features yield 63 combinations. Due to their high
number, our feature selection process has two phases. First, we ex-
tracted the top 10 performing feature sets automatically. Then, we
selected the best set by examining their relative performance ana-
lytically. We use all four classification algorithms over Dmovies. The
models were trained using 1,000 labeled edges, equally partitioned
between matching and non-matching edges, that were randomly se-
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Figure 6: Performance of the feature sets in Table 3 over Dmovies with respect to (a) the relative reduction in recall (∆PC), (b) the
absolute number of retained comparisons (CMP) and (c) the classification time of an individual edge (CT ).

lected from the entire blocking graph. The remaining edges formed
the disjoint testing set. To derive accurate performance estimations,
we repeated this process 10 times and considered the average value
of each metric.

To identify the top 10 performing feature sets, we sort the feature
sets in descending order of their total F-measure and select those
placed in the top 10 positions. The Total F-measure (T F1) of a
feature set FS i is the sum of the F-measures corresponding to each
classification algorithm: T F1(FS i) =

∑
j∈{NB,C4.5,S V M,BN} F1 j(FS i),

where the F-measure for a feature set FS i and an algorithm j is
computed as3: F1 j(FS i) = 2 · PC · nPQ/(PC + nPQ), with nPQ
denoting the normalized Pairs Quality across all feature sets for the
algorithm j (i.e., nPQ j(FS i) =

PQ j(FS i)
max(PQ j(FS 1),PQ j(FS 2),...,PQ j(FS 63) ).

The resulting top 10 feature sets are shown in Table 3. Collec-
tively, they involve all features of our approach, a strong indication
for the high utility of each feature. Moreover, each feature set com-
prises at least 3 features, revealing that our features are compatible
and complementary, working best when used in conjunction.

To select the best feature set out of the top 10 performing ones,
we evaluate their effectiveness through ∆PC and their efficiency
through CMP and CT (see Section 5). Figures 6(a), (b) and (c)
present ∆PC, CMP and CT , respectively. The horizontal axes cor-
respond to the feature sets. We can identify the optimal feature set
by examining their relative performance across the three figures.
The closer a feature set is placed to the horizontal axis of each fig-
ure across all classification algorithms, the better is its performance.

Figure 6(a) shows that most feature sets exhibit limited variation
in ∆PC (between -3.5% and -5% for most algorithms). Only Naı̈ve
Bayes is rather unstable, yielding five outliers: FS 1, FS 2, FS 3,
FS 6 and FS 7 have an unacceptable impact on recall (over -7%)
and hence they are not considered any further.

For the remaining sets, Figures 6(a) and 6(b) reveal a trade-off

between ∆PC and CMP: the higher ∆PC for a particular feature set
and classification algorithm, the lower CMP gets, and vice versa.
Hence, none of the feature sets excels in both metrics. To iden-
tify the set with the best balance between ∆PC and CMP, we con-
sider their average values across all classifiers. Only FS 4 and FS 5
achieve the most stable performance: FS 4 requires 5.66±1.25×105

comparisons, and FS 5 gives 5.65±1.17×105. They are also the
most efficient compared to FS 8, FS 9 and FS 10, which require
12.5% more comparisons, on average.

Finally, to decide between FS 4 and FS 5, we compare them in
terms of CT . Figure 6(c) shows negligible differences (in absolute

3Note that the F-measure for blocking-based ER is defined as
F1 =

2·PC·PQ
PC+PQ [4]. We employ nPQ instead of PQ, because the latter

takes very low values for redundancy-positive block collections. In
fact, PQ is lower than PC by one or two orders of magnitude, thus
dominating F1, which ends up assigning high scores to feature sets
with a few comparisons and a few detected duplicates.

numbers) between them – in the order of 1/100 of a millisecond.
Given, though, that CT concerns a single edge, these differences
become significant when meta-blocking is applied to large blocking
graphs with millions of edges. We choose FS 5 because it learns
faster classification models than those of FS 4 by 3%, on average.

In the following, we exclusively consider the feature set FS 5,
comprising CF IBF, RACCB, Jaccard Sim and Node Degree, which com-
bines a low extraction cost with high discriminatory power.

7. TRAINING SET
The quality of the learned classification model also depends on

the training set and in particular on its composition and size.
The definition of supervised meta-blocking (Problem 2) makes

no assumptions about the training set. However, the vast majority
of the edges in the blocking graph connect non-matching entities
and thus correspond to superfluous comparisons. If the training
set involves the same class distributions as the set of edges, EB, it
will be heavily imbalanced in favor of the unlikely match class.
As a result, the classifier would be biased towards assigning every
instance to the majority class, pruning most of the edges.

This situation constitutes a class imbalance problem, which is
typical in supervised learning (as an example, consider the task
of spam filtering, where the vast majority of e-mails is not spam)
with several solutions [15]: oversampling randomly replicates in-
stances of the minority class until the class distribution is balanced,
cost-sensitive learning incorporates high misclassification cost for
the minority class when training the classifier, and ensemble learn-
ing trains a set of classifiers that collectively take classification de-
cisions through a form of weighted voting. Unfortunately, cost-
sensitive and ensemble learning increase the complexity of the clas-
sification model, while oversampling yields excessively large train-
ing sets prone to overfitting (too many repetitions of the same in-
stances). Instead, we use undersampling, which randomly selects
a subset of the same cardinality from both classes. The training set
is equally partitioned between likely match and unlikely match
edges. This approach is best for small training sets, which can be
manually labeled in the absence of ground truth.

The size of the training set, called sample size, affects both the
effectiveness and the efficiency of supervised meta-blocking: the
smaller the sample size is, the lower is the complexity of the learned
model and the more efficient is its training and its use. However,
this comes at the cost of lower classification accuracy, as the sim-
pler the learned model is, the more likely it is to miss patterns. To
identify the break-even point in this trade-off, we experimentally
perform a sensitivity analysis for the sample size with respect to
effectiveness (∆PC) and efficiency (CT and CMP).

Training Set Selection. We apply the selected feature set to the
four classifiers over Dmovies using training sets of various sizes. Due
to undersampling, these training sets were specified in terms of the
minority class cardinality (i.e., the number of matching entities in
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Figure 7: Learning curves of our approach over Dmovies with respect to (a) ∆PC, (b) CMP and (c) CT . The horizontal axes correspond
to the sample size, i.e., the number of training instances expressed as a portion of the minority class cardinality.

the ground truth). Each one was equally partitioned between (ran-
domly selected) matching and non-matching edges, whose number
ranged from 0.5% to 10% of the minority class size, with a step of
0.5%. For every sample size, we repeated the process 10 times and
considered the average of the aforementioned metrics. Figures 7(a),
(b) and (c) depict the learning curves with respect to ∆PC, CMP
and CT , respectively.

Figure 7(a) shows that most classifiers exhibit rather stable re-
call, with a variance at most 1.2%. In all cases, the variance in
∆PC gets lower as the sample size increases. Especially for sample
sizes that exceed 5% of the minority class cardinality (i.e., around
1,100 labeled instances per class), there is no variance in practice.
These patterns demonstrate that our proposed feature set is compre-
hensive, robust enough and effective even when trained over small
training sets – regardless of the classification algorithm.

Figure 7(b) shows the evolution of CMP with the increase in
sample size. Most classifiers start from high values, but gradually
converge to lower values as the sample size increases. Similar to
∆PC, the variance in CMP decreases in proportion to the sample
size and becomes negligible for sample sizes larger than 5% of the
minority class. Regarding CT , Figure 7(c) shows that all classi-
fiers exhibit a relatively stable, good performance regardless of the
sample size. The average CT is close to the time observed for the
sample size equal to 5%.

Consequently, a sample size equal to 5% of the minority class
achieves a performance equivalent to that of much larger ones. In
the following, we exclusively consider training sets comprising 5%
of the edges labeled as likely match and an equal number of edges
labeled as unlikely match.

8. CLASSIFIERS CONFIGURATION
The performance of the selected classification algorithms de-

pends on their internal parameter configuration. Fine-tuning may
significantly enhance classification accuracy, but it may also lead to
over-fitting, which increases the complexity of the learned model
and inflates the overhead of meta-blocking. To assess how their
configuration affects the performance of our approach, we perform
analytical fine-tuning of their parameters. For each algorithm, we
examine two parameters that are fine-tuned in parallel:
• C4.5: we study the maximum number of instances per leaf node,
ranging from 2 to 5, and the confidence interval, ranging from 0.1
and 0.5 with a step of 0.05 (36 configurations in total). By default,
Weka sets the former parameter to 2 and the latter to 0.25.
• SVM: we consider two kernels, the linear and the RBF, and we
vary the complexity parameter C from 1 to 10 with a step of 1 (20
configurations in total). Weka’s default configuration incorporates
a linear kernel function with the complexity constant C set to 1.
• Bayesian Networks: we use three search algorithms: simulated
annealing, hill climbing and genetic search. We use each one with
global and with local scope (6 configurations in total). The default

configuration of Weka uses the hill climbing search of local scope.
• Naı̈ve Bayes: two boolean parameters that determine the proce-
ssing of numeric attributes, i.e., use of supervised discretization and
of kernel density estimator (4 configurations in total). By default,
Weka sets both parameters to false.

For each classifier, we apply every possible configuration to 10
randomly selected training sets from the blocking graph of Dmovies

using the sample size and the features determined above. Due to
the large number of configurations, we consider only the default,
the optimal and the average performance for each classification al-
gorithm and metric. As optimal, we define the configuration with
the largest F-measure (again, F1 employs nPQ instead of PQ). The
following configurations were selected in this way: the use of both
supervised discretization and kernel estimator for Naive Bayes; 5
instances per leaf and confidence interval equal to 0.1 for C4.5;
linear kernel with C=9 for SVM; simulated annealing with global
scope for Bayesian Networks. Figures 8(a) to (c) depict the experi-
mental outcomes with respect to ∆PC, CMP and CT , respectively.

We first investigate the relative performance of the default and
the optimal configuration. For Naı̈ve Bayes, the optimal one puts
more emphasis on effectiveness, increasing ∆PC by executing more
comparisons. However, its overall efficiency is significantly increased,
as its overhead (CT ) is reduced to 1/5. For C4.5 and SVM, the op-
timal configurations decrease CMP by 5%, while exhibiting prac-
tically identical ∆PC and CT with the default ones. On the other
hand, the optimal configuration for the Bayesian Networks reduces
CMP by 20% for almost the same PC as the default one, but puts
a toll on efficiency: CT increases by 25%. Hence, we choose the
default configuration for Bayesian Networks, while for the other
algorithms we choose the optimal ones, due to their slightly better
balance between effectiveness and efficiency.

We now examine the robustness of the classification algorithms
with respect to their configuration based on the distance between
the default, the optimal and the average performance for all con-
figurations. We observe that C4.5 is practically insensitive to fine-
tuning, despite the large numbers of configurations considered. The
same applies to SVM with respect to ∆PC and CMP; its average
CT (2.66 msec), though, is two orders of magnitude higher than the
default and the optimal one. This is because the RBF kernels are
10 times slower when classifying an individual edge than the linear
ones, which exhibit a rather stable CT . A similar situation appears
in the case of Naı̈ve Bayes, where the average CT amounts to 3.80
msec, due to the inefficiency of a single configuration: supervised
discretization for numeric attributes without the kernel estimator.
The other two metrics, though, advocate that Naı̈ve Bayes is rather
sensitive to its configuration. Finally, the Bayesian Networks ex-
hibit significant variance with respect to CMP and CT , but the
overall efficiency is relatively stable across all configurations. We
can conclude that for the selected feature set and sample size, most
classifiers are rather robust with respect to their configuration.
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Figure 8: Effect of parameter configuration for each classification algorithm over Dmovies with respect to (a) ∆PC, (b) CMP and (c)
CT . The sub-figure in (c) zooms into the interval [0, 0.1] to highlight differences in CT that are concealed in the interval [0, 4].

9. EXPERIMENTAL EVALUATION
We now compare the performance of our supervised meta-blocking

techniques with the best performing unsupervised ones over three
pruning algorithms: WEP, CEP and CNP. Remember that WEP is
compatible with all classification algorithms, while CEP and CNP
are only compatible with Naı̈ve Bayes and Bayesian Networks.
To compare the supervised and the unsupervised techniques on an
equal basis, we adapted the latter so that they exclude the edges
used for training by the former. Hence, we applied them 10 times
to each dataset and derived their performance from the average of
the relevant metrics (this explains why in some cases their perfor-
mance is slightly different from that reported in [22]).

We also employ the state-of-the-art approach of Iterative Block-
ing [25] as an additional baseline method. Given that its perfor-
mance depends heavily on the processing order of blocks, we ap-
ply it to 10 random shuffles of each dataset’s blocks and present
the average value of each metric. Note that for Clean-Clean ER,
we consider the best possible performance of iterative blocking,
assuming that all pairs of detected matches are propagated to the
subsequently processed blocks so that their entities do not partici-
pate in any other comparison.

We implemented our approaches in Java 1.74 and tested them on
a server with Intel i7-4930K 3.40GHz and 32GB RAM, running
Debian 7. Graphs were implemented using the JUNG framework5.

9.1 In-depth Analysis over Real Datasets
Table 4 presents the performance of the baseline 6 and our super-

vised techniques with respect to the three pruning algorithms over
the datasets of Table 2. For each dataset, we considered the unsu-
pervised meta-blocking in conjunction with the weighting scheme
that yields the best trade-off between PC and PQ; for Dmovies and
Din f oboxes, we used the weighting schemes CBS , EJS and ECBS
for WEP, CEP and CNP, respectively, while for DBTC09, we em-
ployed the ARCS scheme in all cases (see [22] for more details).
We now examine each pruning algorithm separately.

WEP. We observe that supervised meta-blocking consistently
achieves a better balance between effectiveness and efficiency over
Dmovies and Din f oboxes. It executes almost an order of magnitude
fewer comparisons than the unsupervised method with a minor in-
crease of PC. As a result, precision consistently increases by at
least 4 times. The higher overhead (OT ) is counterbalanced by

4We have publicly released the code of our implementations at
http://sourceforge.net/projects/erframework.
5http://jung.sourceforge.net
6For unsupervised meta-blocking, OT measures the time required
for the creation of the weighted blocking graph and the pruning of
its edges. For iterative blocking, OT estimates the time required
for the propagation of the detected duplicates to the subsequently
processed blocks and the re-processing of the related blocks (in
case of Dirty ER).

the considerably lower number of comparisons, resulting overall in
significantly improved resolution times (RT ).

For DBTC09, supervised meta-blocking improves efficiency to a
similar extent at the cost of slightly lower recall (the only excep-
tion is SVM, whose PC is significantly lower than the unsuper-
vised method by 7.5%). Both the number of comparisons and the
overhead time are almost half, leading to significantly better RT .

CEP. For Dmovies and Din f oboxes, supervised meta-blocking achieves
significantly higher recall, increased by more than 10%. Its over-
head time, though, is more than twice that of unsupervised meta-
blocking. Given that both approaches execute the same number
of comparisons, the classification models exhibit notably increased
resolution time. In the case of DBTC09, supervised meta-blocking
decreases PC and PQ to a minor extent, while increasing the reso-
lution time by 25%. For each dataset, these patterns are consistent
across both probabilistic models.

CNP. For Dmovies and DBTC09, supervised meta-blocking reduces
the number of executed comparisons to a significant extent, at the
cost of a lower PC. PQ almost doubles, but the higher overhead
than unsupervised meta-blocking leads to an increased resolution
time. The same applies to Din f oboxes, as both OT and RT are sig-
nificantly higher than unsupervised meta-blocking. In this case,
though, the number of comparisons is practically the same, while
PQ gets slightly higher, because PC slightly increases.

Iterative Blocking. We observe that iterative blocking achieves
the lowest overhead time and the highest recall across all datasets:
for the Clean-Clean ER datasets Dmovies and DBTC09, PC is equal
to that of the input block collection, while for the Dirty ER dataset
(DBTC09), it increases by 1%. However, this comes at the cost of
rather low efficiency; iterative blocking actually executes so many
comparisons that its resolution time is practically identical with the
brute-force approach of performing all comparisons in the input
block collection. For Clean-Clean ER, its run-time lies in the mid-
dle between supervised and unsupervised meta-blocking, due to the
ideal settings we consider (i.e., none of the matched entities partic-
ipates in any comparison after their detection). In a more realistic
scenario, though, its efficiency is expected to be lower than that of
unsupervised meta-blocking. We can conclude, therefore, that Iter-
ative Blocking is only appropriate for applications that place recall
in priority and are satisfied with rather conservative savings in ef-
ficiency. For the rest of them, supervised meta-blocking offers a
better balance between effectiveness and efficiency.

Conclusions. For WEP, our techniques leverage small training
samples and feature vectors to significantly increase efficiency at a
negligible cost in effectiveness (if any). This consistent behavior is
important, since WEP is compatible with practically any blocking-
based ER application. It stems from the low computational cost
and the comprehensiveness of our features. The latter aspect can
be inferred from the performance of Naı̈ve Bayes, which is directly
comparable with the more complicated algorithms in all cases. The
best performance, though, is achieved when combining supervised
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Dmovies Dinfoboxes DBTC09
CMP PQ PC ∆PC OT RT CMP PQ PC ∆PC OT RT CMP PQ PC ∆PC OT RT
(×105) (%) (%) (%) (sec) (sec) (×108) (%) (%) (%) (hours) (hours) (×106) (%) (%) (%) (min) (min)

Brute-force 20.27 1.09 99.39 0 1 89 40.46 0.02 99.89 0 1 34 123.62 0.01 98.22 1.32 1 62
Iterative Blocking 20.27 1.09 99.39 0 1 89 40.46 0.02 99.89 0 1 34 123.62 0.01 98.22 1.32 1 62

Unsupervised 27.04 0.75 94.64 -4.78 13 104 33.97 0.02 95.47 -4.43 12 41 4.14 0.23 94.63 -2.40 6 8
Naive Bayes 6.50 3.14 95.74 -3.67 39 56 3.76 0.22 99.09 -0.80 27 31 2.10 0.45 93.46 -3.58 4 5
C4.5 5.69 3.57 95.27 -4.15 20 40 2.98 0.28 99.00 -0.89 19 21 1.81 0.53 94.01 -3.02 3 4
SVM 4.59 4.40 94.87 -4.54 35 50 4.54 0.18 97.30 -2.60 27 31 2.55 0.35 87.49 -9.75 4 5
Bayesian Networks 6.51 3.13 95.75 -3.66 33 51 3.76 0.22 99.09 -0.80 25 29 2.12 0.45 93.50 -3.54 4 5

(a) WEP
Unsupervised 5.70 3.17 84.89 -14.59 9 23 0.26 2.72 82.09 -17.82 11 12 0.94 0.99 92.03 -5.06 3 4
Naive Bayes 5.69 3.56 95.34 -4.08 39 55 0.26 3.06 92.58 -7.32 26 27 0.94 0.96 89.47 -7.70 4 5
Bayesian Networks 5.69 3.56 95.35 -4.07 34 49 0.26 3.08 92.70 -7.20 23 24 0.94 0.96 89.49 7.68 4 5

(b) CEP
Unsupervised 11.00 1.87 96.67 -2.74 8 45 0.49 1.64 96.68 -3.21 12 13 1.75 0.53 90.86 -6.27 3 4
Naive Bayes 7.22 2.82 95.46 -3.95 39 59 0.47 1.79 98.38 -1.51 26 27 1.00 0.88 87.40 -9.84 4 5
Bayesian Networks 7.23 2.81 95.47 -3.94 34 54 0.47 1.78 98.38 -1.51 23 24 1.01 0.87 87.41 -9.83 4 5

(c) CNP
Table 4: Performance of supervised meta-blocking and the baselines over all datasets with respect to (a) WEP, (b) CEP, (c) CNP.

Entity Collections Block Collections
Entities Duplicates Blocks Compar. PC Brute-force RT

D10K 10,000 8,615 11,088 3.35×105 98.97% 4 sec
D50K 50,000 42,668 40,569 7.42×106 98.77% 75 sec
D100K 100,000 84,663 72,733 2.91×107 98.73% 5 min
D200K 200,000 170,709 123,648 1.19×108 99.02% 23 min
D300K 300,000 254,686 166,099 2.70×108 99.09% 45 min
D1M 1,000,000 849,276 441,999 2.94×109 99.04% 8 hrs
D2M 2,000,000 1,699,430 863,528 1.17×1010 99.03% 33 hrs

Table 5: Overview of the synthetic datasets.

meta-blocking with C4.5, which reduces the resolution time by
50% across all datasets for practically the same effectiveness.

With respect to CEP, which is only suitable for incremental
ER, unsupervised meta-blocking exhibits significantly higher ef-
ficiency, due to its lower overhead. However, the high OT time of
the classification models is rendered insignificant, when advanced,
time-consuming entity matching methods are used. Then, super-
vised meta-blocking should be preferred due to its consistently higher
recall. For the same reason, it should be used with all applications
of incremental ER that place more emphasis on effectiveness.

For CNP, we cannot draw any safe conclusions, due to the unsta-
ble performance of supervised meta-blocking across the 3 datasets,
caused by the incompatibility of its global training information with
the local scope of this pruning algorithm. Finally, it is worth stress-
ing that supervised meta-blocking consistently improves the run-
time of the brute-force approach by at least 10 times (cf. Table 2).

9.2 Recall and Run-time Scalability
We now examine the scalability of our supervised techniques in

relation to the three pruning algorithms. We apply them to seven
synthetic datasets that were created by FEBRL [5] and have been
widely used in the literature for this purpose [4, 13]. They pertain
to Dirty ER and their sizes range from 10 thousand to 2 million
entities. To derive redundancy-positive blocks, we applied Token
Blocking and Block Purging to each dataset. The technical charac-
teristics of the resulting block collections are presented in Table 5.

As baseline methods, we employ iterative blocking and unsu-
pervised meta-blocking. The latter was combined with the ECBS
weighting scheme across all pruning algorithms and datasets, as it
consistently exhibited the best performance.

We evaluate the performance of all methods using two metrics:
∆PC assesses the impact on effectiveness, while Relative Resolu-
tion Time (RRT ) assesses the impact on efficiency. In essence, it
expresses the portion of the input blocks’ resolution time that is
required by the meta-blocking method. Formally, it is defined as:

RRT =
RT (B′)
RT (B) · 100%, where RT (B) and RT (B′) are the resolu-

tion times of the original and the restructured block collections; the
lower its value is, the more efficient is the meta-blocking method.

We applied supervised meta-blocking to WEP, CEP and CNP.
The outcomes with respect to ∆PC are depicted in Figures 9(a)-(c),
while RRT is presented in Figures 9(d)-(f).

WEP. We observe that iterative blocking consistently achieves
the highest effectiveness, increasing PC by 1%, at the cost of the
worst efficiency across all datasets. In fact, its RRT increases mono-
tonically for higher dataset sizes, raising from 1/3 to more than 1/2.
On the other extreme lies supervised meta-blocking: it reduces PC
by at least 3%, but requires at most 1/6 of the original resolution
time. It scales well to larger datasets, as its performance is rela-
tively stable across all datasets: for each classification algorithm,
the difference between their maximum and minimum ∆PC is less
than 2%, while for RRT it is less than 5%. In the middle of these
two extremes lies unsupervised meta-blocking, which reduces re-
call by less than 3.5%, while requiring half of the resolution time
of iterative blocking. Note, though, that it does not scale well to
larger datasets, as its RRT raises from 1/6 for D10K to 1/3 for D2M .

CEP. For unsupervised meta-blocking, ∆PC decreases almost
linearly with the increase of the dataset size. In contrast, supervised
meta-blocking scales well with respect to recall, as the variance of
its ∆PC is lower than 7% (note that both classification algorithms
exhibit practically identical performances). Equally stable is their
efficiency, since their RRT is close to 1/8, on average, while its
variance is less than 5%. However, the run-time of unsupervised
meta-blocking scales better, as its RRT decreases from 1/8 for D10K

to 1/30 for D2M .
CNP. The efficiency of unsupervised meta-blocking scales well

with the increase of dataset size, dropping from 1/5 for D10K to 1/30
for D2M , while its effectiveness decreases. In this case, though, its
recall is close to that of supervised meta-blocking, with their max-
imum difference amounting to 3%. In terms of efficiency, super-
vised meta-blocking exhibits an unstable behavior, with its RRT
fluctuating between 1/5 and 1/10.

Conclusions. Overall, we conclude that supervised meta-blocking
scales better than the unsupervised one for WEP with respect to
both effectiveness and efficiency. For CEP, it scales better with re-
spect to effectiveness, while unsupervised meta-blocking excels in
efficiency in case a cheap entity matching method is employed. The
same applies to CNP, as well. For this pruning algorithm, though,
supervised meta-blocking improves effectiveness only to a minor
extent. Compared to iterative blocking, supervised meta-blocking
excels in efficiency, requiring a lower resolution time by at least
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Figure 9: Scalability analysis over the synthetic datasets with respect to (a)-(d) WEP, (b)-(e) CEP and (c)-(f) CNP.

2/3, but achieves significantly lower recall. Compared to the brute-
force approach, supervised meta-blocking improves the run-time
by at least 5 times, as its RRT lies consistently lower than 20%.

10. CONCLUSIONS
In this work, we demonstrated how supervised meta-blocking

can be used to enhance the performance of existing, unsupervised
meta-blocking methods. For this task, we proposed a small set
of generic features that combine a low extraction cost with high
discriminatory power. We showed that supervised meta-blocking
can achieve high performance with small training sets that can be
manually created, and we verified that most configurations of es-
tablished classification algorithms have little impact on the overall
performance. We analytically compared our supervised approaches
with baseline and competitor methods.

In the future, we will apply transfer learning techniques to su-
pervised meta-blocking, so that a classification model trained over
a labeled set maintains its high performance over another, unla-
beled one. In addition, we will explore the use of active learning
and crowdsourcing techniques in the creation of training sets.
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