
DisC Diversity: Result Diversification based on
Dissimilarity and Coverage ∗

Marina Drosou
Computer Science Department
University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
Recently, result diversification has attracted a lot of atten-
tion as a means to improve the quality of results retrieved by
user queries. In this paper, we propose a new, intuitive defi-
nition of diversity called DisC diversity. A DisC diverse sub-
set of a query result contains objects such that each object
in the result is represented by a similar object in the diverse
subset and the objects in the diverse subset are dissimilar
to each other. We show that locating a minimum DisC di-
verse subset is an NP-hard problem and provide heuristics
for its approximation. We also propose adapting DisC di-
verse subsets to a different degree of diversification. We call
this operation zooming. We present efficient implementa-
tions of our algorithms based on the M-tree, a spatial index
structure, and experimentally evaluate their performance.

1. INTRODUCTION
Result diversification has attracted considerable attention

as a means of enhancing the quality of query results pre-
sented to users (e.g.,[26, 32]). Consider, for example, a user
who wants to buy a camera and submits a related query. A
diverse result, i.e., a result containing various brands and
models with different pixel counts and other technical char-
acteristics is intuitively more informative than a homoge-
neous result containing only cameras with similar features.

There have been various definitions of diversity [10], based
on (i) content (or similarity), i.e., objects that are dissim-
ilar to each other (e.g., [32]), (ii) novelty, i.e., objects that
contain new information when compared to what was pre-
viously presented (e.g., [9]) and (iii) semantic coverage, i.e.,
objects that belong to different categories or topics (e.g.,
[3]). Most previous approaches rely on assigning a diversity
score to each object and then selecting either the k objects
with the highest score for a given k (e.g., [4, 14]) or the
objects with score larger than some threshold (e.g., [29]).

In this paper, we address diversity through a different
perspective. Let P be the set of objects in a query result.
We consider two objects p1 and p2 in P to be similar, if

∗This paper has been granted the Reproducible Label by the
VLDB 2013 reproducibility committee. More information
concerning our evaluation system and experimental results
can be found at http://www.dbxr.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 1
Copyright 2012 VLDB Endowment 2150-8097/12/11...$ 10.00.

dist(p1, p2) ≤ r for some distance function dist and real
number r, where r is a tuning parameter that we call radius.
Given P, we select a representative subset S ⊆ P to be
presented to the user such that: (i) all objects in P are
similar with at least one object in S and (ii) no two objects
in S are similar with each other. The first condition ensures
that all objects in P are represented, or covered, by at least
one object in the selected subset. The second condition
ensures that the selected objects of P are dissimilar. We
call the set S r-Dissimilar and Covering subset or r-DisC
diverse subset.

In contrary to previous approaches to diversification, we
aim at computing subsets of objects that contain objects
that are both dissimilar with each other and cover the whole
result set. Furthermore, instead of specifying a required
size k of the diverse set or a threshold, our tuning pa-
rameter r explicitly expresses the degree of diversification
and determines the size of the diverse set. Increasing r re-
sults in smaller, more diverse subsets, while decreasing r
results in larger, less diverse subsets. We call these oper-
ations, zooming-out and zooming-in respectively. One can
also zoom-in or zoom-out locally to a specific object in the
presented result.

As an example, consider searching for cities in Greece.
Figure 1 shows the results of this query diversified based on
geographical location for an initial radius (a), after zooming-
in (b), zooming-out (c) and local zooming-in a specific city
(d). As another example of local zooming in the case of
categorical attributes, consider looking for cameras, where
diversity refers to cameras with different features. Figure 2
depicts an initial most diverse result and the result of local
zooming-in one individual camera in this result.

We formalize the problem of locating minimum DisC di-
verse subsets as an independent dominating set problem on
graphs [17]. We provide a suite of heuristics for computing
small DisC diverse subsets. We also consider the problem of
adjusting the radius r. We explore the relation among DisC
diverse subsets of different radii and provide algorithms for
incrementally adapting a DisC diverse subset to a new ra-
dius. We provide theoretical upper bounds for the size of
the diverse subsets produced by our algorithms for com-
puting DisC diverse subsets as well as for their zooming
counterparts. Since the crux of the efficiency of the pro-
posed algorithms is locating neighbors, we take advantage
of spatial data structures. In particular, we propose efficient
algorithms based on the M-tree [30].

We compare the quality of our approach to other diver-
sification methods both analytically and qualitatively. We
also evaluate our various heuristics using both real and syn-
thetic datasets. Our performance results show that the ba-
sic heuristic for computing dissimilar and covering subsets
works faster than its greedy variation but produces larger
sets. Relaxing the dissimilarity condition, although in the-
ory could result in smaller sets, in our experiments does not

13

(a) Initial set. (b) Zooming-in.

(c) Zooming-out. (d) Local zooming-in.

Figure 1: Zooming. Selected objects are shown in
bold. Circles denote the radius r around the se-
lected objects.

reduce the size of the result considerably. Our incremental
algorithms for zooming in or out from r to a different radius
r′, when compared to computing a DisC diverse subset for
r′ from scratch, produce sets of similar sizes and closer to
what the user intuitively expects, while imposing a smaller
computational cost. Finally, we draw various conclusions
for the M-tree implementation of these algorithms.

Most often diversification is modeled as a bi-criteria prob-
lem with the dual goal of maximizing both the diversity and
the relevance of the selected results. In this paper, we focus
solely on diversity. Since we “cover” the whole dataset, each
user may “zoom-in” to the area of the results that seems
most relevant to her individual needs. Of course, many other
approaches to integrating relevance with DisC diversity are
possible; we discuss some of them in Section 8.

In a nutshell, in this paper, we make the following contri-
butions:

– we propose a new, intuitive definition of diversity, called
DisC diversity and compare it with other models,

– we show that locating minimum DisC diverse subsets
is an NP-hard problem and provide efficient heuristics
along with approximation bounds,

– we introduce adaptive diversification through zooming-
in and zooming-out and present algorithms for their
incremental computation as well as corresponding the-
oretical bounds,

– we provide M-tree tailored algorithms and experimen-
tally evaluate their performance.

The rest of the paper is structured as follows. Section 2
introduces DisC diversity and heuristics for computing small
diverse subsets, Section 3 introduces adaptive diversification
and Section 4 compares our approach with other diversifi-
cation methods. In Section 5, we employ the M-tree for
the efficient implementation of our algorithms, while in Sec-
tion 6, we present experimental results. Finally, Section 7
presents related work and Section 8 concludes the paper.

2. DISC DIVERSITY
In this section, we first provide a formal definition of DisC

diversity. We then show that locating a minimum DisC
diverse set of objects is an NP-hard problem and present
heuristics for locating approximate solutions.

Brand Model Megapixels Zoom Interface Battery Storage

Epson PhotoPC 750Z 1.2 3.0 serial NiMH internal, CompactFlash

Ricoh RDC-5300 2.2 3.0 serial, USB AA internal, SmartMedia

Sony Mavica DSC-D700 1.4 5.0 None lithium MemoryStick

Pentax Optio 33WR 3.1 2.8 USB AA, lithium MultiMediaCard, SecureDigital

Toshiba PDR-M11 1.2 no USB AA SmartMedia

FujiFilm MX-1700 1.3 3.2 serial lithium SmartMedia

FujiFilm FinePix S20 Pro 6.0 6.0 USB, FireWire AA xD-PictureCard

Nikon Coolpix 600 0.8 no serial NiCd CompactFlash

Canon IXUS 330 1.9 3.0 USB lithium CompactFlash

Brand Model Megapixels Zoom Interface Battery Storage

Canon S30 IS 14.0 35.0 USB lithium SecureDigital, SecureDigital HC

Canon A520 3.9 4.0 USB AA MultiMediaCard, SecureDigital

Canon A400 3.1 2.2 USB AA SecureDigital

Canon ELPH Sd10 3.9 no USB lithium SecureDigital

Canon A200 1.9 no USB AA CompactFlash

Canon S30 3.0 3.0 USB lithium CompactFlash

Figure 2: Zooming in a specific camera.

2.1 Definition of DisC Diversity
Let P be a set of objects returned as the result of a user

query. We want to select a representative subset S of these
objects such that each object from P is represented by a
similar object in S and the objects selected to be included
in S are dissimilar to each other.

We define similarity between two objects using a distance
metric dist. For a real number r, r ≥ 0, we use Nr(pi) to
denote the set of neighbors (or neighborhood) of an object
pi ∈ P, i.e., the objects lying at distance at most r from pi:

Nr(pi) = {pj | pi 6= pj ∧ dist(pi, pj) ≤ r}
We use N+

r (pi) to denote the set Nr(pi) ∪ {pi}, i.e., the
neighborhood of pi including pi itself. Objects in the neigh-
borhood of pi are considered similar to pi, while objects
outside its neighborhood are considered dissimilar to pi. We
define an r-DisC diverse subset as follows:

Definition 1. (r-DisC Diverse Subset) Let P be a
set of objects and r, r ≥ 0, a real number. A subset S ⊆ P
is an r-Dissimilar-and-Covering diverse subset, or r-DisC
diverse subset, of P, if the following two conditions hold:
(i) (coverage condition) ∀pi ∈ P, ∃pj ∈ N+

r (pi), such that
pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S with
pi 6= pj, it holds that dist(pi, pj) > r.

The first condition ensures that all objects in P are rep-
resented by at least one similar object in S and the second
condition that the objects in S are dissimilar to each other.
We call each object pi ∈ S an r-DisC diverse object and r
the radius of S. When the value of r is clear from context,
we simply refer to r-DisC diverse objects as diverse objects.
Given P, we would like to select the smallest number of
diverse objects.

Definition 2. (The Minimum r-DisC Diverse Subset

Problem) Given a set P of objects and a radius r, find an
r-DisC diverse subset S∗ of P, such that, for every r-DisC
diverse subset S of P, it holds that |S∗| ≤ |S|.

In general, there may be more than one minimum r-DisC
diverse subsets of P (see Figure 3(a) for an example).

2.2 Graph Representation and NP-hardness
Let us consider the following graph representation of a set

P of objects. Let GP,r = (V , E) be an undirected graph
such that there is a vertex vi ∈ V for each object pi ∈ P and
an edge (vi, vj) ∈ E, if and only if, dist(pi, pj) ≤ r for the
corresponding objects pi, pj , pi 6= pj . An example is shown
in Figure 3(b).

Let us recall a couple of graph-related definitions. A dom-
inating set D for a graph G is a subset of vertices of G such
that every vertex of G not in D is joined to at least one
vertex of D by some edge. An independent set I for a graph

14

p

pp p

p

p

p

(a)

v1

v3

v2

v4

v6

v5

v7

(b)

Figure 3: (a) Minimum r-DisC diverse subsets
for the depicted objects: {p

1
, p

4
, p

7
}, {p

2
, p

4
, p

7
},

{p
3
, p

5
, p

6
}, {p

3
, p

5
, p

7
} and (b) their graph represen-

tation.

G is a set of vertices of G such that for every two vertices in
I, there is no edge connecting them. It is easy to see that
a dominating set of GP,r satisfies the covering conditions of
Definition 1, whereas an independent set of GP,r satisfies
the dissimilarity conditions of Definition 1. Thus:

Observation 1. Solving the Minimum r-DisC Diverse

Subset Problem for a set P is equivalent to finding a Min-

imum Independent Dominating Set of the corresponding
graph GP,r.

The Minimum Independent Dominating Set Problem

has been proven to be NP-hard [15]. The problem remains
NP-hard even for special kinds of graphs, such as for unit
disk graphs [8]. Unit disk graphs are graphs whose vertices
can be put in one to one correspondence with equisized cir-
cles in a plane such that two vertices are joined by an edge,
if and only if, the corresponding circles intersect. GP,r is a
unit disk graph for Euclidean distances.

In the following, we use the terms dominance and cover-
age, as well as, independence and dissimilarity interchange-
ably. In particular, two objects pi and pj are independent, if
dist(pi, pj) > r. We also say that an object covers all objects
in its neighborhood. We next present some useful properties
that relate the coverage (i.e., dominance) and dissimilarity
(i.e., independence) conditions. A maximal independent set
is an independent set such that adding any other vertex to
the set forces the set to contain an edge, that is, it is an in-
dependent set that is not a subset of any other independent
set. It is known that:

Lemma 1. An independent set of a graph is maximal, if
and only if, it is dominating.

From Lemma 1, we conclude that:
Observation 2. A minimum maximal independent set is

also a minimum independent dominating set.
However,

Observation 3. A minimum dominating set is not nec-
essarily independent.

For example, in Figure 4, the minimum dominating set of
the depicted objects is of size 2, while the minimum inde-
pendent dominating set is of size 3.

2.3 Computing DisC Diverse Objects
We consider first a baseline algorithm for computing a

DisC diverse subset S of P. For presentation convenience,
let us call black the objects of P that are in S, grey the
objects covered by S and white the objects that are neither
black nor grey. Initially, S is empty and all objects are white.
The algorithm proceeds as follows: until there are no more
white objects, it selects an arbitrary white object pi, colors
pi black and colors all objects in Nr(pi) grey. We call this
algorithm Basic-DisC.

The produced set S is clearly an independent set, since
once an object enters S, all its neighbors become grey and
thus are withdrawn from consideration. It is also a maxi-
mal independent set, since at the end there are only grey

v v

v

v v

v

(a)

v v

v

v v

v

(b)

Figure 4: (a) Minimum dominating set ({v2, v5})
and (b) a minimum independent dominating set
({v2, v4, v6}) for the depicted graph.

objects left, thus adding any of them to S would violate the
independence of S. From Lemma 1, the set S produced by
Basic-DisC is an r-DisC diverse subset. S is not necessarily
a minimum r-DisC diverse subset. However, its size is re-
lated to the size of any minimum r-DisC diverse subset S∗

as follows:

Theorem 1. Let B be the maximum number of indepen-
dent neighbors of any object in P. Any r-DisC diverse subset
S of P is at most B times larger than any minimum r-DisC
diverse subset S∗.

Proof. Since S is an independent set, any object in S∗

can cover at most B objects in S and thus |S| ≤ B|S∗|.
The value of B depends on the distance metric used and

also on the dimensionality d of the data space. For many
distance metrics B is a constant. Next, we show how B
is bounded for specific combinations of the distance metric
dist and data dimensionality d.

Lemma 2. If dist is the Euclidean distance and d = 2,
each object pi in P has at most 5 neighbors that are inde-
pendent from each other.

Proof. Let p1, p2 be two independent neighbors of pi.
Then, it must hold that ∠p1pip2 is larger than π

3
. Other-

wise, dist(p1, p2) ≤ max{dist(pi, p1), dist(pi, p2)} ≤ r which
contradicts the independence of p1 and p2. Therefore, pi can
have at most (2π/π

3
) − 1 = 5 independent neighbors.

Lemma 3. If dist is the Manhattan distance and d = 2,
each object pi in P has at most 7 neighbors that are inde-
pendent from each other.

Proof. The proof can be found in the Appendix.

Also, for d = 3 and the Euclidean distance, it can be
shown that each object pi in P has at most 24 neighbors
that are independent from each other. This can be shown
using packing techniques and properties of solid angles [11].

We now consider the following intuitive greedy variation
of Basic-DisC, that we call Greedy-DisC. Instead of select-
ing white objects arbitrarily at each step, we select the white
object with the largest number of white neighbors, that is,
the white object that covers the largest number of uncov-
ered objects. Greedy-DisC is shown in Algorithm 1, where
NW

r (pi) is the set of the white neighbors of object pi.
While the size of the r-DisC diverse subset S produced

by Greedy-DisC is expected to be smaller than that of the
subset produced by Basic-DisC, the fact that we consider
for inclusion in S only white, i.e., independent, objects may
still not reduce the size of S as much as expected. From
Observation 3, it is possible that an independent covering
set is larger than a covering set that also includes dependent
objects. For example, consider the nodes (or equivalently
the corresponding objects) in Figure 4. Assume that object
v2 is inserted in S first, resulting in objects v1, v3 and v5

becoming grey. Then, we need two more objects, namely, v4

and v6, for covering all objects. However, if we consider for
inclusion grey objects as well, then v5 can join S, resulting
in a smaller covering set.

15

Algorithm 1 Greedy-DisC

Input: A set of objects P and a radius r.
Output: An r-DisC diverse subset S of P.

1: S ← ∅
2: for all pi ∈ P do
3: color pi white
4: end for
5: while there exist white objects do

6: select the white object pi with the largest
∣

∣NW
r (pi)

∣

∣

7: S = S ∪ {pi}
8: color pi black
9: for all pj ∈ NW

r (pi) do

10: color pj grey
11: end for
12: end while
13: return S

Motivated by this observation, we also define r-C diverse
subsets that satisfy only the coverage condition of Defini-
tion 1 and modify Greedy-DisC accordingly to compute r-C
diverse sets. The only change required is that in line 6 of
Algorithm 1, we select both white and grey objects. This
allows us to select at each step the object that covers the
largest possible number of uncovered objects, even if this
object is grey. We call this variation Greedy-C. In the case
of Greedy-C, we prove the following bound for the size of
the produced r-C diverse subset S:

Theorem 2. Let ∆ be the maximum number of neigh-
bors of any object in P. The r-C diverse subset produced
by Greedy-C is at most ln ∆ times larger than the minimum
r-DisC diverse subset S∗.

Proof. The proof can be found in the Appendix.

3. ADAPTIVE DIVERSIFICATION
The radius r determines the desired degree of diversifica-

tion. A large radius corresponds to fewer and less similar to
each other representative objects, whereas a small radius re-
sults in more and less dissimilar representative objects. On
one extreme, a radius equal to the largest distance between
any two objects results in a single object being selected and
on the other extreme, a zero radius results in all objects of
P being selected. We consider an interactive mode of op-
eration where, after being presented with an initial set of
results for some r, a user can see either more or less results
by correspondingly decreasing or increasing r.

Specifically, given a set of objects P and an r-DisC diverse
subset Sr of P, we want to compute an r′-DisC diverse

subset Sr′

of P. There are two cases: (i) r′ < r and (ii) r′ >
r which we call zooming-in and zooming-out respectively.
These operations are global in the sense that the radius r is
modified similarly for all objects in P. We may also modify
the radius for a specific area of the data set. Consider, for
example, a user that receives an r-DisC diverse subset Sr

of the results and finds some specific object pi ∈ Sr more
or less interesting. Then, the user can zoom-in or zoom-
out by specifying a radius r′, r′ < r or r′ > r, respectively,
centered in pi. We call these operations local zooming-in and
local zooming-out respectively.

To study the size relationship between Sr and Sr′

, we
define the set NI

r1,r2
(pi), r2 ≥ r1, as the set of objects at

distance at most r2 from pi which are at distance at least
r1 from each other, i.e., objects in Nr2

(pi)\Nr1
(pi) that are

independent from each other considering the radius r1. The
following lemma bounds the size of NI

r1,r2
(pi) for specific

distance metrics and dimensionality.

Lemma 4. Let r1, r2 be two radii with r2 ≥ r1. Then, for
d = 2:

p1

r

r׳
p4

p5

p3

p2

(a)

p1
p2

r
r׳

p3

p5

p4

(b)

Figure 5: Zooming (a) in and (b) out. Solid and
dashed circles correspond to radius r

′ and r respec-
tively.

(i) if dist is the Euclidean distance:
∣

∣

∣
NI

r1,r2
(pi)

∣

∣

∣
≤ 9

⌈

logβ(r2/r1)
⌉

, where β =
1 +

√
5

2

(ii) if dist is the Manhattan distance:
∣

∣

∣
NI

r1,r2
(pi)

∣

∣

∣
≤ 4

γ
∑

i=1

(2i + 1), where γ =

⌈

r2 − r1

r1

⌉

Proof. The proof can be found in the Appendix.

Since we want to support an incremental mode of opera-

tion, the set Sr′

should be as close as possible to the already

seen result Sr. Ideally, Sr′ ⊇ Sr, for r′ < r and Sr′ ⊆ Sr,

for r′ > r. We would also like the size of Sr′

to be as close as
possible to the size of the minimum r′-DisC diverse subset.

If we consider only the coverage condition, that is, only
r-C diverse subsets, then an r-C diverse subset of P is also
an r′-C diverse subset of P, for any r′ ≥ r. This holds
because Nr(pi) ⊆ Nr′(pi) for any r′ ≥ r. However, a similar
property does not hold for the dissimilarity condition. In
general, a maximal independent diverse subset Sr of P for
r is not necessarily a maximal independent diverse subset of
P, neither for r′ > r nor for r′ < r. To see this, note that
for r′ > r, Sr may not be independent, whereas for r′ < r,
Sr may no longer be maximal. Thus, from Lemma 1, we
reach the following conclusion:

Observation 4. In general, there is no monotonic prop-
erty among the r-DisC diverse and the r′-DisC diverse sub-
sets of a set of objects P, for r 6= r′.

For zooming-in, i.e., for r′ < r, we can construct r′-DisC
diverse sets that are supersets of Sr by adding objects to
Sr to make it maximal. For zooming-out, i.e., for r′ >
r, in general, there may be no subset of Sr that is r′-DisC
diverse. Take for example the objects of Figure 5(b) with Sr

= {p1, p2, p3}. No subset of Sr is an r′-DisC diverse subset
for this set of objects. Next, we detail the zooming-in and
zooming-out operations.

3.1 Incremental Zooming-in
Let us first consider the case of zooming with a smaller

radius, i.e., r′ < r. Here, we aim at producing a small

independent covering solution Sr′

, such that, Sr′ ⊇ Sr. For
this reason, we keep the objects of Sr in the new r′-DisC

diverse subset Sr′

and proceed as follows.
Consider an object of Sr, for example p1 in Figure 5(a).

Objects at distance at most r′ from p1 are still covered by

p1 and cannot enter Sr′

. Objects at distance greater than r′

and at most r may be uncovered and join Sr′

. Each of these

objects can enter Sr′

as long as it is not covered by some
other object of Sr that lays outside the former neighborhood

of p1. For example, in Figure 5(a), p4 and p5 may enter Sr′

16

Algorithm 2 Greedy-Zoom-In

Input: A set of objects P, an initial radius r, a solution Sr and
a new radius r′ < r.

Output: An r′-DisC diverse subset of P.

1: Sr′

← Sr

2: for all pi ∈ Sr do
3: color objects in {Nr(pi)\Nr′ (pi)} white
4: end for
5: while there exist white objects do

6: select the white object pi with the largest
∣

∣NW
r (pi)

∣

∣

7: color pi black

8: Sr′

= Sr′

∪ {pi}
9: for all pj ∈ NW

r (pi) do

10: color pj grey
11: end for
12: end while

13: return Sr′

while p3 can not, since, even with the smaller radius r′, p3

is covered by p2.
To produce an r′-DisC diverse subset based on an r-DisC

diverse subset, we consider such objects in turn. This turn
can be either arbitrary (Basic-Zoom-In algorithm) or pro-
ceed in a greedy way, where at each turn the object that
covers the largest number of uncovered objects is selected
(Greedy-Zoom- In, Algorithm 2).

Lemma 5. For the set Sr′

generated by the Basic-Zoom-In
and Greedy-Zoom-In algorithms, it holds that:

(i) Sr ⊆ Sr′

and

(ii) |Sr′ | ≤ NI
r′,r(pi)|Sr|

Proof. Condition (i) trivially holds from step 1 of the
algorithm. Condition (ii) holds since for each object in Sr

there are at most NI
r′,r(pi) independent objects at distance

greater than r′ from each other that can enter Sr′

.

In practice, objects selected to enter Sr′

, such as p4 and p5

in Figure 5(a), are likely to cover other objects left uncovered
by the same or similar objects in Sr. Therefore, the size

difference between Sr and Sr′

is expected to be smaller than
this theoretical upper bound.

3.2 Incremental Zooming-out
Next, we consider zooming with a larger radius, i.e., r′ >

r. In this case, the user is interested in seeing less and
more dissimilar objects, ideally a subset of the already seen

results for r, that is, Sr′ ⊆ Sr. However, in this case, as
discussed, in contrast to zooming-in, it may not be possible

to construct a diverse subset Sr′

that is a subset of Sr.
Thus, we focus on the following sets of objects: (i) Sr\Sr′

and (ii) Sr′\Sr. The first set consists of the objects that
belong to the previous diverse subset but are removed from
the new one, while the second set consists of the new ob-

jects added to Sr′

. To illustrate, let us consider the objects
of Figure 5(b) and that p1, p2, p3 ∈ Sr. Since the radius
becomes larger, p1 now covers all objects at distance at most
r′ from it. This may include a number of objects that also
belonged to Sr, such as p2. These objects have to be re-
moved from the solution, since they are no longer dissimilar
to p1. However, removing such an object, say p2 in our ex-
ample, can potentially leave uncovered a number of objects
that were previously covered by p2 (these objects lie in the
shaded area of Figure 5(b)). In our example, requiring p1 to

remain in Sr′

means than p5 should be now added to Sr′

.
To produce an r′-DisC diverse subset based on an r-DisC

diverse subset, we proceed in two passes. In the first pass,

Algorithm 3 Greedy-Zoom-Out(a)

Input: A set of objects P, an initial radius r, a solution Sr and
a new radius r′ > r.

Output: An r′-DisC diverse subset of P.

1: Sr′

← ∅
2: color all black objects red
3: color all grey objects white
4: while there exist red objects do

5: select the red object pi with the largest |NR
r′ (pi)|

6: color pi black

7: Sr′

= Sr′

∪ {pi}
8: for all pj ∈ Nr′ (pi) do

9: color pj grey
10: end for
11: end while
12: while there exist white objects do

13: select the white object pi with the larger |NW
r′ (pi)|

14: color pi black

15: Sr′

= Sr′

∪ {pi}
16: for all pj ∈ NW

r′ (pi) do

17: color pj grey
18: end for
19: end while

20: return Sr′

we examine all objects of Sr in some order and remove their
diverse neighbors that are now covered by them. At the sec-

ond pass, objects from any uncovered areas are added to Sr′

.
Again, we have an arbitrary and a greedy variation, denoted
Basic-Zoom-Out and Greedy-Zoom-Out respectively. Algo-
rithm 3 shows the greedy variation; the first pass (lines 4-11)

considers Sr\Sr′

, while the second pass (lines 12-19) con-

siders Sr′\Sr. Initially, we color all previously black objects
red. All other objects are colored white. We consider three
variations for the first pass of the greedy algorithm: selecting
the red objects with (a) the largest number of red neighbors,
(b) the smallest number of red neighbors and (c) the largest
number of white neighbors. Variations (a) and (c) aim at
minimizing the objects to be added in the second pass, that

is, Sr′\Sr, while variation (b) aims at maximizing Sr ∩ Sr′

.
Algorithm 3 depicts variation (a), where NR

r′ (pi) denotes the
set of red neighbors of object pi.

Lemma 6. For the solution Sr′

generated by the Basic-
Zoom-Out and Greedy-Zoom-Out algorithms, it holds that:

(i) There are at most NI
r,r′(pi) objects in Sr\Sr′

.

(ii) For each object of Sr not included in Sr′

, at most B−1

objects are added to Sr′

.
Proof. Condition (i) is a direct consequence of the def-

inition of NI
r,r′(pi). Concerning condition (ii), recall that

each removed object pi has at most B independent neigh-
bors for r′. Since pi is covered by some neighbor, there are
at most B−1 other independent objects that can potentially

enter Sr′

.

As before, objects left uncovered by objects such as p2

in Figure 5(b) may already be covered by other objects in
the new solution (consider p4 in our example which is now
covered by p3). However, when trying to adapt a DisC di-
verse subset to a larger radius, i.e., maintain some common
objects between the two subsets, there is no theoretical guar-
antee that the size of the new solution will be reduced.

4. COMPARISON WITH OTHER MODELS
The most widely used diversification models are MaxMin

and MaxSum that aim at selecting a subset S of P so as

17

GMIS

(a) r-DisC.

MSUM

(b) MaxSum.

MMIN

(c) MaxMin.

KMED

(d) k-medoids.

GDS

(e) r-C.

Figure 6: Solutions by the various diversification methods for a clustered dataset. Selected objects are shown
in bold. Circles denote the radius r of the selected objects.

the minimum or the average pairwise distance of the selected
objects is maximized (e.g. [16, 27, 6]). More formally, an
optimal MaxMin (resp., MaxSum) subset of P is a subset
with the maximum fMin = minpi,pj∈S

pi 6=pj

dist(pi, pj) (resp., fSum

=
∑

pi,pj∈S
pi 6=pj

dist(pi, pj)) over all subsets of the same size.

Let us first compare analytically the quality of an r-DisC
solution to the optimal values of these metrics.

Lemma 7. Let P be a set of objects, S be an r-DisC di-
verse subset of P and λ be the fMin distance between objects
of S. Let S∗ be an optimal MaxMin subset of P for k =
|S| and λ∗ be the fMin distance of S∗. Then, λ∗ ≤ 3 λ.

Proof. Each object in S∗ is covered by (at least) one
object in S. There are two cases, either (i) all objects p∗

1, p∗
2

∈ S∗, p∗
1 6= p∗

2, are covered by different objects is S, or (ii)
there are at least two objects in S∗, p∗

1, p∗
2, p∗

1 6= p∗
2 that are

both covered by the same object p in S. Case (i): Let p1 and
p2 be two objects in S such that dist(p1, p2) = λ and p∗

1 and
p∗
2 respectively be the objects in S∗ that each covers. Then,

by applying the triangle inequality twice, we get: dist(p∗
1, p

∗
2)

≤ dist(p∗
1, p1) + dist(p1, p

∗
2) ≤ dist(p∗

1, p1) + dist(p1, p2) +
dist(p2, p

∗
2). By coverage, we get: dist(p∗

1, p
∗
2) ≤ r + λ + r

≤ 3 λ, thus λ∗ ≤ 3 λ. Case (b): Let p∗
1 and p∗

2 be two objects
in S∗ that are covered by the same object p in S. Then, by
coverage and the triangle inequality, we get dist(p∗

1, p
∗
2) ≤

dist(p∗
1, p) + dist(p, p∗

2) ≤ 2 r, thus λ∗ ≤ 2 λ.

Lemma 8. Let P be a set of objects, S be an r-DisC di-
verse subset of P and σ be the fSum distance between objects
of S. Let S∗ be an optimal MaxSum subset of P for k =
|S| and σ∗ be the fSum distance of S∗. Then, σ∗ ≤ 3 σ.

Proof. We consider the same two cases for the objects
in S covering the objects in S∗ as in the proof of Lemma 7.
Case (i): Let p∗

1 and p∗
2 be two objects in S∗ and p1 and p2

be the objects in S that cover them respectively. Then, by
applying the triangle inequality twice, we get: dist(p∗

1, p
∗
2)

≤ dist(p∗
1, p1) + dist(p1, p

∗
2) ≤ dist(p∗

1, p1) + dist(p1, p2)
+ dist(p2, p

∗
2). By coverage, we get: dist(p∗

1, p
∗
2) ≤ 2 r +

dist(p1, p2) (1). Case (ii): Let p∗
1 and p∗

2 be two objects
in S∗ that are covered by the same object p in S. Then,
by coverage and the triangle inequality, we get: dist(p∗

1, p
∗
2)

≤ dist(p∗
1, p) + dist(p, p∗

2) ≤ 2 r (2). From (1) and (2),
we get:

∑

p∗

i
,p∗

j
∈S∗,p∗

i
6=p∗

j
dist(p∗

i , p∗
j) ≤ ∑

pi,pj∈S,pi 6=pj
2r

+ dist(pi, pj). From independence, ∀ pi, pj ∈ S, pi 6= pj ,
dist(pi, pj) > r. Thus, σ∗ ≤ 3 σ.

Next, we present qualitative results of applying MaxMin

and MaxSum to a 2-dimensional “Clustered” dataset (Fig-
ure 6). To implement MaxMin and MaxSum, we used
greedy heuristics which have been shown to achieve good so-
lutions [10]. In addition to MaxMin and MaxSum, we also
show results for r-C diversity (i.e., covering but not neces-
sarily independent subsets for the given r) and k-medoids, a

widespread clustering algorithm that seeks to minimize 1
|P|

∑

pi∈P dist(pi, c(pi)), where c(pi) is the closest object of

pi in the selected subset, since the located medoids can be
viewed as a representative subset of the dataset. To allow
for a comparison, we first run Greedy-DisC for a given r and
then use as k the size of the produced diverse subset. In this
example, k = 15 for r = 0.7.

MaxSum diversification and k-medoids fail to cover all ar-
eas of the dataset; MaxSum tends to focus on the outskirts
of the dataset, whereas k-medoids clustering reports only
central points, ignoring outliers. MaxMin performs better
in this aspect. However, since MaxMin seeks to retrieve
objects that are as far apart as possible, it fails to retrieve
objects from dense areas; see, for example, the center ar-
eas of the clusters in Figure 6. DisC gives priority to such
areas and, thus, such areas are better represented in the so-
lution. Note also that MaxSum and k-medoids may select
near duplicates, as opposed to DisC and MaxMin. We also
experimented with variations of MaxSum proposed in [27]
but the results did not differ substantially from the ones
in Figure 6(b). For r-C diversity, the resulting selected set
is one object smaller, however, the selected objects are less
widely spread than in DisC. Finally, note that, we are not
interested in retrieving as representatives subsets that fol-
low the same distribution as the input dataset, as in the case
of sampling, since such subsets will tend to ignore outliers.
Instead, we want to cover the whole dataset and provide a
complete view of all its objects, including distant ones.

5. IMPLEMENTATION
Since a central operation in computing DisC diverse sub-

sets is locating neighbors, we introduce algorithms that ex-
ploit a spatial index structure, namely, the M-tree [30]. An
M-tree is a balanced tree index that can handle large vol-
umes of dynamic data of any dimensionality in general met-
ric spaces. In particular, an M-tree partitions space around
some of the indexed objects, called pivots, by forming a
bounding ball region of some covering radius around them.
Let c be the maximum node capacity of the tree. Internal
nodes have at most c entries, each containing a pivot object
pv, the covering radius rv around pv, the distance of pv from
its parent pivot and a pointer to the subtree tv. All objects
in the subtree tv rooted at pv are within distance at most
equal to the covering radius rv from pv. Leaf nodes have en-
tries containing the indexed objects and their distance from
their parent pivot.

The construction of an M-tree is influenced by the split-
ting policy that determines how nodes are split when they
exceed their maximum capacity c. Splitting policies indicate
(i) which two of the c + 1 available pivots will be promoted
to the parent node to index the two new nodes (promote
policy) and (ii) how the rest of the pivots will be assigned to
the two new nodes (partition policy). These policies affect
the overlap among nodes. For computing diverse subsets:

(i) We link together all leaf nodes. This allows us to visit
all objects in a single left-to-right traversal of the leaf

18

nodes and exploit some degree of locality in covering
the objects.

(ii) To compute the neighbors Nr(pi) of an object pi at
radius r, we perform a range query centered around pi

with distance r, denoted Q(pi, r).
(iii) We build trees using splitting policies that minimize

overlap. In most cases, the policy that resulted in the
lowest overlap was (a) promoting as new pivots the
pivot pi of the overflowed node and the object pj with
the maximum distance from pi and (b) partitioning
the objects by assigning each object to the node whose
pivot has the closest distance with the object. We call
this policy “MinOverlap”.

5.1 Computing Diverse Subsets
Basic-DisC. The Basic-DisC algorithm selects white ob-
jects in random order. In the M-tree implementation of
Basic- DisC, we consider objects in the order they appear
in the leaves of the M-tree, thus taking advantage of locality.
Upon encountering a white object pi in a leaf, the algorithm
colors it black and executes a range query Q(pi, r) to retrieve
and color grey its neighbors. Since the neighbors of an in-
dexed object are expected to reside in nearby leaf nodes,
such range queries are in general efficient. We can visualize
the progress of Basic-DisC as gradually coloring all objects
in the leaf nodes from left-to-right until all objects become
either grey or black.

Greedy-DisC. The Greedy-DisC algorithm selects at each
iteration the white object with the largest white neighbor-
hood (line 6 of Algorithm 1). To efficiently implement this
selection, we maintain a sorted list, L, of all white objects
ordered by the size of their white neighborhood. To initialize
L, note that, at first, for all objects pi, NW

r (pi) = Nr(pi).
We compute the neighborhood size of each object incremen-
tally as we build the M-tree. We found that computing the
size of neighborhoods while building the tree (instead of per-
forming one range query per object after building the tree)
reduces node accesses up to 45%.

Considering the maintenance of L, each time an object pi

is selected and colored black, its neighbors at distance r are
colored grey. Thus, we need to update the size of the white
neighborhoods of all affected objects. We consider two vari-
ations. The first variation, termed Grey-Greedy-DisC, exe-
cutes, for each newly colored grey neighbor pj of pi, a range
query Q(pj , r) to locate its neighbors and reduce by one
the size of their white neighborhood. The second variation,
termed White-Greedy-DisC, executes one range query for all
remaining white objects within distance less than or equal
to 2r from pi. These are the only white objects whose white
neighborhood may have changed. Since the cost of maintain-
ing the exact size of the white neighborhoods may be large,
we also consider “lazy” variations. Lazy-Grey-Greedy-DisC
involves grey neighbors at some distance smaller than r,
while Lazy-White-Greedy-DisC involves white objects at
some distance smaller than 2r.

Pruning. We make the following observation that allows
us to prune subtrees while executing range queries. Objects
that are already grey do not need to be colored grey again
when some other of their neighbors is colored black.

Pruning Rule: A leaf node that contains no white objects
is colored grey. When all its children become grey, an inter-
nal node is colored grey. While executing range queries, any
top-down search of the tree does not need to follow subtrees
rooted at grey nodes.

As the algorithms progresses, more and more nodes be-
come grey, and thus, the cost of range queries reduces over
time. For example, we can visualize the progress of the
Basic-DisC (Pruned) algorithm as gradually coloring all
tree nodes grey in a post-order manner.

Table 1: Input parameters.
Parameter Default value Range

M-tree node capacity 50 25 - 100

M-tree splitting policy MinOverlap various

Dataset cardinality 10000 579 - 50000

Dataset dimensionality 2 2 - 10

Dataset distribution normal uniform, normal

Distance metric Euclidean Euclidean, Hamming

Greedy-C. The Greedy-C algorithm considers at each it-
eration both grey and white objects. A sorted structure L
has to be maintained as well, which now includes both white
and grey objects and is substantially larger. Furthermore,
the pruning rule is no longer useful, since grey objects and
nodes need to be accessed again for updating the size of their
white neighborhood.

5.2 Adapting the Radius
For zooming-in, given an r-DisC diverse subset Sr of P,

we would like to compute an r′-DisC diverse subset Sr′

of P,

r′ < r, such that, Sr′ ⊇ Sr. A naive implementation would
require as a first step locating the objects in NI

r′,r(pi) (line
3 of Algorithm 2) by invoking two range queries for each pi

(with radius r and r′ respectively). Then, a diverse subset
of the objects in NI

r′,r(pi) is computed either in a basic or
in a greedy manner. However, during the construction of
Sr, objects in the corresponding M-tree have already been
colored black or grey. We use this information based on the
following rule.

Zooming Rule: Black objects of Sr maintain their color

in Sr′

. Grey objects maintain their color as long as there
exists a black object at distance at most r′ from them.

Therefore, only grey nodes with no black neighbors at

distance r′ may turn black and enter Sr′

. To be able to
apply this rule, we augment the leaf nodes of the M-tree
with the distance of each indexed object to its closest black
neighbor.

The Basic-Zoom-In algorithm requires one pass of the
leaf nodes. Each time a grey object pi is encountered, we
check whether it is still covered, i.e., whether its distance
from its closest black neighbor is smaller or equal to r′. If
not, pi is colored black and a range query Q(pi, r

′) is ex-
ecuted to locate and color grey the objects for which pi is
now their closest black neighbor. At the end of the pass, the

black objects of the leaves form Sr′

. The Greedy-Zoom-In
algorithm involves the maintenance of a sorted structure L
of all white objects. To build this structure, the leaf nodes
are traversed, grey objects that are now found to be uncov-
ered are colored white and inserted into L. Then, the white
neighborhoods of objects in L are computed and L is sorted
accordingly.

Zooming-out and local zooming algorithms are implemented
similarly.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our al-

gorithms using both synthetic and real datasets. Our syn-
thetic datasets consist of multidimensional objects, where
values at each dimension are in [0, 1]. Objects are either
uniformly distributed in space (“Uniform”) or form (hyper)
spherical clusters of different sizes (“Clustered”). We also
employ two real datasets. The first one (“Cities”) is a col-
lection of 2-dimensional points representing geographic in-
formation about 5922 cities and villages in Greece [2]. We
normalized the values of this dataset in [0, 1]. The second
real dataset (“Cameras”) consists of 7 characteristics for 579
digital cameras from [1], such as brand and storage type.

19

Table 2: Algorithms.
Algorithm Abbreviation Description

Basic-DisC B-DisC Selects objects in order of appearance in the leaf level of the M-tree.

Greedy-DiSc G-DisC Selects at each iteration the white object p with the largest white neighborhood.

–Grey-Greedy-DisC Gr-G-DisC One range query per grey node at distance r from p.

—-Lazy-Grey-Greedy-DisC L-Gr-G-DisC One range query per grey node at distance r/2 from p
–White-Greedy-DisC Wh-G-DisC One range query per white node at distance 2r from p.

—-Lazy-White-Greedy-DisC L-Wh-G-DisC One range query per white node at distance 3r/2 from p.

Greedy-C G-C Selects at each iteration the non-black object p with the largest white neighborhood.

Table 3: Solution size.
(a) Uniform (2D - 10000 objects).

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

B-DisC 3839 1360 676 411 269 192 145
G-DisC 3260 1120 561 352 239 176 130
L-Gr-G-DisC 3384 1254 630 378 253 184 137
L-Wh-G-DisC 3293 1152 589 352 240 170 130
G-C 3427 1104 541 338 230 170 126

(b) Clustered (2D - 10000 objects).

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

B-DisC 1018 370 193 121 80 61 48
G-DisC 892 326 162 102 69 52 43
L-Gr-G-DisC 980 394 218 133 87 64 49
L-Wh-G-DisC 906 313 168 104 70 52 41
G-C 895 322 166 102 71 50 43

(c) Cities.

r · 10−2

0.10 0.25 0.50 0.75 1.00 1.25 1.50

B-DisC 2534 743 269 144 96 68 50
G-DisC 2088 569 209 123 76 54 41
L-Gr-G-DisC 2166 638 239 124 90 62 51
L-Wh-G-DisC 2106 587 221 115 79 56 42
G-C 2188 571 205 117 79 52 41

(d) Cameras.

r

1 2 3 4 5 6

B-DisC 461 237 103 34 9 4
G-DisC 461 212 78 28 9 2
L-Gr-G-DisC 461 216 80 31 9 2
L-Wh-G-DisC 461 212 81 28 9 2
G-C 461 218 74 25 6 2

We use the Euclidean distance for the synthetic datasets
and “Cities”, while for “Cameras”, whose attributes are cat-
egorical, we use dist(pi, pj) =

∑

i δi(pi, pj), where δi(pi, pj)

is equal to 1, if pi and pj differ in the ith dimension and 0
otherwise, i.e., the Hamming distance. Note that the choice
of an appropriate distance metric is an important but or-
thogonal to our approach issue.

Table 1 summarizes the values of the input parameters
used in our experiments and Table 2 summarizes the algo-
rithms employed.

Solution Size. We first compare our various algorithms
in terms of the size of the computed diverse subset (Ta-
ble 3). We consider Basic-DisC, Greedy-DisC (note that,
both Grey- Greedy-DisC and White-Greedy-DisC produce
the same solution) and Greedy-C. We also tested “lazy” vari-
ations of the greedy algorithm, namely Lazy-Grey-Greedy-
DisC with distance r/2 and Lazy-White-Greedy-DisC with
distance 3r/2. Grey-Greedy-DisC locates a smaller DisC
diverse subset than Basic-DisC in all cases. The lazy vari-
ations also perform better than Basic-DisC and compara-
ble with Grey-Greedy-DisC. Lazy-White-Grey-DisC seems
to approximate better the actual size of the white neigh-
borhoods than Lazy-Grey-Greedy- DisC and in most cases
produces smaller subsets. Greedy-C produces subsets with
size similar with those produced by Grey-Greedy-DisC. This
means that raising the independence assumption does not

lead to substantially smaller diverse subsets in our datasets.
Finally, note that the diverse subsets produced by all algo-
rithms for the “Clustered” dataset are smaller than for the
“Uniform” one, since objects are generally more similar to
each other.

Computational Cost. Next, we evaluate the computa-
tional cost of our algorithms, measured in terms of tree node
accesses. Figure 7 reports this cost, as well as, the cost
savings when the pruning rule of Section 5 is employed for
Basic-DisC and Greedy-DisC (as previously detailed, this
pruning cannot be applied to Greedy-C). Greedy-DisC has
higher cost than Basic-DisC. The additional computational
cost becomes more significant as the radius increases. The
reason for this is that Greedy-DisC performs significantly
more range queries. As the radius increases, objects have
more neighbors and, thus, more M-tree nodes need to be
accessed in order to retrieve them, color them and update
the size of the neighborhoods of their neighbors. On the
contrary, the cost of Basic-DisC is reduced when the ra-
dius increases, since it does not need to update the size of
any neighborhood. For larger radii, more objects are col-
ored grey by each selected (black) object and, therefore,
less range queries are performed. Both algorithms benefit
from pruning (up to 50% for small radii). We also exper-
imented with employing bottom-up rather than top-down
range queries. At most cases, the benefit in node accesses
was less than 5%.

Figure 8 compares Grey-Greedy-DisC with White-Greedy-
DisC and their corresponding “lazy” variations. We see that
White-Greedy-DisC performs better than Grey-Greedy-DisC
for the clustered dataset as r increases. This is because in
this case, grey objects share many common white neighbors
which are accessed multiple times by Grey-Greedy-DisC for
updating their white neighborhood size and only once by
White-Greedy-DisC. The lazy variations reduce the compu-
tational cost further.

In the rest of this section, unless otherwise noted, we use
the (Grey-)Greedy-DisC (Pruned) heuristic.

Impact of Dataset Cardinality and Dimensionality.
For this experiment, we employ the “Clustered” dataset and
vary its cardinality from 5000 to 15000 objects and its di-
mensionality from 2 to 10 dimensions. Figure 9 shows the
corresponding solution size and computational cost as com-
puted by the Greedy-DisC heuristic. We observe that the
solution size is more sensitive to changes in cardinality when
the radius is small. The reason for this is that for large
radii, a selected object covers a large area in space. There-
fore, even when the cardinality increases and there are many
available objects to choose from, these objects are quickly
covered by the selected ones. In Figure 9(b), the increase
in the computational cost is due to the increase of range
queries required to maintain correct information about the
size of the white neighborhoods.

Increasing the dimensionality of the dataset causes more
objects to be selected as diverse as shown in Figure 9(c).
This is due to the “curse of dimensionality” effect, since
space becomes sparser at higher dimensions. The compu-
tational cost may however vary as dimensionality increases,
since it is influenced by the cost of computing the neighbor-
hood size of the objects that are colored grey.

20

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14
x 10

5

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Uniform (2D − 10000 objects)

B−DisC
B−DisC (Pruned)
Gr−G−DisC
Gr−G−DisC (Pruned)
Wh−G−DisC
Wh−G−DisC (Pruned)
G−C

(a) Uniform.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12
x 10

5

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Clustered (2D − 10000 objects)

B−DisC
B−DisC (Pruned)
Gr−G−DisC
Gr−G−DisC (Pruned)
Wh−G−DisC
Wh−G−DisC (Pruned)
G−C

(b) Clustered.

1 2.5 5 7.5 10 12.5 15

x 10
−3

0

0.5

1

1.5

2

2.5
x 10

5

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Cities

B−DisC
B−DisC (Pruned)
Gr−G−DisC
Gr−G−DisC (Pruned)
Wh−G−DisC
Wh−G−DisC (Pruned)
G−C

(c) Cities.

1 2 3 4 5 6
0

2

4

6

8

10

12
x 10

4

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Cameras

B−DisC
B−DisC (Pruned)
Gr−G−DisC
Gr−G−DisC (Pruned)
Wh−G−DisC
Wh−G−DisC (Pruned)
G−C

(d) Cameras.

Figure 7: Node accesses for Basic-DisC, Greedy-DisC and Greedy-C with and without pruning.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14
x 10

5

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Uniform (2D − 10000 objects)

B−DisC (Pruned)
G−Gr−DisC (Pruned)
Wh−G−DisC (Pruned)
L−Gr−G−DisC (Pruned)
L−Wh−G−DisC (Pruned)

(a) Uniform.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

6

7

8
x 10

5

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es
Clustered (2D − 10000 objects)

B−DisC (Pruned)
G−Gr−DisC (Pruned)
Wh−G−DisC (Pruned)
L−Gr−G−DisC (Pruned)
L−Wh−G−DisC (Pruned)

(b) Clustered.

1 2.5 5 7.5 10 12.5 15

x 10
−3

0

5

10

15
x 10

4

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Cities

B−DisC (Pruned)
G−Gr−DisC (Pruned)
Wh−G−DisC (Pruned)
L−Gr−G−DisC (Pruned)
L−Wh−G−DisC (Pruned)

(c) Cities.

1 2 3 4 5 6
0

2

4

6

8

10

12
x 10

4

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Cameras

B−DisC (Pruned)
G−Gr−DisC (Pruned)
Wh−G−DisC (Pruned)
L−Gr−G−DisC (Pruned)
L−Wh−G−DisC (Pruned)

(d) Cameras.

Figure 8: Node accesses for Basic-DisC and all variations of Greedy-DisC with pruning.

5000 10000 15000
0

500

1000

1500
Clustered (2D)

Dataset size

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

r = 0.01
r = 0.02
r = 0.03
r = 0.04
r = 0.05
r = 0.06
r = 0.07

(a) Solution size.

5000 10000 15000
0

0.5

1

1.5

2

2.5

3
x 10

6 Clustered (2D)

Dataset size

M
−

T
re

e
no

de
 a

cc
es

se
s

r = 0.01
r = 0.02
r = 0.03
r = 0.04
r = 0.05
r = 0.06
r = 0.07

(b) Node accesses.

2 4 6 8 10
0

2000

4000

6000

8000

10000
Clustered (10000 objects)

Number of dimensions

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

r = 0.01
r = 0.02
r = 0.03
r = 0.04
r = 0.05
r = 0.06
r = 0.07

(c) Solution size.

2 4 6 8 10
2

4

6

8

10

12

14
x 10

5 Clustered (10000 objects)

Number of dimensions

M
−

T
re

e
m

od
e

ac
ce

ss
es

r = 0.01
r = 0.02
r = 0.03
r = 0.04
r = 0.05
r = 0.06
r = 0.07

(d) Node accesses.

Figure 9: Varying (a)-(b) cardinality and (c)-(d) dimensionality.

Impact of M-tree Characteristics. Next, we evaluate
how the characteristics of the employed M-trees affect the
computational cost of computed DisC diverse subsets. Note
that, different tree characteristics do not have an impact on
which objects are selected as diverse.

Different degree of overlap among the nodes of an M-tree
may affect its efficiency for executing range queries. To
quantify such overlap, we employ the fat-factor [25] of a
tree T defined as:

f(T) =
Z − nh

n
· 1

m − h

where Z denotes the total number of node accesses required
to answer point queries for all objects stored in the tree, n
the number of these objects, h the height of the tree and
m the number of nodes in the tree. Ideally, the tree would
require accessing one node per level for each point query
which yields a fat-factor of zero. The worst tree would visit
all nodes for every point query and its fat-factor would be
equal to one.

We created various M-trees using different splitting poli-
cies which result in different fat-factors. We present results
for four different policies. The lowest fat-factor was ac-
quired by employing the “MinOverlap” policy. Selecting as
new pivots the two objects with the greatest distance from
each other resulted in increased fat-factor. Even higher fat-
factors were observed when assigning an equal number of
objects to each new node (instead of assigning each object
to the node with the closest pivot) and, finally, selecting

the new pivots randomly produced trees with the highest
fat-factor among all policies.

Figure 10 reports our results for our uniform and clustered
2-dimensional datasets with cardinality equal to 10000. For
the uniform dataset, we see that a high fat-factor leads to
more node accesses being performed for the same solution.
This is not the case for the clustered dataset, where objects
are gathered in dense areas and thus increasing the fat-factor
does not have the same impact as in the uniform case, due to
pruning and locality. As the radius of the computed subset
becomes very large, the solution size becomes very small,
since a single object covers almost the entire dataset, this is
why all lines of Figure 10 begin to converge for r > 0.5.

We also experimented with varying the capacity of the
nodes of the M-tree. Trees with smaller capacity require
more node accesses since more nodes need to be recovered
to locate the same objects; when doubling the node capacity,
the computational cost was reduced by almost 45%.

Zooming. In the following, we evaluate the performance
of our zooming algorithms. We begin with the zooming-
in heuristics. To do this, we first generate solutions with
Greedy-DisC for a specific radius r and then adapt these so-
lutions for radius r′. We use Greedy-DisC because it gives
the smallest sized solutions. We compare the results to the
solutions generated from scratch by Greedy-DisC for the
new radius. The comparison is made in terms of solution
size, computational cost and also the relation of the pro-
duced solutions as measured by the Jaccard distance. Given

21

0.1 0.3 0.5 0.7 0.9
0.5

1

1.5

2

2.5

3

3.5
x 10

6 Uniform (2D − 10000 objects)

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

f = 0.150
f = 0.613
f = 0.332
f = 0.765

(a) Uniform.

0.1 0.3 0.5 0.7 0.9
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Clustered (2D − 10000 objects)

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

f = 0.550
f = 0.182
f = 0.090
f = 0.276

(b) Clustered.
Figure 10: Varying M-tree fat-factor.

0.010.020.030.040.050.06
0

200

400

600

800

1000

1200
Clustered (2D − 10000 objects)

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

Greedy−DisC
Basic−Zoom−In
Greedy−Zoom−In

(a) Clustered.

0.0010.00250.0050.00750.01
0

500

1000

1500

2000

2500
Cities

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

Greedy−DisC
Basic−Zoom−In
Greedy−Zoom−In

(b) Cities.

Figure 11: Solution size for zooming-in.

two sets S1, S2, their Jaccard distance is defined as:

Jaccard(S1, S2) = 1 − |S1 ∩ S2|
|S1 ∪ S2|

Figure 11 and Figure 12 report the corresponding results for
different radii. Due to space limitations, we report results
for the “Clustered” and “Cities” datasets. Similar results
are obtained for the other datasets as well. Each solution
reported for the zooming-in algorithms is adapted from the
Greedy-DisC solution for the immediately larger radius and,
thus, the x-axis is reversed for clarity; e.g., the zooming
solutions for r = 0.02 in Figure 11(a) and Figure 12(a) are
adapted from the Greedy-DisC solution for r = 0.03.

We observe that the zooming-in heuristics provide similar
solution sizes with Greedy-DisC in most cases, while their
computational cost is smaller, even for Greedy-Zoom-In.
More importantly, the Jaccard distance of the adapted solu-
tions for r′ to the Greedy-DisC solution for r is much smaller
than the corresponding distance of the Greedy-DisC solu-
tion for r′ (Figure 13). This means that computing a new
solution for r′ from scratch changes most of the objects re-
turned to the user, while a solution computed by a zooming-
in heuristic maintains many common objects in the new so-
lution. Therefore, the new diverse subset is intuitively closer
to what the user expects to receive.

Figure 14 and Figure 15 show corresponding results for the
zooming-out heuristics. The Greedy-Zoom-Out(c) heuristic
achieves the smallest adapted DisC diverse subsets. How-
ever, its computational cost is very high and generally ex-
ceeds the cost of computing a new solution from scratch.
Greedy-Zoom-Out(a) also achieves similar solution sizes with
Greedy-Zoom-Out(c), while its computational cost is much
lower. The non-greedy heuristic has the lowest computa-
tional cost. Again, all the Jaccard distances of the zooming-
out heuristics to the previously computed solution are smaller
than that of Greedy-DisC (Figure 16), which indicates that
a solution computed from scratch has only a few objects in
common from the initial DisC diverse set.

7. RELATED WORK
Other Diversity Definitions: Diversity has recently at-
tracted a lot of attention as a means of enhancing user sat-
isfaction [27, 4, 16, 6]. Diverse results have been defined in

0.010.020.030.040.050.06
0

2

4

6

8

10

12
x 10

5 Clustered (2D − 10000 objects)

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Greedy−DisC
Basic−Zoom−In
Greedy−Zoom−In

(a) Clustered.

0.0010.00250.0050.00750.01
0

0.5

1

1.5

2
x 10

5 Cities

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Greedy−DisC
Basic−Zoom−In
Greedy−Zoom−In

(b) Cities.

Figure 12: Node accesses for zooming-in.

0.010.020.030.040.050.06
0

0.2

0.4

0.6

0.8

1
Clustered (2D − 10000 objects)

radius

Ja
cc

ar
d

D
is

ta
nc

e

Greedy−DisC (r) − Greedy−DisC (r’)
Greedy−DisC (r) − Basic−Zoom−In (r’)
Greedy−DisC (r) − Greedy−Zoom−In (r’)

(a) Clustered.

0.0010.00250.0050.00750.01
0

0.2

0.4

0.6

0.8

1
Cities

radius

Ja
cc

ar
d

D
is

ta
nc

e

Greedy−DisC (r) − Greedy−DisC (r’)
Greedy−DisC (r) − Basic−Zoom−In (r’)
Greedy−DisC (r) − Greedy−Zoom−In (r’)

(b) Cities.

Figure 13: Jaccard distance for zooming-in.

0.02 0.03 0.04 0.05 0.06 0.07
0

100

200

300

400

500

600

700

800

900
Clustered (2D − 10000 objects)

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(a) Clustered.

0.0025 0.005 0.0075 0.01 0.0125
0

500

1000

1500

2000

2500
Cities

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(b) Cities.

Figure 14: Solution size for zooming-out.

0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14

16

18
x 10

5 Clustered (2D − 10000 objects)

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(a) Clustered.

0.0025 0.005 0.0075 0.01 0.0125
0

0.5

1

1.5

2

2.5

3

x 10
5 Cities

radius

M
−

tr
ee

 n
od

e
ac

ce
ss

es

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(b) Cities.

Figure 15: Node accesses for zooming-out.

0.02 0.03 0.04 0.05 0.06 0.07
0

0.2

0.4

0.6

0.8

1
Clustered (2D − 10000 objects)

radius

Ja
cc

ar
d

D
is

ta
nc

e

Greedy−DisC (r) − Greedy−DisC (r’)
Greedy−DisC (r) − Basic−Zoom−Out (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (a) (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (b) (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (c) (r’)

(a) Clustered.

0.0025 0.005 0.0075 0.01 0.0125
0

0.2

0.4

0.6

0.8

1
Cities

radius

Ja
cc

ar
d

D
is

ta
nc

e

Greedy−DisC (r) − Greedy−DisC (r’)
Greedy−DisC (r) − Basic−Zoom−Out (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (a) (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (b) (r’)
Greedy−DisC (r) − Greedy−Zoom−Out (c) (r’)

(b) Cities.
Figure 16: Jaccard distance for zooming-out.

22

various ways [10], namely in terms of content (or similarity),
novelty and semantic coverage. Similarity definitions (e.g.,
[31]) interpret diversity as an instance of the p-dispersion
problem [13] whose objective is to choose p out of n given
points, so that the minimum distance between any pair of
chosen points is maximized. Our approach differs in that
the size of the diverse subset is not an input parameter.
Most current novelty and semantic coverage approaches to
diversification (e.g., [9, 3, 29, 14]) rely on associating a di-
versity score with each object in the result and then either
selecting the top-k highest ranked objects or those objects
whose score is above some threshold. Such diversity scores
are hard to interpret, since they do not depend solely on
the object. Instead, the score of each object is relative to
which objects precede it in the rank. Our approach is fun-
damentally different in that we treat the result as a whole
and select DisC diverse subsets of it that fully cover it.

Another related work is that of [18] that extends near-
est neighbor search to select k neighbors that are not only
spatially close to the query object but also differ on a set of
predefined attributes above a specific threshold. Our work is
different since our goal is not to locate the nearest and most
diverse neighbors of a single object but rather to locate an
independent and covering subset of the whole dataset.

On a related issue, selecting k representative skyline ob-
jects is considered in [22]. Representative objects are se-
lected so that the distance between a non-selected skyline
object from its nearest selected object is minimized. Finally,
another related method for selecting representative results,
besides diversity-based ones, is k-medoids, since medoids
can be viewed as representative objects (e.g., [19]). However,
medoids may not cover all the available space. Medoids were
extended in [5] to include some sense of relevance (priority
medoids).

The problem of diversifying continuous data has been re-
cently considered in [12, 21, 20] using a number of variations
of the MaxMin and MaxSum diversification models.

Results from Graph Theory: The properties of inde-
pendent and dominating (or covering) subsets have been
extensively studied. A number of different variations ex-
ist. Among these, the Minimum Independent Dominat-

ing Set Problem (which is equivalent to the r-DisC diverse
problem) has been shown to have some of the strongest neg-
ative approximation results: in the general case, it cannot
be approximated in polynomial time within a factor of n1−ǫ

for any ǫ > 0 unless P = NP [17]. However, some approxi-
mation results have been found for special graph cases, such
as bounded degree graphs [7]. In our work, rather than pro-
viding polynomial approximation bounds for DisC diversity,
we focus on the efficient computation of non-minimum but
small DisC diverse subsets. There is a substantial amount
of related work in the field of wireless networks research,
since a Minimum Connected Dominating Set of wireless
nodes can be used as a backbone for the entire network [24].
Allowing the dominating set to be connected has an impact
on the complexity of the problem and allows different algo-
rithms to be designed.

8. SUMMARY AND FUTURE WORK
In this paper, we proposed a novel, intuitive definition of

diversity as the problem of selecting a minimum represen-
tative subset S of a result P, such that each object in P is
represented by a similar object in S and that the objects
included in S are not similar to each other. Similarity is
modeled by a radius r around each object. We call such
subsets r-DisC diverse subsets of P. We introduced adap-
tive diversification through decreasing r, termed zooming-in,
and increasing r, called zooming-out. Since locating min-
imum r-DisC diverse subsets is an NP-hard problem, we

introduced heuristics for computing approximate solutions,
including incremental ones for zooming, and provided corre-
sponding theoretical bounds. We also presented an efficient
implementation based on spatial indexing.

There are many directions for future work. We are cur-
rently looking into two different ways of integrating rel-
evance with DisC diversity. The first approach is by a
“weighted” variation of the DisC subset problem, where each
object has an associated weight based on its relevance. Now
the goal is to select a DisC subset having the maximum sum
of weights. The other approach is to allow multiple radii,
so that relevant objects get a smaller radius than the ra-
dius of less relevant ones. Other potential future directions
include implementations using different data structures and
designing algorithms for the online version of the problem.

Acknowledgments
M. Drosou was supported by the ESF and Greek national
funds through the NSRF - Research Funding Program: “Her-
aclitus II”. E. Pitoura was supported by the project “Inter-
Social” financed by the European Territorial Cooperation
Operational Program “Greece - Italy” 2007-2013, co-funded
by the ERDF and national funds of Greece and Italy.

9. REFERENCES
[1] Acme digital cameras database. http://acme.com/digicams.
[2] Greek cities dataset. http://www.rtreeportal.org.
[3] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM, 2009.
[4] A. Angel and N. Koudas. Efficient diversity-aware search.

In SIGMOD, 2011.
[5] R. Boim, T. Milo, and S. Novgorodov. Diversification and

refinement in collaborative filtering recommender. In
CIKM, 2011.

[6] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversifcation,
monotone submodular functions and dynamic updates. In
PODS, 2012.

[7] M. Chleb́ık and J. Chleb́ıková. Approximation hardness of
dominating set problems in bounded degree graphs. Inf.
Comput., 206(11), 2008.

[8] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk
graphs. Discrete Mathematics, 86(1-3), 1990.

[9] C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova,
A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and
diversity in information retrieval evaluation. In SIGIR,
2008.

[10] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Record, 39(1), 2010.

[11] M. Drosou and E. Pitoura. DisC diversity:
Result diversification based on dissimilarity and coverage,
Technical Report. University of Ioannina, 2012.

[12] M. Drosou and E. Pitoura. Dynamic diversification of
continuous data. In EDBT, 2012.

[13] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of
p-dispersion heuristics. Computers & OR, 21(10), 1994.

[14] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k
bounded diversification. In SIGMOD, 2012.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[16] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, 2009.

[17] M. M. Halldórsson. Approximating the minimum maximal
independence number. Inf. Process. Lett., 46(4), 1993.

[18] A. Jain, P. Sarda, and J. R. Haritsa. Providing diversity in
k-nearest neighbor query results. In PAKDD, 2004.

[19] B. Liu and H. V. Jagadish. Using trees to depict a forest.
PVLDB, 2(1), 2009.

[20] E. Minack, W. Siberski, and W. Nejdl. Incremental
diversification for very large sets: a streaming-based
approach. In SIGIR, 2011.

[21] D. Panigrahi, A. D. Sarma, G. Aggarwal, and A. Tomkins.
Online selection of diverse results. In WSDM, 2012.

[22] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, pages 892–903, 2009.

23

p

p1

p2

a

b

c x

y

z

r

(a)

p1 p2

p3

p

b

c
a

d

A

a

r1

r2

(b)

p
v5

v4

a

br1

r2

v1

v2

v3

A

(c)

Figure 17: Independent neighbors.

[23] M. T. Thai, F. Wang, D. Liu, S. Zhu, and D.-Z. Du.
Connected dominating sets in wireless networks with
different transmission ranges. IEEE Trans. Mob. Comput.,
6(7), 2007.

[24] M. T. Thai, N. Zhang, R. Tiwari, and X. Xu. On
approximation algorithms of k-connected m-dominating
sets in disk graphs. Theor. Comput. Sci., 385(1-3), 2007.

[25] C. J. Traina, A. J. M. Traina, C. Faloutsos, and B. Seeger.
Fast indexing and visualization of metric data sets using
slim-trees. IEEE Trans. Knowl. Data Eng., 14(2), 2002.

[26] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and
S. Amer-Yahia. Efficient computation of diverse query
results. In ICDE, 2008.

[27] M. R. Vieira, H. L. Razente, M. C. N. Barioni,
M. Hadjieleftheriou, D. Srivastava, C. Traina, and V. J.
Tsotras. On query result diversification. In ICDE, 2011.

[28] K. Xing, W. Cheng, E. K. Park, and S. Rotenstreich.
Distributed connected dominating set construction in
geometric k-disk graphs. In ICDCS, 2008.

[29] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes
variety to make a world: diversification in recommender
systems. In EDBT, 2009.

[30] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity
Search - The Metric Space Approach. Springer, 2006.

[31] M. Zhang and N. Hurley. Avoiding monotony: improving
the diversity of recommendation lists. In RecSys, 2008.

[32] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, 2005.

Appendix
Proof of Lemma 3: Let p1, p2 be two independent neigh-
bors of p. Then, it must hold that ∠p1pp2 (in the Euclidean
space) is larger than π

4
. We will prove this using contra-

diction. p1, p2 are neighbors of p so they must reside in
the shaded area of Figure 17(a). Without loss of generality,
assume that one of them, say p1, is aligned to the vertical

axis. Assume that ∠p1pp2 ≤ π
4
. Then cos(∠p1pip2) ≥

√
2

2
.

It holds that b ≤ r and c ≤ r, thus, using the cosine law we
get that a2 ≤ r2(2 −

√
2) (1). The Manhattan distance of

p1,p2 is equal to x+ y =
√

a2 + 2xy (2). Also, the following

hold: x =
√

b2 − z2, y = c − z and z = b cos(∠p1pip2) ≥
b
√

2
2

. Substituting z and c in the first two equations, we get

x ≤ b√
2

and y ≤ r − b
√

2
2

. From (1),(2) we now get that

x + y ≤ r, which contradicts the independence of p1 and p2.
Therefore, p can have at most (2π/π

4
) − 1 = 7 independent

neighbors.

Proof of Theorem 2: We consider that inserting a node u
into S has cost 1. We distribute this cost equally among all
covered nodes, i.e., after being labeled grey, nodes are not
charged anymore. Assume an optimal minimum dominating
set S∗. The graph G can be decomposed into a number of
star-shaped subgraphs, each of which has one node from S∗

at its center. The cost of an optimal minimum dominating
set is exactly 1 for each star-shaped subgraph. We show
that for a non-optimal set S, the cost for each star-shaped
subgraph is at most ln∆, where ∆ is the maximum degree
of the graph. Consider a star-shaped subgraph of S∗ with u

at its center and let NW
r (u) be the number of white nodes

in it. If a node in the star is labeled grey by Greedy-C,
these nodes are charged some cost. By the greedy condition
of the algorithm, this cost can be at most 1/|NW

r (u)| per
newly covered node. Otherwise, the algorithm would rather
have chosen u for the dominating set because u would cover
at least |NW

r (u)| nodes. In the worst case, no two nodes
in the star of u are covered at the same iteration. In this
case, the first node that is labeled grey is charged at most
1/(δ(u)+1), the second node is charged at most 1/δ(u) and
so on, where δ(u) is the degree of u. Therefore, the total
cost of a star is at most:

1

δ(u) + 1
+

1

δ(u)
+. . .+

1

2
+1 = H(δ(u)+1) ≤ H(∆+1) ≈ ln ∆

where H(i) is the ith harmonic number. Since a minimum
dominating set is equal or smaller than a minimum indepen-
dent dominating set, the theorem holds.

Proof of Lemma 4(i): For the proof, we use a technique
for partitioning the annulus between r1 and r2 similar to
the one in [23] and [28]. Let r1 be the radius of an object
p (Figure 17(b)) and α a real number with 0 < α < π

3
.

We draw circles around the object p with radii (2cosα)xp ,
(2cosα)xp+1, (2cosα)xp+2, . . . , (2cosα)yp−1, (2cosα)yp , such
that (2cosα)xp ≤ r1 and (2cosα)xp+1 > r2 and (2cosα)yp−1 <

r2 and (2cosα)yp ≥ r2. It holds that xp =
⌊

ln r1

ln(2 cos α)

⌋

and

yp =
⌈

ln r2

ln(2 cos α)

⌉

. In this way, the area around p is parti-

tioned into yp − xp annuluses plus the r1-disk around p.
Consider an annulus A. Let p1 and p2 be two neighbors

of p in A with dist(p1, p2) > r1. Then, it must hold that
∠p1pp2 > α. To see this, we draw two segments from p
crossing the inner and outer circles of A at a, b and c, d
such that p1 resides in pb and ∠bpd = α, as shown in the
figure. Due to the construction of the circles, it holds that
|pb|
|pc| = |pd|

|pa| = 2 cos α. From the cosine law for p
△
ad, we get

that |ad| = |pa| and, therefore, it holds that |cb| = |ad| =
|pa| = |pc|. Therefore, for any object p3 in the area abcd of
A, it holds that |pp3| > |bp3| which means that all objects in
that area are neighbors of p1, i.e., at distance less or equal
to r1. For this reason, p2 must reside outside this area which
means that ∠p1pp2 > α. Based on this, we see that there
exist at most 2π

α
− 1 independent (for r1) nodes in A.

The same holds for all annuluses. Therefore, we have at
most (yp−xp)

(

2π
α

− 1
)

independent nodes in the annuluses.
For 0 < α < π

3
, this has a minimum when α is close to π

5
and

that minimum value is 9
⌈

ln(r2/r1)
ln(2 cos(π/5))

⌉

= 9
⌈

logβ(r2/r1)
⌉

,

where β = 1+
√

5
2

.

Proof of Lemma 4(ii): Let r1 be the radius of an object p.
We draw Manhattan circles around the object p with radii
r1, 2r1, . . . until the radius r2 is reached. In this way, the

area around p is partitioned into γ =
⌈

r2−r1

r1

⌉

Manhattan

annuluses plus the r1-Manhattan-disk around p.
Consider an annulus A. The objects shown in Figure 17(c)

cover the whole annulus and their Manhattan pairwise dis-
tances are all greater or equal to r1. Assume that the annu-
lus spans among distance ir1 and (i+1)r1 from p, where i is

an integer with i > 1. Then, |ab| =
√

2 (ir1 + r1/2)2. Also,

for two objects p1, p2 it holds that |p1p2| =
√

2 (r1/2)2.

Therefore, at one quadrant of the annulus there are |ab|
|p1p2|

= 2i + 1 independent neighbors which means that there are
4(2i + 1) independent neighbors in A. Therefore, there are
in total

∑γ
i=1 4(2i+1) independent (for r1) neighbors of p.

24

