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ABSTRACT 1 INTRODUCTION

Practitioners are increasingly turning to Extract-Load-Transform
(ELT) pipelines with the widespread adoption of cloud data ware-
houses. However, designing these pipelines often involves signif-
icant manual work to ensure correctness. Recent advances in Al-
based methods, which have shown strong capabilities in data tasks,
such as text-to-SQL, present an opportunity to alleviate manual
efforts in developing ELT pipelines. Unfortunately, current bench-
marks in data engineering only evaluate isolated tasks, such as
using data tools and writing data transformation queries, leaving a
significant gap in evaluating Al agents for generating end-to-end
ELT pipelines.

To fill this gap, we introduce ELT-Bench, an end-to-end bench-
mark designed to assess the capabilities of Al agents to build ELT
pipelines. ELT-Bench consists of 100 pipelines, including 835 source
tables and 203 data models across various domains. By simulating
realistic scenarios involving the integration of diverse data sources
and the use of popular data tools, ELT-Bench evaluates Al agents’
abilities in handling complex data engineering workflows. Al agents
must interact with databases and data tools, write code and SQL
queries, and orchestrate every pipeline stage. We evaluate four rep-
resentative code agents with six popular Large Language Models
(LLMs) on ELT-Bench. The highest-performing agent, OpenHands
CodeActAgent Claude-3.5-Sonnet, correctly generates only 11.3%
of data models, with an average cost of $1.41 and 72.2 steps per
pipeline. Our results demonstrate the challenges of ELT-Bench and
highlight the need for a more advanced Al agent to reduce manual
effort in ELT workflows.
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Data engineers are increasingly leveraging Extract-Load-Transform
(ELT) pipelines to integrate data and efficiently transform it into the
required format as scalable cloud data warehouses become more
accessible and storage prices continue to fall [22, 43, 56, 60, 61]. For
example, the TPC-DI benchmark requires the creation of a decision
support system for a retail brokerage firm by transforming data
from various sources, including a trading system, internal Human
Resources (HR), and Customer Relationship Management (CRM)
systems [48]. These data sources vary in formats, data types, at-
tributes, and inter-table relationships [48]. To build such a decision
support system, data engineers design ELT pipelines: first, extract-
ing and loading data into the data warehouse, followed by writing
transformation queries to process the data for analysis.

Compared to traditional Extract-Transform-Load (ETL) pipelines,
ELT pipelines ingest data directly into data warehouses, enabling
real-time Business Intelligence (BI) analysis [66]. Furthermore, with
cloud infrastructure, ELT enhances scalability for processing large
volumes of data [60] and offers greater flexibility in incorporat-
ing additional data transformations [49]. These benefits make ELT
pipelines an increasingly preferred choice for processing data across
various scenarios [22, 43, 56, 60, 61].

Developing ELT pipelines is an essential task for data engineers
[22, 43, 56, 60, 61], but the process requires significant manual
work. Prior studies estimate that data engineers spend over 60%
of their time on data warehousing projects building data pipelines
[11, 26, 34, 54, 72]. First, these pipelines must extract and integrate
data from disparate sources with varying formats and standards.
Second, data engineers or analysts need a deep understanding of
the source data schema to write transformation queries.

Can Al agents effectively reduce the manual effort involved in
constructing ELT pipelines? Recent advancements in Large Lan-
guage Models (LLMs) have demonstrated strong capabilities in the
text-to-SQL task, a crucial component of ELT pipelines. Notably,
state-of-the-art (SOTA) techniques based on LLMs have achieved
execution accuracy rates of 77.1% and 91.2% on the Birp [40]
and Spider 1.0 [81] benchmarks, respectively. Researchers have
recently developed Al agents to tackle more complex real-world
tasks that demand reasoning, tool usage, planning, and memoriza-
tion [38, 58, 68, 71, 76, 79]. To evaluate the capability of emerging
Al agents, researchers have proposed numerous benchmarks in the
data domain [9, 28, 30, 37, 38]. However, there is no end-to-end
benchmark designed with end-to-end ELT pipelines.

Building an end-to-end ELT benchmark is challenging because
it requires sophisticated setup and configuration, time-consuming
ground truth labeling, and thorough workflow verification to en-
sure reproducibility and correctness. First, annotators must set up
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Task: build an ELT pipeline by extracting data from multiple sources into tables
in Snowflake and transforming these tables into required data models.
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Figure 1: ELT-Bench is the first end-to-end benchmark designed to evaluate the ability of Al agents to build ELT pipelines. The
agent is required to build ELT pipelines by setting up Airbyte to ingest data from diverse sources, and then writing configuration
files and SQL transformation queries in DBT to produce analysis-ready data models.

various data management systems and platforms to store source
data and provide data tools capable of handling diverse data sources.
Second, annotators must prepare all necessary input files within the
project base. Third, annotators must label ground truth by develop-
ing configuration files and writing complex transformation queries
involving various relational operations (e.g., casting, type conver-
sion, joins, aggregation, and ranking). Finally, annotators manually
execute and verify each ELT pipeline to validate the correctness of
both the configured environment and generated annotations.

We address these challenges by introducing ELT-Bench, a new
benchmark of 100 ELT pipelines associated with 835 source tables
and 203 data models across various domains. For a single ELT
pipeline, we spend approximately 3 to 5 hours of manual effort
setting up the environment, annotating input files and the ground
truth, and building the entire pipeline for verification. Notably,
60% of the pipelines require extracting and integrating data from
five distinct categories of sources (APIs, cloud services, relational
databases, NoSQL databases, and flat files). In addition, the ground
truth for each pipeline, on average, involves 187 lines of code per
configuration file and 200 SQL tokens (tokenized by whitespace
[38]) per data model.

ELT-Bench is the first benchmark that covers the entire workflow
for building ELT pipelines. As shown in Figure 1, ELT-Bench re-
quires agents to construct an end-to-end ELT pipeline from scratch,
encompassing two primary stages: (1) data extraction & loading
stage and (2) data transformation stage. In the first stage, agents
use provided connection details (Figure 2a) to write and execute
Airbyte Terraform code, extracting data from diverse sources and
loading it into the data warehouse. In the second stage, agents con-
figure DBT (including its profile and SQL transformation queries)
and execute it to produce target data models. Once the entire ELT
pipeline is complete, analysts can directly access both ingested
source tables and target data models in the warehouse for further
analysis. This setup challenges Al agents to automate the end-to-
end data engineering workflow required for building ELT pipelines.
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We evaluate four code agents, Spider-Agent [38], SWE-Agent
[76], OpenHands CodeActAgent [68], and Augment Agent [12],
with six LLMs on ELT-Bench. The top-performing agent, Open-
Hands CodeActAgent Claude-3.5-Sonnet, achieves a success rate of
73% in the data extraction & loading stage but only a success rate
of 11.3% in the data transformation stage. On average, OpenHands
CodeActAgent Claude-3.5-Sonnet consumes $1.41 and requires 72.2
execution steps per task. Current agents’ poor performance and
high costs highlight the need for further advancements in Al agents
to reduce manual effort in developing ELT pipelines.

2 ELT-BENCH

In this section, we first provide an overview of ELT-Bench, detail-
ing the data tools, the overall task, the agent’s input and output, and
the execution environment. We then present summary statistics of
ELT-Bench.

2.1 ELT-Bench Overview

Data tools. We use Airbyte [2] for data extraction and load-
ing, a leading open-source data integration tool for ELT pipelines,
which has also been used in prior work [9]. We use the Airbyte
Terraform provider to enable code-based configuration for the
agent. To generate target data models, we use DBT [14], a widely
adopted data transformation tool [9, 38].

Task description. Given a codebase and environment, the agent
is tasked with editing the codebase to implement Airbyte configu-
ration, DBT configuration, and data transformation queries, as well
as running the codebase to construct an end-to-end ELT pipeline.
The task comprises two main stages:

(1) Data extraction & loading: The agent must first write Airbyte
Terraform code and then trigger extraction & loading jobs to
ingest data from various sources into the data warehouse.



Airbyte:
config:
files_definition_id: <id_1>
workspace_id: <id_2>
flat_files:
- format: jsonl
path: "https://..."
sync_mode: full_refresh_append
table: nation
snowflake:
config:
account: <account_id>
database: retails
password: <snowflake_password >
username: AIRBYTE_USER

(a) A partial configuration of Airbyte for the retails database, as
defined in the provided config.yaml file.

models:
- name:
description:
columns:
- name: c_custkey
description: Unique identifier for the customer.
- name: order_date_highest_total_price
description: The order date with the highest total
price the customer has made, with ties broken by
the ascending order of the order date.

customers
Each record represents a customer.

(b) A partial description of the customers data model for the retails
database, as defined in the provided data_model.yaml file.

Figure 2: An example of provided input files of the retails
database in ELT-Bench.

(2) Data transformation: The agent is then required to configure
DBT and write transformation queries. Subsequently, the agent
needs to execute DBT to produce analysis-ready data models in
the data warehouse.

Agent inputs. We now describe the details of the pre-established
project base, which consists of the following files:

(1) Source tables refers to the original tables in diverse formats,
such as relational databases, APIs, and flat files.

config.yaml contains the necessary connection information
for source tables, data warehouses, Airbyte, and DBT. For ex-
ample, extracting data from PostgreSQL requires specifying
the host, port, user, password, schema, database, and tables.
data_model.yaml defines the data models the ELT pipeline
generates. Each data model includes a description, column
names, and explanations for each column.

elt/main. tf contains the code to initialize Terraform pro-
vided in Airbyte.

documentation includes correct version of documentation from
Airbyte, providing guidance on writing configuration code and
triggering sync jobs.

schemas contains the column names and descriptions of source
tables.

()

Agent outputs. We now detail the agent’s output, which consists
of three components:
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(1) Files in codebase: Newly created Airbyte Terraform code, DBT
profile files, and SQL transformation queries.

(2) Loaded tables: Source data ingested into the data warehouse
and stored in a unified format.

(3) Data models: Analyst-required tables produced by applying
SQL transformations (e.g., join, filter, aggregation) to the loaded
tables.

Enviroment description. ELT-Bench also includes a complex
environment, as it requires agents to interact with a variety of data
storage platforms and data tools. We describe them in detail below:

(1) Data sources: We select five commonly used types of data stor-
age platforms for storing source tables, as listed in Table 3. We
deploy four of these platforms—PostgreSQL, MongoDB, REST
API, and Amazon S3 (simulated with LocalStack [41])—using
Docker containers, while providing links for flat files.

Data warehouse: We use Snowflake [13] as our data warehouse
to store extracted data and execute transformation queries that
generate target data models, as it is a widely studied and popular
cloud data warehousing solution [38, 64].

Packages and functions: We provide a Docker file with all the
required packages. Additionally, since data extraction and load-
ing jobs typically take several minutes, we provide a script that
monitors the status of all synchronization jobs and waits for
their completion. This prevents redundant Airbyte API and
LLM calls, reducing execution steps and costs.

@

®)

2.2 Benchmark Statistics

ELT-Bench contains 100 ELT pipelines associated with 835 source
tables and 203 data models. As shown in Table 1, compared to ex-
isting agent benchmarks for data engineering, ELT-Bench is the
first end-to-end benchmark that covers the full data engineering
workflow, reflecting real-world practice. In contrast, TPC-DI [48]
is limited to a single database and its metrics are designed to assess
data integration system throughput rather than Al agents’ ability.
Spider 2-V [9] focuses on evaluating an agent’s ability to use high-
level data tools individually, such as using Airbyte to extract and
load data and using DBT with a given SQL query to transform data.
It does not include writing low-level SQL queries for data transfor-
mation or creating a complete pipeline using multiple tools. Spider
2.0 [38] includes data transformation in only 10.8% of tasks and does
not cover extraction or loading. We exclude recent benchmarks
built on BIrD [40] (i.e., TAG-Bench [6] and TQA-Bench [52]) from
Table 1 because they focus on data-analytic tasks (i.e., question
answering) and do not include data extraction and loading or data
transformation. We highlight the characteristics of ELT-Bench in
the following paragraphs.

Diverse Data sources. As shown in Tables 2 and 3, our benchmark
features diverse data sources. In total, 60 pipelines require extracting
data from all five types of data sources, while 24 pipelines involve
extracting more than 10 tables. Furthermore, 30 pipelines require
writing more than 200 lines of code in Terraform files to extract
data from these sources and load them into the data warehouse.

Complex Data Transformation. ELT-Bench evaluates the agent’s
ability to write SQL queries based on natural language to generate



Table 1: Comparison of ELT-Bench with existing benchmarks in the data engineering field. ELT-Bench is the first benchmark
to evaluate AI agents’ ability to provide end-to-end coverage of the entire data integration process, from ingesting tables in
diverse formats to analysis-ready data models in the data warehouse.

Benchmark # Tasks Data Extraction & Loading Data Transformation End-to-End
TPC-DI [48] 1 v (12) v/ (18) v (1)
Spider2-V [9] 494 v/ (48) X X
Spider 2.0 [38] 632 X v (120) X
ELT-Bench 100 / (835) / (203) / (100)

Table 2: Statistics of ELT-Bench, illustrating the distribu-
tion of data sources, source tables, lines of Terraform code,
data models, and SQL tokens per data model. As shown, ELT-
Bench consists of ELT pipelines that involve multiple data
sources, extensive code, and complex data transformations.

Statistics # Tasks
# Categories of Data Sources 100
2 data sources 7

3 data sources 15
4 data sources 18
5 data sources 60
# Source Tables 100
< 5 tables 36
5 - 10 tables 40
> 10 tables 24
# Lines of Airbyte Terraform Code 100
< 100 lines 7
100 — 200 lines 63
> 200 lines 30
# Target Data Models 100
1 data model 50
2 data models 22
> 3 data models 28
# SQL Tokens per Data Model 100
(Tokenized by whitespace [38])
< 100 tokens 8
100-200 tokens 19
> 200 tokens 73

target data models. It is common practice in ELT workflows to
generate multiple data models within a single task. For example,
TPC-DI requires generating 18 data models [48]. In ELT-Bench,
for example, 28 pipelines require the generation of at least three
data models each. Following the approach in Spider 2.0 [38], we
tokenize the SQL queries using whitespace and then count the
resulting tokens to measure complexity. Because pipelines from
Fivetran include both a staging and an intermediate layer, we
calculate the average number of tokens per data model for each
pipeline. As shown in Table 2, 73 pipelines demand over 200 tokens
per data model, illustrating the complexity of these SQL queries.
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Table 3: Overview of common data source categories, repre-

sentative sources, and their real-world applications.

D .
ata Source Representative Applications in Practice

Category Sources

APIs REST API Web services, th'1rd—partyt '
platforms, real-time applications.
Bi latf

Cloud Services | Amazon S3 ig data p attorms,
modern applications.

Relational PostgresoL Enterpri.se systems,

Databases transactional systems.

NoSQL MongoDB Mode-rn web applications,

Databases real-time data systems.

Flat Files CSV, JSONL, Third-party data providers,

Parquet backups.

3 ELT-BENCH CONSTRUCTION

3.1 Data Collection

We collect 78 databases from a widely used text-to-SQL benchmark,
BIRD [40], and 22 databases from the GitHub repository! of an
enterprise software, Fivetran [21]. Each database corresponds to
a pipeline in ELT-Bench.

o BIRD is a text-to-SQL benchmark with large-scale databases span-
ning 37 domains. We use all databases from which five distinct
features can be extracted as columns within a data model, re-
sulting in the inclusion of 78 out of 80 databases in ELT-Bench.
Previous study indicates that databases in BIRD can contain noise
levels as high as 49% [73]. To ensure quality, we manually verify
the SQL queries for the five features used in our benchmark,
correcting any identified errors directly in our gold SQL trans-
formation queries.

e Fivetran is a data movement platform that develops DBT pack-
ages to facilitate the analysis of data from popular sources, such
as Microsoft Advertising, Instagram Business, and YouTube An-
alytics. We sampled 22 out of 103 packages from the Fivetran
GitHub repository.

3.2 Annotation Pipeline

We now describe the construction of the ELT-Bench environment
and codebase, as well as the annotation and verification of the

!Fivetran releases their data models on GitHub: https://github.com/fivetran.
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ground truth. We defer the detailed steps to the supplementary
material [33].

Environment setup. The main step in the environment setup is
constructing diverse data sources for each ELT task. The original
BIrD data is stored in SQL1ite, while Fivetran data is in CSV format.
To simulate real-world diversity, we convert these data sources
into different formats according to their characteristics and the
categories shown in Table 3. To facilitate the use of ELT-Bench,
we use Docker to deploy PostgreSQL, MongoDB, REST API, and
Amazon S3. Since a Docker image containing a full database dump
would be large, we instead provide an image with scripts to create
the necessary databases and load the data.

Codebase construction. After setting up the environment, we
construct the ELT-Bench codebase. We first specify the connec-
tion details for each data source, data warehouse, and data tool in
config.yaml (see Figure 2a for an example).

We define 203 ELT data models: 80 derived from Fivetran
databases and 123 from BIrD databases. For Fivetran, which pro-
vides predefined data models, we prune each data model by drop-
ping utility-generated columns and columns that are always null,
except when such columns are required by downstream data mod-
els. For BIRD, a text-to-SQL benchmark with up to several hundred
annotated analytical questions per database, we define the target
data models for the ELT pipelines following the data models from
TPC-DI [48] and Fivetran. For each database from BIrp, we group
annotated analytical questions by the dimension table they target.
Then for each dimension table whose associated questions yield
at least five distinct features, we randomly sample five questions
involving complex SQL and convert them into the implied fea-
tures as columns in the corresponding data model. For example,
consider the question: "Which film directed by Abbas Kiarostami
has the highest average score?" This corresponds to the feature
highest_average_score_filmin the Directors data model, rep-
resenting the film with the highest average score for each director.
We include a textual description for each column to help agents
better understand the data model and reduce ambiguity.

Ground truth annotation and verification. Annotators are
required to consult the official Airbyte Terraform documentation
to learn the configuration process for Airbyte. They then write
the necessary Airbyte Terraform code and SQL queries based on
the codebase. Although BIRD provides ground truth SQL queries,
annotators must verify the correctness of the queries we use, fix
any errors, and modify them to conform to the defined data models.

After annotation, we validate the ground truth by executing
the codebase to construct ELT pipelines and inspecting the output
data models. We run, on average, 10 test queries for each data
model to ensure correctness. If the output data models do not match
expectations, we revise the ground truth and re-run the codebase
until the outputs meet the desired criteria.

4 EXPERIMENTS

We evaluate four representative code agent frameworks, Spider-
Agent [38], SWE-Agent [76], OpenHands CodeAct Agent [69], and
Augment Agent [12] using six LLMs on ELT-Bench. In this section,
we first introduce the evaluation metrics of ELT-Bench, followed by
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a detailed explanation of the experimental settings for both agents.
Finally, we present the evaluation results.

4.1 Evaluation Metrics

We use the widely adopted metric in agentic benchmarks [9, 29, 32,
38, 84], success rate, to assess the performance of agents on ELT-
Bench. To provide a more comprehensive evaluation, we measure
the success rate for both the data extraction & loading stage and the
data transformation stage. Specifically, we introduce the Success
Rate for Data Extraction & Loading (SRDEL) to measure the
proportion of ELT pipelines that successfully extract and load data
in the first stage and the Success Rate for Data Transformation
(SRDT) to measure the proportion of data models successfully built
in the second stage. Additionally, we measure the agent’s average
cost (calculated based on token usage and API pricing [3, 20, 45])
and average steps per task to assess its efficiency. We describe
SRDEL and SRDT below.

SRDEL. We evaluate the metric SRDEL in the first stage:

# successful pipelines in data extraction & loading
SRDEL =

# total pipelines ’
which measures the proportion of pipelines that successfully extract
and load data.

A pipeline is considered successful in the data extraction & load-
ing stage if the pipeline successfully extracts data from all sources
and loads it into the data warehouse. To evaluate this, we execute
the following query for each source table in the data warehouse:

SELECT COUNT (*) FROM source_table;

The stage is considered successful only if the size of the loaded data
matches the size of the original data.

SRDT. To evaluate the performance of the agent in the second
stage, we use the metric SRDT:

# correctly generated data models
# total data models

SRDT = s
which measures the proportion of correctly generated data models
among all data models (one ELT pipeline may involve multiple data
models). To assess the correctness of a generated data model, we
execute the following query:

SELECT * FROM data_model ORDER BY unique_key;

The unique key may consist of a composite set of columns deter-
mined manually for each data model to ensure the query produces
consistent results across different runs. We use this query to create
CSV files for the generated data model, which are then compared
against the ground truth, which is also derived from the same query.

A generated data model is considered correct if it contains the
same number of rows and includes all columns and corresponding
values present in the ground truth. Following prior work [38], we
allow extra columns in the generated model, as they do not impact
functionality. Since the data transformation queries in ELT-Bench
require complex logic beyond simply retrieving columns, our metric
can accurately reflect the agent’s actual performance.



Table 4: ELT-Bench evaluation results for all tested agents with Claude-3.5-Sonnet and GPT-40. OpenHands CodeActAgent
Claude-3.5-Sonnet performs best, with a 73% SRDEL and 11.3% SRDT.

Agent Framework LLM SRDEL (%) SRDT (%) Average Cost($) Average Steps
Spider-Agent [38] Claude-3.5-Sonnet 23% 0 3.51 63.3

GPT-40 15% 0 2.03 43.7
SWE-Agent [76] Claude-3.5-Sonnet 37% 1% 5.22 60.0

GPT-40 0 0 5.22 114.3
Augment Agent [12] Claude-3.5-Sonnet 45% 2.5% 1.11 50.9

GPT-40 1% 0 0.79 30.4
OpenHands Claude-3.5-Sonnet 73% 11.3% 1.41 72.2
CodeActAgent [68, 69] GPT-40 0 0 1 38.9
Spider-Agent Claude-3.7-Sonnet w/ extended thinking 57% 3.9% 4.30 89.3

4.2 Al Agent Frameworks

We select four open-source agents from Spider 2.0 [38] leader-
board (Spider-Agent) and SWE-bench [32] leaderboard (SWE-Agent,
OpenHands CodeActAgent, and Augment Agent). Spider-Agent is
designed for database-related tasks, which allows direct database
access. In contrast, the other three agents are designed for address
GitHub issues. We run these four agents with five LLMs, includ-
ing GPT-4o0 [46], Claude-3.5-Sonnet [4], two open-sourced LLMs
(Llama-3.1-405B-Instruct [25], Qwen2.5-Coder-32B-Instruct [53]),
and one reasoning model (DeepSeek-R1 [15]). In addition, as a case
study aimed at exploring the frontier reasoning model, we also
evaluate Spider-Agent Claude-3.7-Sonnet with extended thinking
on ELT-Bench. We describe the settings of these four agents below.

Spider-Agent. Spider-Agent is an agent designed for database-
related tasks, providing command-line interfaces for multi-turn
interactions with environments [38]. It also enables direct inter-
action with databases to extract detailed source table information
(e.g., column values) and verify the correctness of transformation
queries (e.g., DBT may fail to detect format errors). The agent uses
the ReAct [79] framework, in which the LLM generates thought and
decides the next action based on current observation and history
trajectory at each iteration. We use the default parameter settings
of Spider-Agent, except for changing the maximum allowed steps
to 100, as ELT-Bench presents more challenging tasks compared to
Spider 2.0 [38].

SWE-Agent. SWE-Agent is a code agent designed to address
GitHub issues [76]. In each iteration, the agent interacts with the
filesystem based on its observations. SWE-Agent operates as a
function-calling agent by prompting the LLM to invoke predefined
functions, and it also offers a thought-action mode. We use function
calling for GPT-40 and Claude-3.5-Sonnet, and the thought-action
mode for Llama-3.1-405B-Instruct, Qwen2.5-Coder-32B-Instruct,
and DeepSeek-R1 since they fail to call tools correctly. We apply the
default parameter settings of SWE-Agent, with one modification:
retaining the last 25 observations for the agent due to the complexity
of ELT-Bench. Following prior work [76], we allocate a same cost
budget to all evaluated LLMs. To establish a comparable budget for
both SWE-Agent and Spider-Agent, we first estimate the cost of
completing 100 agent steps using Spider-Agent across all LLMs. We
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then select the highest of these estimates and round it up to the
nearest integer, yielding a budget of $6 for each evaluated LLM.

Augment Agent. Augment Agent is a code agent that uses func-
tion calling for direct interaction with its execution environment
[12]. The agent includes diverse tools, including file viewing, file
editing, bash command execution, and sequential thinking. Due
to cost limitations, we disable the majority-vote ensemble module,
which would otherwise generate multiple candidate solutions and
select the best one. We set the maximum allowed steps to 100.

OpenHands CodeActAgent. CodeActAgent is a code agent built
on the CodeAct framework, which enables LLMs to generate code as
executable actions rather than as plain text or JSON [68]. Following
the settings in the SWE-bench leaderboard, we use CodeActAgent
within the OpenHands platform [69], a platform for software devel-
opment agents. OpenHands offers an action for condensing conver-
sation history, thereby maintaining context efficiency throughout
extended interactions. We set the maximum allowed steps to 100.

4.3 Evaluation Results

We report our evaluation results for all agents with Claude-3.5-
Sonnet and GPT-40 in Table 4. The poor performance, high cost,
and extensive action steps highlight the challenges of ELT-Bench.
The top-performing agent, OpenHands CodeActAgent Claude-3.5-
Sonnet, attains a 73% success rate for data extraction & loading,
but only a 11.3% overall success rate. Despite these limitations, this
agent demonstrates substantial performance improvements over
the second performing agent using a reasoning model, Spider-Agent
Claude-3.7-Sonnet with extended thinking, with 28.1% relative im-
provement in the data extraction and loading stage and 189.7%
relative improvement in the data transformation stage. Moreover,
ELT-Bench presents a higher computational cost compared to Spi-
der 2.0 [38]. While 30 agent steps are sufficient for most tasks in
Spider 2.0, with an average cost of $0.30 per instance using Spider-
Agent GPT-4o, evaluating Spider-Agent GPT-40 on ELT-Bench re-
quires an average of 43.7 steps and costs $2.03 per task.

We present a detailed error analysis for the baseline agent evalu-
ations in Section 5, followed by an in-depth case study of Spider-
Agent Claude-3.7-Sonnet in Section 6. We provide the performance
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Figure 3: Number of tasks failing in Stage 1 categorized by four main issues: incorrect format, incorrect Snowflake password,
job repeatedly triggered, and missing configuration for multiple flat files.

CreateFile(filepath="'/root/.dbt/profiles.yml ':
LY

Action:

" retail_complains:

(a) Incorrect action format.

provider "airbyte" {username = "<username >"}}

(b) Incorrect code format.

Figure 4: Incorrect action format generated by Spider-Agent
Claude-3.5-Sonnet and incorrect code format generated by
SWE-Agent GPT-4o.

of evaluated agents with open-source LLMs and detailed error anal-
ysis in the supplementary material [33].

5 ERROR ANALYSIS

In this section, we examine the errors encountered by agents pow-
ered by Claude-3.5-Sonnet and GPT-40. We begin by providing
a detailed analysis of errors arising during the data extraction &
loading stage. We then investigate the errors occurring in the data
transformation stage, focusing on those agents having an SRDEL
greater than 10%.

5.1 Error Analysis of Data Extraction & Loading

We examined the major issues encountered by four agents when
using GPT-40 and Claude-3.5-Sonnet, including incorrect action or
code formats, incorrect Snowflake password fields, incorrect table
sizes, and missing configuration for multiple flat files. We describe
each of these problems in detail below.

Failure to generate action or code in the required format.
We observed that LLMs frequently generate actions in incorrect
formats when used with Spider-Agent, and similarly produce code
in incorrect formats under SWE-Agent. Spider-Agent, which builds
on the ReAct framework [79], requires that the LLM produce a valid
action at each iteration, terminating the process if three formatting
errors are detected via regular expressions. Despite providing de-
tailed descriptions and examples of all actions, LLMs still generate
invalid actions. For instance, in Figure 4a, Spider-Agent Claude-
3.5-Sonnet incorrectly places a closing parenthesis on the last line
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Success case

Action 1: Bash(code="cat /workspace/config.yaml")
Action 10: Bash(code="cat /workspace/documentation/destina-
tion_snowflake.md")
Action 11: EditFile(filepath="/workspace/elt/main.tf")
T Tresource "airbyte_destination_snowflake" "snowflake" {
configuration = {credentials = {
username_and_password = {password = "Snowflake@123"}}}}
(Omitted other fields)™ ™"

Action 14: Bash(code="terraform apply -auto-approve")

\__ J

(a) The execution path of a successful task in Stage 1. The agent
writes the configuration after reading the documentation.

Failure case

Action 1: Bash(code="cat /workspace/config.yaml")

Action 6: EditFile(filepath="/workspace/elt/main.tf")

T Tresource "airbyte_destination" "snowflake" {

password = "Snowflake@123"}

(Omitted other fields) "~

Action 8: Bash(code="terraform apply -auto-approve")

Observation 8: The provider airbytehq/airbyte does not support

resource type "airbyte_destination"

Action  14:Bash(code="cat  /workspace/documentation/destina-

tion_snowflake.md")

“Tresource "airbyte_destination_snowflake" = "snowflake"{
password = "Snowflake@123"}

(Omitted other fields)™ ™"

\__ J

(b) The execution path of a failed task in Stage 1. The agent writes
the configuration file before reading the documentation and only
fixes the detected error after reading the documentation.

Figure 5: Comprasion the execution path of a successful task
and a failed task.

instead of before the colon in the first line, causing a parsing failure.
As shown in Figure 3, Spider-Agent Claude-3.5-Sonnet terminates
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Figure 6: The success and failure rates of Spider-Agent GPT-
40 in Stage 1 under two strategies: when reading the doc-
umentation first (27% of tasks), it achieves a 78.8% success
rate; when writing the configuration first (73% of tasks), the
success rate drops to 9.6%.

47% of tasks in Stage 1 because of unparsable actions, while Spider-
Agent GPT-4o0 only terminates 7% of tasks.

SWE-Agent uses a function-calling framework with well-defined
functions, which avoids parsing errors. However, misformatted
code can still be generated. For instance, SWE-Agent GPT-40 gen-
erates an extra right curly brace at the end of a code block, as
illustrated in Figure 4. We show in Figure 3 that SWE-Agent Claude-
3.5-Sonnet produces misformatted code in 4% of cases, whereas
SWE-Agent GPT-40 exhibits a 28% error rate.

In contrast, both OpenHands CodeActAgent and Augment Agent
are instructed to verify file modifications subsequent to editing.
As shown in Figure 3, only OpenHands CodeActAgent GPT-40
produced code with formatting errors in eight tasks. All other
agents successfully generated code conforming to the expected
formatting standards across all evaluated tasks.

Failure to configure the Snowflake password field. We ex-
amined the Snowflake password field, which must be written in
the format as shown in Figure 5a. However, as Figure 3 illustrates,
agents demonstrate a failure rate of 8% to 98% in configuring the
Snowflake password field. In addition, for the same agent, using
Claude-3.5-Sonnet reduces the failure rate by 49% to 89% compared
to GPT-4o. This is because GPT-4o is trained on an outdated version
of the Airbyte Terraform documentation.

We further analyzed the reasons behind the ineffectiveness of
the provided documentation by analyzing the execution path of
Spider-Agent GPT-40. We identified two distinct strategies the agent
adopted when configuring Airbyte Terraform. In one strategy
(Figure 5a), the agent attempts to write the configuration code first
and then runs terraform apply -auto-approve. Upon encoun-
tering an error indicating an incorrect resource type, the agent
consults the documentation but only corrects the specific issue
reported by Terraform. Because Airbyte Terraform ignores any
fields that are not explicitly defined, other misconfigurations remain
undetected, which finally causes the ELT pipeline to fail.

In contrast, when the agent references the documentation be-
fore writing the configuration, it is more likely to produce a valid
Terraform configuration, leading to a higher success rate for data
extraction & loading. As illustrated in Figure 6, the agent reads the
documentation before writing the configuration in 27 tasks and
successfully configures the Snowflake password field in 21 tasks.
By comparison, in 73 tasks, the agent writes the configuration first,
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and only six tasks succeed. These observations underscore the im-
portance of the agent’s effective planning (e.g., executing actions
in the correct sequence) in achieving higher success rates.

Incorrect loaded table size due to the synchronization job
being repeatedly triggered. We observed that, in some cases,
the size of the loaded tables did not match the size of the original
data. Analyzing the execution paths of failed cases, we found that
the agent repeatedly triggered the same synchronization job. For
example, if the original dataset contains 100 rows but the agent
executes the synchronization job three times, the loaded table in
Snowflake ends up with 300 rows instead of the intended 100.
As shown in Figure 3, the issue of repeated synchronization job
triggers in up to 12 separate tasks when running agents with Claude-
3.5-Sonnet. When using GPT-4o, the majority of tasks fail before
triggering the synchronization job. These findings highlight the
importance of short-term memorization in the agent for tracking
executed actions and preventing redundant synchronization jobs.

Missing configuration when having multiple flat files. For
Postgres, MongoDB, APIs, and Amazon S3, multiple tables or files
can be configured within a single source block and a single con-
nection block. In contrast, Airbyte Terraform requires individual
source and connection configuration blocks for each flat file. ELT-
Bench includes 24 instances to evaluate whether the agent can
correctly generate multiple configuration blocks when having mul-
tiple flat files. As illustrated in Figure 3, among the 24 tasks that
involve multiple flat files, OpenHands CodeActAgent Claude-3.5-
Sonnet and Augment Agent Claude-3.5-Sonnet fail to configure
some flat files in 5 tasks, while the worst-performing agent (SWE-
Agent GPT-4o) fail in 24 tasks.

5.2 Error Analysis of Data Transformation

We categorize Stage 2 major errors into three main types: agent
runtime errors, DBT compilation errors, and SQL semantic errors.

Agent runtime errors. Agent runtime errors are defined as fail-
ures in which an agent does not successfully generate a data model
within the data warehouse. These errors arise from four primary
causes: inefficiency, early termination, invalid actions, and prompt
length limitations.

(1) Inefficiency occurs when an agent exceeds the allocated com-
putational budget or step limit without completing the task. As
illustrated in Figure 7, 2.6% to 66.7% of attempted data models
fail due to inefficiency.

Early termination refers to scenarios where the agent erro-
neously concludes that the task is complete despite having not
fulfilled all requirements; for instance, 42.9% of data models in
Spider-Agent GPT-40 occurred due to early termination.
Invalid actions arise when the agent generates an action that is
syntactically or semantically incorrect, resulting in exceptions
that halt execution. We found that 71.1% of data models in
Augment Agent Claude-3.5-Sonnet failed due to invalid actions.
Prompt length limitations were encountered when the agent
invoked an incorrect Airbyte API call, which resulted in ex-
cessively long responses. This caused 17.5% of data models
in SWE-Agent Claude-3.5-Sonnet to fail due to exceeding the
maximum context length of Claude-3.5-Sonnet.
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Figure 7: Statistics of agent performance on generating data
models Stage 2. Each subfigure includes results for databases
that the agent successfully completed in the first stage (35,
47, 63, 90, and 151 data models, respectively).

DBT compilation errors. The second category of errors involves
DBT compilation errors, which can be further divided into two
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Figure 8: Distribution of error types for Spider-Agent Claude
3.7 Sonnet in Stage 1.

types. The first type arises from incorrect DBT configurations, caus-
ing data models to be materialized in unintended database schemas.
As shown in Figure 7b, Spider-Agent Claude-3.5-Sonnet misplaces
33.3% of its data models in incorrect schemas. The second type
results from the generation of transformation queries that contain
syntax errors. For example, as illustrated in Figure 7a, Spider-Agent
GPT-40 produces transformation queries with syntax errors in 14.3%
of data models.

SQL semantic errors. SQL semantic errors refers to cases where
the agent generates an incorrect data model within the data ware-
house, highlighting the limitations of text-to-SQL capabilities. We
categorize these errors according to their severity, prioritizing miss-
ing columns over incorrect data model size and, subsequently,
flawed SQL logic. For example, if a generated data model both
omits required columns and exhibits an incorrect total number of
rows, the error is classified as a missing columns issue. As illustrated
in Figure 7e, SQL semantic errors constitute the most prevalent
failure mode in OpenHands CodeActAgent Claude-3.5-Sonnet, af-
fecting 66.2% of data models. Within this category, 10% of the errors
correspond to missing columns, 32% to incorrect data model size,
and 58% to flawed SQL logic.

6 CASE STUDY

In this section, we present an in-depth analysis of the Spider-Agent
Claude-3.7-Sonnet with extended thinking, focusing on its perfor-
mance and the errors encountered across two stages of the task.
We then examine its action trajectories in successful cases.
Spider-Agent Claude-3.7-Sonnet achieves a 57% success rate in
SRDEL, a 34% improvement compared to Spider-Agent Claude-3.5-
Sonnet. It also achieves partial success on 34% of tasks, meaning
it loads some required data sources but not all within a task. We
further analyzed common error types during the first stage, with
results depicted in Figure 8. Our examination of the four issue
types described in Section 5.1 shows that Spider-Agent Claude-3.7-
Sonnet significantly reduces error frequencies across all categories
compared to Spider-Agent Claude-3.5-Sonnet, achieving up to a
95.8% error reduction. We further examined additional common
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Figure 10: The action trajectories of the agent on databases
with at least one successful data model.

issues of Spider-Agent Claude-3.7-Sonnet. As shown in Figure 8b,
Spider-Agent Claude-3.7-Sonnet frequently fails on specific data
source types, particularly MongoDB.

Spider-Agent Claude-3.7-Sonnet demonstrates a 3.9% perfor-
mance improvement in the second stage compared to Spider-Agent
Claude-3.5-Sonnet. As illustrated in Figure 9, the primary issues
of Spider-Agent Claude-3.7-Sonnet in the second stage include ex-
cessive iterations (28.7%), incorrect SQL logic (24.3%), and invalid
actions (21.7%).

To better understand Spider-Agent Claude-3.7-Sonnet’s work-
flow, we illustrate the action paths of the agent for databases that
successfully produced at least one correct data model in Figure 10.
On average, the agent executed 83.6 steps for each successful case.
To provide clarity, we categorize these actions into defined phases
based on the agent’s thoughts and actions. Specifically, if fewer
than five consecutive steps belonging to one phase appear between
two occurrences of another identical phase, we group these in-
termediate steps into the surrounding phase. For instance, it is
common for the agent to briefly interact with the database dur-
ing the “generate data model” phase. As depicted in Figure 10, the
Spider-Agent Claude-3.7-Sonnet spends most of its execution steps
to the phases of “understanding the project base” (averaging 20.6
steps) and “generating the data model” (averaging 17 steps).

7 SENSITIVITY AND ABLATION STUDY

7.1 Multiple Runs Improve Agent Performance

We evaluated Spider-Agent GPT-40’s performance on ELT-Bench
with one attempt (pass@1) and five attempts (pass@5). As shown

93

60

Pass@1
B Pass@5
20 A

T
Data extraction & loading stage Data transformation stage

Figure 11: The success rate of Spider-Agent GPT-40 with one
versus five attempts. The success rate improves from 15% to
57% in the first stage but remains 0% in the second stage.
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Figure 12: Pass"k and pass@k in the first stage of ELT-Bench.

in Figure 11, Spider-Agent GPT-40 achieves a pass@5 rate of 57%
in Stage 1, indicating that in 57% of tasks, at least one of the five at-
tempts successfully extracts data from multiple sources and loads it
into the data warehouse. This result represents a 3.8x improvement
over its pass@1 performance. However, in Stage 2, despite having
more successfully loaded source tables, Spider-Agent GPT-4o still
fails to build a correct data model.

We further use the pass*k metric [77] to evaluate the consistency
and robustness of Spider-Agent GPT-40 on ELT-Bench. As shown in
Figure 12, as the number of trials increases, pass”k for Spider-Agent
GPT-40 drops significantly, eventually reaching 0 when k equals 5,
indicating the need for a more robust agent in future work.

7.2 Using Documentation Improves Agent
Performance

We evaluated whether Spider-Agent Claude-3.5-Sonnet and Spider-
Agent GPT-40 could complete the data extraction & loading stage
without consulting documentation. Since LLMs are trained on a
fixed knowledge cutoff, their ability to reference up-to-date docu-
mentation is crucial for completing real-world tasks. To assess their
adaptability, we compared their performance in data extraction &
loading with and without documentation guidance.

In our experiments, we provided the agents with documenta-
tion on configuring Airbyte Terraformand invoking the Airbyte
API to initiate synchronization jobs. As shown in Figure 13, Spider-
Agent Claude-3.5-Sonnet and Spider-Agent GPT-4o0 exhibit degraded
performance in the data extraction & loading stage when documen-
tation is unavailable. Without access to documentation, Spider-
Agent Claude-3.5-Sonnet succeeds in only one task, while Spider-
Agent GPT-4o fails in all tasks. These findings reveal that both
Claude-3.5-Sonnet and GPT-4o rely not only on memorized knowl-
edge but also on their reasoning abilities to complete tasks.
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Figure 13: The success rate of Spider-Agent with Claude-3.5-
Sonnet and GPT-40 in the data extraction & loading stage,
evaluated with and without documentation. Success rates
decrease from 21% to 1% for Claude-3.5-Sonnet, and from 15%
to 0% for GPT-4o0.

Table 5: Evaluation results for all agents on the isolated data
transformation stage. OpenHands CodeActAgent Claude-3.5-
Sonnet achieves the highest success rate at 15.8%.

Agent
LL DT (%
Framework M SRDT (%)
Claude-3.5-Sonnet 3.5%
GPT-40 2.0%
Spider-Agent DeepSeek-R1 0
Llama-3.1-405B-Instruct 0
Qwen2.5-Coder-32B-Instruct 0
Claude-3.5-Sonnet 4.9%
GPT-40 1.5%
SWE-Agent DeepSeek-R1 2.0%
Llama-3.1-405B-Instruct 0
Qwen2.5-Coder-32B-Instruct 0
Claude-3.5-Sonnet 2.0%
Augment Agent GPT-40 0
Llama-3.1-405B-Instruct 0
Claude-3.5-Sonnet 15.8%
GPT-40 1.0%
Openhands DeepSeek-R1 4.9%
CodeactAgent Llama-3.1-405B-Instruct 0
Qwen2.5-Coder-32B-Instruct 0.5%
Claude-3.7-S t
Spider-Agent aude onne 11.8%

w/ extended thinking

7.3 Performance on Isolated Data
Transformation

We evaluated four agents during the data transformation stage,
given that the source tables had already been loaded into the data
warehouse. Furthermore, we assessed the performance of a text-
to-SQL system, MAC-SQL [67], to generate transformation queries
based on the target data model’s schema.

Agent performance on isolated data transformation stage.
We evaluated agent performance on the isolated data transforma-
tion stage, with source tables already loaded into the data ware-
house. Each agent was provided with both the target data model
schema and the source table schemas. Agents were tasked with
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Figure 14: Distribution of data model generation results using
OpenHands CodeActAgent with different LLMs. Running
with Claude-3.5-Sonnet can improve the performance from
10.9% to 15.8%.
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Figure 15: Distribution of data model generation results using
four agents with Claude-3.5-Sonnet. Openhands CodeActA-
gent can improve the performance from 10.9% to 13.8%.
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Figure 16: Distribution of data model generation results using
MAC-SQL. Both MAC-SQL GPT-40 and MAC-SQL Claude-3.5-
Sonnet successfully generate 15.3% of data models.

configuring the corresponding DBT project—specifically, generat-
ing the profile file and writing transformation queries to produce
the target data model. As shown in Table 5, Openhands CodeactA-
gent Claude-3.5-Sonnet achieves the highest success rate at 15.8%.
We compared the performance of different LLMs using the same
agent, OpenHands CodeActAgent. As shown in Figure 14, Open-
Hands CodeActAgent with Claude-3.5-Sonnet achieves the best
performance, surpassing the others by a margin of 10.9% to 15.8%.
Additionally, we compared the performance of different agents with
Claude-3.5-Sonnet. As shown in Figure 15, OpenHands CodeActA-
gent outperforms other agents by 10.9% to 13.8%.

Text-to-SQL system performance on data transformation
query generation. We also evaluated a text-to-SQL system, MAC-
SQL [67], which includes a selector, decomposer, and refiner mod-
ules. The data transformation query generation task is to gener-
ate the SQL query based on the target data model’s schema and
the source tables’ schema. We ran MAC-SQL with GPT-40 and



Claude-3.5-Sonnet. As shown in Figure 16, both MAC-SQL GPT-
40 and MAC-SQL Claude-3.5-Sonnet achieve a 15.3% success rate.
We further analyzed the failure reasons of MAC-SQL GPT-40 and
MAC-SQL Claude-3.5-Sonnet. As illustrated in Figure 16, MAC-SQL
GPT-4o fails to generate valid data models due to syntax errors in
26.1% of cases, and produces data models with incorrect or missing
columns in 39.4% of cases. By comparison, MAC-SQL Claude-3.5-
Sonnet exhibits a lower syntax error rate at 15.8%, while generating
data models with incorrect or missing columns in 40.9% of cases.

8 RELATED WORK

ELT and ETL data pipelines. ELT and ETL data pipelines are
essential for converting raw data into structured, reliable formats,
playing an important role in modern data engineering workflows.
ETL techniques have been extensively studied over decades [60],
while the rise of cloud data warehousing has driven the increas-
ing adoption of ELT pipelines [22, 43, 56, 61]. In ETL workflows,
transformations are often handled by a secondary processing server
using different languages like Java, Python, or Scala, while in ELT
workflows, transformations are performed within the data ware-
house using SQL. Early research mainly focus on conceptual mod-
eling for ETL processes [42, 63, 65]. More recent efforts have aimed
at automating various stages of ETL and ELT pipelines to minimize
engineering effort, including Semantic Web-based approaches for
attribute mapping [62], template-driven automatic data loading
[10], and machine learning-based data integration [44]. Since the
increasing adoption of ELT pipelines, we introduce ELT-Bench, a
benchmark designed to facilitate the development of Al agents that
automate ELT pipeline construction, thus reducing manual effort.

Benchmarks for data systems and AI agents. We review re-
lated benchmarks for data systems and AI agents. For data sys-
tems, the TPC benchmark suite represents a standard line of work,
evaluating system throughput across various scenarios. Notable
benchmarks include TPC-DI [48], targeting data integration work-
loads; TPCx-AI [7], designed for Al and machine learning systems;
and TPCx-BB [1], focused on big data analytics. Complementary
to these are text-to-SQL benchmarks [19, 31, 40, 75, 81, 83], which
evaluate the ability of systems to generate SQL queries from nat-
ural language questions. Recent efforts have expanded the scope
of these benchmarks: TAG-Bench[6] assesses a system’s capabil-
ity to answer analytical questions requiring LLM-driven inference
over database contents, such as semantic reasoning and world-
knowledge augmentation. TQA-Bench [52] assesses the capability
of LLMs in multi-table question answering. These two benchmarks
can still be regarded as data-analytic benchmarks and do not include
ELT operations.

Beyond database-oriented benchmarks, researchers have de-
veloped diverse benchmarks to assess Al agent performance in
broader domains, including software engineering [32], machine
learning [29], and web-based interaction environments [17, 84].
At the intersection of data systems and Al agents, Spider 2-V [9]
evaluates agent proficiency in using data tools, while Spider 2.0 [38]
focuses on enterprise-oriented text-to-SQL tasks. In this work, we

95

introduce ELT-Bench, a benchmark that covers the entire data engi-
neering workflow. ELT-Bench is designed to assess the capabilities
of Al agents in constructing real-world, end-to-end ELT pipelines.

Text-to-SQL benchmarks and methods. Researchers have stud-
ied the text-to-SQL task for decades. Initially, text-to-SQL methods
primarily leverage graph neural networks (GNNs) [8] and long
short-term memory (LSTM) networks[74]. Recent research has in-
creasingly adopted fine-tuning techniques [24, 39] and prompting
approaches [16, 23, 50] to further enhance SQL generation accuracy
with the advent of LLMs. ELT-Bench tasks agents with generat-
ing complex SQL transformation queries to construct data models
based on provided column names and descriptions. These queries
typically involve intricate structures, including nested subqueries
and multi-table joins.

LLM-powered systems and Al agents. Al Agents have emerged
as a promising approach for addressing real-world challenges across
various fields, including software engineering [68, 76, 82], web
browsing [36, 47], and data science and engineering [27, 28, 38].
These agents typically consist of four crucial modules: reasoning
[35, 70, 78], tool usage [51, 55], planning [59, 80], and memorization
[85]. Furthermore, recent efforts have focused on developing LLM-
powered systems for data processing tasks, including Pneuma for
tabular data representation and retrieval [5], and DocETL for pro-
cessing complex documents [57]. The task presented in ELT-Bench
exemplifies a standard data engineering workflow for processing
structured data. We leverage ELT-Bench to evaluate the effective-
ness of four Al agents in building ELT pipelines.

9 CONCLUSION

We introduce ELT-Bench, a comprehensive end-to-end benchmark
specifically designed for real-world ELT pipeline tasks in the data
engineering domain. ELT-Bench aims to replicate realistic scenarios
by providing environments for diverse data sources and integrating
widely adopted data tools. The benchmark presents a substantial
challenge, as the top-performing agent, OpenHands CodeActAgent
Claude-3.5-Sonnet, correctly generates data models in only 11.3%
of cases. This performance gap highlights significant opportunities
for future research to develop more powerful and intelligent Al
agents capable of handling complex ELT workflows.

10 LIMITATIONS AND FUTURE WORK

ELT-Bench evaluates Al agent performance in constructing ELT
pipelines. However, our current implementation assumes that the
input data is pre-cleaned. In real-world scenarios, raw data often
contains inconsistencies, errors, or missing values. Future work can
consider extending ELT-Bench with a data cleaning and preprocess-
ing stage. This extension could be implemented using SQL-based
transformations for declarative and scalable cleaning operations, or
via script-based approaches (e.g., using Python or other languages)
to handle more complex preprocessing tasks.

11 ACKNOWLEDGEMENTS

This work was supported in part by Google. We are grateful to the
CloudLab [18] for providing computing resources for experiments.



REFERENCES

(1]

(6]

[10

[11]

[12

[13]

[14]
[15]

[16

[17]

(18]

[19

Dippy Aggarwal, Shreyas Shekhar, Chris Elford, Umachandar Jayachandran,
Sadashivan Krishnamurthy, Jamie Reding, and Brendan Niebruegge. 2019. TPCx-
BB (Big Bench) in a Single-Node Environment. In Performance Evaluation and
Benchmarking for the Era of Cloud(s): 11th TPC Technology Conference, TPCTC 2019,
Los Angeles, CA, USA, August 26, 2019, Revised Selected Papers (Los Angeles, CA,
USA). Springer-Verlag, Berlin, Heidelberg, 64-83. https://doi.org/10.1007/978-3-
030-55024-0_5

Airbyte. 2025. Airbyte. https://airbyte.com/

Anthropic. [n.d.]. Anthropic API Pricing. https://www.anthropic.com/pricing#
anthropic-api

Anthropic. 2024. The Claude 3 Model Family: Opus, Sonnet, Haiku.
//api.semanticscholar.org/CorpusID:268232499

Muhammad Imam Luthfi Balaka, David Alexander, Qiming Wang, Yue Gong,
Adila Krisnadhi, and Raul Castro Fernandez. 2025. Pneuma: Leveraging LLMs for
Tabular Data Representation and Retrieval in an End-to-End System. Proceedings
of the ACM on Management of Data 3, 3 (June 2025), 1-28. https://doi.org/10.
1145/3725337

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E.
Gonzalez, Carlos Guestrin, and Matei Zaharia. 2024. Text2SQL is Not Enough:
Unifying Al and Databases with TAG. arXiv:2408.14717 [cs.DB] https://arxiv.
org/abs/2408.14717

Christoph Briicke, Philipp Hirtling, Rodrigo D Escobar Palacios, Hamesh Patel,
and Tilmann Rabl. 2023. TPCx-AI - An Industry Standard Benchmark for Artificial
Intelligence and Machine Learning Systems. Proc. VLDB Endow. 16, 12 (Aug.
2023), 3649-3661. https://doi.org/10.14778/3611540.3611554

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021.
LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-
Local Relations. arXiv:2106.01093 [cs.CL] https://arxiv.org/abs/2106.01093
Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yegiao Fu, Hongcheng
Gao, Xinzhuang Xiong, Hanchong Zhang, Yuchen Mao, Wenjing Hu, Tianbao
Xie, Hongshen Xu, Danyang Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin,
Caiming Xiong, Ansong Ni, Qian Liu, Victor Zhong, Lu Chen, Kai Yu, and
Tao Yu. 2024. Spider2-V: How Far Are Multimodal Agents From Automating
Data Science and Engineering Workflows? —arXiv:2407.10956 [cs.AI] https:
//arxiv.org/abs/2407.10956

Malu Castellanos, Alkis Simitsis, Kevin Wilkinson, and Umeshwar Dayal. 2009.
Automating the loading of business process data warehouses. In Proceedings of
the 12th International Conference on Extending Database Technology: Advances
in Database Technology (Saint Petersburg, Russia) (EDBT ’09). Association for
Computing Machinery, New York, NY, USA, 612-623. https://doi.org/10.1145/
1516360.1516431

Abhirup Chatterjee and Arie Segev. 1991. Data manipulation in heterogeneous
databases. SIGMOD Rec. 20, 4 (Dec. 1991), 64-68. https://doi.org/10.1145/141356.
141385

Augment Code. 2025. Augment SWE-bench Verified Agent. https://github.com/
augmentcode/augment-swebench-agent

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215-226. https:
//doi.org/10.1145/2882903.2903741

dbt Labs. 2025. dbt. https://www.getdbt.com/

DeepSeek-Al 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/
2501.12948

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jin-
shu Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT.
arXiv:2307.07306 [cs.CL] https://arxiv.org/abs/2307.07306

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del
Verme, Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David
Vazquez, Nicolas Chapados, and Alexandre Lacoste. 2024. WorkArena: How
Capable Are Web Agents at Solving Common Knowledge Work Tasks?
arXiv:2403.07718 [cs.LG] https://arxiv.org/abs/2403.07718

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 1-14. https://www.usenix.
org/conference/atc19/presentation/duplyakin

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving

Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association

https:

96

(23]

[25]

[26]

[27]

[28

[31

[32

(33]

[34

[35

(36]

(37]

w
&,

[39

for Computational Linguistics, 351-360. https://doi.org/10.18653/v1/p18-1033
Fireworks. [n.d.]. Fireworks Model Library. https://fireworks.ai/models
Fivetran. 2025. Fivetran. https:/github.com/fivetran

Harald Foidl, Valentina Golendukhina, Rudolf Ramler, and Michael Felderer. 2024.
Data pipeline quality: Influencing factors, root causes of data-related issues, and
processing problem areas for developers. Journal of Systems and Software 207
(2024), 111855. https://doi.org/10.1016/].jss.2023.111855

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (Jan. 2024), 1132-1145. https:
//doi.org/10.14778/3641204.3641221

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li,
Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. 2025. A
Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL.
arXiv:2411.08599 [cs.AI] https://arxiv.org/abs/2411.08599

Aaron Grattafiori and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

Mauricio A. Hernandez and Salvatore J. Stolfo. 1998. Real-world Data is Dirty:
Data Cleansing and The Merge/Purge Problem. Data Min. Knowl. Discov. 2, 1
(Jan. 1998), 9-37. https://doi.org/10.1023/A:1009761603038

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang,
Chenxing Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang,
Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou, Wei Tao,
Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei, Yuheng
Cheng, Zhibin Gou, Zongze Xu, and Chenglin Wu. 2024. Data Interpreter: An
LLM Agent For Data Science. arXiv:2402.18679 [cs.AI] https://arxiv.org/abs/
2402.18679

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu
Wang, Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun
Kuang, Yang Yang, Hongxia Yang, and Fei Wu. 2024. InfiAgent-DABench: Eval-
uating Agents on Data Analysis Tasks. In Proceedings of the 41st International
Conference on Machine Learning (Proceedings of Machine Learning Research),
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (Eds.), Vol. 235. PMLR, 19544-19572.
https://proceedings.mlr.press/v235/hu24s.html

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. 2024. MLAgent-
Bench: Evaluating Language Agents on Machine Learning Experimentation.
arXiv:2310.03302 [cs.LG] https://arxiv.org/abs/2310.03302

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu
He, Lifu Huang, Xiao Liu, Jun Zhao, and Kang Liu. 2024. DA-Code: Agent Data
Science Code Generation Benchmark for Large Language Models. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing,
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association for
Computational Linguistics, Miami, Florida, USA, 13487-13521. https://doi.org/
10.18653/v1/2024.emnlp-main.748

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feedback.
arXiv:1704.08760 [cs.CL] https://arxiv.org/abs/1704.08760

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-World GitHub Issues? arXiv:2310.06770 [cs.CL] https://arxiv.org/abs/2310.
06770

Tengjun Jin, Yuxuan Zhu, and Daniel Kang. 2025. ELT-Bench: An End-to-End
Benchmark for Evaluating Al Agents on ELT Pipelines (Supplementary Mate-
rial). https://github.com/uiuc-kang-lab/ELT-Bench/blob/eltbench/materials/
supplemental _material pdf

Ralph Kimball and Joe Caserta. 2004. The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming and Delivering Data. John Wiley
& Sons, Inc., Hoboken, NJ, USA.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916 [cs.CL] https://arxiv.org/abs/2205.11916

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo
Shen, Hao Yu, Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang.
2024. AutoWebGLM: A Large Language Model-based Web Navigating Agent.
arXiv:2404.03648 [cs.CL] https://arxiv.org/abs/2404.03648

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2022. DS-
1000: A Natural and Reliable Benchmark for Data Science Code Generation.
arXiv:2211.11501 [cs.SE] https://arxiv.org/abs/2211.11501

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin
Su, Zhaoging Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong,
Caiming Xiong, Ruoxi Sun, Qian Liu, Sida Wang, and Tao Yu. 2024. Spider 2.0:
Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows.
arXiv:2411.07763 [cs.CL] https://arxiv.org/abs/2411.07763

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. arXiv:2402.16347 [cs.CL] https:


https://doi.org/10.1007/978-3-030-55024-0_5
https://doi.org/10.1007/978-3-030-55024-0_5
https://airbyte.com/
https://www.anthropic.com/pricing#anthropic-api
https://www.anthropic.com/pricing#anthropic-api
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.1145/3725337
https://doi.org/10.1145/3725337
https://arxiv.org/abs/2408.14717
https://arxiv.org/abs/2408.14717
https://arxiv.org/abs/2408.14717
https://doi.org/10.14778/3611540.3611554
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2407.10956
https://arxiv.org/abs/2407.10956
https://arxiv.org/abs/2407.10956
https://doi.org/10.1145/1516360.1516431
https://doi.org/10.1145/1516360.1516431
https://doi.org/10.1145/141356.141385
https://doi.org/10.1145/141356.141385
https://github.com/augmentcode/augment-swebench-agent
https://github.com/augmentcode/augment-swebench-agent
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://www.getdbt.com/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2403.07718
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.18653/v1/p18-1033
https://fireworks.ai/models
https://github.com/fivetran
https://doi.org/10.1016/j.jss.2023.111855
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1023/A:1009761603038
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://proceedings.mlr.press/v235/hu24s.html
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://arxiv.org/abs/1704.08760
https://arxiv.org/abs/1704.08760
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://github.com/uiuc-kang-lab/ELT-Bench/blob/eltbench/materials/supplemental_material.pdf
https://github.com/uiuc-kang-lab/ELT-Bench/blob/eltbench/materials/supplemental_material.pdf
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[61]

//arxiv.org/abs/2402.16347

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang
Li, Kevin C.C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2024. Can
LLM already serve as a database interface? a big bench for large-scale database
grounded text-to-SQLs. In Proceedings of the 37th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS °23). Curran
Associates Inc., Red Hook, NY, USA, Article 1835, 28 pages.

LocalStack. 2025. LocalStack: A Fully Functional Local AWS Cloud Stack. https:
//github.com/localstack/localstack

Sergio Lujan-Mora, Panos Vassiliadis, and Juan Trujillo. 2004. Data Mapping
Diagrams for Data Warehouse Design with UML, Vol. 3288. 191-204. https:
//doi.org/10.1007/978-3-540-30464-7_16

Anthony Mbata, Yaji Sripada, and Mingjun Zhong. 2024. A Survey of Pipeline
Tools for Data Engineering. arXiv:2406.08335 [cs.LG] https://arxiv.org/abs/2406.
08335

Kartick Chandra Mondal, Neepa Biswas, and Swati Saha. 2020. Role of Machine
Learning in ETL Automation. In Proceedings of the 21st International Conference on
Distributed Computing and Networking (Kolkata, India) (ICDCN °20). Association
for Computing Machinery, New York, NY, USA, Article 57, 6 pages. https:
//doi.org/10.1145/3369740.3372778

OpenAlL [n.d.]. OpenAlI API Pricing. https://openai.com/api/pricing

OpenAl 2024. GPT-4o0 System Card. arXiv:2410.21276 [cs.CL] https://arxiv.org/
abs/2410.21276

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and
Alane Suhr. 2024. Autonomous Evaluation and Refinement of Digital Agents.
arXiv:2404.06474 [cs.Al] https://arxiv.org/abs/2404.06474

Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-
DI: the first industry benchmark for data integration. Proc. VLDB Endow. 7, 13
(Aug. 2014), 1367-1378. https://doi.org/10.14778/2733004.2733009

Daniel Poppy. 2023. ETL vs ELT: What’s the difference? https://www.getdbt.
com/blog/etl-vs-elt

Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-
Context Learning of Text-to-SQL with Self-Correction. arXiv:2304.11015 [cs.CL]
https://arxiv.org/abs/2304.11015

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun.
2023. ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs. arXiv:2307.16789 [cs.Al] https://arxiv.org/abs/2307.16789

Zipeng Qiu, You Peng, Guangxin He, Binhang Yuan, and Chen Wang. 2024.
TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable
Context and Symbolic Extension. arXiv:2411.19504 [cs.AI] https://arxiv.org/
abs/2411.19504

Qwen. 2025. Qwen2.5 Technical Report. arXiv:2412.15115 [cs.CL] https://arxiv.
org/abs/2412.15115

Raza Rasool and Ali Afzal Malik. 2015. Effort estimation of ETL projects using
Forward Stepwise Regression. In 2015 International Conference on Emerging
Technologies (ICET). 1-6. https://doi.org/10.1109/ICET.2015.7389209

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use Tools. arXiv:2302.04761 [cs.CL]
https://arxiv.org/abs/2302.04761

Dhamotharan Seenivasan. 2022. ETL vs ELT: Choosing the right approach for
your data warehouse. International Journal for Research Trends and Innovation
(2022), 110-122.

Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G. Parameswaran, and
Eugene Wu. 2025. DocETL: Agentic Query Rewriting and Evaluation for Complex
Document Processing. arXiv:2410.12189 [cs.DB] https://arxiv.org/abs/2410.12189
Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents with Verbal
Reinforcement Learning. arXiv:2303.11366 [cs.Al] https://arxiv.org/abs/2303.
11366

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents with Verbal
Reinforcement Learning. arXiv:2303.11366 [cs.Al] https://arxiv.org/abs/2303.
11366

Alkis Simitsis, Spiros Skiadopoulos, and Panos Vassiliadis. 2023. The History,
Present, and Future of ETL Technology (invited). In Proceedings of the 25th Inter-
national Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP) co-located with the 26th International Conference on Ex-
tending Database Technology and the 26th International Conference on Database
Theory (EDBT/ICDT 2023), Ioannina, Greece, March 28, 2023 (CEUR Workshop
Proceedings), Enrico Gallinucci and Lukasz Golab (Eds.), Vol. 3369. CEUR-WS.org,
3-12. https://ceur-ws.org/Vol-3369/invited1.pdf

Bharat Singhal and Alok Aggarwal. 2022. ETL, ELT and reverse ETL: a business
case Study. In 2022 Second International Conference on Advanced Technologies

97

o
o,

[63

[64]

[65]

(66

[67]

[68]

[70]

[71

[72

(73]

[74

[75

[76]

(78]

[79

[80

in Intelligent Control, Environment, Computing & Communication Engineering
(ICATIECE). IEEE, 1-4.

Dimitrios Skoutas and Alkis Simitsis. 2006. Designing ETL processes using
semantic web technologies. In Proceedings of the 9th ACM International Work-
shop on Data Warehousing and OLAP (Arlington, Virginia, USA) (DOLAP 06).
Association for Computing Machinery, New York, NY, USA, 67-74. https:
//doi.org/10.1145/1183512.1183526

Juan Trujillo and Sergio Lujan-Mora. 2003. A UML Based Approach for Modeling
ETL Processes in Data Warehouses, Vol. 2813. 307-320. https://doi.org/10.1007/
978-3-540-39648-2_25

Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. Proc.
VLDB Endow. 16, 6 (Feb. 2023), 1413-1425. https://doi.org/10.14778/3583140.
3583156

Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. 2002. Conceptual
modeling for ETL processes. In Proceedings of the 5th ACM International Work-
shop on Data Warehousing and OLAP (McLean, Virginia, USA) (DOLAP 02).
Association for Computing Machinery, New York, NY, USA, 14-21. https:
//doi.org/10.1145/583890.583893

Florian Waas, Robert Wrembel, Tobias Freudenreich, Maik Thiele, Christian
Koncilia, and Pedro Furtado. 2013. On-Demand ELT Architecture for Right-Time
BI: Extending the Vision. International Journal of Data Warehousing and Mining
9 (04 2013), 21-38. https://doi.org/10.4018/jdwm.2013040102

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai,
Zhao Yan, Qian-Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-SQL: A
Multi-Agent Collaborative Framework for Text-to-SQL. arXiv:2312.11242 [cs.CL]
https://arxiv.org/abs/2312.11242

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao
Peng, and Heng Ji. 2024. Executable Code Actions Elicit Better LLM Agents.
arXiv:2402.01030 [cs.CL] https://arxiv.org/abs/2402.01030

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen
Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang
Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff,
Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji,
and Graham Neubig. 2025. OpenHands: An Open Platform for Al Software
Developers as Generalist Agents. In The Thirteenth International Conference on
Learning Representations. https://openreview.net/forum?id=0Jd3ayDDoF
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:
//arxiv.org/abs/2201.11903

Lilian Weng. 2023. LLM-powered Autonomous Agents. lilianweng.github.io (Jun
2023). https:/lilianweng.github.io/posts/2023-06-23-agent/

Jennifer Widom. 1995. Research problems in data warehousing. In Proceedings of
the Fourth International Conference on Information and Knowledge Management
(Baltimore, Maryland, USA) (CIKM ’95). Association for Computing Machinery,
New York, NY, USA, 25-30. https://doi.org/10.1145/221270.221319

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas, Amin Ahmadi, and Os-
kar Holmstréom. 2024. Understanding the Effects of Noise in Text-to-SQL:
An Examination of the BIRD-Bench Benchmark. arXiv:2402.12243 [cs.CL]
https://arxiv.org/abs/2402.12243

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Struc-
tured Queries From Natural Language Without Reinforcement Learning.
arXiv:1711.04436 [cs.CL] https://arxiv.org/abs/1711.04436

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
query synthesis from natural language. Proc. ACM Program. Lang. 1, OOPSLA,
Article 63 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133887

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer In-
terfaces Enable Automated Software Engineering. arXiv:2405.15793 [cs.SE]
https://arxiv.org/abs/2405.15793

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 2024. 7-
bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains.
arXiv:2406.12045 [cs.Al] https://arxiv.org/abs/2406.12045

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs.CL] https://arxiv.org/abs/
2305.10601

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL] https://arxiv.org/abs/2210.03629

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL] https://arxiv.org/abs/2210.03629

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]
https://arxiv.org/abs/1809.08887


https://arxiv.org/abs/2402.16347
https://github.com/localstack/localstack
https://github.com/localstack/localstack
https://doi.org/10.1007/978-3-540-30464-7_16
https://doi.org/10.1007/978-3-540-30464-7_16
https://arxiv.org/abs/2406.08335
https://arxiv.org/abs/2406.08335
https://arxiv.org/abs/2406.08335
https://doi.org/10.1145/3369740.3372778
https://doi.org/10.1145/3369740.3372778
https://openai.com/api/pricing
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://doi.org/10.14778/2733004.2733009
https://www.getdbt.com/blog/etl-vs-elt
https://www.getdbt.com/blog/etl-vs-elt
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2411.19504
https://arxiv.org/abs/2411.19504
https://arxiv.org/abs/2411.19504
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.1109/ICET.2015.7389209
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://ceur-ws.org/Vol-3369/invited1.pdf
https://doi.org/10.1145/1183512.1183526
https://doi.org/10.1145/1183512.1183526
https://doi.org/10.1007/978-3-540-39648-2_25
https://doi.org/10.1007/978-3-540-39648-2_25
https://doi.org/10.14778/3583140.3583156
https://doi.org/10.14778/3583140.3583156
https://doi.org/10.1145/583890.583893
https://doi.org/10.1145/583890.583893
https://doi.org/10.4018/jdwm.2013040102
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://lilianweng.github.io/posts/2023-06-23-agent/
https://doi.org/10.1145/221270.221319
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://doi.org/10.1145/3133887
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887

[82]

[83]

[84]

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.
AutoCodeRover: Autonomous Program Improvement. arXiv:2404.05427 [cs.SE]
https://arxiv.org/abs/2404.05427

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generat-
ing Structured Queries from Natural Language using Reinforcement Learning.
arXiv:1709.00103 [cs.CL] https://arxiv.org/abs/1709.00103

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar,
Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham

98

[85

Neubig. 2024. WebArena: A Realistic Web Environment for Building Autonomous
Agents. arXiv:2307.13854 [cs.Al] https://arxiv.org/abs/2307.13854

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang,
Gao Huang, Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and
Jifeng Dai. 2023. Ghost in the Minecraft: Generally Capable Agents for Open-
World Environments via Large Language Models with Text-based Knowledge
and Memory. arXiv:2305.17144 [cs.AI] https://arxiv.org/abs/2305.17144


https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144

	Abstract
	1 Introduction
	2 ELT-Bench
	2.1 ELT-Bench Overview
	2.2 Benchmark Statistics

	3 ELT-Bench Construction
	3.1 Data Collection
	3.2 Annotation Pipeline

	4 Experiments
	4.1 Evaluation Metrics
	4.2 AI Agent Frameworks
	4.3 Evaluation Results

	5 Error Analysis
	5.1 Error Analysis of Data Extraction & Loading
	5.2 Error Analysis of Data Transformation

	6 Case Study
	7 Sensitivity and Ablation study
	7.1 Multiple Runs Improve Agent Performance
	7.2 Using Documentation Improves Agent Performance
	7.3 Performance on Isolated Data Transformation

	8 Related Work
	9 Conclusion
	10 Limitations and Future Work
	11 Acknowledgements
	References

