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ABSTRACT
JSON Schemas provide useful guardrails for developers of Web
APIs to guarantee that the semi-structured JSON input provided by
clients matches a predefined structure. This is important both to
ensure the correctness of the data received as input and also to avoid
potential security issues from processing input that is not correctly
validated. However, this validation process can be time-consuming
and adds overhead to every request. Different keywords in the
JSON Schema specification have complex interactions that may
increase validation time. Since popular APIs may process thousands
of requests per second and schemas change infrequently, we observe
that we can resolve some of the complexity ahead of time in order
to achieve faster validation.

Our JSON Schema validator, Blaze, compiles complex schemas to
an efficient representation in seconds to minutes, adding minimal
overhead at build time. Blaze incorporates several unique optimiza-
tions to reduce the validation time by an average of approximately
10× compared existing validators on a variety of datasets. In some
cases, Blaze achieves a reduction in validation time of multiple
orders of magnitude compared to the next fastest validator. We
also demonstrate that several popular validators produce incorrect
results in some cases, while Blaze maintains strict adherence to the
JSON Schema specification.
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1 INTRODUCTION
Web APIs commonly accept payloads in the semi-structured JSON
format that enable significant flexibility in the input that is ac-
cepted [13, 19, 20]. This is achieved with nested objects and arrays
in JSON data structures that do not require the exact format to be
clearly defined. Despite this flexibility, validating that data received
by an API is in a specific format is important for both correctness
and security. In order to validate payloads, such APIs commonly
make use of the JSON Schema standard. JSON Schema allows API
developers to validate the structure of a JSON payload including
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required properties, data types, and other features. The declarative
approach of JSON Schema makes validation easier to write and
maintain than explicit validation instructions. JSON Schemas are
expressed in JSON format with keywords that restrict the set of
JSON documents that are valid according to the schema. An exam-
ple of a simple JSON Schema with both valid and invalid documents
is shown in Figure 1. This particular example is straightforward,
but interpreting schemas can be complex due to the interaction of
various keywords in the JSON Schema specification.

There are a wide variety of tools and standards that make use of
JSON Schema. For example, OpenAPI 1 is a commonly used format
to define the structure of Web APIs. OpenAPI uses JSON Schema
to describe request and response payloads. Validating requests
according to JSON Schemas is a common practice, placing JSON
Schema validation in the critical path of responding to a request.
This means that any delay introduced by validation has an impact
on latency. Numerous studies have shown that even small increases
in latency can have a negative impact on the performance perceived
by users [3, 18]. Our goal with Blaze is to minimize the latency of
validating documents, even for large, complex schemas.

Attouche et al. [4] have shown that the latest dialect (2020-12) of
the JSON Schema specification is PSPACE-complete with respect
to the size of the schema. In particular, this is caused by the use of
dynamic references, which are used to implement generic types or
extend recursive schemas. However, they also identify that some
validators incur a significant overhead from implementing dynamic
references even when a particular schema does not actually make
use of this feature. As we discuss further throughout the paper,
we use open source schemas collected from GitHub to analyze the
usage of JSON Schema in practice. Among the more than 31,000
schemas collected, we found only 10 instances of dynamic refer-
ences. This means that some validators incur significant overhead
for a feature of JSON Schema that is rarely used. We do not focus
specifically on dynamic references in this work, but we do describe
a method for converting some instances of dynamic references to
static references during compilation. Our approach for doing so
incurs no overhead at validation time. We also implement several
other optimizations ahead of time through a precompilation process
that transforms a provided schema into a list of instructions that
enable efficient validation.

While validation happens often, schemas change relatively in-
frequently. This suggests that we can afford to invest extra time
in the compilation process in order to achieve faster validation
in the future. Across the schemas we analyzed from GitHub, the
average time between commits to an individual schema over 65
days. Since schemas are changed infrequently, we can safely invest
time in schema compilation to use for later validation. This is the

1https://www.openapis.org
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{ "$schema": "https://json-schema.org/draft/2020-12/schema",
"properties": {
"firstName": {"type": "string", "maxLength": 100},
"middleName": {"type": "string"},
"lastName": {"type": "string", "maxLength": 100},
"age": {"type": "integer", "minimum": 0}

},
"required": ["firstName", "lastName"] }

(a) JSON Schema example

{ "firstName": "Douglas",
"lastName": "Crockford",
"age": 69 }

(b) Valid document

{ "firstName": "Jason",
// Missing lastName
"age": 20 }

(c) Invalid document

Figure 1

approach that we take with Blaze. Our contributions in this paper
are as follows: 1) an optimized low-level DSL for schema validation
designed for semi-structured data validation, 2) a mapping from
JSON Schema to our DSL that incorporates several unique opti-
mizations, and 3) an execution engine that can efficiently validate
documents according to instructions from our DSL.

Section 2 describes the schema validation language that is the re-
sult of schema compilation. We then describe how we compile from
JSON Schema to this language in Section 3. Section 4 introduces
several important optimizations to our compilation process and Sec-
tion 5 describes the Blaze executor along with a complete example.
Section 6 provides a comprehensive evaluation comparing Blaze to
many existing evaluators using a variety of schemas. Finally, we
discuss related and future work and conclude in Sections 7-9.

2 SCHEMA VALIDATION LANGUAGE
Like JSON Schema, by default, the DSL we define for validation
is a constraint language [2]. In other words, the language is per-
missive, meaning that all values are accepted unless rejected by
some instruction. To restrict the set of documents accepted, we
introduce a list of instructions that potentially cause validation to
fail if the document does not meet a specific set of conditions. Each
instruction contains a location in the document it applies to and
some assertion on the contents of that portion of the document. In
the following sections, we first introduce basic instructions that
apply to single values and then supplement these with instructions
that loop over nested values and logically combine the results from
multiple instructions. Note that by convention all our instructions
start with uppercase letters while JSON Schema keywords start
with lowercase letters. We also introduce some basic optimizations
we apply to these instructions to improve performance. Further
higher-level optimizations are discussed in Section 4.

2.1 Basic Instructions
Themost basic instructions implemented in our validation language
operate on single values. For example, the TypeAny instruction
validates that a value is one of a given set of types. The instruction
TypeAny /foo ["string", "number"] validates that a value of the
property "foo" is either a string or a number. Similarly, EqualsAny
validates that a value is one of a given set of specific values. Other
instructions apply only to a specific type of value and are ignored
for values of other types. These instructions have preconditions

that check whether a value has a particular type before continuing
execution. As we show in Section 3, this allows us to support JSON
Schema keywords that only apply to specific types of values. The
remaining basic instructions are summarized in Table 1. Each of
these instructions have a precondition on their corresponding type.

Instruction Type Purpose
DefinesAny object specific properties exist

PropertyDependencies object if a property exist, other properties must also exist
ObjectSize object validates the number of properties in an object
PropertyType object an object has a property of a specific type

Regex string a specific regular expression matches
StringSize string validates the length of a string
StringType string validates complex string formats such as URIs
Unique array all array elements are unique

ArraySize array validates the size of an array
Less/Greater/Equal number validates the range of numeric values

Divisible number validates whether a number is divisible by a given value

Table 1: Basic instructions and their corresponding types

2.2 Loops
In several cases, we do not know in advance the set of values that
must be evaluated to validate a schema. This occurs with arrays
or objects where the set of keys is not predefined by the schema
in advance. There are three specific scenarios we need to consider.
Looping over object keys, object values, and array items. Looping
over the keys of an object (ignoring values) is implemented using
the LoopKeys instruction. Each key is validated against a given
set of string instructions (e.g., the key must match a given regu-
lar expression or meet minimum/maximum length requirements).
There are four different variants of looping over values of an object.
LoopProperties validates all values according to a single set of
instructions. LoopPropertiesExcept validates all values except
those whose corresponding keys matching either a given regular
expression or a static list of keys. LoopPropertiesRegex validates
only values whose corresponding keys match a given regular ex-
pression. These first three variants loop over the schema, with each
instruction matched against the instance being validated. The final
two variants loop over the instance and then look up instructions to
execute within the schema. LoopPropertiesMatch contains a set
of keys and a list of instructions for corresponding values to validate
against. The final loop instruction, LoopPropertiesMatchClosed,
is used when all properties in an object must be explicitly defined
in advance and the loop must validate all properties.

For arrays, there are two types of loop instructions. The first is
LoopItems which validates all items in an array against a given set
of instructions. A variant of this instruction, LoopItemsFrom, skips
the first 𝑛 items in the array, which as we show later, is useful for
validating against some JSON Schema keywords.

2.3 Logical Operators
In some cases, it is desirable to combine instructions based on logical
operators, such as requiring any of a given set of conditions to
hold. Accordingly, we define a set of instructions that conditionally
execute other instructions based on a set of conditions. Firstly, we
have the LogicalCondition instruction that executes a different
set of instructions based on whether a given condition is true or
false. Second, we have a set of instructions to combine the results of
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multiple steps using logical operators. These include LogicalAnd,
LogicalOr, LogicalXor, and LogicalNot. These operators will
short circuit where possible if failure to validate is guaranteed
without evaluating all steps. For example, if the first instruction
inside LogicalAnd evaluates to false, execution does not need to
continue since the final result can already be determined.

2.4 Control Flow
It is common when validating semi-structured data to reuse part
of a schema to validate similar structures in different locations
with a document. Accordingly, we introduce the ControlLabel
and ControlJump to enable this use case. The ControlLabel in-
struction contains a list of child instructions that are executed when
the label is first encountered. The ControlJump instruction is able
to return to these labeled instructions at any future point when
the schema is evaluated. As we discuss in Section 3, we use these
instructions to support references within a JSON Schema.

2.5 Instruction Set Optimization

Instruction Condition
WhenType Specific type

WhenDefines Object that defines specific properties
WhenArraySizeGreater Array with a minimum size
WhenArraySizeEqual Array with a maximum size

Table 2: Logical condition optimizations

In general, we found that executing a smaller number of slightly
more complex instructions leads to more efficient validation. This
is largely because dynamic dispatch of individual instructions dur-
ing validation can be costly. Accordingly, we introduce variants of
several of our instructions analogous to the CISC approach of many
modern processors [12]. For example, we define an instruction
StringBounds that combines several separate instructions: Type to
validate that the value is a string along with StringSizeGreater
and StringSizeLess to validate that the length of the string is
within a given range. In this vein, we also define variants of instruc-
tions ending with Any when only a single value is required. While
the EqualsAny instruction checks if a value is one of a given list of
values, the Equals instruction checks against a single value. This
avoids a loop and yields modest efficiency gains. Another scenario
we optimize is LogicalCondition. There are a number of specific
conditions for which we define separate instructions as is shown in
Table 2. We plan to explore further opportunities for optimization in
the future. We note that we attempted to have fewer, more complex
instructions, but we observed a negative impact on performance.

3 JSON SCHEMA COMPILATION
Our approach to convert JSON Schemas to our validation language
follows a similar approach to the formalization of Attouche et al. for
the 2020-12 dialect [4] of JSON Schema. Unless otherwise specified,
all schemas we refer to use this most recent dialect. Blaze also
supports JSON Schema dialects 4, 6, 7, and 2019-09 in a similar
fashion to 2020-12 which we discuss here. In this work, we focus
only on determining whether a document is valid and we ignore
annotations and dynamic references. While Blaze supports both

of these features, we save their discussion for future work. The
formalization of Attouche et al. allows individual keywords to be
evaluated sequentially subject to some ordering constraints [10].
We start with keywords that can be evaluated independent from
others and then describe the operation of dependent keywords and
how we handle references within documents.

3.1 Independent Keywords
Some of the keywords in JSON Schema can be evaluated against a
value in any order without consideration for the effect of adjacent
keywords. These keywords are referred to as independent keywords.
We can exploit this independence to place instructions for more
costly keywords first, saving processing time in case an earlier
keyword causes validation to fail. For example, checking string
length before validating a regular expression. There are two types
of independent keywords. The first are assertions that have atomic
values and define simple constraints. The second are applicators
which themselves contain schemas to validate more complex values.

3.1.1 Assertions. For an example of an assertion, consider minimum
that requires a numeric value be greater than a lower bound. In
JSON Schema, many assertion only apply to a value of a given
type. In this case, minimum only applies to numeric values. We
therefore convert the application of the minimum keyword to the
keyword Greater in our validation language, that also only applies
to numeric values. Each assertion is mapped to instructions in our
validation language that validate the assertion. Note that in the pro-
cess of converting from assertions to instructions in our validation
language, we also apply several static optimizations. For example,
if the schema defines the type of a value to be anything other than
integer or number, the minimum assertion is redundant can be ig-
nored. No validation instructions generated since minimum only
applies to numeric values. Such unnecessary assertions sometimes
occur due to errors in authoring the schema. We plan to make use
of these observations to develop a tool to highlight possible errors
or optimizations in a schema.

3.1.2 Applicators. Several applicators are independent keywords,
but the value of an applicator may be a schema. For example,
propertyNames is an applicator that applies a schema to the keys of
a JSON object. When compiling applicators, we recursively compile
the corresponding subschema. Applicators may be nested recur-
sively and our compilation process continues recursively as needed.

The applicators anyOf, oneOf, allOf, and not compile to the logi-
cal instructions LogicalOr, LogicalXor, LogicalAnd, and Logical-
Not respectively. These applicators indicate that a location in the
JSON document specify which of a number of schemas a given loca-
tion in a document must match (or not). As mentioned previously,
these instructions can short-circuit evaluation and skip instructions
that are not necessary to determine whether a document is valid.

For conditional application of schemas based on if, then, and
else, we handle all compilation upon encountering the if appli-
cator. The if applicator specifies a schema. If the value at the
instance location is valid according to the schema, then the schema
specified under then is applied, otherwise the schema specified
under else is applied. To compile into our validation language,
we recursively compile each of these schemas and then generate
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a LogicalCondition instruction that jumps to the appropriate
schema for further validation. As a minor optimization, if there is
no schema specified for if, then it will be considered true, and we
can avoid compiling the else case.

For arrays, contains is an applicator that specifies a schema
that must validate against at least one array element. The key-
words minContains and maxContains can be used to control the
number of required elements. We emit the LoopContains instruc-
tion to validate that the array contains the required number of
elements. We note that several small optimizations are possible
here. First, if minContains is 0 and maxContains is not set, we
do not need to emit any instructions at all. Second, if the schema
provided to contains is true (that is, all values are accepted), then
we only need to validate the array length and minContains and
maxContains have the same effect as minItems and maxItems. The
other independent array applicator is prefixItems that validates
that items in a prefix of an array match a given array of schemas. In
this case, we recursively compile each schema and then generate an
ArrayPrefix instruction that performs the validation of all items.

Objects also have several independent applicators that can be
evaluated in any order. The properties and patternProperties
applicators are very similar. Both specify schemas that must be
valid against values inside an object. The properties applicator
specifies string literals for keys while patternProperties specifies
regular expressions to match keys. Note that if an expression listed
under the properties keyword also matches a regular expression
listed under patternProperties, then the value must be valid
according to both schemas. This is what allows these two keywords
to be evaluated independently. The schemas for each value in the
properties and patternProperties applicators are recursively
compiled and the LoopProperties and LoopPropertiesExcept
instructions are used for their evaluation.

Finally, the propertyNames keyword specifies a schema that
must be validated against object keys. In this case, we recursively
compile this schema and generate a LoopKeys instruction to vali-
date all keys in an object against the schema.

3.2 Dependent Keywords
There are two different types of dependent keywords: first-level
and second-level dependent. Along with independent keywords,
these define three tiers of keywords we must consider. Independent
keywords can be evaluated in any order without considering any
other keywords. First-level dependent keywords have some depen-
dencies on other keywords. However, we introduce mechanisms in
our compilation process to allow instructions compiled from these
keywords to also be executed in any order. Second-level dependent
keywords may depend on the evaluation of the remainder of the
schema and cannot necessary be resolved statically.

3.2.1 First-Level Dependent Keywords. There are two first-level
dependent keywords: additionalProperties (for objects) and
items (for arrays). Both serve to validate values in objects (or ar-
rays) that are not validated by other keywords. The additional-
Properties applicator specifies a schema that every property not
already validated by either properties or patternProperties
must match. While the behavior of additionalProperties de-
pends on the values of the properties and patternProperties

keywords, we can resolve this dependency statically to also al-
low instructions generated from additionalProperties to be ex-
ecuted in any order. To do so, we examine keywords adjacent to
additionalProperties and collect the static set of keys and the
regular expressions that are used in the properties and pattern-
Properties keywords. We then generate an instruction that skips
these properties to validate the remaining additional properties.

However, we also optimize the common case where the value
of additionalProperties is a Boolean. A value of true indicates
that objects are permitted to have any additional properties without
adhering to any particular schema. In this case, we generate no
instructions for validation. When additionalProperties is set
to false, only properties explicitly defined using the properties
or patternProperties keywords are allowed. In this case, we
modify the instructions generated for these keywords to fail if any
additional properties are encountered.

The items applicator functions similarly for arrays. It validates
all items in the array not already validated by prefixItems. In
this case, we recursively compile the schema for the items and
use the LoopItems instruction to validate the items. The first 𝑛
items are skipped by using the LoopItemsFrom instruction if the
prefixItems applicator is also used with 𝑛 items. In this way, the
behavior of items is dependent on prefixItems, but the two can
still be evaluated in any order.

3.2.2 Second-Level Dependent Keywords. The two second-level de-
pendent applicators unevaluatedProperties and unevaluated-
Items serve a similar purpose. They provide a schema that values
in arrays or objects must be validated against if they have not al-
ready been validated by another keyword elsewhere in the schema.
This is similar to the first-level dependent keywords except that
second-level dependent keywords can “see through” other appli-
cators. Consider the example use the of unevaluatedProperties
keyword in Figure 2 adapted from the JSON Schema documenta-
tion2. The properties city and state are contained inside the appli-
cator allOf. If the schema used the similar keyword additional-
Properties instead, the corresponding document would be invalid.
This is because the keyword additionalProperties only applies
to adjacent keywords such as properties. It would not allow the
properties that are defined inside the allOf applicator.

In contrast, the behavior of unevaluatedProperties is defined
bywhether a property has been evaluated by another keyword.Most
implementations add an annotation to an object key when it has
been evaluated by one of these keywords, regardless of whether
that evaluation occurred inside another applicator. Any key without
such an annotation is then evaluated by unevaluatedProperties.
However, we find that maintaining annotations can add significant
overhead and that in many cases, they are not necessary. Instead,
we canmake a static pass over the schema to identify properties that
will be evaluated by other keywords. In the case of the schema in Fig-
ure 2, we can generate instructions for unevaluatedProperties
in the same way as for additionalProperties by statically iden-
tifying keys that are guaranteed to be evaluated. In the case where
unevaluatedProperties is true or all properties are guaranteed
to be evaluated by other keywords, we do not generate any instruc-
tions for unevaluatedProperties.
2https://json-schema.org/understanding-json-schema/reference/object
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{"allOf": [{
"type": "object",
"properties": {
"city": {"type": "string"},
"state": {"type": "string"}

} }],
"properties": {
"name": {"type": "string"}

},
"unevaluatedProperties": false}

(a) JSON Schema

{
"name": "Bob",
"city": "Washington",
"state": "DC"

}

(b) Valid document

Figure 2: Example use of unevaluatedProperties

3.3 Static References
When references are used in a schema, it is advantageous to allow
the reuse of validation instructions. In fact, this is necessary for re-
cursive references to avoid infinite loops in the generation of instruc-
tions. To handle references, we use the instructions ControlLabel
and ControlJump. ControlLabel is used the first time the $ref
keyword is encountered. The destination of the reference is recur-
sively compiled into a set of instructions. Any subsequent uses of
$ref throughout the schema use the ControlJump instruction to
reuse the existing set of instructions. However, for non-recursive
references, we note that jumping between instructions can add
additional overhead by reducing cache efficiency. To mitigate this
overhead, we eliminate the use of labels and jumps for non-recursive
references that are repeated five or fewer times. In these cases, we
simply repeat the instructions compiled from the destination of the
reference. This avoids producing a significantly larger number of
instructions for large numbers of repeated references. We plan to
explore improvements to this heuristic in future work.

3.4 Dynamic References
As past work has identified [21], dynamic references introduce
significant challenges into JSON Schema validation. Dynamic ref-
erences are designed to allow targets of references to be changed
when schemas are extended. This means that the target of a refer-
ence cannot easily be statically determined at schema compilation
time. Instead, the resolution of the reference is dependent on the
context determined at evaluation time. This complicates valida-
tion process and it has been shown that validation with dynamic
references is PSPACE-complete [4, 21].

We leave a full explanation and evaluation of our approach to
handling dynamic references to future work. However, we make
two important observations. First, as others have observed [4], it
is possible to remove dynamic references from a schema. In the
general case, this can result in an exponential increase in the size of
the schema. Our second observation, as we discussed in Section 1,
is that dynamic references are very rarely used. Furthermore, when
dynamic references are used, there are often very few possible
contexts for each dynamic reference. In this work, we focus our
evaluation on dynamic references with a single possible context.
In this case, a dynamic reference can be directly replaced by a
static reference since we are guaranteed that the single available
evaluation context will be used. The dataset used in our evaluation
in Section 6 contains two schemas, openapi and cql2 that contain
a dynamic reference with a single possible evaluation context that
is transformed using this approach.

3.5 Correctness
As discussed previously, we base our formalization on that of At-
touche et al. [4]. The key points addressed in their formulation are
the order of keyword validation and the semantics of each individ-
ual keyword. We started by creating careful mappings from each
JSON Schema keyword into instructions that validate the keyword.
We carefully implement these instructions to ensure they follow
the rules defined by the JSON Schema specification As described
in Section 3, we are able to evaluate instructions for independent
and first-level dependent keywords in any order. We guarantee
that second-level dependent keywords are evaluated after their
dependencies in order to ensure correct validation. As discussed in
Section 6.1, we also validate our implementation against the official
JSON Schema Test Suite [7]. The test suite contains hundreds of
tests for each JSON Schema version specifically designed to test
difficult edge cases. In particular, the test suite for the latest dialect
supported by Blaze contains more than 1,200 tests. As we discuss
later, even several popular validators fail at least one case in this
test suite. Blaze passes every test case, increasing our confidence
in its correctness. We leave the possibility of formal verification of
our implementation as future work.

4 OPTIMIZATIONS
We implemented Blaze in approximately 11,000 lines of C++20. Our
implementation is open source and available on GitHub 3 under the
AGPL-3.0 license. Although our description of Blaze has focused on
the most current dialect (2020-12), we also support all previous di-
alects currently in use (4, 6, 7, and 2019-09). We have put significant
effort into optimizing each of the instructions executed by our val-
idator. While several optimizations are common to general software
development, several unique optimizations stem from observations
about the nature of data present in both JSON Schemas and typical
JSON documents. We describe these optimizations in the following
subsections. Specifically, we optimize the hash function used in data
structures in our validator, unrolling instructions containing loops,
and optimizing specific patterns found in regular expressions.

4.1 Semi-perfect Hashing
One observation about both schemas and documents is that in most
cases, the strings used as JSON keys are relatively short. In our
corpus of schemas we use for evaluation, 95% of the keys defined in
the schema are 13 characters or shorter. We make use of this fact to
optimize hashing of these strings for comparison and define a hash
function that results in no collisions for short strings. Unlike mini-
mal perfect hash functions [11], we do not aim to avoid collisions
in all cases, but focus on the most common case in practice.

The need to compare strings occurs frequently in schema valida-
tion for tasks such as checking the presence of required properties,
whether a string matches a desired constant, and several other cases.
Hash functions used in library implementations such as the default
MurmurHash4 in the C++ standard library, are designed for general
use and are not optimized for any particular use case. We decide
to optimize our hash functions for short strings at the expense of
increased likelihood of collision for longer strings. In fact, our goal
3https://github.com/sourcemeta/blaze
4https://github.com/aappleby/smhasher
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is to avoid the need to compare strings at all in the common case
by making our hash function one-to-one for small strings.

We start by defining the output size of our hash function to be
256 bits. This is represented as four 64-bit bit integers (or two 128-
bit integers on supported platforms), giving a total of 32 bytes. We
use the final 31 bytes when hashing strings that are 31 bytes or less.
In this case, the first byte is set to zero and the remaining bytes are
copied directly from the string value. This first byte is used in the
case where the string is larger than 31 bytes. In this case, the hash
function is the sum of the size of the string and the first and last
characters, modulo 255, plus one (ensuring the value is non-zero).
This allows computing a hash in constant time for longer strings.

To compare hashed strings, we first check that the first byte of
each hash is zero, indicating that the two hashes both correspond
to strings of 31 bytes or less. At this point, we can compare the
hash values directly to determine equality since the remaining
bytes of the hash are exactly the bytes of strings. Furthermore, we
can do this comparison with basic integer comparisons instead
of the need to check character by character. If both strings are
longer than 31 bytes, then it is still necessary to compare strings
in the case of a hash collision. Since this hash function is efficient
to evaluate, we store the hash of strings as part of the process of
parsing documents. We then make use of this hash function and
the optimized comparison anywhere strings are compared. We also
note that since documents generally have a small number keys,
we make use of a vector data structure to store keys instead of a
hash map since looping over the small number of entries is more
efficient than dealing with the indirection inherent in hash tables.

While we would expect using a one byte hash for longer strings
would increase the rate of collisions, this case is rare given our
analysis of the common size of strings. In the corpus of thousands
of schemas we analyzed from GitHub, we found that over 98% of
keys defined JSON Schemas were less 32 bytes. This approach also
has the advantage that we can compare short strings (less than 32
bytes) by comparing only their hash values. We also note that the
majority of JSON objects have a very small number of properties, so
the rate of collisions is likely to remain low in practice. We consider
a common use case of our hash function which is to build a hash
table for properties in object. We looked at all JSON objects with
more than one key across all of our test schemas and found that our
hash function has a collision rate of less than 0.9%. MurmurHash
has zero collisions on the same dataset. However, our hash function
still achieves better overall performance since we can compute
the hash value in constant time. Furthermore, when comparing
short strings (less than 32 bytes), we only need to check their hash
values and we can avoid string comparison entirely. This is because
when using our hash function, any strings less than 32 bytes are
guaranteed to be equal if their hash values are equal.

We provide an example of the use of our hash function in Fig-
ure 3. Note that our implementation packs hash values into large
integers, but we represent values as byte arrays here for illustrative
purposes. Since the first two strings are less than 32 bytes, they can
be compared exactly by only comparing their hash values, avoiding
string comparison entirely. The final two strings are longer than
31 bytes, so we only make use of the first byte, which is calculated
based on the string length and the first and last characters. For these
two strings, the hash value is the same since they have the same

foobar

0 102 111 111 98 97 114 0 0 0 0 · · · 0

corge

0 99 111 114 103 101 0 0 0 0 0 · · · 0

thisisaverylongstringthatisgreaterthan31bytes

20 0 0 0 0 0 0 0 0 0 0 · · · 0

thisstringisalsoverylongandisbiggerthanothers

20 0 0 0 0 0 0 0 0 0 0 · · · 0

Figure 3: Semi-perfect hashing example

length and first and last characters. In this case, as with any hash
function, we must compare the entire string in order to check for
equality. However, as discussed previously, we expect this to be rare
since most strings we encounter are short. We provide a detailed
evaluation of the benefits of our hash function in Section 6.2.3.

4.2 Unrolling
While loop instructions can be useful for flexibility, as with tradi-
tional compiler optimization, we find that loop unrolling is some-
times a useful optimization. There are two cases where we apply
unrolling in Blaze: property validation in objects and validation
using references. We describe these cases below along with the
heuristics we use to decide when they are employed. The heuristics
were chosen based on observed performance on example test cases.
We leave further tuning of these heuristics to future work.

When validating properties, there are two different approaches
that we can take. The first was previously described in Section 2.2.
In this case, we loop over all the properties of an object and look
up the appropriate instruction to use for validation based on the
property. However, when most properties are required, it can be
more efficient to generate instructions that check each property
individually instead. Specifically, we avoid generating a loop if there
are 5 or fewer properties or if at least one quarter of the properties
are required. We also have one additional heuristic that always
unrolls loops inside of instructions generated from the oneOf or
anyOf applicators. This increases the likelihood that these operators
will be able to quickly short-circuit.

When a part of a schema (typically a definition) is referenced
elsewhere, our default approach is to generate instructions for the
subschema being referenced and then jump to these instructions as
discussed in Section 3.3. However, as with loops, these jumps can be
detrimental to CPU cache performance. Therefore, we can instead
replace the jump instruction with the necessary instructions to
validate according to the referenced subschema. We perform this
replacement if there are no more than 5 references to a particular
subschema. We also skip this optimization if there are recursive
references since they cannot be implemented using unrolling.

4.3 Regular Expressions
Some features of JSON Schema rely on the evaluation of regular ex-
pressions. This includes, for example, the pattern keyword validat-
ing that strings match a particular pattern and patternProperties
that serves a similar function for object keys. We decided to make
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use of Boost.Regex as our regex engine after observing signifi-
cantly better performance than std::regex for our use case. Fur-
thermore, we enable precompilation that trades off time at regex
construction for faster matching. We also identified multiple cases
where regular expressions can be further optimized. For example,
many schemas define regular expressions such as .*, that effec-
tively allow all strings. In addition, expressions such as .+ are used
to identify non-empty strings. In both of these cases, we can avoid
using a regex engine entirely. In the first case, where any value is
accepted, we can completely remove the regular expression check.
In the second case where the string must be non-empty, we can
simply check the length of the string. Note that the JSON Schema
specification does not fully specify the behavior of regular expres-
sion matching, so we have chosen to allow . to match any character
(including line breaks). We expect this will not affect many schemas
in practice since line breaks within JSON strings are uncommon.

In a slightly more complicated scenario, regexes such as ^x- are
common in schemas to indicate strings that start with a particular
pattern. (This specific regular expression appeared several hundred
times in our corpus of GitHub schemas.) In this case, we can also
avoid using regular expressions by simply checking for a string
prefix. Finally, we also identified a pattern of regular expressions
such as ^.{3,5}$ that effectively indicate a string must be between
length 3 and 5. We can again avoid the use of regular expression
matching simply by checking the length of the string. We imple-
mented special cases for each of these scenarios. In the future,
we plan to explore the conversion of regular expressions to finite
automata at compile time to further reduce the matching overhead.

4.4 Instruction Reordering
As discussed in Section 3, when compiling to our instruction set
from JSON Schema, we have some flexibility on the order instruc-
tions are executed. For complex objects with many properties, we
observed that it can be effective to evaluate properties with smaller
subschemas first. This has the benefit of potentially allowing vali-
dation to fail more quickly while executing fewer instructions. This
optimization is also particularly effective in the presence of applica-
tors such as oneOf. Failing to validate as quickly as possible in this
case means we can more quickly find the correct subschema to val-
idate against. We currently perform reordering based solely on the
size of subschemas. It is possible that there may be more effective
orderings based on the specific data being validated. For example,
we may find that it would be more efficient to place instructions
for properties that commonly fail to validate first even if the corre-
sponding subschema is larger. Currently we take a data-agnostic
approach and we leave further optimizations as future work.

4.5 Reducing Memory Allocation
When allocating dynamic data structures such as vectors or hash
maps, we prefer to preallocate a small number of entries. Since most
data structures used in our implementation remain quite small, this
means we can often avoid further allocations by using this small
existing pool. Furthermore, we optimize for the case of repeated
evaluations of the same schema by preallocating a data structure
that can be reused for multiple validations without reallocation.
This includes data structures such as pointers to the current location

in both the schema and the document being examined. We plan
to explore further memory optimizations in the future such as
alternative allocators.

5 INSTRUCTION EXECUTION
In Blaze, unlike many validators, we do not interpret the schema,
but instead precompile it into a set of instructions that can be
efficiently executed. This section describes the Blaze executor.

5.1 Executor Implementation
The executor takes a compiled schema as input and executes the
instructions against a JSON document to produce a Boolean indicat-
ing whether the document is valid. We first start by describing the
structure used to represent each instruction in more detail. Each
instruction first contains the type of instruction, which is one of the
values specified in Section 2 as well as the location in the instance
the instruction applies to. Depending on the instruction, there may
also be an associated value such as the expected length of a string
or a list of subinstructions used in cases such as validating items in
an array according to a set of conditions.

The Blaze executor is driven by a loop over the instructions to be
executed. Each instruction is executed by first looking up the value
to be validated from the instance. Locations in JSON instances are
expressed using JSON Pointer notation [14] which is used to iden-
tify a specific location within a document to be validated. Note that
we make heavy use of the hash function discussed in Section 4.1
to quickly match properties in an object when traversing pointers.
Several instructions may have preconditions to be validated before
they are executed. For example, the Greater instruction discussed
in Section 3.1.1 only applies to integers. In this case, if the corre-
sponding value in the instance being validated is not an integer, the
remainder of the instruction will be skipped. For instructions that
contain children, recursion into subinstructions is accomplished by
recursively calling the evaluation function in the executor in a loop
with each subinstruction. If any subinstruction fails to validate, the
loop over subinstructions is terminated early and failure to validate
is returned. All instance locations specified within instructions are
relative to their parent instruction. We provide a full example of
compilation and execution of a schema in the following subsection.

5.2 Execution Example
This section provides an example of schema compilation and execu-
tion in Blaze using the schema in Figure 4a. The schema defines two
optional properties "foo" and "baz". Each instruction in Figure 4b
contains both a JSON Pointer and (optionally) an associated value.
Note that here, <empty> refers to the empty JSON pointer, indicat-
ing that the root of the document will be validated. Instructions may
have an optional precondition, that is indicated before the instruc-
tion with a question mark. In order to validate the two properties,
Blaze first generates the LoopPropertiesMatchClosed instruction.
The Closed variant is selected since additionalProperties is set
to false and only the properties specified will be permitted. This
means that while the instruction loops over keys within the JSON
object, any key without an associated validation instruction will
cause validation to fail. Also note that this instruction is only exe-
cuted if the value is of type object since this is a precondition for
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this instruction. That is, any values that are not objects, will cause
this instruction to be skipped. Importantly, validation does not fail
if the precondition for an instruction is not met.

Within the loop are two instructions for validating each of the
two properties. The AssertionGreaterEqual instruction is gener-
ated from the minimum. Since it has the precondition number?, it
will only apply to numeric values. This precondition applies to the
instance path /baz. This means that any non-numeric values will
be accepted by this instruction which matches the semantics of the
minimum keyword. If the precondition is valid (the value at /baz
is a number), then the instruction checks if this value is at least 5.
The second instruction in the loop is AssertionType. Since this
instruction has no precondition, it applies to all values. Specifically,
this instruction validates that the value at the instance path /foo
has type string. Note that the order of the two instructions within
the loop are unimportant since Blaze will look up the appropriate
instruction based on the associated instance path.

Since the LoopPropertiesMatchClosed instruction includes an
object type precondition, before the final instruction, any non-
object values would pass validation. However, since the schema
specifies that value must be an object, Blaze emits one final instruc-
tion. AssertionType behaves the same as above and validates that
the entire value is an object. Assuming that this assertion evaluates
to true, the entire document is considered valid.

Finally, we briefly walk through the execution of these instruc-
tions against the schema in Figure 4c. The first instruction, Loop-
PropertiesMatchClosed begins execution since our document
meets the precondition of being an object. This instruction then
loops over the all the key-value pairs in the object. The first key,
"foo" corresponds to the AssertionType instruction. Since the
value, "baz" is a string, it passes validation. The second key, "baz"
corresponds to the AssertionGreaterEqual instruction. The value
is a number, so it passes the precondition, and it is greater than 5, so
this instruction also evaluates to true. Note that at this point, if the
document had any other keys, the LoopPropertiesMatchClosed
instruction would fail to validate since no additional properties are
allowed. However, since our document only has two properties,
this instruction evaluates to true and we move on to the final in-
struction. Since our document is an object, this instruction also
evaluates to true and the entire document is considered valid.

6 EVALUATION
We have two main focuses with our experimental evaluation: vali-
dating the correctness of our implementation and comparing the
validation performance with existing JSON Schema validators.

6.1 Correctness
In order to experimentally verify the correctness of our implemen-
tation, we make use of the official JSON Schema Test Suite [7]. This
test suite is maintained by the authors of the JSON Schema speci-
fication and is designed to exercise corner cases in JSON Schema
validation and contains several hundred tests for each version of the
specification for a total of over 6,000 tests. These tests verify that
each keyword is implemented correctly and also test interactions
between relevant keywords. However, we note that the test suite
does not cover all possible cases. Indeed, we later discuss some

implementations that pass this test suite but produce errors in our
evaluation. Through our evaluation, we were also able to discover
and report bugs in other JSON Schema validators not captured by
the official test suite. More than 20 JSON Schema validators publish
ongoing reports via Bowtie [8], a system that automatically runs the
test suite against supported implementations. Our implementation
is one of only twelve that achieves a perfect score for the 2020-12
dialect, confirming the correctness of our compilation process. In
addition to this test suite, we also have over 16,000 lines of manually
written test cases across the different dialects supported by Blaze.

6.2 Performance
In order to test the performance of our validator, we need a number
of schemas as well as documents corresponding to each schema. We
collected our schemas from the JSON Schema Store 5, a repository
of JSON Schemas for various configuration file formats. All of the
schemas make use of dialect 7 of the JSON Schema specification
with the exception of cql2 and openapi which use the 2020-12
dialect. For several of these schemas, there is a convention used to
name files which are designed to be valid according to the schema.
For example, files that use the babelrc schema are typically named
.babelrc or babelrc.json. We use these file names to search for
matching files on open source projects on GitHub. After finding
a set of files, we validate them according to the corresponding
schema in order to ensure that each document indeed matches the
schema. A summary of the schemas, their size, and the number
and size of documents collected is shown in Table 3. Note that to
measure the size of each schema, we exclude keywords such as
description that have no effect on validation. All datasets are
available in our benchmark repository6. We also make available
measurements for several other implementations that did not meet
our selection criteria. We note that none of these implementations
are faster than Blaze on any of our test datasets. Experiments are
run on a machine equipped with two 8-core 2.10 GHz Intel Xeon
Silver 4110. We note that while multiple cores our available, our
implementation of Blaze is currently single-threaded. We leave the
possibility of optimizing for parallel execution as future work.

We compare against a wide variety of validators across multiple
programming languages. Validators were selected based on those
available in the Bowtie test system that either pass the entire JSON
Schema Test Suite or are significantly popular. Note that we ex-
clude the implementations dev.harrel.json-schema and io.openapi-
processor.json-schema-validator since they performed an order of
magnitude slower than other validators in the majority of cases. We
have also included ajv and the Python jsonschema package since
these are both very commonly used, despite producing incorrect
results in some cases. A summary of all the implementations we
compare with is in Table 4. We run each implementation five times
on each dataset and measure the time to compile the schema as well
as the time for validating all instances. Each instance is validated
sequentially and validation does not exploit parallelism.

6.2.1 Compilation. As previously noted, Blaze trades off an up-
front period of compilation for faster validation at runtime. There

5https://www.schemastore.org/json/
6https://github.com/sourcemeta-research/jsonschema-benchmark
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{ "type": "object",
"properties": {
"foo": {"type": "string"},
"baz": {"minimum": 5}

},
"additionalProperties": false }

(a) JSON Schema

object? LoopPropertiesMatchClosed <empty>
number? AssertionGreaterEqual /baz, 5
AssertionType /foo, string

AssertionType <empty>, object

(b) Compiled schema instructions

{
"foo": "bar",
"baz": 7

}

(c) Valid document

Figure 4: Example of JSON Schema compilation with Blaze

Name # Docs Schema Size (KB) Avg. Doc. Size (B)
ansible-meta 333 36.1 312
aws-cdk 483 0.7 1145
babelrc 794 6.5 140
clang-format 133 54.2 336
cmake-presets 967 84.0 2721
code-climate 2484 5.9 282
cql2 109 17.9 125
cspell 981 125.6 817
cypress 981 16.0 401
deno 987 22.4 1018
dependabot 967 9.4 403
draft-04 563 4.0 12631
fabric-mod 911 11.1 691
geojson 500 45.0 52433
gitpod-configuration 986 13.1 354
helm-chart-lock 3888 1.5 342
importmap 964 0.6 630
jasmine 980 3.6 133
jsconfig 981 59.5 177
jshintrc 966 11.8 429
krakend 47 377.7 2431
lazygit 280 87.8 276
lerna 985 4.6 172
nest-cli 1025 18.9 290
omnisharp 987 13.5 595
openapi 107 32.5 165548
pre-commit-hooks 985 9.6 549
pulumi 3807 7.7 251
semantic-release 794 3.3 460
stale 961 3.7 466
stylecop 983 11.5 567
tmuxinator 382 4.4 628
ui5 942 94.1 487
ui5-manifest 611 383.5 2356
unreal-engine-uproject 859 10.6 394
vercel 710 37.2 406
yamllint 984 25.5 351

Table 3: Datasets used for validator evaluation

Implementation Lang. Version Correct AOT Stars
Blaze (Ours) C++ 1.0.0 ✓ ✓ <100

ajv JS 6.12.6 ✗ ✓ >10K
Boon Rust 0.6 ✓ ✓ <100
Corvus C# 4.0.12 ✓ ✓ ∼100

jsonschema Go 6.0.1 ✓ ✓ ∼1K
jsonschema Python 4.23.0 ✗ ✗ ∼5K

JsonSchema.NET C# 7.2.3 ✗ ✓ ∼1K
JSV Elixir 0.2.0 ✓ ✗ <10
KMP Kotlin 0.3.0 ✓ ✗ <100

NetworkNT Java 1.5.3 ✓ ✗ ∼900
json_schemer Ruby 2.3.0 ✓ ✗ ∼400

Table 4: Implementation details for each validator

are existing validators supporting ahead-of-time (AOT) compila-
tion, which we indicate in Table 4. However, many validators have
very basic precompilation compared to Blaze. In several cases, pre-
compilation consists of only parsing and validating the schema.

We performed compilation five times on each of the schemas
in our dataset and report the average in Figure 5. As expected, we
can see that the compilation time tends to increase relative to the
size of the schema. We note that since compilation is done for the
purpose of speeding up evaluation, validators which are slower to

Figure 5: Blaze compilation time relative to schema size

compile may achieve a return on this investment after validating a
sufficient number of documents. We have also not currently made
any effort to optimize the compilation time of Blaze.

6.2.2 Validation. When measuring the validation runtime, we first
measure the runtime immediately after compiling. We then perform
a minimum of 100 more iterations of validation to warm up the
implementation. Depending on the implementation, this will have
the effect of warming caches, triggering JIT compilation, and other
side effects that result in warm runs being faster. Warm runs reflect
real-world situations such as an API gateway that validates a large
number of incoming payloads according to a fixed schema. Run-
times for all implementations and datasets are reported in Table 5.

We note that several implementations produce failures on some
schemas despite passing all the tests in the JSON Schema Test
Suite. This is due to some tests being considered optional, which
are not counted as failures since they exercise uncommon edge
cases. For example, JSON Pointers that are used for references
must be escaped if they contain either slashes or tildes. Several
implementations do not perform this escaping properly, which is
necessary for the krakend schema. Another common failure case
is related to regular expressions. The JSON Schema specification
indicates that regular expressions should be interpreted according
to the ECMA-262 specification. Since some languages do not have an
ECMA-262-compliant regex engine, some JSON Schema validators
choose to use an alternative regex engine. While most regular
expressions used in the schemas in our evaluation are supported
across a wide variety of regex engines, there are others that fail
to be interpreted correctly. We plan to explore the possibility of
missing test cases in the JSON Schema specification as future work.

We show a summary of the performance of Blaze compared to
other validators in Figure 6 (note the log scale). For this analysis,
we exclude schemas where any implementation observed failure
and sum the runtimes across the remaining 27 schemas. Blaze is
faster than every other implementation by a minimum of 24% on
every dataset. Before warmup, Blaze is more than ∼10× faster than
the next fastest implementation, Boon. After warmup, Blaze is
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Dataset ajv Blaze Boon Corvus json_schemer jsonschema (Go) jsonschema (Py) JsonSchema.Net JSV KMP NetworkNT

ansible-meta 21.4 0.5 26.1 439.1 370.8 66.9 846.1 780.3 82.0 175.0 188.8
1.4 0.5 22.8 14.0 344.1 68.4 921.9 190.3 63.8 26.8 7.9

aws-cdk 1.8 0.1 0.5 30.2 41.2 4.2 27.1 178.4 23.7 43.8 17.4
0.2 0.1 0.4 0.5 25.7 3.3 26.0 5.8 6.4 0.8 0.2

babelrc 6.9 0.3 0.8 63.8 73.8 11.2 92.4 257.2 16.1 71.6 28.8
0.3 0.2 0.7 1.5 57.4 9.2 89.9 21.3 7.3 5.6 1.0

clang-format 15.5 0.2 0.3 338.7 20.2 3.5 27.5 310.7 14.3 42.0 160.2
1.0 0.2 0.3 9.2 17.0 3.3 19.8 24.9 4.6 0.5 3.9

cmake-presets 279.3 12.2 260.9 673.7 13893.5 744.9 24338.0 11515.3 8185.7 1034.2 1343.1
118.2 8.0 264.4 97.0 13591.5 751.6 24114.8 9151.3 5969.2 500.4 743.4

code-climate † 0.6 1.9 34.6 132.9 8.9 124.5 373.5 21.4 67.5 29.3
† 0.4 1.2 2.0 118.7 5.6 104.7 51.6 8.7 2.8 1.2

cql2 87.7 0.6 794.7 315.3 8607.0 375.3 43168.3 † † 683.6 3911.7
15.5 0.4 762.4 8.2 7255.4 365.7 40420.3 † † 349.3 697.0

cspell 17.9 1.9 † 258.1 † † 1049.7 1089.2 109.7 † 314.4
2.5 1.6 † 7.1 † † 1075.4 225.0 87.6 † 13.2

cypress 12.8 0.3 1.1 127.6 74.9 7.5 81.7 395.9 18.2 78.1 28.5
1.6 0.3 0.9 3.2 67.1 8.9 78.7 36.8 8.6 6.8 1.1

deno 12.9 1.1 1.8 174.7 151.7 14.7 109.2 412.2 49.6 83.4 350.6
1.4 1.0 1.4 8.0 127.9 14.1 114.4 58.5 27.6 6.2 17.3

dependabot 5.9 0.8 3.0 109.8 177.4 29.1 209.5 323.9 28.5 109.8 40.9
0.8 1.0 2.7 7.5 192.2 24.8 193.0 43.4 17.1 6.2 2.6

draft-04 62.0 10.7 33.1 429.8 2167.4 162.3 4201.2 2152.2 † 288.2 256.4
23.7 10.7 31.5 153.8 2083.0 140.6 4022.6 590.4 † 107.5 35.6

fabric-mod 16.6 2.0 5.9 144.1 305.9 57.9 740.0 593.5 171.1 143.4 296.1
2.4 1.9 4.9 7.7 296.2 54.9 707.1 108.6 103.3 14.7 12.0

geojson 217.9 44.3 1492.5 1127.5 31812.3 2122.7 107120.1 37934.5 28436.3 10501.7 †
53.2 27.2 1500.5 196.1 33601.6 2065.6 94707.2 33199.4 19140.4 9381.7 †

gitpod 10.1 0.5 1.7 102.7 152.0 16.1 140.1 346.9 22.8 90.2 132.4
0.7 0.4 1.4 3.9 138.7 16.6 134.2 40.8 11.7 8.6 1.7

helm-chart-lock 8.3 0.7 6.3 40.1 428.5 42.5 464.6 460.1 135.6 132.2 45.0
0.8 0.6 5.4 8.1 400.4 34.8 500.0 77.8 95.4 17.4 5.3

importmap 2.9 0.1 1.4 28.3 94.0 12.1 84.8 218.2 33.1 59.8 24.3
0.3 0.1 1.2 0.8 63.4 12.4 86.8 14.3 18.8 1.6 1.1

jasmine 3.2 0.3 1.2 48.3 90.5 14.4 138.3 279.1 16.8 97.1 25.2
0.3 0.2 1.1 2.0 75.6 13.6 132.9 23.1 8.8 6.6 1.1

jsconfig 17.8 1.2 3.7 285.9 188.1 34.5 356.9 5019.7 43.7 160.2 325.0
3.1 1.1 2.9 9.1 183.3 29.3 349.2 4340.1 33.5 19.2 8.5

jshintrc 9.1 1.6 2.5 173.9 145.1 24.4 142.7 320.0 37.3 78.3 35.5
2.6 1.6 2.5 19.7 141.1 20.0 149.8 38.8 26.3 5.5 2.1

krakend † 1.0 1.4 646.8 95.6 12.7 123.5 431.0 39.3 † †
† 0.6 1.0 6.9 70.4 10.6 121.1 34.4 29.1 † †

lazygit 33.7 0.5 0.9 359.9 78.5 6.2 87.7 396.0 19.9 75.8 203.0
1.9 0.3 0.7 5.8 53.6 7.4 85.9 38.1 6.9 4.8 2.1

lerna 3.9 0.4 0.9 51.7 67.5 7.8 52.8 247.2 16.4 58.5 21.9
0.4 0.3 0.8 1.4 53.5 8.8 56.0 17.5 6.5 1.9 0.9

nest-cli 7.2 0.5 2.0 103.9 126.3 14.8 186.0 440.8 22.3 100.0 37.7
0.7 0.4 1.7 3.3 145.9 15.0 190.0 53.9 13.9 8.2 1.4

omnisharp 10.6 1.3 2.0 188.2 107.5 17.8 105.2 325.9 26.5 72.4 29.1
1.5 1.2 2.0 7.0 99.8 13.9 109.0 51.3 15.5 6.4 1.3

openapi † 59.3 94.6 540.2 3331.7 300.0 48583.0 4438.6 1944.4 † 1258.4
† 27.6 92.3 72.1 3152.3 266.8 45347.2 2991.3 1506.9 † 462.0

pre-commit 15.2 1.0 4.2 138.1 210.3 33.6 358.8 432.6 114.9 117.8 39.5
4.9 0.9 4.0 24.9 184.7 34.6 351.2 84.9 69.9 11.2 4.9

pulumi 14.8 1.5 4.7 99.3 319.8 31.4 396.0 850.7 111.3 144.9 70.6
2.2 1.3 4.7 6.6 323.7 29.9 411.5 152.0 66.1 15.6 5.4

semantic-release 4.0 0.3 1.8 51.7 117.2 22.5 203.6 353.8 18.8 79.5 45.5
0.4 0.2 1.6 1.2 103.1 17.2 211.1 45.5 9.9 5.6 1.5

stale 4.2 0.3 1.0 53.9 89.3 13.6 96.6 256.3 † 72.1 33.6
0.3 0.3 0.9 1.7 81.4 14.2 98.1 17.8 † 2.2 1.0

stylecop 6.9 1.1 1.9 131.3 152.0 16.3 151.2 325.9 55.9 95.3 274.1
1.1 0.9 1.5 4.5 126.8 15.5 139.6 43.4 33.9 6.8 9.9

tmuxinator 4.2 0.3 0.9 47.9 63.6 9.4 105.2 248.9 26.7 60.6 33.6
0.5 0.2 0.8 1.3 45.3 7.2 111.8 16.9 7.8 2.5 0.8

ui5 111.6 1.5 6.3 719.6 323.8 44.4 443.0 3102.4 46.5 144.2 251.8
4.7 1.1 5.9 18.3 298.0 39.4 453.3 1479.9 29.2 14.8 8.6

ui5-manifest † 19.1 † 831.0 1172.3 † 2154.1 2856.8 702.5 315.4 †
† 7.3 † 69.3 1267.5 † 2191.0 1144.9 481.7 51.2 †

unreal 21.3 1.1 2.7 164.4 195.4 27.8 415.4 510.8 83.5 157.4 266.3
6.4 1.0 2.8 23.2 167.3 24.8 387.0 92.9 36.5 8.2 5.2

vercel 28.3 0.6 2.5 249.8 144.8 18.0 144.3 505.7 65.0 117.7 185.7
1.5 0.6 1.6 6.6 129.0 13.2 138.8 70.2 25.8 6.6 2.7

yamllint † 0.1 0.4 13.3 21.1 3.5 24.7 355.2 † 38.6 12.8
† 0.0 0.3 0.2 20.7 2.0 22.6 55.8 † 0.5 0.2

The top number is the runtime in milliseconds for the first run after compilation. The bottom is the runtime for validating the same documents after several validation runs.

†The implementation produced an error on this dataset.

Table 5: Runtime results for implementations across datsets
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Figure 6: Compilation and validation time summary

approximately ∼9× faster than the second fastest implementation,
ajv while also being more correct than ajv.

Note that we include any initialization required before validation
when measuring compile time. Implementations that do not use
an explicit compilation step still measure a small compilation time.
While the compilation time of Blaze is slower than many other
validators, it still requires less than 10s on average. As noted earlier,
we observed that schemas are infrequently changed (on the order
of weeks). Since the compiled schema only needs to be updated
when the original schema changes, the overhead is minimal.

6.2.3 Optimization. In addition to the benchmarks against other
validators, we also performed an ablation study to understand the
effect of each of our optimizations on the performance of Blaze.
Specifically, we measure the performance with four separate op-
timizations disabled: our semi-perfect hash function (Section 4.1),
instruction unrolling (Section 4.2), regular expression optimiza-
tion (Section 4.3), and instruction reordering (Section 4.4). We note
that while reducing memory allocations was important for the
performance of Blaze, this is not an optimization that can easily
be disabled since it is integral to our design. The relative speedup
achieved by each optimization is shown for the single schema that
is most affected by each optimization as well as the overall runtime
for all 38 schemas in our test collection.

Although the average speedup for unrolling is relatively small
(only ∼3% overall), we see a benefit of nearly 47% on one schema,
suggesting it can be very effective in certain cases. This specific
example is a small schema with only a few properties defined, all
of which are required. In this case, avoiding the loop significantly
reduces validation time. We do also note that in the worst case,
as with unrolling in compiler optimization, this optimization can
reduce performance. Although Blaze employs heuristics to decide
when unrolling is appropriate, we still see a significant performance
reduction on several schemas, suggesting a need for improvement
in these heuristics in future work. We also plan to make these
optimizations configurable so users can decide which optimizations
to use in the case our heuristics are ineffective.

The overall benefit from regex optimizations is minimal because
many schemas do not make use of regular expressions. In the best
case, we see a runtime reduction of over 41%. One common case is
schemas using "patternProperties": ".+" to define a schema

for non-empty keys. This is reduced to a string length check, avoid-
ing the use of a regex engine entirely. We plan to explore further
ways to optimize the use of regular expressions in future work.

We compare the performance of our hash function with the popu-
lar and widely-used MurmurHash37. Our hash function along with
instruction reordering are by far the most effective optimizations
employed by Blaze, with an average improvement of almost 25%
across all schemas. In the best case, we see almost a 49% percent
reduction in runtime through the use of our hash function. This
occurs in the helm-chart-lock schema which is quite small and
uses few features of JSON Schema, meaning the validation time is
dominated by hash table lookups. There is only a single case where
use of our hash function results in a reduction in runtime. We plan
to explore this case further in future work.

Our reordering optimization achieves a 95% reduction in runtime
for one schema (cql2). This schema makes significant use of oneOf,
which requires that a document be valid against only one of a set of
schemas. These variants are identified by a string key op that has
specific values for each variant. Reordering ensures that validating
the op key occurs first. This means that the remainder of the schema
only needs to be checked in the case where the correct op matches.
Using a string key to identify a schema variant is a common use
case we believe we can optimize further in the future.

We also measure the peak memory usage of each process during
compilation and validation with the results shown in Figure 8. Boon
exhibits the lowest memory usage, while Blaze uses approximately
43% more memory. This is approximately the same memory used
by the Go jsonschema validator, but both use approximately half
the memory of the next implementation and 85% less memory than
Corvus, the heaviest implementation. We leave further analysis as
well as any possible optimizations as future work.

7 RELATEDWORK
We are not aware of any in-depth academic research into JSON
Schema validation beyond the work of Attouche et al. [4]. How-
ever, there are many existing open-source validators that make use
of precompilation as we have listed in Table 4. ajv8 is a popular
validator that is able to generate JavaScript code through a precom-
pilation process to use for later validation. While ajv is sometimes
comparable to Blaze in speed, it suffers from significant correctness
issues and fails over 200 test cases in the official JSON Schema test
suite. We believe that the speed of ajv comes primarily from the
significant optimizations present in modern JavaScript runtimes.
Indeed, we noticed when switching from the Node.js runtime to the
Bun runtime used in our evaluation, the validation performance
improved significantly. This observation matches what has been ob-
served in prior work [1, 15]. Unlike ajv, Blaze maintains correctness
in the validation process while also being faster to validate.

Corvus9, jsonschema (Go)10, and JsonSchema.Net 11 also per-
form precompilation. Corvus generates .NET code that compiled
to produce the final validator while jsonschema constructs an in-
ternal data structure intended to optimize validation. While these

7https://github.com/aappleby/smhasher/wiki/MurmurHash3
8https://ajv.js.org
9https://github.com/corvus-dotnet/Corvus.JsonSchema
10https://github.com/santhosh-tekuri/jsonschema
11https://docs.json-everything.net/schema/basics/
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Figure 7: Performance benefits of various optimizations

Figure 8: Memory usage during compilation and validation

implementations are among the fastest for warm runs, they do not
incorporate many optimizations used in Blaze and remain signif-
icantly slower to validate on average. JsonSchema.Net performs
static analysis of JSON Schema [9, 10] in order to reduce the amount
of work necessary at validation time by identifying constraints that
must apply to particular locations in a JSON document. Blaze ex-
tends this idea to significantly more in-depth analysis involving
interactions between keywords and the order of instructions.

T there has been some past work at examining the structure of
JSON Schemas in practice [5, 17, 21]. This work focused on specific
research questions that were not applicable to our analysis. We
used the Sourcegraph public code search API12 to find files with the
extension .json and containing a key $schema key indicating the
document is a JSON Schema document. We downloaded all these
schemas and validated them against their corresponding meta-
schema in order to ensure each schema is valid. As mentioned
previously, we collected approximately 31,000 schemas in total. This
allowed us to answer such questions as “What is the distribution of
key lengths defined in JSON Schemas?”. We believe this corpus of
schemas will be useful for further analysis.

Since XML is also a semi-structured data format, it is natural to
compare corresponding validators. Indeed, others have shown that
careful XML validator design improves performance [16]. However,
JSON Schema validation is much more complex than XML Schema
Definition (XSD) or Document Type Definition (DTD), two com-
mon formats for XML schemas. XML schema validation can occur
in log-linear time [6], while JSON Schema validation is PSPACE-
complete [4] in general. Due to the difference in expressiveness of

12https://sourcegraph.com/search

the corresponding schema languages, JSON Schema validation is
more complex and necessitates a different set of optimizations.

8 FUTUREWORK
Currently, the compilation process produces instructions that can
be interpreted at runtime much more efficiently than operating
using the original JSON Schema. However, we plan to explore
precompiling the code necessary to validate each schema ahead
of time. In addition to eliminating overhead from interpretation
at runtime, this has the potential to leverage existing compiler
optimizations to further improve performance. We also plan to
explore further static optimizations to the generated schemas.

We believe there is potential to optimize schema compilation
in a data-dependent way. Many validation instructions can be re-
ordered while preserving correctness as we showed in Section 4.4.
The fastest approach to validation will detect failure as early as pos-
sible. Depending on the specific schema and data being processed,
different use cases might result in a higher likelihood of certain
assertions failing as compared to others. If profiling suggests that
a particular property is likely to fail validation, we can order in-
structions to validate that property first. This enables early failure
detection, minimizing the number of executed instructions. We also
plan to explore the use of data-dependent optimizations.

Finally, in this work we have focused only on indicating whether
a document is valid according to a schema. In the case of an invalid
document, it can be helpful to provide information on exactly why
the document is not accepted according to the schema. This is
particularly important in our case since we want to reference the
user-provided schema ignoring any optimizations to instructions
generated during the compilation process. While Blaze does have
the option to provide helpful error messages to users for debugging
purposes, here we focus purely on performance.

9 CONCLUSION
We have introduced Blaze, a JSON Schema validator that makes use
of precompilation to optimize the validation process. Unlike many
existing validators, Blaze achieves 100% correct validation behavior
according to the JSON Schema specification. Blaze also validates
documents a minimum of 20% faster than all other validators we
tested on a wide variety of datasets and an average of 10× faster
than the next fastest validator. We believe that there are many
opportunities for further optimization.
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