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ABSTRACT

In diverse applications ranging from stock trading to traffic mon-
itoring, popular data streams are typically monitored by multiple

analysts for patterns of interest. These analysts may submit similar
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Motivation. The discovery of complex patterns such as clusters,
outliers, and associations from huge volumes of streaming data has
been recognized as critical for many domains, ranging from stock
market analysis to traffic monitoring. Previous research effort that

pattern mining requests, such as cluster detection queries, yet cushave developed efficient algorithms for streaming pattern detection

tomized with different parameter settings. In this work, we present

an efficient shared execution strategy for processing a large num-
ber of density-based cluster detection queries with arbitrary param-

eter settings. Given the high algorithmic complexity of the cluster-

ing process and the real-time responsiveness required by streamin

applications, serving multiple such queries in a single system is
extremely resource intensive. The naive method of detecting an
maintaining clusters for different queries independently is often in-

focused on single query processing [5, 6, 18]. Little effort has been
made towards simultaneous execution of multiple pattern mining
gueries against the same input stream. In this work, we provide a
strategy to efficiently execute a large number (on the order of hun-

reds or even thousands) of pattern mining queries with different
%arameter settings, while still achieving real-time responsiveness

d required by stream applications.

Complex pattern detection queries are usually parameterized, be-

feasible in practice, as its demands on system resources increas§2USe pattern detection processes are driven by the domain knowl-

dramatically with the cardinality of the query workload. To over-

come this, we analyze the interrelations between the cluster sets;

identified by queries with different parameters settings, including
both pattern-specific and window-specific parameters. We intro-
duce the notion of thgrowth propertyamong the cluster sets iden-
tified by different queries, and characterize the conditions under
which it holds. By exploiting thiggrowth propertywe propose a
uniform solution, calledChandj which represents identified clus-
ter sets as one single compact structure and performs integrate
maintenance on them — resulting in significant sharing of compu-

tational and memory resources. Our comprehensive experimental

edge of the analysts and the specific analysis tasks. For example,
a query asking for the stocks that dropped or rose significantly
in the most recent transactions can be considered as a parameter-
ized query. Here, analysts need to specify parameters that define
their notion of “significance” in price fluctuation and the mean-
ing of “most recent” transactions based on their application se-
mantics. Other examples of parameterized queries include density-
based clustering [9] that require a range and count threshold as in-

put, and K-means style clustering [11] that requires K as input.

Given the prevalence of parameterized queries, a stream process-
|ing system often needs to handle multiple such queries. Multiple

study, using real data streams from domains of stock trades and@n2lysts monitoring the same input stream may submit the same

moving object monitoring, demonstrates ti@ttandiis on aver-

age four times faster than the best alternative methods, while using

85% less memory space in our test cases. It also show€tieatdi
scales in handling large numbers of queries on the order of hun-
dreds or even thousands under high input data rates.

1. INTRODUCTION

pattern search but using different parameter settings. Using the ear-
lier example, different analysts may have different interpretations
of the “significance” in price fluctuation (say froh® — 80% of the
original price). Even a single analyst may submit multiple queries
with different parameter settings, because determining a priori the
most effective input parameters is difficult when faced with an un-
known input stream. In streaming environments, the nonrepeata-
bility of streaming data requires analysts to supply the most appro-
priate input parameters early on. Otherwise, they may permanently

*This work is supported under NSF grants CCF-0811510, IIS- lose the opportunity to accurately discover the patterns in at least
0119276 and 11S-00414380. We thank our collaborators at MITRE a portion of the stream. Thus, an ideal stream processing system
Corporation, Jennifer Casper and Peter Leveille, for the GMTI data should be able to accommodate multiple queries covering many, if
stream generator not all, major parameter settings of a parameterized query, and thus
capture all potentially valuable patterns in the stream.

In this work, we tackle multiple query optimization for density-
based clustering queries over sliding windows. Such query type
is of relevance to many important applications, such as monitoring
congestions (clusters) in traffic from the streams reporting vehicle
positions, and learning “transaction-intensive areas” (clusters) from
the most recent stock transactions. In these applications, sliding
window semantics need to be applied to force the clusters to form
based on the most recent portion of the input streams only. The
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out-of-date information, such as the positions of vehicles reported system. We show in Section 6 that our meta query technique suc-
along time ago, should no longer contribute to the recent clustering cessfully transforms the problem of maintaining multiple queries
results and thus has to be purged from the window. into the execution of a single query.

Challenges. Each density-based clustering query over slid- Finally, we combine théntViewtechnique and meta query strat-
ing windows has four input parameters: two pattern parameters, aegy to form one integrated solution. We calidhandi® , which

range threshold™"9¢ and a count thresholé*, and two win- stands for @istering igh speed streming data for multiple queries
dow parameters: window sizein and slide sizeslide. Any such using ntegrated maintenanceChandiintegrates the progressive
guery can be expressed by the template given in Figure 1. clusters detected by all workload queries into a single structure, and
thus realizes incremental storage and maintenance for this meta in-
Q;: DETECT Density-Based Clusters FROM stream formati.on across .the queries. Computation-wise, for each winQow,
USING 07979¢ — 1 and §°™ — ¢ Chandionly requires a single pass through the new data points,
IN Windows WITH win = w and slide = s each running only one range query search and communicating with
its neighbors once for a group of shared queries. Memory-wise,

given the maximum window size allowed, the upper bound of the
Figure 1: Templated density-based cluster detection query for ~ Memory consumption o€handifor a group of shared queries is
sliding windows over a data steam independent of the number of queries in the group (see Section 7).
Thus,Chandiis a full sharing algorithm for arbitrary density-based
clustering queries over windowed streams.

Our experimental study (in Section 8) shows that the system us-
ing our proposed algorithrf@handicomfortably handles 100 arbi-
trary workload queries under a 1K tuple per second data rate. If
She number of workload queries increases to 1K, the system still
works stably with a 300 tuple per second input rate. On the same
experimental platform, given the 300 tuples per second input rate,
the independent execution strategies from the literature, such as
cDBSCAN8] and Extra-N [18], can only handle less than 1.7 and
12 percent of the same 1K query workload, respectively.

Contributions.  The contributions of this work include: 1)
We characterize thgrowth propertythat holds among the density-
based cluster sets as a general concept enabling multiple cluster-
ing query sharing in both dynamic and static environments. 2)
: . We introduce a technique callddtView that realizes integrated
Thus, the key problem we need to solve is to design a cluster maintenance for the density-based cluster sets identified by mul-

maintenance mechanism that achieves effective sharing of systen}ipIe queries in the same dataset. 3) We develogeta quengtrat-

resources for multiple queries. This is a challenging problem, be- egy as general technique to efficiently execute multiple sliding win-
cause the meta-information required to be maintained by this query gy as gel . d . y P 9
dow queries with varying window parameters. 4) We propose the

type is more complex than those for SQL. query operators. More first algorithm that realizes full sharing for multiple density-based

specifically, we need to maintain the identified cluster structures, clustering queries over streaming windows. 5) Our comprehensive
which are defined by the tuples and the global topological relation- nngq g wir ‘ mp
experiments on several real streaming datasets confirm the effec-

ships among tuples. While SQL operators, such as join or a99re- i\ eness of our proposed algorithms and also its superiority over all
gation operators, usually maintain pair-wise relations between two State-of-art altelcr)na?ives in b%th CPU time and mem%r util?lzation
tuples (independent from the rest of the tuples) or simply numbers y '

(aggregation results). The techniques [10, 13] regarding sharing
among SQL queries are not adequate to solve our problem. 2. PROBLEM DEFINITION

Proposed Solution. Our proposed solution allows arbitrary Density-Based Clustering in Sliding Windows. We first de-
parameter settings for queries on all four input parameters. We ine the concept of density-based clusters [9, 8]. We use the term
first discover that given the same window parameters, if & qUery gaa nointto refer to a multi-dimensional tuple in the data stream.
Q.’s pattern parameters are “more restricted” than those of anOtherDensity-based cluster detection uses a range threghold® > 0
queryQ;, thegrowth property(Section 4) holds between the clus- ¢, gefine the neighbor relationshipsighborship between any two
ter sets identified by; and@;. Thisgrowth propertyallows us to data points. For two data poings andp;, if the distance between
incrementally organize the clusters identified by multiple queries o 'is no larger thad”®"9¢, p, andpj]are said to be neighbors.
into an integrated structure, calléatView. As a highly compact We use the functioiVumNei(p:, 07*"9¢) to denote the number
structureIntView saves the memory space needed for storing the neighbors a data poipt; has, given thé@™a9¢ threshold.
clusters identified by multiple queries. More importantiView
also enables integrated maintenance for the progressive clusters of Definition 2.1. Density-Based Cluster: Given 67*"9¢ and a
multiple workload queries, and thus effectively saves the computa- count threshold?*"*, a data pointp; with NumNei(p;, 07%"9¢)
tional resources from maintaining them independently. > #°* is defined as a core point. Otherwisepifis a neighbor

We also propose ameta querystrategy”, which uses a single  of any core pointp; is an edge point.p; is a noise point if it is
meta query to represent all the workload queries, when their pat- neither a core point nor an edge point. Two core poiatsnd c,,
tern parameters are the same. The proposed meta query strategyre connected if they are neighbors of each other, or there exists
adopts a flexible window management mechanism to efficiently or- 3 sequence of core points, c1, ...cn_1, ¢n, Where for anyi with
ganize the query windows that need to be maintained by multiple ( <1 < n — 1, a pair of core points;; andc;+1 are neighbors of
queries. By leveraging the overlap among query windows, it min-
imizes the number of windows that need to be maintained in the name of a powerful god with multiple hands in hindu theology

Realizing parameterization for this query type is important not
only because its input parameters, sucht9es9¢ and 9°"*, are
difficult to determine without pre-analysis of the stream data, but
also because even a slight difference in any of these parameter
may cause totally different cluster structures to be identified. For
instance, figure 8 shows different clusters identified in a subpart of
the GMTI [7] data stream by density-based clustering queries with
different pattern parameter settings.

Given the high algorithmic complexity of density-based cluster-
ing, serving a large number of such clustering queries in a single
system is highly resource intensive. The naive method of maintain-
ing progressive clusters (clusters identified in the previous window)
for multiple queries independently has prohibitively high demands
on both computational and memory resources.




each other. Finally, a density-based cluster is defined as a group of them. Figure 2 shows an example of the predicted views for three
connected core points and the edge points attached to them. Anyfuture windows. In this example, the window size and the slide
pair of core points in a cluster are connected with each other. size of the query are 16 tuples and 4 tuples respectively. The black,
rey and white spots represent the core, edge and noise points iden-
ified in each predicted view. The lines among any two data points
represent the neighborship between them. By using the predicted

Figure 2 shows an example of a density-based cluster composed o
11 core pointg(black) and 22dge pointggrey) in".

We focus on periodic sliding window semantics as proposed by
CQL [2] and widely used in the literature [18, 3]. Such semantics
can be either time-based or count-based. For both cases, each quer
Q has a of siz&).win (either a time interval or a tuple count) and
a slide size).slide. The patterns will be generated only based on

Tee
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1

generation of complete clustering results. In particular, we output

the members of each cluster, each associated with the cluster id ol
the cluster they belong to. Given the precondition that all the mem-

ber queries are accurately answered, our goal is to minimize both
the average processing time for each data point and the memory
space needed by the system.

the data points falling into the window. The template of this query 14 f;g Growth
type has been shown in Section 1. -
Optimization for Multiple Queries.  Queries over the same predicted view of W0 &/ predicted view of W1
input stream can have arbitrary settings on all four parameters. We S
call all the queries submitted to the system together a Query Group 92
QG, and each of them a Member Query@&. We focus on the ° A3 Growth (&
A DE—
64{%

%

predicted view of W3

predicted view of W2

Figure 2: Predicted views of four consecutive windows atV,

view technique, we can avoid the computational effort needed for
AND BASIC SHARING STRATEGY discounting thg effe_ct of such expired data p0|_nts from the detected
clusters. The idea is to pre-generate the partial clusters for the fu-

3.1 Extra-N Algorithm ture windows based on the data points that are in the current win-

) ) ] ) dow and known to participate in those future windows (without

Alternative methods for processing a single density-based clus- consjdering the to-be-expired ones). Then when the window slides,
tering query over sliding windows are discussed in [18]. Both ana- \ye can simply use the new data points to update the pre-generated
lytical and experimental studies conducted in [18] show Exdta- clusters in the predicted views. Figures 2 and 3 respectively demon-

N is the best existing approach for executing a single query of this sirate examples of the “pre-generated” clusters in future windows
type. Extra-N realizes efficient evaluation by incrementally main-  ang the updated clusters after the window slides.

taining the cluster structures identified in the query window. Tech-
nically, Extra-N is based on two main ideas, namely the hybrid
neighborship abstraction and the notion of predicted views.

Hybrid (Exact+Abstracted) Neighborship Abstraction. Since
density-based cluster structures are defined based on the neighbor
ships among data points, efficiently maintaining the neighborships
identified in the windows is naturally the core task for cluster struc-

3. EXISTING SINGLE QUERY EXECUTION

ture maintenance. For each non-core point in the windoura-N

predicted view of W1

maintains the exact neighborships (a neighbor list containing links a3 @ | < @ 49
to each of its neighbors). For each core polftfra-N maintains N -

the abstracted neighborships for it, including its neighbor count and a3 Growth a?

cluster membership. oy —_— .

General Notion of Predicted Views. Another problem that
needs to be solved for incremental maintenance of density-based
clusters is to efficiently discount the effect of expired data points
from the previously formed patterns. The expiration of existing
data points may cause complex pattern structure changes, such as Figure 3: Updated predicted views of four windows ati?;
splitting of clusters. Detecting and handling these changes espe-
cially splitting, may require large amount of computation, which
could be as expensive as recomputing the clusters from scratch. query search for each new data point to update the progressive

To address this problenkxtra-N exploits the general notion of  clusters, which are represented by the predicted views. Although
predicted views. It is well known that, since sliding windows tend Extra-Nis an effective solution for single query execution, execut-
to partially overlap §lide < win), some of the data points falling  ing Extra-N algorithm for each member query independently is not
into a window W; will also participate in the windows right af-  scalable for handling @G with large|QG|. We thus aim to design
ter W,. Based on the data points in the current window, say a a shared processing strategy to handle a large query group against
datasetD..,, and the slide size, we can exactly “predict” the spe- high speed data streams.
cific subset ofD.., that will participate in each of the future win- .
dows. We can thus pre-determine some properties of these future3-2 Sharing Range Query Searches
windows (refered as “predicted windows”) based on these known-  The basic strategy to share the computations among multiple
to-participate data points and thus form the “predicted views” for density-based clustering queries is to share the range query searches

predicted view of W3 predicted view of W4

Discussion. At each window slideExtra-N runs one range



Generally, to execute a query gro@g+ with |QG|=N, we can ex- ©.99
ecute NExtra-N algorithms, one for each member query, indepen- “3,3,5 £

dently (each maintaining its own progressive clusters), but share the 53% o g@gé% o
range query searches. Specifically, for each new data pgint, "38%§ Sie
we run one instead df)G| range query searches, wih.0"*"9¢ %:%39
the largest™*™?¢ in QG. Using the result set of this “broadest” PReat
range query search, we then gradually filter out the results for the %,“’§&

queries with smaller and smalléf*™?¢. Since the range query )
search with the largest “"o“ is in any case needed by at leastone g e 4: Cluster Set 1 con- Figure 5: Cluster Set 2 con-
query, no extra computation is introduced by this process. Consid- 15ins 3 clusters tains 3 clusters. Cluster Set 2
ering the expensiveness of range query searches, sharing them ca is a growth of Cluster Set 1
be beneficial, especially for large windows.

Clu_set1

3.3 Discussion. Hierarchical Cluster Structure. If the growth propertytransi-
However, sharing range query searches alone is not sufficient for ivély holds among a sequence of cluster sets, a hierarchical cluster
handling a heavy workload containing hundreds or even thousandsStructure can be built across the clusters in these cluster sets. The
of queries. Two critical problems still remain: 1) Since every mem- Key idea is that instead of storing cluster memberships for them in-
ber query needs to store its progressive clusters independently, th¢lependently, we incrementally store the cluster growth information
memory space for executing@G grows linearly with|QG|. 2) from one cluster set to another. Figures 6 and 7 respectively give
Because of the independent cluster storage, the cluster maintenancg*@mples of independent and hierarchical cluster structures built
effort for different queries cannot be shared. To solve these-pro  for the two cluster sets shown in Figures 4 and 5.
lems, we propose below an integrated cluster maintenance mecha-

nism, which effectively shares both the storage and computational — custer Membership Storage o Cluster Set 1 _ Cluster Membership Storage of Cluster Set 2 |
resources needed by cluster maintenance for multiple queries. /N r ‘ | A\ \ | i
4. GROWTHPROPERTY ANDHIERARCHI- 5 e o o ot stz | Ctos omberis ol ‘;‘a
|1 of Cluster Set 1 i [
CAL CLUSTER STRUCTURES A A Le e el ik
Growth property.  Now we introduce an important property =~ === === === . ; 2
of density-based cluster structures that will later be exploited to " ™ & e ey
form the basis for efficient multiple query sharing. We call this the
“growth property of density-based clusters. Figure 6: Independent Clus-  Figure 7: Hierarchial Clus-
A, : : ter Membership Storage for ter Membership Storage for
Definition 4.1. Given two density-based clustef§ and C;
y ok ’ Cluster Sets 1 and 2 Cluster Sets 1 and 2

(each cluster is a set of data points, which are called cluster mem-
bers of this cluster), if for any data poing,€ C; impliesp € Cj,

we say that’, is contained by C;, denoted by’; C C;. As shown in Figure 6, if we store the cluster memberships for

cluster members in these two cluster sets independently, each clus-
Definition 4.2. Given two cluster set€lu_Set1 andClu_Set2 ter member (black squares) belonging to both clusters has to store
with for i = 1,2, Clu_Set; = {J, -, -, Cx, and for anyy # z, two cluster _membe_rshlps,_one for each cluster s&_at. However, if we
~1. store them in the hierarchical cluster membership structure as de-

oneC. in Clu_Set2 that C; c C.. Clu_Set2 is defined to be a picted in Figure 7, we no longer need to repeatedly store the cluster
J - K g1 —

“ growth” of Clu_Set1. We say the growth property holds between memberships for these “shared” cluster members. Instead, we sim-
Clu.Setl andCiu 56;52 ply store cluster memberships for each cluster member belonging

to Clu_Set1, and then store the cluster “growth information” from
We now characterize the possible relationships between the twothe Clu_Setl to Clu_Set2. In particular, we just need to corre-
cluster sets between which tgmwth propertyho|ds (See Figures late each Clust@i in Clu_Setl with the cluster inClu_Set2 that

Cy, N C. = 0. If for any C; in Clu_Set1, there exists exactly

4 and 5 for an example). contains it. Such growth information is now based ongtaenular-

ity of complete clustersrather tharindividual cluster members-

Observation 4.3. GivenClu-Setl andClu-Set2 with thus saving memory space for storing cluster memberships.

Clu_Set2 agrowth of Clu_Set1, then any cluste€; in Clu_Set2
must either be &New cluster (for anyp € C;, p € C;, if C; isin Lemma 4.1. Given a query groupG with the growth prop-
Clu_Set1), an Expansion of a single cluster inClu_Set1 (there erty transitively holding among the cluster sets identified by all its
exists exactly on€’; in Clu_Set1 such thatC; C C;), or aMerge member queries, the upper bound of the memory space needed for
of multiple clusters irClu_Set1 (there exisC;, Cit1,..Citn(n > storing the cluster memberships using hierarchical cluster struc-
0) in Clu_Setl with C;, Ci41,..Cixn C Cj. ture is2 x Neore (independent froMQG|), with Neore the number

) o . of distinct data points that are at least once identified as core point
The black circles in Figures 4 and 5 represent the data points jy any member query @G.

belonging to both cluster sets, while the gray ones represent those

belonging toClu_Set2 only. The clusterCy in Clu_Set2 is a The intuition here is that this is equal to the relationship between
merge of cluste€; andC- in Clu_Set1, while the cluster€’s and the total size of a binary heap and the number of leaf nodes of this
Cs in Clu_Set2 are an expansion of clustéf, in Clu_Setl and heap. The formal proof can be found in our technical report [17].

a new cluster respectively. Generally,(ifu_Set2 is a “growth” Besides the benefit of huge memory savings, this hierarchical

of Clu_Set1, any two data points belonging to the same cluster in cluster structure also realizes integrated maintenance for cluster
Clu_Setl will also belong to the same cluster@u_Set2. sets identified by multiple queries, and thus saves the computational



resources needed to maintain them independently. This generali/, to W,,. Also, for all member queries, any predicted window
principle forms the foundation for our multiple query optimization. W, contains exactly the same data points. This indicates that in
any W; the cluster sets identified by the member queries will have

5. SHARING AMONG QUERIESWITHAR- thegrowth propertyhold among them (by Lemma 5.1).
BITRARY PATTERN PARAMETERS As discussed in Section 4, once trewth propertyholds among

cluster sets, we can build the hierarchical cluster structure for them.
In this section, we discuss the shared processing of multiple Thys for each predicted window, we can represent multiple pre-
queries with arbitrary pattern parameters, namely arbit&t§“ dicted views identified by different queries in an integrated struc-
andf°"*. Here we assume that all queries have the same window yre. We denote such integrated representation of predicted views
parameters, namely same window sizén and same slide size  zcross queries with arbitrasf™* by IntView.6°™*. For eachiV;,
slide. Th|$ assumption will |a’[el’ be relaxed in Section 7 to a”OW |nt\/iew795"t starts from the predicted VieW W|th the “most restricted
completely arbitrary parameters. clusters”. In this context, this corresponds to the predicted view
range ; cnt maintained byQ; with the larges?°™* amongQG. Then, it incre-
5.1 .Same9 g’ Arbltrary 0 _Case' mentally stores the cluster growth information, namely the merge
We first look at the case that all queries have the saffie’ of existing cluster memberships and the new cluster memberships,
but arbitraryo°™. Given the samé”*"?, the neighbors of each  from one query to the next in decreasing orded8f'. Figure 9
data point identified by all queries are the same. This indicates that gjyes an example of mtView.0°™*, which represents the predicted
for all member queries, the neighborships identified in the same yjews from Figure 8 identified by three queries.
window are exactly the same. However, this does not imply that the
cluster structures identified by all queries are identical, becausethe _________________________________________________
different§°™*s of the queries may assign different “roles” to a data Q3
point. For example, a data point with 4 neighbors is a core point for |
query @ havingQ:.0°™* = 3, while being a non-core point for Rt
Q- having query@..0°™* = 10. Recall the hybrid neighborship 12
abstraction (in Section 3) requires each non-core point to store the i____
links to its exact neighbors, while the core points store the cluster
membership only. Thus, a data point may need to store different
types of neighborship abstractions depending on its roles assignec

1

by different queries. To solve this problem, we turn to ¢inewth 112 Lﬂ 4[5[6[7][8]9[10[11][12[13[14[15[16]
propertyof density-based cluster structures discussed in Section 4. El 2 g [ 8 [TTiz[Ts=T1eTieris]

Lemma 5.1. Given@; and @Q); specified on the same dataset, . ) )
with Q;.07%™9° = Q;.07*™9° and Q;.0°™ < Q;.6°™, the cluster Figure 9: IntView_0°"*: Integrated representation for predicted

set identified byy; is a “gronth” of that identified byQ;. views identified by three different queries
Lemma 5.1 holds, because the more relaxed count threghafd™* IntView.#°"* successfully integrates the representations of multi-
can only cause “extra core points” to be identified®y. Thus it ple predicted views into a single structure, thus saving the memory

brings a new cluster or an expansion or merge of existing clusters space from storing them independently.
identified byQ;. Formal proof of this lemma can be found in [17].

Figure 8 demonstrates an example of the cluster sets identified Lemma 5.2. Given the maximum window size allowed for the
by three queries having the saf&™9¢ but differentd“"*s in a member queries iINQG|, the upper bound of the memory space
subpart of GMTI data [7]. needed by IntView“™ is independent froQG|, the cardinality

of the query group represented by it.

@,

@) - Lemma 5.2 holds because both types of meta-information that need
@@ 0ava2 to be maintained bintView.#°"*, namely the cluster memberships
@ LI and the exact neighbors of data points, have upper bounds inde-
(%‘-?@ @@ pendent fromQG|. The formal proof of Lemma 5.2 can be found
&® 45 in [17]. Obviously, without usindntView.6°", the memory space
Original Data Set needed for independently storing the cluster memberships identi-

fied by all queries INRG will increase linearly with/QG|. Our
method now makes it independent fr¢@G|.
Maintenance of I ntView_0°"*. Besides the memory savings, we

q Srowh : : . 1 can also update multiple predicted views representddijew 6°™*
{875) H @élg s, BT 5 incrementally and thus save computational resources. For each new
clusters Identified by Q2 clusters Identified t@ data pointp.,...,, we start the update process from the bottom level
07%=02 07" =3 g7™=02 g7 =2 of IntView.#°**, namely the predicted view identified by the query
with the largesp“™*. Then we incrementally propagate the effect
Figure 8: Clusters identified by queries with different 9°* of this new data point to the next higher level predicted views. Us-
ing the example shown in Figure 9, a new data point identified to
Integrated Representation of Predicted Views across Multi- have 3 neighbors in the window is a non-core in the bottom (most

ple Queries with Arbitrary 6°™*. Since the window parameters restricted) level predicted view, whefé€"* = 4. So, at the bottom

of all queries are the same in this case, the predicted windows to belevel, we simply add all its neighbors to its neighbor list. How-
maintained by them are the same. In particular, all member queriesever, its effect on the upper level predicted views may differ, as this
need to maintain the same number of predicted windows, say from data point may be identified as a “core point” by a more “relaxed”



query, say whe“"* = 3. Then, we need to generate a cluster
membership for it at that predicted view and merge it with those
cluster memberships (if any) belonging to its neighbors.

We omit the detailed maintenance algorithmraf/iew. 8" here

the predicted view representidg with the smallesg”*"?¢ among

QG. Then, it incrementally stores the cluster growth information
from one query to the next in the increasing ordef'sf*9¢. How-

ever, as now each data point may be identified to have more neigh-

to save space, but emphasize the efficiency of the maintenance probors in the higher level predicted views, which represent queries
cess. First, no extra range query search is needed when a data pointith larger and largef™*"9¢, a new type of increment, namely the

is found to be a “core point” in an upper level predicted view and

thus needs to communicate with its neighbors. The reason is that

as a non-core point in the lower level predicted views, it would al-

additional exact neighbors of each data point, needs to be stored.
Again, we can prove that the upper bound of the memory space
needed byntView."*"%¢ is independent fromiQG|. The proof

ready have stored the links to its neighbors and thus would have can be found in [17]. SinctView.6"“"9¢ is very similar in con-

direct access to them. Second, as the “growth” of cluster sets iden-
tified in predicted views is incremental, less and less maintenance
effort will be needed as we handle predicted views at higher levels.

5.2 Samect, Arbitrary ¢7e9c Case.

cept tolntView.#°™*, we omit the details of its maintenance.

5.3 Arbitrary ¢7ensc, Arbitrary ¢t Case.

Now we discuss the case whepgr has queries with totally ar-
bitrary pattern parameters, namely arbitr&}"?¢ and arbitrary

Now we discuss the case that all member queries have the sam&“™* values. Although thgrowth propertyhas been shown to hold

6°™ but arbitraryd”™*™9¢. This case is more complicated than the
previous one, because differefit*”?¢s will affect the neighbor-
ships identified by different queries. For example, two data points
pi andp; with distance equal to 0.2 will be considered to be neigh-
bors in@Q: with §7*"9¢ = 0.1, but not inQ2 with §7*"9¢ = 0.4.

between the cluster sets identified by two que@leandQ);, if Q;
and@; share at least one query parameter, we observe that it does
not necessarily hold if both query parameters of them differ. To
take advantage of the compact structure of integrated representa-
tion of the predicted views, we again study in what situations when

As the neighborships identified by queries are different, the clusters the growth propertywould hold.

identified by them are likely to be different as well.

Based on our experience of designingview.0°"*, we now ex-
plore whether thgrowth propertyholds between two queries with
samed“" but differentd”*"9¢s. Fortunately, the answer is positive,
as demonstrated below.

Lemma 5.3. GivenQ; and @, specified on the same data set,
with Q;.0°™" = Q;.0°™ andQ;.07*"9¢ > Q,;.67°"9¢, the cluster
set identified byy; is a “growth” of that identified byQ;.

Lemma 5.4. GivenQ; and @Q; specified on the same dataset,
with Q;.0°™ < @Q;.0"" and Q;.07°"9¢ > Q;.07°™9¢, the cluster
set identified byy; is a “growth” of that identified byQ);.

This lemma can easily be proven by the transitivity of ¢fiewth
property. The formal proof is omitted here but can be found in [17].
To more intuitively describe the relationship between two such
queries@; andQ;, with the growth propertyholding among the
cluster sets identified by them, we s@y is a “more restricted”

This lemma holds because the additional neighborships identified query thanQ.;, andQ; is a “more relaxed’ query than@;.

by the more relaxed range threshal.6"*"?¢ will only either

Integrated Representation of Predicted Views across Multi-

bring new clusters or the expansion or merge of existing clusters ple Queries with Arbitrary Pattern Parameters. For each pre-

identified by@;. Formal proof can be found in [17]. Figure 10

dicted window, we aim to build a single structure to represent the

demonstrates the cluster sets identified by three queries having thepredicted views for all queries. However, given grewth prop-

samed“"t but differentd™"9¢ settings. It uses dashed lines be-

erty only holds between two queries if one is more restricted than

tween data points to represent the extra neighborships identified.the other, we can no longer expect to put all given predicted views
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Figure 10: Clusters identified by queries with different§™*"7¢

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary 67¢"9¢.  Similarly as before, we
now can build an integrated structure to represent multiple pre-
dicted views identified by queries with arbitraf§™*. We call it
IntView.6"*"9¢, Similar with IntView.0™*, IntView.0"*"9¢ starts
from the predicted view with the most restricted clusters, namely

into a single linear hierarchy.

Our solution is to build a&redicted View Tree which inte-
grates multiple predicted view hierarchies as branches into a sin-
gle tree structure. In this tree structure, each predicted view (ex-
cept the root) only needs to maintain the incremental information
(cluster “growth”) from its parent, much like the predicted views in
IntView.6"*"9¢ and inIntView.6°™*. In particular, such a predicted
view tree starts from the predicted view that represents the most
restricted query amon@G as its root. This would be the member
query that has both the smallé@st'* and the largest™*™9¢ among
QG. If such a most restricted query does not exigRify, we build
a virtual one by generating a query with the smal$t and the
largesty” "¢ amongQG. Its predicted view will be used for pre-
dicted view tree maintenance but it will never generate any output.

Starting from the root, we iteratively pick (and remove) the most
restricted queries remaining @G and put their predicted views as
the next level of the tree. Here, a member qu@ryis one of the
most restricted queries remaining@ if there does not exist any
other query@; in QG, which is “more restricted” tha@;. This
process of figuring out “the most restricted queries” at each level
is equal to the problem of calculating the Skyline [19] in the two
dimensional space @f"*"9¢ and9°"*. Since this process can be
conducted offline during query compilation, any existing skyline
algorithm can be employed to solve this problem.

To connect queries at adjacent levels, for each qagron the



it" level of the tree, we need to determine its parent or{ihel )t"
level. We aim to find a parent query,, that is most similar to — ?

Qn, indicating that there exists least growth between the cluster A3 Al

set identified by them, compared with that between the cluster set Q1/ QZ’\ Q1/ Q2

identified by@,, and any other, on the(; — 1)** level. Based

Wi+ W2

T

=TT

on our analysis, for two member queries, their difference on neigh-

borships identified (decided by their difference®fi"?¢ settings) Q4\\//Q5 Q 4\\//Q5 Q4\\//Q5 Q4\\/ as

is more likely to cause the variations on the cluster sets identified,
compared to their difference on the requirement for core points (de- Re
cided by their difference o"*"?¢ settings). So, when we deter- EEE
mine the parent predicted view, although we consider the similarity Q1 =05, g3 @ moa. e =a
between both pattern parameters, more weight is given to that be- Q4§Z g g a ;7; Qszz s 04 e ;8;
tweend”"*"?¢s, We can prove that, in our proposed predicted view " Qa@mee=02, o =10)
tree structure, each predicted view maintains the smallestincrement
possible. The detailed algorithm of building the predicted view tree
and the proof to its properties can be found in [17]. To unify the
names of the hierarchical structures representing multiple predicted
views, we call the predicted view tréetView.o.

Although IntView.d is a tree structure, instead of the linear se- 6.1  Samewin, Arbitrary stide Case
quences likantView 0°™* andIntView #"*"9¢, they all three share
the essence that each predicted view is incrementally built based on
the predicted view most similar to it. We call the queries on each
path ofIntView.# a group ofshared queries.

=)

Q3 Q3

il ‘

Figure 11: IntView_0: integrated representation for predicted
views for five queries with arbitrary pattern parameters

In this case, all queries have the same window size, while
heir slide sizes may vary. First, we assume that all queries start
simultaneously. So that the equality of window sizes implies that
all queries always query the same portion of the data stream. More
Lemma 5.5. The upper bound of the memory space needed by specifically, at any given time the data points falling into the win-
IntView. § for any group of shared queries is independent from the dows of different queries are the same. Then, the only difference
number of queries in this group. among queries is that they need to generate output at different mo-

Since thegrowth propertytransitively holds among the cluster sets Ments due to different slide sizes. For example, given three queries
identified by all queries on the same pathlofview.6, the inde- Q1, Q2 andQs, with Q1.win = Qo.win = Qz.win = 10(s),

pendency between the upper bound of the memory space and thé?1-slide = 2(s), Q2.slide = 3(s) and Qs.slide = 6(s), the
number of queries can be proven as in Lemma 5.2. query windows of them cover exactly the same portion of the data

The maintenance processlatView.d is also similar to that for ~ Stréam atany given time, while they are required to output the clus-
IntView 0°"t/7a"9¢ For each new data point, we start the mainte- ters at every 2: 3 and.6 seconds respectlvgly. So, .to serve the dif-
nance from the root dhtView. 6, and then incrementally maintain feref?t outpu_t time pplnts, they need t(.) build _pred|cted windows
the predicted views on the next higher leveliafView. 6. starting at different tlm_es. Th_ese predicted windows shoulc_i each

end at a future output time point, and thus cover the data points on

Theorem 5.1. For a givenQG with member queries havingar-  \hich the clusters need to be formed for that output time point.
bitrary pattern parameters, IntVieW achieves full sharing of both To solve this problem, for a given grodpG, we build a single
memory space and query computation. meta quen®m.t. Which integrates all the member queries .

Lemma 5.1 is ture becausView.d achieves completely incre- ~ @meta has the same window size as all member queriedn
mental storage and computation for the predicted views maintainedWhile its slide size is no longer fixed but rather adaptive during the

by multiple queries. The formal proof can be found in [17]. execution. More specifically, the slide size @f..... at a partic-
. . . ular moment is decided by the nearest moment which at least one
5.4 intviews In Multiple Predicted Windows member query of)G needs to be answered. The specific formula
Given the assumption that all the queriesJr share the same  to0 determine the next output moment is:
window parameters, the predicted windows that need to be main- T — win

tained by them are the same. A straightforward way to serve a  Ineztoutput = Mm(([m1 + 1) * Qi.slide + win)

query group that needs to maintain N predicted windows, is to v _ _

use NIntView.6s to represent these N predicted windows indepen- With T the current wall-clock time andin the common window
dently, and maintain them independently at arrival of each new data Size of all queries. Using the earlier example, for the three mem-
point. Figure 11 gives an example of using footView s to rep- ber queries, we build a meta que@neta With win = 10s. At

resent four predicted windows for a query group with 5 queries. Wall-clock time 00:00:10, the slide size Qfin.t should be 2s, as
00:00:12 will be the nearest time at which a member quéhy) (

This strategy realizes the full sharing in each predicted window N€€ds to be answered. Then its slide size is adapted to 1s, 1s and 2s
(Lemma 5.1). However, no sharing is yet achieved across the dif- & 00:00:12, 13 and 14 respectively for the same reason.
ferent predicted windows. In Section 6, we will introduce a more  Knowing the slide sizes afc:a, we build predicted windows

sophisticated methods that succeed to integrate multipléew.o for Qmeta based on the output time. Using the earlier example, at
representing different windows into a single structure. wall-clock time 00:00:10, we would have built eight predicted win-
dows forQmeta , Which start from 00:00:00, 00:00:02, 00:00:03,

6 SHARING FOR QUER'ES WITH ARBI- 00:00:04, 00:00:06, 00:00:08, 00:00:09 and 00:00:10 respectively,

) as each of them corresponds to one output time point for at least

TRARY WINDOW PARAMETERS one member query. Among these eight “predicted windows”, many

Next, we study the case that the window parameters can vary, of them are serving multiple queries. For example, a single “pre-
while the pattern parameters are common among the queries. dicted window” starting at 00:00:06 will be used to ansvar, Q2



and@s. Each would have maintained one predicted window start- start from 00:00:00 (servin@s for output at 00:00:10), 00:00:01

ing at this time if executed independently. As the predicted views (serving@- for output at 00:00:10), 00:00:04 (serviay for out-
representing such predicted windows for a meta query are no dif- put at 00:00:12 and)s for output at 00:00:10), 00:00:06 (serving
ferent from those needed for any single query, a straightforward Q- for output at 00:00:13 an@3 for output at 00:00:12), 00:00:08
way to maintain them is to use the maintenance method introduced(serving@, for output at 00:00:18 an@; for output at 00:00:14)

in Extra-N[18] to update them independently at the arrival of each respectively. Figure 12 shows the predicted views that need to be
new data point. We will discuss further optimizations for this in the maintained by each of these three queries independently, versus
later part of this section. those by the meta query at wall clock time 00:00:10.

In conclusion, this meta query strategy saves the system resources
for answering a query group for the following reasons: 1) No over-
head, in particular, no extra predicted views will be introduced,
as a predicted window is built only if at least one member query

Q2
needs output from it. 2) Predicted views are shared among member
queries requiring output at the same time. The specific amountof @z  |[W2[ _[W1 T |Wo |
sharing depends on the overlaps of queries’ output times. aras | arasz ! aras | s oy
. ; . VW4 VV3 W2 AAYA] o]

6.2 Samesiide, Arbitrary win Case Qmeta ol | el | | ]| [ e |l

In this case, although the window sizes may vary, we hold the W Wa W Wi VG
slide size steady, indicating that their output schedules are identical. aQnﬂi37M| F_ | ;\:zi: 5«3:&—7 |
Here we first use the simplifying assumption that all the window ' ' ' : ' ; ; ; } \ |
sizes of the member queries are multiples of their common slide 10 8 6 4 2 o}

size. Since the queries have the same slide size, it is easy to observe

that all queries require output at exactly the same moments. Basedrigure 12: Predicted views maintained by three queries inde-
on this observation, an important characteristic can be discovered. pendently versus those maintained by a single meta query

Lemma 6.1. Given a query groug)G with member queries
having the same slide size but arbitrary window sizes (multiples
of slide), the predicted windows maintained fQr; with Q;.win
the largest window size amord@G will be sufficient to answer all
member queries iQG.

Integrated Representation of Predicted Views across Multi-
ple Windows. AlthoughExtra-N[18] can be applied to maintain
the predicted views of the meta query, it achieves no sharing across
the multiple predicted windows (see Section 3). Now we introduce
a further optimization for maintaining predicted views of multi-
ple predicted windows. [16] found that even for a single query ,
the growth propertyholds among the cluster sets identified by it in
different predicted windows. In particular, for a single quély
at any given time T with4,, being the current window, the clus-
ter set identified by it in a predicted windoW,; is always a
growth of that identified by it inW,,4;+1. Figure 2 demonstrates
00:00:10 and 00:00:15 respectively, while those need to be main- 2N example of the predicted views representing four successive pre-

tained byQ: andQs start from 00:00:10, 00:00:15 and 00:00:05, dicted windows of a single query. The formal proof of this can be

00:00:10, 00:00:15 respectively, which all overlap with those built found in [17]. Thisgrowth propertyallows us to build an inte-
by Q3. The “predicted window” starting from 00:00:00 can used grated structure to incrementally store and maintain the predicted

to answerQs, while the predicted windows starting from 00:00:10  Views across multiple windows, calléatView.W. IntView W starts

and 00:00:05 can be used to answiarand Q. respectively. The from the predicted view with the most restricted clusters, namely
formal proof of this can be found in [17]. the one representing the newest predicted window, and then incre-

In summary, we only need to maintain the predicted windows mentally stores the growth information for those representing older
for a single member query with the largest window size, and then Predicted windows. Figure 13 gives an example ofltitgiew. W
we can answer all the queries in the query group with different Puilt for the meta query discussed earlier.

predicted windows maintained. Clearly, full sharing is achieved. 7 PUTTING IT ALL TOGETHER

6.3 Arbitrary siide, Arbitrary win Case Finally, we consider the general case with arbitrary pattern and
We now give the solution for the cases that both window param- window parameters. Although sharing among a group of totally ar-

eters, namelyvin andslide, are arbitrary. Generally, the solution  bitrary queries is a hard problem if we have to solve it from scratch,

for this case is a straightforward combination of the techniques in- we now can easily handle it by combining the two techniques in-

troduced in the last two subsections. In particular, we simply build troduced in the last two sections, namely th&/iew 6 technique

one single meta query that has the largest window size among all(Section 5) and the meta query technique (Section 6). These two

This is because the predicted windows maintainedXowill cover

all the predicted windows that need to be maintained for all the
other queries. For example, given three que€les Q2> andQs,
with Q1.slide = Q2.slide = Qs.slide = 5s, Q1.win = 10,
Q2.slide = 15s andQs.slide = 20s, at wall clock time 00:00:20,
the predicted windows built bg)s start from 00:00:00, 00:00:05,

the member queries and uses an adaptive slide size.

Here we use an example to demonstrate our solution. Given
three querie®):, Q2 andQs, with Q1.win = 10, Q1.slide = 4,
Q2.win = 9, Q2.slide = 5, Qsz.win = 6 andQs.slide = 2,
and all starting at wall clock time 00:00:00, we build a meta query
ngm with Qmem.win = maz(Qi.win)(lgiS;),) = 10. Then

technigues can be easily combined, because they are orthogonal to
each other. In particular, thatView;"* technique is designed to
share among a group of predicted views representing the same pre-
dicted window. We can consider this to be anrfer-predicted-
window” optimization technique. On the other hand, the meta
query technique is designed to minimize the number of predicted

we adaptively change its slide size based on the next nearest outputvindows generated for multiple queries and to share the mainte-

time point required by at least one query. For instance, at wall clock
time 00:00:10, six predicted windows would have been built, which

nance costs across them. So, it can be considered to hatan “
predicted-window” optimization technique. These two orthogonal



techniques can be applied together to realize the full sharing of the | Chandi (stream, QG)
member queries on both inner- and inter-predicted window levels. 1 For each new data point,c., in stream
We use an example to demonstrate this solution. Given three I/ purge

queriesR, Q2 andQ; starting at 00:00:00, witt); (win = 10, slide = | 2 if Prew.T > Wordest-Tena (€Nding time ofiW,dest)
4,07"9¢ = 0.2,0°™ = 5); Q2(win = 9, slide = 5,07""9° = 3 PurgetW,i4es:); //purge the oldest predicted window
0.3,6°™ = 4) andQs(win = 6, slide = 2,07°™9° = 0.2, 0™ = I load

3), we first use the meta query technique to build the predicted win- | 4 loadpnc. into index // we use GRID

dows they need to maintain. At wall clock time 00:00:10, the re- /I IntView Maintenance

quired predicted windows are those shown in Figure 12. Then, for | 5 neighbors=RangeQuerySeargh{c.,, max(Q;.0"*"9¢))
each predicted window built, we apply thetView.d technique to 6 UpdatelntView(ppew, neighbors)

build a predicted view tree to integrate the predicted views (of dif- I/ output

ferent queries) in this window. For the predicted window starting 7 if prew. T = Toutput
from 00:00:04, a predicted view tretn{View.0) is built to repre- 8 Output@G);
sent the predicted views fdp: andQs. 9 add new predicted windoW/,, ¢.s¢ t0 IntView;
10 Toutpur=ScheduleNextOutputMoment();
QLR3I Q2Q3 1Q1,Q3 1 Q2 L Q1
W4A \(\Vs ; W2l WA l Vo
_ % T (N LA g i 8. EXPERIMENTAL STUDY
2! Q2 \/ Q3 Our experiments are conducted on a HP Pavilion dv4000 laptop
© with Intel Centrino 1.6GHz processor and 1GB memory, running
% \ \ Windows XP. We implemented all algorithms with VC++ 7.0.
= I:: T & S P s VN il Real Datasets. We used two real streaming data sets. The first
=T = [ LLE — data set, GMTI (Ground Moving Target Indicator) data [7], records
Q1 Q1 Q1 Q1 Q1

the real-time information of moving objects gathered by 24 differ-
’j - ent data ground stations or aircrafts in 6 hours from JointSTARS.
, . Ilnt\/{ew_IW . . . . It has around 100,000 records regarding the information of vehi-
10 8' e 4 o o cles and helicopters (speed ranging from 0-200 mph) moving in a
certain geographic region. In our experiment, we used all 14 di-
mensions of GMTI while detecting clusters based on the targets
latitude and longitude. The second dataset is the Stock Trading
Traces data (STT) from [12], which has one millions transaction
records throughout the trading hours of a day.

To apply thelntView. W technique (in Section 6), which allows Alternative Algorithms. To evaluate our proposed algorithm,
us to share across multiple predicted windows, we use the mostfor any inputQG, we compareéChandis performance of two major
restricted query of the whole query group as the root of all the pre- alternative methods, executidgG with four alternative methods,
dicted view trees built in each of the different windows. By do- namely executing on&xtra-N algorithm [18] for each member
ing so, the predicted view trees in different windows predicted now query with and without sharing of range query searches (hence-
start from the predicted view representing the same query. Thus, weforth referred agxtra-N with rgsandExtra-N), and executing one
can further integrate these roots in different predicted windows into IncDBSCANalgorithm [8] for each member query with and with-
alntView W structure. This final move “connects” all the predicted out sharing of range query searches (referrethe®BSCAN with
view trees in different predicted windows, forming a single tree rgs andIncDBSCAN. The reasons why we choose them are: 1)
structure that realizes completely incremental storage and mainte-Extra-N algorithm is the only algorithm we are aware of in lit-
nance We call this ultimate hierarchical structure lif®iew. Ex- erature solving density-based clustering over sliding windows; 2)
cept the root of théntView, all the predicted views withiintView IncDBSCANalgorithm is the most well known method for incre-
only maintain incremental information. Figure 13 demonstrates the mental density-based clustering.

IntView built for the three queries mentioned in the earlier exam-  Experimental Methodologies. We measure two common met-

Figure 13: IntView: integrated representation for predicted
views ldentified by 3 Queries in 5 Predicted Windows

ple. We call the final algorithm based on thdView Chandi. We rics for stream processing algorithms, namely average processing
sketch pseudo code describing the overall flow of @randial- time for each tuple (CPU time) and memory footprint, indicating
gorithm below. More details o€handj including the complete the peak memory space required by an algorithm.

pseudo code, can be found in [17]. In many applications, the domain knowledge or the specific anal-

In conclusion, computation-wis€handionly requires a single ysis tasks may restrict some of the query parameters to particular
pass through new data points, each running one range query searckialues. To thoroughly understand the performance of the algo-
and communicating with its neighbors once for all shared queries rithms under different situations, we first evaluate at a time four
on each path ofntView. Memory-wise, as thgrowth property test cases, each varying on only one of the four parameters. Then
holds among the cluster sets identified by the queries on each pathwe relax this constraint to allow two arbitrary parameters. Finally
of IntView, the upper bound of the memory consumptioCoandi we test the general cases with all four parameters arbitrary.
for a group of shared queries on the same path is independent from Evaluation for One-Arbitrary-Parameter Cases. For each test
the “length” of this path, namely the number of shared queries in case, we prepare a query gro@g: with |QG| = 20 by randomly
this group (This can be proven using the same methods as thosegenerating one input parameter (in a certain range) for each mem-
used for proving Lemma 5.2) [17]. In sho@handiachieves full ber query, while using common parameter settings for the other
sharing for multiple density-based cluster queries over sliding win- three parameters for queries. The parameter settings in our ex-
dows in terms of both CPU and memory resources. periment are selected based on a pre-analysis of the datasets. In



particular, we pick parameter ranges that allow member queries todifferent queries). 2) As the neighborships identified by different
identify all major cluster structures that could be identified in the queries differ, the “extra-neighborships” are more likely to cause
datasets. In all our test cases, the largest number of clusters identi-cluster structure changes and thus reqGinandito maintain more
fied by a member query is at least five times more than the smallestmeta-information inntView. The performance of other competi-
number of clusters identified by the other, indicating that the clus- tors, especially foincDBSCANthat consumes large numbers of
ter structures identified by different queries vary significantly. This range query searches, is largely affected by the increasing cost of
is the worst case for our proposed sharing algorithm, because therange query searches as well.
larger the variations on cluster structures identified, the more main-  Arbitrary window or slide case. In these two cases, the cost
tenance costs are needed for our sharing strategy. To observe thef Chandiis almost unchanged as the number of queries increases.
performance of the algorithms when executing different numbers It thus achieves even more significant savings compared with the
of queries, we use different random subset§6f (sized from 5 to previous two cases. This is because we always maintain a single
20) to execute against the GMTI data. meta query and thus answer the whole query group, no matter how

Arbitrary 6°™ case. We used™*"9¢ = 0.01, win = 5000 many queries are in the query group. The detailed experimental
andslide = 1000, while varyingd“™* from 2 to 20. In this case, results and analysis for these two cases can be found in [17].
at most 16 clusters are identified by the most restricted query with ~ Evaluation for Two-Arbitrary-Parameter Cases. We further
6"t = 20, while at least 3 clusters are identified by the most re- evaluate the two test cases by varying two parameters among the
laxed one with witl9°"* = 3. As showninthe C1 and C2 of Figure  member queries.
14, both the CPU time and the memory space used by all four alter-  Arbitrary Pattern Parameters.  In this case, we usain =
natives increases as the number of queries increases. However, th6000, slide = 1000, while varying6°™* from 2 to 20 andg™*"9¢
utilization of CPU resources bghandiis significantly lower than from 0.01 to 0.1. As shown in Figures 16handistill consumes
those consumed by other alternatives, especially when the num-significantly less CPU time compared with the alternatives, although
ber of the member queries increases. The memory consumptionthe increase of its CPU consumption corresponding to the increase
of Chandiis almost equal tancDBSCAN with rgswhich main- of queries is more obvious. This is because totally arbitrary pattern
tains very little meta-information but relies on range query searches parameters leads to even larger differences among the clusters iden-
to re-collect them, and much lower th&xtra-N with rqgs This tified by different queries, and thus increases the maintenance costs
matches our analysis in Section 5. In particular, since for any data of Chandi In this test case, the largest number of clusters identi-
point its neighbors identified by all queries are the same, the clusterfied by the member query (with™*"?¢ = 0.01 andf°™* = 14)
growth information that needs to be maintainedGiyandiamong reaches 35, while the smallest number of clusters identified by the
the queries is very simple and can be updated efficiently. query (withg™*™9¢ = 0.1 and§°"* = 3) is only 2. Even though

the CPU time used bZhandiis still 63% less than that used by

C1: 70 (e IeDESCAN C2 sowo | ~+1eDBESCAN Extra-N with rgs when executing the query group sized 20.
60 |8 IcDBSCAN witl 1sq .  pebEs AN Arbitrary Window Parameters. We use?°"t = 10 and§™@"9¢ =
50 |5 Dxtia with gz Sooom | EunNvibg: 0.01, while varyingwin from 1000 to 5000 andlide from 500 to
40 | Chandi E o Chandi - 5000 (for anyQ;, Q;.slide < Q;.win). As shown in Figure 16,
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trary pattern parameter case. This is because, the variation of both
window parameters does not affect the principle of how the meta
query strategy works. In particular, the cost of maintaining the meta
query only depends on the largestn in the query group and the
number of predicted views that need to be maintained, which both
do not necessarily increase along with the number of queries.
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Figure 14: Comparison of CPU and memory utilizations for
five algorithms in arbitrary 9°** case (C1 and C2) and in arbi-
trary 07*"9¢ case (C3 and C4)

Arbitrary §7°"9¢ case. In this experiment, we us&"* = 10,
win = 5000 andslide = 1000, while varying6”*"™?¢ from 0.01
to 0.1. At most 10 clusters are identified by the most restricted
query with6™*™9¢ = 0.1, while at least 2 clusters are identified
by the most relaxed one with™*"9¢ = 0.1. As shown in C3
and C4 of Figure 14, a similar situation can be observed, while
the increase of the resource utilization f@inandiis more obvious
in this scenario. This is for two main reasons. 1) SiAt&"9¢
varies among the queries, the range query search costs increasperformance of the algorithms when executing different numbers
along with the number of queries, even with the range query shar- of queries. In particular, for each test case, we generate 30 query
ing (each data point needs to figure out its neighbors defined by groups each with N member queries (N equals to 20, 40 and 60 for
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Figure 16: CPU time used by
five algorithms in arbitrary

window parameter case

Figure 15: CPU time used by
five algorithms in arbitrary
pattern parameter case

General Case: Four Arbitrary Parameters. Finally, we eval-
uate the general case with all four parameters being varied arbitrar-
ily. We divide this experiment into three cases, each measuring the



three cases respectively). Each query group is independently gen-minimum savings in this case among the 30 groups2afg, the
erated, and the member queries in each group are randomly genimaximum savings reacd% , and the standard deviation is only
erated with parameter settingg™* = 2 to 20,0™*"9¢ = 0.01 to 19% . As the number of queries in each group increases, the sav-
0.1,win = 1000 to 500%:lide = 500 to 5000. For each test case, ings achieved bfhandiare even higher in the other two test cases.
we measure the average cost of each algorithm for executing all 30In particular, the average saving achieved@handiof CPU time
guery groups. Beyond that, we zoom into the overall average costincreases t®0% when the number of queries in each group in-
of each algorithm, and measure the cost caused by each specificreases to 60. The minimum and maximum savings of CPU time
subtask. In particular, the CPU measurement is divided it into two increases ta5% and92% respectively in this case, and the stan-
parts, namely the CPU time used by range query searches and thatlard deviation of the savings decreased28:. This shows the
used by cluster maintenance. For the memory space consumed, w@romise ofChandithat, for a query group with 60 queries, it can
distinguish the memory used for raw data (for storing actual tuples) achieve savings betwe&i3% to 92% of CPU time in most of the

and the memory used for meta-data. cases. Among the 30 query groups in this test case, 23 of them fall
into this range. The average savings achieve€bgndion mem-
70 [ range query search .7::)1\1.\;161 mamtenance ory space in this Go_query Case$.[§%. Due to page |imitati0n5,
60 | C1: 20Q Cases - C2: 40Q Cases we omit the charts showing savings of the memory space.
250 250 | Evaluation for Scalability. Now we evaluate the scalability
240 S0 - of the algorithms in terms of the number of queries they can han-
E30 A L, E 30 e dle under a certain data rate. In this experiment, wekgea-N,
20 [[[] = A3 2PN " Extra-N with rgsand Chandito execute query groups sized from
10 E Mo 10 H A5 10 to 1000 against GMTI data. Similar with earlier experiment, the
o LH & 0 - 0 ! - member queries in the query group are randomly generated with
70 ¢ 2 C3: 60Q Cases o0 C4: the arbitrary parameter settings in certain ranges. In particular, the
60 |- A2 = i parameters settings in this experiment&f¥ = 2 to 30,§7°"9¢ =
Z50 ™= &™" =10 0.001 to 0.01win = 1000 to 5000 andlide = 500 to 5000.
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Figure 17: Detailed comparison of CPU time consumption of
five algorithms

1.00E-01 1.00E+03
10Q 100Q 1000Q

10Q 100Q 1000Q

As shown in C1, C2 and C3 of Figure 17, we observe that the
average CPU time used Ihandiis 70, 76, and 85 precent lower Figure 18: CPU time used by Figure 19: Memory space

then the best alternative methdktra-N with rgs in the three cases 0 algorithms in logarith- used by five algorithms in
respectively. In particular, the CPU time used@yandito conduct mic scale logarithmic scale

range query searches is always less th@#i compared with that

needed byncDBSCANwith rgs. This is becaus€handionly re- As shown in Figures 18 and 19, both the CPU time and the mem-

qui.res each new data poipt to run one range query search when itOry space used bghandiincreases modestly as the number of
arrives at the system, whilecDBSCANrelies on repeated range  memper queries increases. In particular, the CPU time consumed
query searches to determine the cluster changes. The CPU timg, chandiincreases around 6 times when the number of queries

used byChandito maintain meta-information is at lea2’ less grows from 10 to 100 (increased 9 times), and then it increases

than that used bigxtra-N with rgs This is becaus€handiupdates  |aqg than 4 times when number of queries grows from 100 to 1000.

the meta-information for different queries integrally, witlitra-N Thus totally the CPU time consumed Byandiincreases 33 times

ma‘”ta.“”s them mdependently. when the number of queries increased from 10 to 1000, which is
Besides the comparison of the average system resource CoNsUMPrg times. Such increases faxtra-N and Extra-N with rgsare

tion, we also measure the savings@fandifor each individual 105 times and 89 times respectively. More specifically, in our test

query group in all three test cases. In particular, for each query cases, the average processing time (CPU) for each tuple used by
group, we measure the difference in resource utilization between ~pandito execute the 100-query and 1000-query query groups are
Extra-N with rsqandChandi which corresponds to the difference (76 and 3.3ms respectively, which indicates that our system can
between executing them using the best existing technique and oure,mortaply handle 100 queries under a 1000 tuple per second data
proposed strategy. More specifically, for each group, we first cal- 510 and handle 1000 queries under a 300 tuple per second data
culate _the difference_on CPU (or memory) utiligations betwgen rate. For the memory space us&handihas even better perfor-
ChandiandExtra-N with rqs Then, we use the difference t0 di- a6 a5 its utilization of memory space only increases 5 times
vide that used byExtra-N with rgsto get the saving percentage \yhen the number of queries increases from 10 to 1000, while such
achieved byChandi As shown in C4 of Figure 17, although the  jycrease foExtra-N andExtra-N with rgsare both 98 times.

minimum savings achieved Wyhandiis only around20%, which

is caused by too large variations on the parameter settings, it never,
performs worse thakxtra-N with rgsfor any query group. For . RELATED WORK
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