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ABSTRACT

Users of websites such as Facebook, Ebay and Yahoo! de-
mand fast response times, and these sites replicate data
across globally distributed datacenters to achieve this. How-
ever, it is not necessary to replicate all data to all locations:
if a European user’s record is never accessed in Asia, it does
not make sense to pay the bandwidth and disk costs to main-
tain an Asian replica.

In this paper, we describe mechanisms for selectively repli-
cating large-scale web databases on a record-by-record ba-
sis. We introduce a flexible constraint language to specify
replication policy constraints. We then present an adaptive
scheme for replicating data to where it is most frequently
accessed, while respecting policy constraints and using min-
imal bookkeeping. Experiments using a modified version of
our PNUTS system demonstrate our techniques work well.

1. INTRODUCTION

If users must wait longer than one second for pages to load,
they can become distracted and may decide to switch to a
different website [20]. In order to provide fast page loading
for users across the globe, data must be physically located
near the user. However, the cost of replicating all data ev-
erywhere can be prohibitive. If a dataset is frequently up-
dated, those updates must be sent over a wide area network
to every datacenter with a replica, incurring high bandwidth
costs. Furthermore, every datacenter must be provisioned
with enough servers to handle the updates. We can avoid
some of this cost if we do not replicate data to locations
where it is infrequently accessed. Consider for example a
user record for Alice, who lives in Europe and constantly
changes her profile. If Alice never travels to Asia, and her
profile is rarely accessed from Asia, the network and disk
bandwidth to propagate her updates to the Asian datacenter
are not justified. On the other hand, she might have many
admirers in the U.S. who constantly view her profile in a
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social networking application, and maintaining a replica in
a U.S. datacenter will reduce response times for those users
(and even save on bandwidth if her profile if viewed more
often from the U.S. than the frequency of her updates).

A replication framework must also support a variety of
policy constraints. For example, legal constraints prevent
us from replicating user data to certain jurisdictions. When
users create a Yahoo account, they agree to a terms-of-
service contract (TOS) which details where Yahoo is allowed
to store their data. So, while the namespace of the user
database needs to be global (so that each ID is globally
unique), all other data can only be in certain places. As an-
other example, we may decide to always keep at least three
copies of a critical data item in pairwise resilient locations
to facilitate disaster recovery, even if the record is only ever
accessed from one location.

In this paper, we consider how to implement a selective
replication mechanism for a globally replicated web database.
To test our techniques, we have extended our PNUTS sys-
tem [9], a globally replicated, scalable web database that
is used in production at Yahoo. The production version of
PNUTS decides what data to replicate where at a table gran-
ularity (though updates are propagated at the per-record
granularity). Our extensions to PNUTS support a finer-
grained, per-record selective replication policy. The main
goal of this mechanism is to minimize replication cost while
respecting policy constraints (such as legal constraints or
minimum replication levels). Furthermore, the mechanism
can be tuned to support a latency guarantee. An example
of such a guarantee is a Service Level Agreement (SLA) of
the form “95% of reads must be satisfied in 50 ms or less.”

We have designed a constraint language that allows web
developers to specify policy constraints as a function of the
content of the record (Section 4). The system has the free-
dom to place records to achieve system efficiency, subject to
these constraints. Since it is difficult to predict future access
patterns, we have designed a mechanism, called dynamic
placement, for adaptively deciding where to make replicas.
Dynamic placement uses minimal bookkeeping to dynam-
ically migrate replicas away from locations where they are
not often accessed to locations where the read rate is higher,
subject to any specified constraints. Our approach is novel
in considering both system efficiency and replication poli-
cies, and has a unique, record-centric adaptive design (Sec-
tion 3) that balances local and global decision making: each
region decides on whether adding a replica of a record will
benefit the local usage of that record, but the record master
(each record has a unique master copy) decides whether to



allow the replication, taking system-wide costs and policies
into account. The local aspect allows for near-optimal per-
formance to be achieved with minimal book-keeping, and
the global aspect allows flexible policies to be enforced. The
design also avoids bottle-necks and gains fault-tolerance by
leveraging PNUTS’ notion of record masters (the masters
for records in a table are widely distributed based on access
patterns [9], and the system is capable of continuing in the
presence of failures by automatically transferring mastership
to surviving copies). We present an experimental study, us-
ing a modified version of PNUTS installed in datacenters
around the world, to demonstrate the effectiveness of our
techniques in a real web database setting (Section 5).

Our approach consists of a collection of design choices
that work together to address complexity, performance and
policy issues encountered in managing geo-replicated data
at Yahoo!. We discuss these design choices where appropri-
ate throughout the paper; we also highlight some practical
considerations in Appendix A.7. We review related work in
database replication and caching in Section 2 and conclude
in Section 6.

2. RELATED WORK

Cross-datacenter replication is important for web-scale
databases such as PNUTS [9] and BigTable [7]. To our
knowledge, few systems have focused on selective replica-
tion for optimizing bandwidth and supporting flexible poli-
cies, as we discuss here. For example, Cassandra [18] does
support fine-grained control of cross-datacenter replication,
but the control is static and not based on access patterns.
Dynamo [12] sacrifices consistency across replicas to achieve
high level of availability. We believe our selective replication
algorithms are applicable to those systems also.

Caching versus replication Kossman [16] defines
caching as storing transient copies of individual data ob-
jects, usually in memory and usually at the edge (e.g., not
at a database server), and invalidating them on update. In
contrast, replication typically operates at the table level,
and stores long-lived data on disk on database server ma-
chines. Replicated data is maintained by propagating up-
dates. Our selective replication policy is a hybrid of these
two approaches: the granularity is record level and copies
are transiently stored (as in caching) but storage is on disk
for use by the database server and we propagate updates (as
in replication).

Dynamic replica placement Computing the best place-
ment of database replicas from a trace of accesses is NP-
complete [6]. Furthermore, even if a historical trace is known,
access characteristics can change. Adaptive schemes use
heuristics to place replicas based on current access patterns.
Our dynamic placement technique most resembles the ADR
algorithm of Wolfson et al. [25], which dynamically creates
and deletes replicas in response to access patterns. How-
ever, our techniques differ in fundamental ways from ADR.
First, we avoid tracking read and write statistics directly.
In a web-scale database, maintaining even simple statistics
at a per-record granularity can be complex and expensive.
Second, we integrate a richer type of constraints, which in-
clude inclusion and exclusion lists. Third, we replace some of
the inter-server coordination of ADR with decision-making
by the record master, which simplifies the protocol and is
especially important in a geo-replicated setting. Our dy-
namic placement model is unique in that it combines cen-
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tralized and localized strategies at the record level. Specifi-
cally, a replica makes a local decision based on its observed
read/write patterns, and submits it to its record master,
which makes the final decision based on application con-
straints. Mariposa [22] uses an economic model to provide
dynamic placement of data replicas across autonomous sites.
Our model is designed for networks of datacenters owned by
the same entity and without a market-based resource allo-
cation system.

Dynamic cache placement Examples of caching tech-
niques are described in [1, 4]. Multiple techniques have been
developed for deciding where to place cache replicas based
on access patterns (for example, [15, 21]). This work focuses
on dealing with storage constraints, rather than on minimiz-
ing bandwidth usage. Further, it assumes updates are rare
and can be ignored when computing optimal placement, or
that updates simply cause invalidations and thus the cost of
updates is low. In our system, updates must be propagated
to full replicas, and must be considered when placing repli-
cas. Yu and Vahdat [26] consider how to place replicas based
on availability; we focus on resource usage and performance.

The placement algorithm of [24] considers bandwidth opti-
mization and update costs. However, the authors list several
practical limitations, such as the assumption that all objects
have the same size, and computing the placement requires
complex coordination between all of the distributed nodes.

Kossmann et al. [17] discuss how to analyze a distributed
query plan to determine whether cached copies should be
made at specific locations. They focus on complex relational
query plans; our queries are much simpler, and we can use
simpler techniques without sophisticated statistics to deter-
mine our placement. Similarly, caching of query results [11]
uses the semantics of the query to decide which results are
useful to other queries; but such semantics are not present
in the simple CRUD workloads we deal with here.

Other replication paradigms Early work on scalable,
highly available distributed databases includes [19]. How-
ever, the focus is on memory-resident clusters with fast in-
terconnects and they do not optimize for bandwidth. Peer-
to-peer systems use replication to make it easier to process
queries for content. Shark [5] focuses on how to coopera-
tively cache among mutually distrustful clients; in our set-
ting all replicas are typically owned by the same entity.
Cohen and Shenker [8] describe a replication policy that
makes peer-to-peer search more efficient. Our queries are
local lookups rather than distributed, peer-to-peer search.
Schism [10] attempts to find a good partitioning scheme
based on known workload to minimize the number of dis-
tributed transactions across multiple records, while our ap-
proach dynamically places individual records based on
read/write patterns. Another broadly related work is mate-
rialized views in database system literature [14].

3. SELECTIVE REPLICATION

We start by describing an architecture to support selec-
tive, per-record replication. Given this architecture, we can
formally define the optimization problem we need to solve.

3.1 Architecture

In a globally replicated database, tables containing records
or other data objects are copied to geographically separated
datacenters. For example, copies might be made in data-
centers in Singapore, on the west coast of the U.S.; on the
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Figure 1: Globally replicated database that asyn-
chronously propagates updates to remote datacen-
ters.

east coast of the U.S., and in France. For clarity in our dis-
cussion, we will focus on a single table containing records,
but our techniques generalize directly to multiple tables or
other data models. Each replica location stores a full or
partial copy of the table.

Because of the high latency for communicating between
datacenters, replication is typically done asynchronously.
Usually, writes are persisted at one or more local servers and
acknowledged to the applications (e.g., made I-safe). Later,
updates are sent to other replica locations. An example of
this architecture is shown in Figure 1. As the figure shows,
we can think of the system as having two distinct compo-
nents: a database system, which manages reads and writes of
data records, and a replication system, which manages repli-
cation of updates between replica locations. In real systems
these components might be on the same server (as in MySQL
replication [3]) or different servers (as in PNUTS [9]). The
replication system must ensure reliable delivery of updates
to remote datacenters despite failures. Individual servers
might fail (and even lose data), but local or remote copies
can be used for recovery.

In each location, a given record exists either as a full
replica or as a stub. A full replica is a normal copy of the
record, possibly enhanced with metadata to support selec-
tive replication, such as a list of other full replicas. A stub
contains only the record’s primary key and metadata, but
no data values. Note that we do not consider selective repli-
cation at the field or column level in this paper.

3.1.1 Handling reads and writes

We assume that there is a master copy of each record
where updates are applied before being propagated to repli-
cas. In PNUTS, the master copy for different records might
be in different datacenters: Alice’s master copy might be in
France while Bob’s master copy might be in India. The re-
sult is a per-record consistency model, where replicas might
lag the master by one or more versions, but will always even-
tually receive all updates (and apply them in the same or-
der). No locking or commit protocol is needed since trans-
actions are per-record; for more details see [9]. Our tech-
niques extend to systems that do not have a master and
allow updates to be applied anywhere (e.g. [12, 18], and as
we discuss in Section A.7, a mode of PNUTS that supports
eventual consistency).

When a record is inserted, the master copy decides where
the full replicas of the record are to exist, and sends full
replicas and stubs to the appropriate locations. When a
record is updated, the master applies the update and then
sends the updated data only to the locations that contain
a full replica. This is where the resource savings of selec-
tive replication come from, since bandwidth and disk I/Os

are only necessary for full replica locations. If a record is
updated in a non-master region, the update has to be for-
warded to the master, but this is because of the mastership
scheme, not specifically selective replication. When a record
is deleted, a message is sent to all replicas (full and stub) to
notify them to delete the data.

A record may be read from any location. If the local
database contains a full replica, it serves the request. Other-
wise, the database reads the list of full replica locations from
the stub and forwards the request to one of them (prefer-
ably the one with lowest network delay). This is the main
penalty for selective replication: some reads that would have
been served locally if all data were replicated everywhere
now need to be forwarded, with an attendant increase in re-
sponse latency (and some cross-datacenter bandwidth cost).
As we increase the number of full replicas, there are fewer
forwarded reads but also more cost to propagate updates.

It may be necessary to change the set of full replicas if, for
example, the access pattern changes. In this case we might
promote some stubs to full replicas and demote some full
replicas to stubs. In our mechanism, each location requests
promotion or demotion for records based on local access pat-
terns, but the master decides whether to grant the request.
This allows the master to enforce constraints like a minimum
number of copies (see Section 4.1). If the master decides to
convert a replica, it notifies all regions of the new list of full
replicas for this record to ensure that reads can be properly
forwarded. Additionally, if promoting a stub, the record
data must be sent to the location with the new full replica.

3.2 Optimization problem

Inter-datacenter bandwidth can be extremely expensive,
especially for datacenters with limited backbone connectiv-
ity. Therefore, we optimize system cost by minimizing band-
width used. Other costs, such as server cost, are also impor-
tant. However, minimizing bandwidth usage means avoid-
ing sending traffic to some datacenters, which will also re-
duce the number of servers needed in that datacenter. Thus,
bandwidth is a useful proxy for total system cost.

Inter-datacenter bandwidth for replication consists of:

e Replication bandwidth: The bandwidth required to send
updates between datacenters.

e Forwarding bandwidth: The bandwidth required to for-
ward read requests to remote datacenters because the
local replica contains a stub.

We want to minimize the sum of replication bandwidth and
forwarding bandwidth.

Additionally, two types of constraints must be enforced.
First, policy constraints specify where data must or cannot
be replicated, often for legal reasons. Policy constraints may
also specify a minimum number of full replicas to ensure
data availability. Second, latency constraints might specify
that the majority of users experience good response time.
It is convenient to express this constraint by specifying the
fraction of total global reads (e.g., 95%) that must be served
by a local, full replica. Satisfying these constraints may
mean making more full replicas, or making full replicas in
different locations, than would result from simply trying to
minimize bandwidth cost.

Then, we can define our optimization problem as follows:

DEerFINITION 1. Constrained selective replication
problem - Given the following constraints:
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e Policy constraints that define the allowable and manda-
tory locations for full replicas of each record, and the
minimum number of full replicas for each record, and

e A latency SLA which specifies that a specified fraction
of read requests must be served by a local, full replica

choose a replication strategy to minimize the sum of replica-
tion bandwidth and forwarding bandwidth for a given work-
load. O

Section 4 describes policy constraints. The specification for
latency SLA is described in Appendix A.1.

4. REPLICA PLACEMENT

The main decision we make is where to place full replicas
of each record, since we do not consider replicating just parts
of a record. In this section, we first describe our language
and mechanism for enforcing policy constraints. We then de-
scribe two schemes for placing replicas: a static constraint-
based scheme, and a dynamic scheme based on the datas’
access pattern.

4.1 Policy constraints

Policy constraints result from legal dictates, availability
needs, and other application requirements. In our approach,
when creating a table, the developer specifies policy con-
straints as a set of rules applying to some or all records in
the table. A rule consists of a predicate that defines the
table and affected records, a priority, and settings for one or
more of the following properties:

MIN_COPIES: The minimum number of full replicas of the
record that must exist.

INCL_LIST: An inclusion list—the locations where a full
replica of the record must exist.

EXCL_LIST: An exclusion list—the locations where a full
replica of the record cannot exist.

Rule priority is used when two rules apply to the same
record; the rule with the highest priority is given precedence
for properties defined in both rules. A full grammar for the
language is given in Appendix A.2. An example rule is:

Rule 1: IF
TABLE_NAME = "Users"
THEN
SET ’MIN_COPIES’ = 2
CONSTRAINT_PRI = O

This table-level rule specifies that all records in the “Users”

table must have at least two full replicas. An example of a
record-level rule is:

Rule 2: 1IF
TABLE_NAME = "Users" AND
FIELD_STR(’home_location’) = ’France’

THEN

SET ’MIN_COPIES’ = 3 AND

SET ’EXCL_LIST’ = ’USWest,USEast’
CONSTRAINT PRI = 1

This rule applies only to “Users” records that have value
“France” for the “home_location” field. Matching records
must have at least three full replicas, but full replicas can-
not be placed in the USWest or USEast datacenters. Some
records may match both Rules 1 and 2. For such records,
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we use the MIN_COPIES property from Rule 2, since it has
higher priority than Rule 1. Consider a third example rule:

Rule 3: 1IF
TABLE_NAME = "Users" AND
FIELD_STR(’home_location’) = ’India’
THEN
SET

CONSTRAINT_PRI

’INCL_LIST’
2

’India’

This rule specifies that records with home_location=’India’
must be stored in the India datacenter. Such records will
also be required to have two full replicas, since Rule 3 does
not override the value of MIN_COPIES from Rule 1.

In our system, constraints are enforced on a repair basis—
the system makes a best effort to repair a constraint that
is violated. For example, if a record is inserted into a table
with (MIN_COPIES=2), the database stores the record at one
location and returns success. But because the system is not
satisfying the constraint, it takes action to make a second
copy elsewhere. Similarly, if there is a failure so that a copy
is lost and a record no longer meets the minimum copies con-
straint, the system must make an extra copy of the record.
If a constraint rule changes, the system may have to change
the replication of a large number of records to conform to
the new rule. This is potentially expensive, and thus in our
prototype, constraint changes are not allowed after data is
inserted into a new table.

A constraint rule is valid if it can be satisfied. For exam-
ple, if a rule specifies the same location in both INCL_LIST
and EXCL_LIST, then it is impossible to satisfy the rule. We
formalize and discuss the constraint checking problem in Ap-
pendix A.3. Ultimately, a valid rule generates a MIN_.COPIES,
INCL_LIST, and EXCL_LIST that can be mutually satisfied.

4.2 Static constraint-based data placement

A static constraint-based placement policy chooses where
to place records based on the values for the record’s data
fields. We can define a function choose_replicas(R,C) that
takes a record R and a set of constraints C, and chooses a set
of locations for full replicas which satisfy C. This function
could choose locations randomly, or use heuristics to choose,
such as preferring locations near the user’s home_location.

The master makes an initial placement decision when the
record is inserted. If the record is updated such that it
matches different constraints, the master may potentially
have to change the placement of the data to ensure con-
straints are not violated. Furthermore, on update, the heuris-
tics in choose_replicas() may choose a different location.

Consider the insert of a record R. We define stub(R) as
the stub version of R, that is, R without any data values.
Assume C is the set of constraints that have been defined,
and L is the set of all possible replica locations. Algorithm 1
shows the steps taken on insert.

Algorithm 1 Static constraint-based policy, on insert

Set P = choose_replicas(R,C)
Send R to all p €P.
Send stub(R) to all [ €L.

R and stub(R) are published to the messaging layer in a
single transaction (a special case that PNUTS’ messaging
layer handles). Since successfully published messages are
guaranteed to be delivered, an insert either succeeds and



places a record or stub in every region, or fails and writes
nothing. It is possible to achieve correctness without mes-
saging layer transactions; we omit those details here.

If there is an update of R such that it now matches dif-
ferent constraint rules or so that choose replicas() picks
different locations, then the master may need to change the
set of full replicas. In this case, the master must send the
record to the new full replica regions, and stubs with the
new full replica list to all of the regions. Old full replica
location that are no longer listed in the full replica list of
the stubs will demote their copy to a stub (discarding data
values.) A full algorithm is given in Appendix A.4.

Renewal denied

Retention interval

expires

Surrender accepted

Surrender denied

Read request

Full replica granted
Full replica denied

Requesting
full copy

4.3 Dynamic placement

One disadvantage of the static constraint-based scheme is
that it is insensitive to access patterns. Although the heuris-
tics in choose_replicas() can be sophisticated enough to
deal with broad access characteristics, it is difficult to tune
them for fine-grained access patterns. For example, if a user
in France has lots of friends in Asia, but this is not contem-
plated by the heuristic, the system may decide not to make
full replicas in Asia even though doing so would improve
response time. Furthermore, while static constraint-based
adapts to changes in the data records, it does not adapt to
changes in the access patterns.

We considered a replication scheme that gathered read
and write statistics (as in [25]) in order to make dynamic
replica placement decisions. However, access patterns vary
from user to user and thus from record to record, requir-
ing bookkeeping at the per-record level. Efficiently acquir-
ing, tracking and collecting access statistics from around
the world is a complex and expensive process. In partic-
ular, storing per-record statistics on disk requires signifi-
cant disk I/O to maintain these statistics; and maintaining
fine-grained statistics in memory takes up valuable cache
space. Furthermore, communicating statistics to the mas-
ter to make placement decisions, or making such decisions
in a distributed manner while enforcing constraints, adds
significant complexity to the system.

Instead, our approach is to make a full replica when we
see a read at a stub location, and demote a full replica when
we see a write at a different location. (There is a reten-
tion interval during which we don’t demote a newly created
replica, as we discuss below.) This approach, called dy-
namic placement, is based on the idea that if a record is
read from a location, it is likely to be read again. For ex-
ample, a user session might consist of multiple reads in a
row. At the same time, if we see an update for a record that
has not been read recently, then likely the user session is
over and we should demote the full replica to avoid paying
the cost of further propagated updates. The local replica
location requests promotion or demotion, but the master
decides whether to grant the request in order to ensure pol-
icy constraints are enforced. Although dynamic placement
is heuristic, it takes better account of access patterns than
static constraint-based. At the same time, it avoids the ex-
pensive bookkeeping of more accurate tracking of statistics.

A key aspect of our approach is a retention interval: after
a location makes a new full replica, it retains that full replica
for at least some interval I. During I, updates are applied

Figure 2: State diagram for dynamic placement, ex-
ecuted by each location. Double circles indicate lo-
cation has a full replica; single circles indicate a stub.

read we still have an up-to-date replica stored locally. We
serve it, and then retain the full replica for another interval
1. If the next operation is a write, we demote the full replica
to a stub. Thus, we demote replicas only when we have not
seen a read for a while (since the retention interval expired
and was not renewed before the location saw the write). If
no reads or writes occur for a while after the interval expires,
the full replica lingers, but this does no harm since there are
no updates to consume bandwidth.

When a record is inserted, dynamic follows the same steps
as static constraint-based (Algorithm 1) to seed an initial
set of full replicas. Then, dynamic placement promotes and
demotes records based on the read and write pattern. Even
if the initial full replicas are chosen poorly, the adaptive
nature of our scheme migrates full replicas to the locations
where read rates are high compared to update rates.

Figure 2 shows the states a location can be in with re-
spect to a given record. When the retention interval of a
full replica expires, the location decides whether to try to
retain the full replica, or demote it to a stub, based on the
next operation seen. The location makes a local decision
but then confirms this decision with the master, who either
grants or denies the request. Similarly, a stub record can
request promotion to a full record, but must gain the mas-
ter’s approval to do so. Detailed algorithms for converting
between stub and full replica are provided in Appendix A.5.

4.3.1 Retention interval configuration

The length of the retention interval I is a key parame-
ter. If the interval is too short, locations will be quick to
surrender full replicas, as they are likely to have an expired
full replica when an update arrives. In a write-heavy work-
load, this could result in high cost, as even a desirable full
replica may frequently be surrendered, only to be acquired
again on the next read. In contrast, an interval that is too
long means that a single read can cause a full replica to be
retained for a long time, costing bandwidth as we apply re-
peated updates, even if there is not another read. We have
had success tuning I both through workload simulation and
adjusting it in PNUTS itself.

4.3.2 Latency constraints

to the replica, and it is served to local readers. Once the
interval expires, crucially, we do not take immediate action.
We wait for the next operation: if the next operation is a
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Dynamic placement attempts to minimize bandwidth us-
age by creating full replicas where reads outnumber writes,
and stubs in other locations. However, it may be necessary



to make extra full replicas to ensure the latency SLA is met.
(The SLA is enforced using monitoring by operations engi-
neers; see Appendix A.1 for more details.) There are two
ways to accomplish this goal. The most direct way is to
increase the MIN_COPIES constraint. Increasing MIN_COPIES
is a blunt instrument, since extra full replicas will be made
of all records, regardless of whether those records are read
frequently in the new locations. The finer approach is to
increase the retention interval I. Then, full replicas will be
less likely to be demoted to stubs, meaning that more often,
reads will find a full replica at a location instead of a stub.

5. EVALUATION

We evaluate our selective replication techniques using a
modified version of the production PNUTS codebase in-
stalled in three datacenters in the U.S., India and Singapore.
We focus on two primary metrics:

e bandwidth - bytes transferred between datacenters for
replication and forwarded reads.

e latency - average read latency.
We compared five replication schemes:
e Full: replicate all records to all locations

e Static constraint-based (SCB) : static placement of
full replicas that respects constraints (Section 4.2).

e Dynamic constraint-based (DCB) : dynamic placement
of full replicas that respects constraints (Section 4.3).

e Dynamic: dynamic placement with no constraints.

e Bandwidth optimal (BWO) : assuming perfect future knowl-
edge, full replicas placed statically to minimize band-
width while satisfying policy constraints. We provide
this algorithm as a ”lower-bound.”

We examined Dynamic (without constraints) to understand
the behavior of that technique independently, even though
a production database would likely have constraints. BWO is
constructed using a knapsack algorithm to select full replicas
based on the operations trace used in our experiments; see
Appendix A.6 for details.

Our experiments show that simple dynamic schemes make
good replication decisions in most cases despite keeping no
statistics. However, when there is little geographic locality
of access, or a very high write rate, dynamic is less effective,
and the cost of adaptively promoting and demoting replicas
can outweigh any savings from selective replication.

5.1 Experimental setup

Workload—Our workload models a social networking
application in which the system retrieves the latest profiles
for a user’s friends each time the user logs in. We generated
a series of synthetic data sets and read/write traces in order
to directly vary different parameters of the workload. How-
ever, we validated that the distribution of logins and friend
counts (both Zipfian) matched real workloads from a Yahoo!
social application and the Twitter follows graph (these data
sets are described in [23]). We also ran one experiment using
a real trace extracted from the Yahoo application.

Each user is given a “home location” where their reads
and writes originate. In some experiments, this location is
fixed, and in others, it is allowed to vary. When a user logs in
the application reads their friends’ profile records, and with
some probability, updates the user’s profile record. The like-

lihood that a given friend has the same home location as the
user is controlled by the remote probability parameter (de-
fault=0.1); as we increase this probability more of a user’s
friends are assigned a home location different than the user
(necessitating a forwarded read if the friend’s record is only
a stub in the local datacenter). We also vary the proportion
of reads and writes (default: 9 reads/1 write) and the size
of reads and writes (default: 100 bytes for both).

Configuration—We set up PNUTS clusters in datacen-
ters in the United States, India and Singapore, each a min-
imal setup with 1 tablet controller, 1 router, and 1 storage
unit. We deployed Hedwig [2] as the pub/sub system to han-
dle cross-data center replication. While the per-data center
setup is small compared to production PNUTS, our focus
here is on measuring inter-data center bandwidth and la-
tency, rather than intra-data center. PNUTS’ scalability is
discussed elsewhere [9]. Our dataset consists of 100,000 1
KB user records. We ran 5 million read or write operations
for each data point. Though the number of users is small for
PNUTS, this lets us execute a large number of operations on
each user. All policies benefit equally from the fact that data
fits in memory; we observe that in practice social data is in-
creasingly being served from RAM. For dynamic schemes,
we generated a trace with 6 million read or write operations
and used the first 1 million operations as a warm-up work-
load that generated an initial placement of full replicas; for
other policies, full replicas and stubs were made on insert.
Note our methodology favors static placement in that all full
replicas are created in the initial population phase, and this
bandwidth cost does not count toward the results. In con-
trast, dynamic schemes still create some replicas even after
the warm-up phase ends. Our experimental results show
that in most cases dynamic still outperforms static.

For constraint schemes, we specified two constraints: each
record must have a full replica at the user’s home location,
and each record must have an additional full replica. For
SCB and DCB, the second full replica (besides the one at the
home location) was placed randomly. For Dynamic, a single
full replica is created initially. Note that even though our
constraint language is very flexible, our experiments show
that even simple constraints can be very effective.

Dynamic schemes can be tuned to provide better latency
by changing the retention interval. A longer interval means
that locations hold full replicas longer, and hence propor-
tionally more reads are served by a local copy. In produc-
tion, if the application is experiencing unacceptable latency,
retention interval can be increased to meet the latency SLA.
We used a retention interval of 300 seconds. We experi-
mented with a variety of intervals and chose this interval
because it offered low bandwidth usage and reasonable la-
tency; furthermore, it was short enough to quickly adapt to
changes in access patterns.

5.2 Varying read/write ratio

We examine the impact of the mix of reads and writes on
each policy. Figure 5 shows that as the proportion of writes
increases, the bandwidth cost increases proportionally for
all policies. Since Full must send updates to three copies,
its bandwidth consumption increases fastest. Dynamic, how-
ever, can keep as few as one copy (adaptively placed), so its
bandwidth cost increases most slowly. The remaining three
policies all have the constraint of keeping a minimum of
two copies and their bandwidth costs increase at rates be-
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tween Full and Dynamic. The extra bandwidth overhead for
leases makes DCB consume more bandwidth than the other
two policies as the proportion of writes increases.

This result has significant implications for cloud database
systems. In particular, increasing write traffic may eventu-
ally saturate the messaging layer, forcing us to scale it out
with more hardware. For a fixed size messaging layer de-
ployment, dynamic schemes send fewer messages per write,
and so can support an overall higher write rate.

As shown in Figure 6, the latency of the dynamic schemes
increase as write proportion increases, while the other poli-
cies experience little change in latency. With dynamic place-
ment, as the write proportion increases, the likelihood in-
creases that an update reaches an expired full replica and
causes the demotion of that replica to a stub. The result
is fewer full replicas, increasing overall latency. DCB must
maintain two copies and hence has a better latency than
Dynamic. In the other schemes, increased write rate leads to
increased system load and a slight increase in latency, but
does not change placement decisions.

We ran a similar experiment where we increased the rel-
ative size of read and write requests, while fixing the read-
to-write ratio. Detailed results are omitted. Larger writes
increased the bandwidth used for all policies. Latency, how-
ever, was unaffected for all policies. Since the number of
write operations did not increase, dynamic schemes did not
make different placement decisions.

5.3 Impact of locality

Next we examined the impact of locality on the perfor-
mance of different replication schemes. In this experiment,
we varied the remote probability from 0 to 0.5; at 0.5 on
average one half of a user’s friends have a remote home lo-
cation. Figure 3 shows the bandwidth used for each policy.
The bandwidth for Full is constant, since updates always
propagate to all three locations, and all reads are local. For
other policies, bandwidth usage increases with increasing re-

BWO Full Dyn. DCB SCB

Figure 7: Impact of record
cess pattern shifts.
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mote probability. As remote probability increases, there is
less geographic locality of access, and all schemes must do
increasing numbers of forwarded reads (costing bandwidth).

Other than BWO, Dynamic provides the lowest bandwidth,
as it adaptively places full replicas to achieve the best band-
width usage. (When remote probability is zero, Dynamic has
lower bandwidth than BWO because it makes only one copy,
at the user’s home location; while BWO makes two copies to
meet the constraint). When constraints are enforced, DCB is
worse than SCB. As an adaptive scheme, DCB has some cost
overhead because of control messages sent when promoting
or demoting replicas, and the transfer of a full record when
promoting a replica.

Figure 4 shows latency measurements. Dynamic and DCB
provide significantly better latency than SCB, and almost
match BWO. Because Dynamic aligns full replicas with the
locations where records tend to be read, most accesses are
local, and it is easier to meet a latency SLA. Dynamic has
slightly worse latency than DCB, whose constraints force the
system to make extra copies, increasing the number of locally-
served reads.

5.4 Changing access patterns

We examine a scenario where user access patterns shift.
During this experiment we changed the home location of
20% of the users, changing locality both for users reading
their own records and for users reading their friends’ records.
The Figure 7 dark (left side) bars show the results for band-
width. Dynamic performs better than any policy other than
BWO. The Figure 7 light (right side) bars show latency results.
Though Dynamic has almost twice the latency of Full, the
latency for DCB is comparable to Full. The dynamic schemes
are an order of magnitude better on latency than the static
constraint-based scheme. While Full seems a good choice in
this setting, note that a 20% access pattern shift in a short
amount of time is not likely; dynamic placement is superior
for minimizing bandwidth over the long run.



5.5 Real data trace

We evaluated our approach on a data set drawn from the
logs of a Yahoo! social application, similar to our synthetic
one. A logged write adds some social content to the writing
user’s record. A logged read gets social content from a user’s
record. We sampled from 10 days of logs to produce about
170,000 unique users, and then captured all appearances of
these users in the following 10 days. This results in a trace
of about 32 million operations; we warm-up on the first 10
days and report results from the second. The trace is very
read-heavy; only 0.06% of operations are writes. About 40%
operations are remote. With the tiny percentage of writes
and large percentage of remote reads, this trace is actually
very favorable to Full. We found that Dynamic and DCB
get similar excellent average read latencies (about 4ms) as
Full. The total bandwidth for Full is only 8 Mb due to all
reads being served locally and the small number of writes
in the trace. The total bandwidth is 15 Mb and 6.8 Mb for
Dynamic and DCB (MIN_COPY = 2) respectively. While we
expect Dynamic to have a hard time beating Full with this
trace, it is a nice surprise to see DCB actually consumes less
bandwidth and gets similar latency to Full. SCB does not
work well in this experiment, with average read latency of
14 ms and bandwidth of 183 Mb. While Full is effective in
this experiment, we see that Dynamic and DCB are effective
as well.

5.6 Scan performance

A stub record contains a record key and metadata in-
formation. The semantics we have chosen based on real
customer scenarios for table scan is to skip stubs and only
return full records. Though stubs are small, if a table con-
tains small records and/or a large number of stubs, they
may create a perceived slowdown in scan performance. In
this experiment, we measure time to scan an entire table in
a selected region by keeping a fixed number of full records
(33333 rows) while increasing the number of stub records.
Figure 8 shows scan time as we vary the number of stubs,
and as we vary full record size. Stub size stays a constant
112 bytes. As expected, the larger the stub footprint, the
more time scan spends on them. Nevertheless, in all cases
the stub overhead is less than 10%, even when records are
not much larger than stubs. The impact of stubs on scan
performance appears to be insignificant.

6. CONCLUSIONS

We have proposed a mechanism for selectively replicating
data at a record granularity while respecting policy con-
straints. We examined a dynamic placement scheme that
achieves efficient placement of data with small bookkeep-
ing overhead. Experimental results using PNUTS demon-
strate that our techniques provide significant improvement
in bandwidth usage between datacenters compared to full
replication. Moreover, our adaptive dynamic placement
scheme is tunable in order to meet latency constraints.
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APPENDIX

A.1 Latency SLA

In PNUTS, the latency SLA is specified as a soft con-
straint: a target SLA is specified, and operations engineers
monitor the performance of the system to ensure the SLA
is met. If the SLA is violated on a recurring basis, then
steps must be taken to reduce latency. In the production
system (which does not have selective replication yet), the
primary remedy is to allocate more servers to reduce overall
load and hence latency. Selective replication introduces the
possibility that the latency SLA might be violated not just
by load, but also by the system’s decision to make stubs of
some records in some locations. In this case, the remedy
is to either increase the retention interval (as described in
Section 4.1) or to increase the MIN_COPIES constraint.

There are multiple possible ways to specify the latency
constraint. One possibility is to specify the target latency
for some percentile of users. For example:

“Read latency must be 100 ms or less for 95% of users”

However, the database sees only queries, and since one
user action may generate multiple queries, it is hard to cor-
relate queries to end users. Thus it is hard to monitor this
type of SLA. A second possibility is to specify a target la-
tency for individual operations:

“Read latency must be 50 ms or less for 95% of read opera-
tions”

This SLA is easier to monitor. One disadvantage is that
a violation of the SLA could be attributable to multiple
causes: bad decisions by the selective replication mecha-
nism; overloaded servers; network congestion, and so on.
For this reason, it might be useful to additionally specify a
finer-grained SLA that directly targets selective replication,
such as:

“95% of read operations should be served by a local, full
replica”

If this SLA is violated, it is easy for the operations en-
gineers to know that it is necessary to tune the selective
replication policy, for example by increasing the retention
interval.

A.2 Constraints language

We have developed a simple domain specific language for
specifying constraints. The language allows the constraints
to be specified by application developers and associated with
new tables.

A.2.1 Example

We now present a more complex example of a constraint
rule. In this example, imagine that the U.K. has laws gov-
erning data transmission, and personally identifiable infor-
mation about U.K. users can only be replicated to the U.S.
with the user’s explicit permission. Rule 4 captures this pol-
icy: if the user’s home_location is UK’ but they have not
agreed to a U.S. copy, then the U.S. datacenters must be
included in the exclusion list.

Rule 4: TIF
TABLE_NAME = "Users" AND
FIELD_STR(’home_location’) = UK’
FIELD_STR(’agreed_us_copy’) = ’false’
THEN
SET °MIN_COPIES’ = 2
SET ’INCL_LIST’ = ’uk’
SET ’EXCL_LIST’ = ’usw,use,usc’
CONSTRAINT_PRI = O

A.2.2  Constraints language grammar

The allowable constraint rules are defined by the following
grammar.

Constraints language

constraint :== “IF” condition “THEN” property
constraint_priority
condition :== { (table_specifier [“AND” predicate]) |

(predicate “AND” table_specifier [(“AND” | “OR”)
predicate]) }
constraint_priority :== “CONSTRAINT_PRI” “=”
integer_literal
table_specifier :== “TABLE_NAME” “=" table_name
table_name :== string_literal
property :== “SET” parameter “=" value
[“AND” property]
parameter :== string_literal
value :== string_literal | integer_literal
string_literal :== a single quoted string
predicate :== expression
expression :== term [ { “AND” | “OR” } term ..
term :== compare_clause | group
group :== “(” expression )" | “‘NOT” expression
compare,clause :== var_op_clause | var_null_clause |
var_regexp_clause
var_op-_clause :== { field | value } op { field | value }
Op e 44<>7 | u<:77 ‘ “_» | — ‘ 4:!:77 ‘ 44>77 | u>:77
var_null_clause :== field “IS” [ “NOT” ] “NULL”

var_regexp_clause :== field_str “REGEXP” string_literal

value :== string_literal | integer_literal
string_literal :== a single quoted string
field :== field_int | field_str

field_int :== “field_int(” string_literal «)”
field_str :== “field_str(” string_literal “)”

A.3 Constraint validity
Section 4.1 states that a record must be subject to a valid
constraint rule. We now formally define validity. Consider
the set of all possible replica locations L. Given a constraint
rule C, define mec(C) as the number of MIN_COPIES defined
by C (if any); incl(C) as the set of replica locations defined
in C’s INCL_LIST clause (if any); and excl(C) as the set of
replica locations defined in C’s EXCL_LIST clause (if any).
Then, C is valid if:
e Imc(C) — 1 < me(C)
(C) = incl(C) C
Jexcl(C) — excl(C) C
Jexcl(C) A Jincl(C) — excl(C) Nincl(C) =0
e Jexcl(C) A Imc(C) — me(C) < |L| — |excl(C)|
In this notation, we use — to mean “implies.”
At run time a given record may match multiple constraints.
Unless we know the allowable combinations of values in

e dincl

1048



records, it is impossible to determine at rule compilation
time whether a particular record will match the predicates
of multiple conflicting rules. To avoid invalid runtime combi-
nations of properties, we apply at most two rules to a record:
the highest priority table-level rule (if one matches), and the
highest priority record-level rule (if one matches). Then, we
may combine properties from these two rules to determine
the constraints on a record. It is straightforward to deter-
mine at rule compile time whether a record-level rule could
cause a validity conflict with a table-level rule, and raise an
error if so.

A.4 Static constraint-based placement algo-
rithms

Algorithm 2 describes how the system reacts to an update
of a record.

Algorithm 2 Static constraint-based policy, on update

Set R=Record before the update
Set R’=Record after the update
Set C=Constraints matched by R before update
Set C’=Constraints matched by R’ after update
Set P = choose_replicas(R,C)
Set P’ = choose_replicas(R’,C’)
if P # P’ then
Set Add =P’-P
for all a €Add do
Send R’ to a.
end for
for all l €L do
Send stub(R') to I.
end for
end if

A.5 Dynamic placement algorithms

Algorithms 3-6 are carried out by a remote location when
managing full replicas and stubs; these algorithms represent
the state transitions illustrated in Figure 2.

Algorithm 3 Manage full replica

for Interval I do
Retain record R, applying updates and serving reads.
end for
if Next operation == Read then
Execute Algorithm 4 “Renew replica”
else {Operation is an update from master}
Execute Algorithm 5 “Surrender replica”
end if

Algorithm 4 Renew replica

Send renewal request message to master
Master examines constraint rules C to determine if the
request can be granted.
if Master grants renewal then
Execute Algorithm 3 “Manage full replica”
else {Master denies renewal}
Convert replica to stub (discarding data values)
Execute Algorithm 6 “Manage stub”
end if

Algorithm 5 Surrender replica

Send surrender request message to master
Master examines constraint rules C to determine if the
request can be granted.
if Master grants surrender then
Convert replica to stub (discarding data values)
Execute Algorithm 6 “Manage stub”
else
Execute Algorithm 3 “Manage full replica”
end if

Algorithm 6 Manage stub

if Read request received then
Send message to master requesting promotion from stub
to full replica
Master examines constraint rules C to determine if the
request can be granted.
if Master grants promotion then
Convert stub to replica (storing data values)
Execute Algorithm 3 “Manage full replica”
else {Master denies promotion}
Execute Algorithm 6 “Manage stub”
end if
end if

A.6 Optimal static placement

If we had perfect knowledge about access patterns, where
would we place full replicas? Consider a record R; and a
location L;. We can define the following characteristics of
R;, which reflect our perfect knowledge of the access pat-
tern:

e UR(R;): average update rate of R; (in operations/sec)

e US(R;): average size of an update to R; (in
bytes/operation)

e RR(R;, L;): average read rate of R; from L; (in opera-
tions/sec)

e RS(R;,L;): average read size of R; from L; (in
bytes/operation)

If we make a full replica of R; at Lj;, then we must pay
bandwidth costs to propagate updates to L;. The rate of
bandwidth cost is UR(R;) x US(R;). If, instead, we decide
to make only a stub at Lj, then every time there is a read
of R; at L;, we must forward that read to a full replica.
The rate of bandwidth costs incurred for forwarded reads
is RR(Ri, LJ‘) X RS(R“ LJ‘). Thus, the benefit B(Ri, Lj) of
choosing a stub over a full replica is a savings in bandwidth
usage equal to B(R;, L;) = UR(R;)xUS(R;)—RR(R;, L;) %
RS(R;, Lj). Recall, we are constrained by the latency SLA,
which says that some fraction of reads must be served locally.
If B is negative, there is no bandwidth savings to making a
stub, and we might as well make a full replica of R; at L; to
ensure the reads are local. If B is positive, we might decide
to make R; a stub at Lj, as long as we do not violate the
latency SLA.

Formally, we define an indicator variable Fr, 1 ; to be 1 if
there is a full replica of R; at Lj, and 0 if there is a stub of
R; at L;. Define SLA to be the fraction of reads which must
be served from local full replicas. Then, we can express the
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latency constraint on placement as follows:

> " RR(Ri,L;) x Fr,; > SLAx Y RR(Ri, L;)
i,j ij

In other words, the total number of local reads across all
locations is the sum of reads that are initiated at locations
where Fg,,r;, = 1. This total number of local reads must
be at least the total number of reads times the SLA frac-
tion. Our goal is to minimize bandwidth usage; or, equiva-
lently, maximize bandwidth savings, where bandwidth sav-
ings equals

ZB(Ri7Lj)
i

Imagine all replicas were full replicas, and we were al-
lowed to demote some full replicas to stubs to attain band-
width savings. This results in an integer knapsack problem,
where the volume of the knapsack is the allowed non-local
reads (1 — SLA x 37, RR(R;, Lj)). The items we pack
into the knapsack are full replicas we make into stubs; the
volume of each item is RR(R;, L;) and the value of each
item is B(R;, L;). Integer knapsack problems are generally
NP-hard [13]. However, in web databases there are a huge
number of records, each with relatively small volume. Thus,
we can approximate this problem as a fractional knapsack
problem without too much error.

The fractional knapsack problem can be solved easily by
sorting all replicas in descending order of B(R;, L;), and
converting full replicas to stubs in that order until the to-
tal number of forwarded reads reaches the constraint (e.g.
the knapsack is full.) Of course, we have to respect policy
constraints (such as minimum copies or INCL_LIST). Fur-
thermore, we should not convert a full replica to a stub
if doing so increases cost. So, as we are stepping through
the descending order of replicas, we should not convert a
full replica to a stub if doing so violates a policy constraint
or if B(R;,L;) < 0. The result is the approximately op-
timal static placement of full replicas that respects policy
and latency constraints; it is approximate because of the
conversion from an integer to fractional knapsack problem.

A.7 1In the Wild

This paper presents a selective replication mechanism with
an adaptive dynamic placement scheme and a constraint
language. In moving from our first prototype to production
implementation, we encountered additional challenges:

Selective  Replication and  FEventual  Consistency:
PNUTS [9] supports timeline consistency via record-level
mastership, and delivery of updates published by a record’s
master to the other replicas in the same order; this is the

1050

semantics we have primarily focused on when considering se-
lective replication. PNUTS had added a second table type
without record-level mastership to increase availability, giv-
ing up timeline consistency for eventual consistency. An
application can apply concurrent updates to different repli-
cas of the same record in parallel. PNUTS publishes the
changes asynchronously to other replicas and resolves con-
flicts using the local timestamp of each write (latest wins).
All replicas eventually receive all changes to the same record
and resolve conflicts identically. Selective replication, how-
ever, imposes a new challenge: updates are not published to
stubs, and this may cause a replica to not eventually receive

all changes to a record. This can happen when a write and
replica promotion occur concurrently: the newly promoted

stub-to-replica may miss the data change. To address this
issue, we require a full replica to republish its write after
detecting overlapping promotions for other replicas of the
same record.

Semantics of Stubs and Scans: A major concern that be-
came apparent in practice is the impact of stubs on scan
performance and semantics, especially because we avoid ex-
posing the notion of stubs to clients as much as possible.
Section 5.6 examines a semantics where stubs are skipped
in scan results (i.e., only full replicas at the local site are
returned), and shows that the presence of stubs (even when
they outnumber full replicas) has only a slight effect on scan
time. An alternate semantics is to return all records in the
table, even those represented by stubs, during scans. This
clearly is detrimental to scan time, taking a local operation
that otherwise relies on sequential I/O and turning it into
one that must regularly pause to fetch remote replicas. In
practice, we do not support this semantics, and instead di-
rect clients to a region that has a full copy of the table.

Data Co-location: It is often desirable to co-locate data
items that are processed together. Selective replication pro-
vides a flexible mechanism to co-locate relevant data items
without requiring fully replicating them in all locations. Our
constraint language provides a flexible solution to this prob-
lem. For example, one could specify that all data records
pertaining to a given group of users be in certain locations,
while data for other users (even from the same tables) could
be elsewhere. Even with this flexibility, developers want to
be able to easily control selective replications for a partic-
ular records. Our implementation therefore supports pro-
motion/demotion of a replica in the record insert/update
interface.

In ongoing work we are also evaluating the cost and effec-
tiveness of more complex constraint types, as well as other
adaptive schemes that build on dynamic placement.



