FairDAG: Consensus Fairness over Multi-Proposer Causal Design

Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh’, Mohammad Sadoghi
Exploratory Systems Lab, University of California, Davis
tDeakin University

ABSTRACT

The rise of cryptocurrencies like Bitcoin and Ethereum has driven
interest in blockchain database technology, with smart contracts
enabling the growth of decentralized finance (DeFi). However, re-
search has shown that adversaries exploit transaction ordering to
extract profits through attacks like front-running, sandwich attacks,
and liquidation manipulation. This issue affects blockchains where
block proposers have full control over transaction ordering. To ad-
dress this, a more fair transaction ordering mechanism is essential.

Existing fairness protocols, such as PoMpE and THEMIS, operate
on leader-based consensus protocols, which not only suffer from
low throughput caused by single-leader bottleneck, but also give
adversarial block proposers to manipulate transaction ordering. To
address these limitations, we propose a new framework FAIRDAG
that runs fairness protocols on top of DAG-based consensus proto-
cols, which improves protocol performance in both throughput and
fairness quality, leveraging the multi-proposer design and validity
property of DAG-based consensus protocols.

We conducted a comprehensive analytical and experimental eval-
uation of two FAIRDAG variants—FAIRDAG-AB and FAIRDAG-RL.
Our results demonstrate that FAIRDAG outperforms prior fairness
protocols in both throughput and fairness quality.

PVLDB Reference Format:

Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh, Mohammad Sadoghi.
FairDAG: Consensus Fairness over Multi-Proposer Causal Design. PVLDB,
19(2): 265-278, 2025.

doi:10.14778/3773749.3773763

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/apache/incubator-resilientdb/tree/fairdag.

1 INTRODUCTION

The emergence of cryptocurrencies, including Bitcoin [54] and
Ethereum [16], has sparked broad interest in blockchain database
technology [1, 10, 13, 72]. Blockchain enables a new class of applica-
tions, namely decentralized finance (DeFi) [9, 14, 35, 61, 76], whose
market capitalization exceeds 70 billion. DeFi requires consistency
and fairness in transaction ordering. The former ensures that all
participants agree on the same transaction order, which has been
addressed under crash-failure settings of traditional distributed

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773763

265

databases, for example [3, 36, 48, 60, 68], and under Byzantine-
failure settings in blockchains and verifiable databases [16, 55, 78]
where Byzantine participants can have arbitrary malicious behavior.
In the presence of Byzantine participants, even though transaction
ordering is consistent, its fairness remains vulnerable to order-
ing manipulation attacks. Such an “order manipulation crisis” is
possible because block proposers have full control over transac-
tion selection and ordering. Byzantine proposers can censor or re-
order transactions to extract Maximal Extractable Value (MEV) from
blocks [23, 37, 50, 66, 67, 70, 73, 77], which is unfair to other par-
ticipants. Attacks include front-running, back-running, sandwich
attacks, liquidation manipulation, and time-bandit attacks [23, 57—
59, 69].

The key to achieving fair transaction ordering lies in preventing
proposers from dominating the ordering. Existing studies [18, 22,
44, 46, 52, 53, 79] have proposed various fairness protocols. Unlike
traditional protocols where each block contains a list of transactions,
in fairness protocols, each block contains local orderings from a
set of participants. Once blocks are committed, a final transaction
ordering is derived from the local orderings. Different fairness
protocols guarantee different fairness properties, reflecting the
preferences of correct participants who honestly report the order in
which they receive transactions. For example, PomPE [79] calculates
the assigned ordering indicator for each transaction and orders
transactions based on it. It guarantees that transaction Tj is ordered
before T; if every correct participant receives T; before any correct
participant receives T, a property named Ordering Linearizability.
THEMIS [44] constructs a dependency graph among transactions
and determines the ordering according to the edges of the graph.
It guarantees that if a y proportion of correct participants receive
T; before T, then T; will be ordered no later than T, -a property
named y-Batch-Order-Fairness.

We observe that a well-designed fairness protocol should achieve
the following goals:

G1 Resilience to Ordering Manipulation. The protocol should
limit Byzantine participants’ influence on the final transac-
tion order to preserve fairness properties.

Minimal Correct Participants Requirement. The pro-
tocol should preserve fairness properties while relying on
as few correct participants as possible.

High Performance. Fairness protocols should minimize
the overhead introduced by fair ordering, achieving high
throughput and low latency.

G2

G3

Unfortunately, previous fairness protocols [18, 44-46, 53, 79]
leverage leader-based consensus protocols [20, 30, 74], relying on
a single leader to collect local orderings from other participants.
A Byzantine leader can manipulate transaction ordering by selec-
tively collecting local orderings to maximize its MEV. Moreover,
even without Byzantine behavior, a single leader may become a

https://doi.org/10.14778/3773749.3773763
https://github.com/apache/incubator-resilientdb/tree/fairdag
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773763
https://www.acm.org/publications/policies/artifact-review-and-badging-current

performance bottleneck when the workload exceeds its capacity, as
the message complexity of broadcasting collected local orderings
grows quadratically with the number of participants.

To address the challenges posed by the underlying leader-based
consensus protocols, we propose FAIRDAG, a novel framework that
runs fairness protocols on top of DAG-based consensus protocols [6,
8, 24, 43, 62, 63], which provide the following features that can
enhance ordering fairness:

e Multi-Proposer High-throughput Design: DAG-based
protocols allow all participants to propose blocks in parallel.
This approach improves system performance by alleviating
the bottleneck introduced by a single leader.

e Validity through Causal Design: Blocks in DAG-based
protocols reference blocks from other participants, forming
a Directed Acyclic Graph (DAG). The causal relationship in
DAG guarantees that vertices from correct participants are
eventually committed by all correct participants.

The Multi-Proposer High-throughput Design removes the bottle-
neck caused by a single leader (G3). The validity constrains the
Byzantine participants’ ability to selectively collect local orderings
(G1), and thus lowers the requirement on the number of correct
participants (G2).

In FAIRDAG, each participant proposes its block containing the
local ordering as a DAG vertex and reliably broadcasts it, and a
final transaction ordering is deterministically generated based on
the vertices committed by the underlying DAG-based consensus
protocols. We designed two variants of FAIRDAG, namely absolute-
ordering FAIRDAG-AB and relative-ordering FAIRDAG-RL.

There are two main challenges in employing DAG-based proto-
cols as the underlying consensus layer for fairness. First, to mitigate
the high latency of DAG-based consensus protocols, participants
should leverage uncommitted DAG vertices to reduce the latency
for fairness decisions, but participants may hold inconsistent views
of uncommitted vertices. Second, Byzantine participants may at-
tempt to manipulate the ordering by selectively ignoring vertices
proposed by specific participants. FAIRDAG addresses these chal-
lenges through a novel ordering indicator manager, adaptive fair-
ness thresholds, and new DAG construction rules that collectively
ensure fairness.

We make the following contributions:

(1) We propose FAIRDAG-AB, a absolute fairness protocol that
guarantees Ordering Linearizability. We propose a Ordering
Indicator Manager and an adaptive fairness threshold called
LPAOI that are compatible with the multi-proposer design
and commit rules of the DAG-based consensus protocols.

(2) We propose FAIRDAG-RL, a relative fairness protocol that
guarantees y-batch-order-fairness. Leveraging the validity
property of DAG-based consensus protocols, we adopt new
thresholds for dependency graph construction to improve
system performance and reduce the requirement of minimal
correct participant number.

In FAIRDAG, we apply new rules for constructing a DAG

to guarantee fairness against adversarial participants.

266

R
Ry
Rs3
Ry

AN, T, T3, Ta}
AL, T3, Ty, Ty }
A, Ty, Th, o}
AT, T, T3, T3}

Figure 1: Condorcet Cycle

(4) We conducted comprehensive analytical and experimental
evaluation of our protocols. The results show that: com-
pared to PomPE and THEMIS, FAIRDAG-AB and FAIRDAG-
RL outperform in both throughput and fairness quality,
which reflects the fairness protocols’ resilience against ad-
versarial ordering manipulations.

This paper is structured as follows. Section 2 presents the back-
ground. Section 3 introduces the system model. Section 4 presents
an overview of FAIRDAG protocols. Section 5 and Section 6 de-
scribe the details of FAIRDAG-AB and FAITRDAG-RL!. Section 7 an-
alytically compares FAIRDAG with prior fairness protocols PompPE
and THEMIS. Section 8 presents the experimental evaluation of
FAIRDAG and baseline protocols. Section 9 discusses other related
works, and Section 10 concludes.

2 BACKGROUND

FAIRDAG-AB and FAIRDAG-RL execute fairness protocols atop
DAG-based consensus protocols. Beginning with this section, our
discussion is framed within the context of Byzantine Fault Toler-
ant (BFT) protocols, where participants are referred to as replicas.
Byzantine replicas, corrupted by an adversary, may exhibit arbitrary
malicious behavior, whereas the remaining correct replicas behave
benignly. In this section, we present the definitions of three fairness
properties and introduce the DAG-based consensus protocols.

2.1 Receive-Order-Fairness

Definition 2.1. Receive-Order-Fairness. For any two transac-
tions T; and Ty, if all correct replicas receive T; before T, then Ty
must be ordered before T, in the final ordering.

We show that it is impossible to always guarantee Receive-Order-
Fairness in the presence of Byzantine replicas for Condorcet Cycles.
Figure 1 illustrates this impossibility with a concrete example. Con-
sider four replicas Ry, Ro, R3, R4, among which at most one may be
Byzantine. Let there be four transactions Ty, T2, T3, Ts. As shown on
the left side of the figure, for any two commands 7T; and T;4+1 (mod-
ulo 4) , three replicas receive T; before Tj;1 but the fourth differs.
Since the identity of the Byzantine replica is unknown, we respect
all majority-endorsed orderings supported by at least three replicas
when determining the final ordering. The right side of Figure 1 de-
picts a directed graph where an edge T; — T; indicates that at least
three replicas received T; before Tj. The resulting graph contains
a Condorcet Cycle [12, 21]—a cycle of pairwise preferences that
cannot be linearly extended without violating at least one of them.
Hence, the Receive-Order-Fairness is impossible in this case.

Isee Section 8 in our extended report [39] for correctness proofs

Ry : {(T2,1),(T1,2), (T4, 3), (T3,4)}
Ry : {(T1,1),(T3,2), (T2,3), (Tu, 4) }
Rs: {(T1,1), (T2, 1), (T3,3), (Ts, 4) }
Ry: {(T1,1), (T2, 2), (T3,3), (Ty, 4) }

Figure 2: T} will be ordered before T, if Ordering Linearizabil-
ity holds regardless of the local ordering from Ry.

2.2 Ordering Linearizability

Ordering Linearizability is a fairness property introduced by PompE [79]

and adopted by our protocol, FAIRDAG-AB. To achieve this property,
each replica assigns a monotonically increasing ordering indicator
(denoted oi) to each transaction reflecting the order it receives
the transactions. The final ordering is then derived from ordering
indicators collected from a majority of replicas.

Denoting by oisic the set of ordering indicators for the transac-
tion T; from the correct replicas, we define Ordering Linearizability:

Definition 2.2. Ordering Linearizability. For any two transac-

tions Ty and Ty, if all ordering indicators in 0is€

1 are smaller than

all those in oisZC, ie.,
Yoiy € oislc,Voiz € oiszc 1 001 < oip.
then T; must be ordered before T5 in the final ordering.

Figure 2 illustrates this definition with an example involving four
replicas, where replicas Ry, Rz, R3 are correct, and Ry is Byzantine.
Each replica assigns local ordering indicators to four transactions.

For transactions T and Ty, the correct replicas assign oislc ={2,1,1}

and ois4c = {3, 4,4}, respectively. Since all indicators in 0is€

1
smaller than those in ois4c, any protocol satisfying Ordering Lin-
earizability—such as PomPE and FAIRDAG-AB—must place T; before

Ty in the final ordering, regardless of the Byzantine replica’s input.

are

2.3 y-Batch-Order-Fairness

In Section 2.1, we showed that it is impossible to guarantee Receive-
Order-Fairness in the presence of unknown Byzantine replicas. How-
ever, a weaker yet practical variant, y-Batch-Order-Fairness, can be
achieved by both THEMIS [44] and our protocol FAIRDAG-RL.

We say that a transaction T, is dependent on transaction 77,
denoted as Ty — Ty, if T; must be ordered before T; in the final
ordering. Due to the presence of Condorcet cycles, such dependencies
can form cycles among transactions.

Definition 2.3. A batch S of transactions is cyclic dependent if for
any two transactions T3, T, in S, there is a list of transactions that
form a dependency path from Tj to Tp.

The final ordering can be partitioned into a sequence of non-
overlapping batches Sy, S, . . ., where each S; is a maximal cyclically
dependent batch, i.e., for any i, S; U S;41 is not cyclically dependent.

We say that T is ordered no later than T, if Tj is in the same
or an earlier batch than T,. And we define y-Batch-Order-Fairness
as follows:

Definition 2.4. y-Batch-Order-Fairness. For any two transac-
tions T; and T, if at least a fraction y of correct replicas receive

267

Ry :{To, T, T2, T, Ty, Ts }

Ry :{To, T2, T3, T, T1, T5}

R3 :{To, T3, Ty, T1, T, T}

Ry : {To, Ty, T1, T, T3, T5 }
Final Ordering: {Ty, Ty, T2, T3, Ta, T5 }

(@)

by : {T1, T, T3, T4}

(b)

Figure 3: A final ordering of six transactions that satisfies
y-Batch-Order-Fairness with y = %, 3 correct replicas, and 1
Byzantine replica.

Ty before Ty, then T must be ordered no later than T, in the final
ordering.

Figure 3 presents an example satisfying y-Batch-Order-Fairness,
where we have n = 4 replicas (at most f = 1 replica can be Byzan-
tine) and 6 transactions. Assuming that the fairness protocol gen-
erates a final ordering that can be split into three cyclic dependent
batches, for any two transactions, y-Batch-Order-Fairness holds.
For example, T is received earlier than Tj by correct replicas of
y(n—f) = 3 and Tj is ordered in a batch earlier than T;.

2.4 DAG-based Consensus Protocols

DAG-based BFT consensus protocols [24, 43, 63] operate in
rounds. In each round r, every replica proposes a block, referred to
as a DAG vertex. Each vertex references multiple vertices from the
previous round r—1, represented as edges that encode the causal
dependencies between DAG vertices, forming a Directed Acyclic
Graph (DAG). The causal history of a DAG vertex includes all ver-
tices reachable via the reference paths.

Every k rounds (e.g. k = 2 in Tusk [24]), a random or predeter-
mined leader vertex is elected. These leader vertices are committed
in an ascending order of round, and their causal histories are com-
mitted in a deterministic order. To ensure reliable dissemination,
most DAG-based protocols employ reliable broadcast (RBC) mecha-
nisms. With RBC and carefully designed commit rules, DAG-based
protocols guarantee the following properties even in an asynchro-
nous network without message delay bound:

e Agreement: If a correct replica commits a vertex v, then
all correct replicas eventually commit v.

e Total Order: If a correct replica commits v before v, then
every correct replica commits v before v’.

e Validity: If a correct replica broadcasts a vertex v, then all
correct replicas eventually commit v.

Compared to consensus protocols with a single leader, the multi-
proposer design of DAG-based protocols enables higher throughput.
But this comes at the cost of higher commit latency due to the
overhead of RBC and multi-round commit rules.

3 SYSTEM MODEL

We consider a distributed system consisting of a set of replicas
and a potentially unbounded number of clients. The system is
subject to Byzantine faults and operates under either asynchronous

or partially synchronous network conditions. Our model covers
client behavior, replica corruption, authentication assumptions, and
fairness-specific threat considerations.

3.1 Clients

Clients issue transactions to replicas and wait for execution results.
They may behave arbitrarily with no correctness assumptions.

3.2 Replicas

In the system, there are a total of n replicas and an adaptive adver-
sary capable of corrupting up to f replicas during execution. The
corrupted replicas, referred to as Byzantine or malicious replicas,
may exhibit arbitrary malicious behavior.

Regarding transaction ordering, Byzantine replicas may reorder
transactions in local orderings and ignore unfavorable local order-
ings from other replicas. Correct replicas are honest about local
orderings in which the transactions are received.

Fairness protocols differ in resilience to Byzantine faults. Specif-

ically, FAIRDAG-AB and PoMPE require n > 3f; THEMIS requires
@y+2)f @y+Df 1
2y—-1 ° 2y-1 * 2

and FAIRDAG-RL requires n >

<y<L

3.3 Authentication

We assume authenticated communication, where Byzantine replicas
cannot forge messages from correct replicas. Authentication is
enforced through Public Key Infrastructure (PKI) [42].

For integrity verification, each transaction T; is associated with
a digest d;, computed using a secure collision-resistant cryptographic
hash function [42].

3.4 Network

External network (client-replica). We make no assumptions
about synchrony but assume the external network is
non-adversarial. This assumption is necessary for preserving
fairness, as an adversarial external network could arbitrarily
control the order in which replicas receive transactions and then
the final ordering.

Internal network (replica-replica). The internal network may
operate either asynchronously or partially synchronously:

e Asynchronous network: Messages are never lost and are
eventually delivered, but there is no bound on the message
delays.

e Partially synchronous network: There exists an un-
known Global Stabilization Time (GST) after which the mes-
sage delays are bounded by a known constant A, i.e., any
message sent at time ¢t will be delivered by max(t, GST) +A.

4 OVERVIEW

Previous fairness protocols, such as PoMPE [79] and THEMIS [44],
are built atop leader-based consensus. Although the final order-
ing is derived from local orderings collected from a majority of
the replicas, existing fairness protocols have these problems: (1)
Byzantine leaders manipulate orderings and compromise fairness
by selectively picking up the local orderings. (2) Byzantine or slow
leaders can become system performance bottlenecks. To address

268

@® ®E

’ LOs3 1 : {d3} ‘ ’ LO3 3 : {d2} ‘ ’ LOg4 :{d1} ‘ ’ LOy43 : {d3} ‘

LO3 5 : {dy,ds} LOyp : {dy, dy}

v LOZ)Z

i —>T,->T;—> 1T,)
=) a8 Oy
-— g;.AOI (e)
- 4 AOT @
After Ly is committed: [[][] Aq
After L3 is committed: [][][] A3 (d)
e e .
| |
| |
| |
l l
i © |
| : |
| |
l l
| o, |
| DAG Layer a. (b) |
l - l
| |
| S~ -~ I
- B Pk
| |
: 01,1 : L0y ‘ 013:LO13 ‘ 03,1 :LOg ‘ 023 :LOg3 ‘ :
1 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

L

Figure 4: Architecture of FairDAG: (a) Replicas reliably
broadcast blocks containing their local ordering fragments.
(b) Each replica receives blocks delivered through Reliable
Broadcast. (c) Each replica forms a local view of the DAG
using received blocks and reference links, where different
colors represent the subdags of different committed leader
vertices. (d) Local orderings in subdag A, are used as input
of the fairness layer after L, is committed. (e) Finalize trans-
action ordering using absolute ordering mechanism (left) or
relative ordering mechanism (right), based on the committed
local orderings. (f) A final transaction ordering is generated.

these problems, FAIRDAG runs fairness protocols on top of multi-
proposer DAG-based consensus with two layers:
e DAG Layer handles the dissemination (Figure 4(a,b)) and
commitment (Figure 4(c)) of local orderings.
o Fairness Layer takes these committed local orderings (Fig-
ure 4(d)) as input to a transaction ordering algorithm (Fig-
ure 4(e)) to produce a final ordering (Figure 4(f)).

4.1 DAG Layer

The DAG layer adopts existing DAG-based consensus protocols—such
as Tusk [24], DAG-Rider [43], and Bullshark [63]—with minimal
modifications to support fairness guarantees.
Directed-Acylic-Graph

DAG-based protocols proceed in rounds where each replica con-
currently proposes one vertex per round r. Each vertex references

previous vertices, forming a DAG, where references are edges.
Specifically, a vertex in round r references at least n—f vertices
from round r — 1 via strong edges, and optionally up to f vertices
from earlier rounds via weak edges.

Let v denote the vertex proposed by replica R; in round r. A
valid vertex satisfies:

e strong_edges: includes at least n — f strong edges,
o weak_edges: includes up to f weak edges.

To guarantee the fairness properties in the presence of adversary,
we extend existing DAG-based protocols by applying new rules of
forming DAG vertices:

(1) In FAIRDAG, replicas include weak edges in vertices to
incorporate local orderings from slower replicas, ensuring
that all correct local orderings eventually get committed.

(2) To preserve the integrity of a replica’s local ordering, each
vertex v; » must include a strong edge to its vertex in the
previous round v; ,—1 (for r > 0).

Figure 4(c) shows an DAG example where black arrows represent
strong edges, and blue arrows represent weak edges.

Reliably broadcasting a vertex

To address issue (1), in FAIRDAG, instead of relying on a leader to
collect local orderings, each replica R; autonomously reliably broad-
cast [11, 19, 24, 29] its local ordering LO;. As Figure 4(a) shows,
FAIRDAG vertex v;, contains r-th slice of the replica R;’s local
ordering (LO; r)—a sequence reflecting the order in which transac-
tions were received by replica R;. Each local ordering is represented
as a sequence of transaction digests paired with monotonically
increasing ordering indicators.

Constructing a DAG

As illustrated in Figure 4 (a,b), the DAG layer of FAIRDAG enables
replicas to reliably broadcast and deliver vertices from one another.
This multi-proposer design alleviates the performance bottlenecks
associated with a single leader, thereby addressing issue (2).

Using the delivered vertices and the references within them, each
replica constructs its local view of the DAG, as shown in Figure 4(c).
As mentioned in Section 2.4, the DAG protocols guarantee that all
correct replicas eventually have consistent DAG views.

Committing DAG vertices

The commit rules in DAG-based consensus protocols—leveraging
the causal dependencies between vertices—further mitigate leader
manipulation in selecting local orderings, addressing issue (1).

DAG protocols group rounds into waves, each containing one
or more leader vertices. A leader vertex L,, in round r; is com-
mitted once specific conditions are met. Let C;; denote its causal
history—the set of vertices reachable from L,,, including L, itself.
DAG protocols ensure that all correct replicas commit leader ver-
tices in a consistent, round-increasing order (Ly,, Ly, ...) such that
Cr, € Gy, foralli.

A vertex v is said to be in the subdag of leader L, if v € C;, and
v ¢Cy, forall j < i.Let A, denote the vertices in the subdag of L,,.
The committed DAG can thus be partitioned into non-overlapping
subdags (A, Ar,, . ..), each corresponding to a committed leader.

For example, in Figure 4(c), L1 is the green vertex v 1 and L3 is
the blue vertex v3 3. Then A; consists of the green vertices, and A3
consists of the blue ones.

269

As shown in Figure 4(d), each time a leader L, is committed, the
fairness layer processes A, to compute the final ordering.

The DAG layer satisfies a necessary condition to guarantee that
final ordering aligns with the preferences of the majority of correct
replicas, as each subdag A, aggregates local orderings from at least
n—{f replicas—guaranteeing the inclusion of at least n—2f correct
replicas. (Note: n—2f > I‘T—f holds for all protocols.)

4.2 Fairness Layer

Taking local orderings within the committed subdags as input, the
fairness layer runs a transaction ordering algorithm to calculate
the final transaction ordering.

In absolute fairness protocols (Figure 4(e), left), each transaction
gets an assigned ordering indicator (AOI) based on the input local
orderings. The final ordering (Figure 4(f)) is then derived, sorting
transactions by their AOL FAIRDAG-AB is an absolute fairness
protocols and satisfies the Ordering Linearizability property.

In relative fairness protocols (Figure 4(e), right) construct a
dependency graph of transaction nodes, where edges encode pair-
wise ordering dependencies derived from the input local orderings.
The final ordering is a Hamiltonian path within the graph (Fig-
ure 4(f)). FAIRDAG-RL is an relative fairness protocol and satisfies
the y-Batch-Order-Fairness property.

5 FAIRDAG-AB

FAIRDAG-AB is an absolute fairness protocol. In this section, we
demonstrate how FAIRDAG-AB calculates the assigned ordering
indicator (AOI) for each transaction and orders the transactions
based on the AOI values.

5.1 Transaction Dissemination

To prevent leader-driven manipulation, clients broadcast transac-
tions to all replicas. This prevents adversarial replicas from censor-
ing transactions to influence their position in final ordering.

Upon receiving a client transaction T, replica R gives T a mono-
tonically increasing ordering indicator oi from its local timer, ap-
pends digest d of T and oi to its lists dgs and ois (Figure 5, Line 4),
respectively, which are in-memory variables storing transaction
digests and ordering indicators of pending transactions (Lines 9-12).

5.2 FairDAG-AB Vertex

Built atop a DAG-based consensus protocol, each FAIRDAG-AB
replica constructs and reliably broadcasts a DAG vertex when pro-
tocol conditions are met. In addition to DAG-specific metadata (as
described in Section 4.1), a FAIRDAG-AB vertex includes (and clears)
the replica’s local ordering of pending transactions it received after
it broadcast the last vertex, encoded in dgs, ois (Lines 13-17).

5.3 Managing and Assigning Ordering
Indicators

FAIRDAG-AB leverages local orderings within committed DAG
vertices to determine the final transaction ordering. However, a
delay exists between receiving and committing the DAG vertices. To
efficiently manage and utilize local orderings from both committed
and uncommitted vertices, FAIRDAG-AB maintains an Ordering

: State Variables (per replica)
. txns_w_assigned_oi := {}

: highest_oi_list[1.n] :== 0

: dgs, 0is =[]

: current_round, replica_id

[N T

=y

: Ordering Indicator Manager (OIM)
7: seen_ois[1..n] := oo, committed_ois[1..n] := oo
8: LPAOI := oo, AOI := oo

Client Thread (processing client transactions) :

9: event On receive transaction T do

10: if T is valid then
11: oi := local_timer
12: dgs.append(T.digest); ois.append(oi)

DAG Layer Thread (constructing the DAG) :
13: event On propose DAG vertex do
14: v:= DAGVertex(replica_id, current_round)
15: Add pending local ordering dgs and ois into v
16: Clear dgs and ois
17: Reliably broadcast v
18: event On deliver v;, do
19: highest_oi_list[i] := the highest oi in v; ,.0is
20: for (d,oi) € (vj,.dgs, v;,.0is) do
21: OIM(d).seen_ois[i] := oi
22: event On commit L, do
23: Send A, to Fairness Layer

Fairness Layer Thread (Ordering transactions) :
24:
25: event On receive A, do
26: forwv e Ay, (d,o0i) € (v.dgs,v.0is) do
27: OIM(d).committed_ois|v.replica_id] := oi
28: LPAOIyjy = 00
29: for d such that OIM(d) = oo do
30: if OIM(d) has at least n — f committed_ois then
31:
32: OIM(d).AOI := (f+1)-th smallest in committed_ois
33: Add d to txns_w_assigned_oi
34: else
35:
36: fori=1tondo
37: Ip_ois[i] := min(d.seen_ois[i], highest_oi_list[i])
38: d.LPAOI := (f+1)-th smallest in Ip_ois
39:
40: LPAOIyj, := min(LPAOIy, d.LPAOI)
41: sort txns_w_assigned_oi sorted by AOI
42: execute all transactions with an AOI lower than LPAOI,;,;5,

Figure 5: FairDAG-AB Algorithm.

Indicator Manager (OIM(d)) for each transaction digest d, which
tracks the replica’s local view of the DAG and ordering indicators
within the vertices.

We say that a replica R has seen an ordering indicator oi if 0i is
in a vertex in R’s local DAG view. R has committed oi if oi is in

270

01,1

(dy,1)

2,1 022 023 024

(dy,1) (dp,2) (d3,4) (ds,5)
(dy.3)

31 v32 33 V34
(dy,1) (dg,3) (d3,4) (dg,5)
(d1.2)

241 042 043 044
(dy,1) (d3,3) (ds,4) (dg,5)
(dy,2)

Figure 6: Example of calculating AOI and LPAOL

a committed vertex. OIM(d) contains the following information
(Lines 6-8):
e seen_ois: ordering indicators of d that R has seen.
e committed_ois: ordering indicators of d that R has commit-
ted.
e LPAOI: the lowest possible value of the assigned ordering
indicator of d.
e AOI: the value of the assigned ordering indicator of d.

The final ordering is determined using AOI values derived from
committed_ois. LPAOI, computed from seen_ois, helps determine
when it is safe to decide the position of a transaction in the final
ordering (see Section 5.4). The seen_ois and committed_ois are
indexed from 1 to n and each item is initialized to co. For example,
if OIM(d).seen_ois[2] = 3, it means that R has seen an ordering
indicator 3 for the transaction with digest d from replica Rs.

Managing Ordering Indicators

Besides the OIM of each transaction digest d, each FAIRDAG-
AB replica R also maintains highest_ois: a vector of the highest
ordering indicators received from each replica, initialized to be 0
and indexed from 1 to n (Line 3). This vector is essential for checking
whether it is safe to determine the position of a transaction in final
ordering (See details in Section 5.4).

Upon a DAG vertex v; , is delivered and added to replica R’s local
DAG view, R updates highest_ois[i] to the highest ordering indica-
tor in v; . For each digest d in v; ,, R updates OIM(d).seen_ois[i]
(Lines 18-21).

Upon a DAG leader vertex L, is committed, its subdag A, is input
to the fairness layer (Lines 22-23). And R updates committed_ois
for the digests in A, accordingly (Lines 25-27).

Calculating Assigned Ordering Indicator

If OIM(d) has at least n—f non-co committed_oi values R calcu-
lates OIM(d).AOI. The AOI is the (f+1)-th smallest value of the
committed_ois, which definitely falls within the range of ordering

indicators from correct replicas. Then, d is added to txns_w_assigned_oi,

which is set of transactions digests with valid AOI values (Lines 29-
33). Note: The value of AOI is immutable once calculated, even if
more ordering indicators of d are committed.

Example 5.1. Figure 6 illustrates how to calculate AOI values.
Suppose v42 and v3 4 are committed leader vertices Ly and L4, with
yellow Ay and green A4, respectively. In Ay, digest di has committed
ordering indicators oo, 1, 2, 1. Since this includes at least n—f valid

values, its AOI is the (f+1)-th lowest, which is 1 (Lines 29-33). Al-
though an additional seen_ois of 1 appearsin vy 1 € Ay, itis ignored
since AOI is immutable once calculated after Ly is committed. In
Ay, digest dy has committed ordering indicators oo, 1, 2, 3, yielding
an AOI of 2. Similarly, ds receives an AOI of 3. Other digests in A4
lack sufficient committed ois data for AOI.

5.4 Global Ordering

Due to the randomness in message arrival times, DAG vertices
with smaller local ordering indicators may be committed later than
vertices from other replicas with higher ordering indicators. As a
result, a transaction d; may get a smaller AOI than dy, even if d;
obtains its AOI in a later round than dy. To ensure strict ordering
of transactions based on their AOI values—which is essential for
achieving Ordering Linearizability—it is necessary to guarantee that
no other transaction could get a lower AOI before determining the
position of a transaction in the final ordering. To enforce it, for each
transaction without an AOI, we calculate its LPAOI, the lowest AOI
value it could possibly get. And we track LPAOI;,;p, the minimal
LPAOI of transactions without an AOI.

Calculating LPAOI

For each transaction digest d without a valid AOI, replica R con-
structs a vector Ip_ois, where each entry is computed as Ip_ois[i] =
min(OIM(d).seen_ois[i], highest_ois[i]). The LPAOI of d is then
defined as the (f+1)-th smallest value in Ip_ois. And LPAOILyy is
the minimal value across all LPAOI values (Lines 34-40).

LPAOI i, serves as a threshold: only transactions with AOI <
LPAOILyin can determine its position in final ordering. The fairness
layer sorts all digests in txns_w_assigned_oi by AOI, executes all
transactions with an AOI lower than the threshold. The ordered
digests are then removed from txns_w_assigned_oi (Lines 41-42).

Example 5.2. As shown in Figure 6, transaction digests d1, da, and
d3 have AOI values of 1, 2, and 4, respectively. Given highest_ois =
(2,6,6,6) and OIM(ds).seen_ois = (0,3,3,5), digest dy derives its
Ip_ois = (2,3,3,5) and obtains LPAOI = 3. Similarly, d5 and dg
have LPAOI values of 4 and 5. LPAOILyjy, is then 3, (Lines 34-40) so
di and dj can be ordered and executed. In contrast, d3 cannot be
executed since its AOI exceeds LPAOIyy, implying that d4 could
possibly get a lower AOI than ds.

6 FAIRDAG-RL

FAIRDAG-RL is a relative fairness protocol. In this section, we
demonstrate how to construct dependency graphs between transac-
tions and derive a final transaction ordering from the dependency
graphs.

6.1 Transaction Dissemination

As in FAIRDAG-AB, clients broadcast transactions to all replicas
for censorship resistance. Upon meeting the conditions in DAG
protocols, each replica broadcasts a vertex. A FAIRDAG-RL vertex is
a restricted form of a FATRDAG-AB vertex: it includes a sequence of
incrementing counter values as ordering indicators corresponding
to received transactions (Figure 7 Lines 7-8). For simplicity, we omit
the ordering indicators in Figure 9.

271

: State Variables

: graphs =[]

: current_round, replica_id
: counter :=0

N O R N

Client Thread (processing transactions from clients) :
: event On receive a transaction T do
if T is valid then
counter := counter + 1
ois.append(counter),

[~ I - NS

dgs.append (T .digest)

DAG Layer Thread (forming the DAG) :

9: event On propose vertex do

10: ©v:=DAGVertex(replica_id, current_round)
11: Add pending local ordering dgs and ois into v
122 Clear dgs and ois

13: Reliably broadcast v

14: event On commit(L,) do

15: Send A, to Ordering Layer

Figure 7: FairDAG-RL: Transaction dissemination and DAG
vertex proposal.

The local orderings in subdag A, will be input to the fairness
layer after L, is committed in FAIRDAG-RL (Lines 14-15).

6.2 Dependency Graph Construction

The fairness layer of FAIRDAG-RL utilizes local orderings in com-
mitted DAG vertices to construct dependency graphs that reflect
the ordering preferences of replicas. Every time a leader vertex is
committed, a new dependency graph is constructed:

First, transaction digests from A, are added as graph nodes if it
has not been added to any dependency graph is previously rounds.
Each transaction digest d is associated with a node that stores:

o type: the type of the transaction node (See details later in
Adding nodes)

e committed_ois: a vector of committed ordering indicators
for d.

e committed_rounds: the rounds in which the corresponding
commited_oi is committed.

o G: the graph to which the node is added.

Second, pairwise ordering preferences are aggregated into a
weight function: weight(dy, d2) denotes the number of replicas
who have a lower committed_oi for dq than dy. Each dependency
graph contains the following information:

e nodes: the set of transaction digest nodes.

e weight : mapping of the pairs of nodes to their weights.

e edges: directed edges representing inferred ordering con-
straints between the transaction digest nodes.

Third, a directed edge from d; to dy is added if weight(dy, d2)
exceeds a quorum-based threshold n77f and is not lower than
weight (da, dy).

Thresholds

To construct a dependency graph that reflects the ordering pref-
erences of the majority and mitigates manipulation by Byzantine

replicas, relative fairness protocols should leverage as many correct
local orderings as possible. Prior protocols such as THEMIs [44] and
RasHNU [53] rely on a single leader to collect local orderings, where
a Byzantine leader may intentionally exclude local orderings from
up to f correct replicas. As a result, a transaction may appear in at
most n—2f committed local orderings if Byzantine replicas ignore
the transaction and the Byzantine leader excludes f correct local
orderings, increasing both the susceptibility to ordering manipu-
lation and the minimal requirement of number of correct replicas
(see Section 7 for details).

In contrast, DAG-based consensus protocols ensure that all cor-
rect local orderings are eventually committed. This guarantees that
each transaction can appear in at least n — f committed local or-
derings. Consequently, FAIRDAG-AB raises the thresholds used in

the construction of dependency graphs from n — 2f and “_ZZf (used

in THEMIS and RASHNU) to n — f and “74, respectively. We will
elaborate on the details below.
Adding nodes

For each transaction digest d in A, let node(d) represent its
dependency graph node. Its committed_ois and committed_rounds
are updated using information contained in A,, and the node is
added to updated_nodes, a set of transactions whose committed_ois
are updated because of A, (Figure 8 Lines 3-10) 2.

Then, we check if any transaction digests can be added as nodes
into the new dependency graph of round r. We define ap(d, r) as the
number of ordering indicators for d that are committed by round r:

ap(d,r) := |{ilnode(d).committed_rounds[i] < r}|

Each node in updated_nodes whose type is blank, which means
that it has not been added into any dependency graph previously,
is classified as:

e solid, if ap(d,r) > n—f.
e shaded, if nT_f <ap(d,r) <n-f.
o blank,if ap(d,r) < “T_f

The we add the non-blank nodes to G, (Lines 11-18). Since classi-
fication is only applied to previously blank nodes, it is guaranteed
that each digest is inserted into at most one dependency graph.
Updating weights between nodes

After classifying and adding nodes to G,, we update edge weights
based on local orderings in A,. Vertices in A, are processed in round-
increasing order.

For each vertex v from replica R;, we iterate through the trans-
action digests in v.dgs. For each digest d, we compare the value
of node(d).committed_ois[i] with all other nodes in the graph G
of node(d). For each pair (d, d2), we increment G.weight[(d, d2)]
if node(d).committed_ois[i] < node(ds).committed_ois[i]; other-
wise, we increment G.weight|[(ds, d)] (Lines 21-30).

During this process, we maintain a set addable_edges to track the
edges that can be added to the dependency graph. If G.weight [(d, d2)]
or G.weight[(da, d)] reaches the threshold “T_f the corresponding
pair is added to addable_edges (Lines 31-32).

2All operations related to dependency graph construction only apply to transactions
that are not ordered yet. We omit this for simplicity in the protocol description and
the pseudocode.

272

Fairness Layer Thread (Ordering Transactions) :

1: event On receive A, do

22 G, := NewGraph(), graphs.push(G,)

3

4: updated_nodes = {}

5. forov e A, do

6 i:=vo.replica_id

7 for (d, 0i) € (v.dgs, v.ois) do

8 node(d).committed_ois[i] = oi

9 node(d).committed_rounds[i] :==r

10: updated_nodes.insert(d)

11:

122 for d € updated_nodes do

13: if node(d).type = blank then

14: Let ap(d, r) be the number of ordering indicators for d that

are committed by round r

15: if ap(d,r) > n — f then

16: node(d).type = solid; G,.nodes.add(node(d))
17: elseif ap(d,r) > “T’f then

18: node(d).type := shaded; G,.nodes.add(node(d))
19:
20: addable_edges = {}

21: forwe A, do

22: i:=wo.replica_id

23: for (d, 0i) € (v.dgs, v.ois) do

24: G’ := node(d).G

25: d_oi = node(d).committed_ois[i]

26: for node(d;) € G’.nodes do

27: if d_oi < node(d;).committed_ois[i] then
28: increment G’. weight[(d,d2)]

29: else

30: increment G’. weight|[(da, d)]

31: if either weight reaches threshold “74 then
32: addable_edges.insert(d, d;)

33:

34: for (d,dz) € addable_edges do

35: G = node(d).G

36: if G.weight[(d,dz)] > G.weight[(d,,d)] then
37: G.edges.add(e(d, dz))

38: else

39: G.edges.add(e(dz, d))

40:

41: ORDERFINALIZATION()

Figure 8: Dependency graph construction in FairDAG-RL.

Adding edges
For each pair (d,d2) € addable_edges, if there is no edge be-

tween node(d) and node(dy), an edge is added based on the majority
preference (Lines 33-39):

o IfG.weight[(d,d2)] = G.weight[(ds,d)], add edge e(d, d2)
from node(d) to node(ds) ;
e Otherwise, add edge e(da, d) from node(ds) to node(d).

Example 6.1. Figure 9 illustrates how FAIRDAG-RL constructs
dependency graphs. In Figure 9(a), after processing Az, graph G
contains six nodes. Nodes dy, d1, do, and d4 are classified as solid
(solid circles), while d3 and d5 are shaded (dashed circles). All node
pairs form edges except (ds,ds), as neither Ga.weight[(ds,ds)]

Ry : {do,dy, d2, d5, d3} Ry : {d4,ds}
Ry : {do, d2,d3,ds,ds} Ry : {d1,ds}
Ay : Ay
R3 : {do, ds, d1, dg} R3 : {d3,d2,ds,d7}
Ry : {do, dy,d1, d2} Ry : {d3,ds,ds, d7}
After processing As: After processing Ag:

Figure 9: Constructing dependency graphs withn = 4,y =
1,f=1.

nor Gy.weight[(ds,d3)] reaches the threshold “T_f = % In Fig-
ure 9(b), after processing A4, G4 is constructed with two additional
nodes, and an edge between node(ds) and node(ds) is added once
Gy.weight[(ds, ds5)] reaches the threshold.

6.3 Ordering Finalization

FAIRDAG-RL finalizes the ordering of transactions within a de-
pendency graph after it becomes a tournament. A tournament is a
dependency graph such that there is an edge between each pair of
transaction nodes in the dependency graph. When finalizing the or-
dering, FATRDAG-RL condenses the dependency graph into multiple
Strongly Connected Components (SCCs) and generates a topological
sorting of them. Transactions that are sorted behind the last SCC
containing at least one solid transaction will be readded into later
dependency graphs, as they might be dependent on some transac-
tions in later dependency graphs (see more detailed explanation in
Section 8.4 of our extended report [39].)

As we use the same algorithm to finalize transaction ordering
within tournaments as THEMIS, we put the detailed algorithm in
Section 6.3 our extended report [39].

7 COMPARING FAIRNESS PROTOCOLS

In this section, we demonstrate how FAIRDAG-AB and FAIRDAG-
RL outperform PompE [79] and THEMIS [44] in limiting the adver-
sary’s manipulation of transaction ordering. We achieve this by
comparing how these protocols perform under adversarial condi-
tions, such as those caused by Byzantine replicas or an asynchro-
nous network.

7.1 Pompe and Themis

PomPE and THEMIS run fairness protocols atop leader-based consen-
sus protocols such as PBFT [20] and HotStuff [74], where a single
leader is responsible for collecting local orderings from a quorum
of n—f replicas.

Beyond the difference in underlying consensus protocols, PomPE
assigns non-overlapping intervals to consensus rounds, allowing

273

only transactions whose AOI fall within the corresponding interval
to be executed, increasing the overhead of recovery when the leader
fails. Additionally, in PoMPE, each client transaction is sent to a
single replica instead of being broadcast, making the protocol more
susceptible to transaction censorship.

7.2 Adversarial Manipulation

We now analyze how an adversary can manipulate transaction
ordering in PoMPE and THEMIs by selectively collecting local order-
ings. Additionally, we demonstrate how FAIRDAG-AB and FAIRDAG-
RL mitigate these vulnerabilities, ensuring more resilient and fair
transaction orderings.

Pompe vs FairDAG-AB

In PoMmPE, a Byzantine replica who is responsible for collect-
ing ordering indicators can selectively choose n—f local ordering
indicators to calculate an assigned ordering indicator. This selec-
tive collection allows the adversary to manipulate the ordering of
transactions whose ranges of correct ordering indicators overlap.

Furthermore, if at most f correct replicas have received the as-
signed ordering indicator for a transaction T before a Byzantine
leader replica collects assigned ordering indicators for a new block,
the leader can exclude T from the new block. Since the leader is only
required to collect from n—f replicas, it can selectively collect from
n—f replicas that have not received T, thus delaying the position of
T in the final ordering.

In FAIRDAG-AB, the client broadcasts its transaction to all repli-
cas, and each replica independently broadcasts its ordering indica-
tors. The Validity property and the round-robin or random leader
rotation of the underlying DAG protocols guarantees that reduce
the chance of selective collection of ordering indicators by Byzan-
tine replicas. Thus, FATRDAG-AB is more resilient against ordering
manipulation than PoMPpE.

Additionally, PompE effectively mitigates the transaction cen-
sorship issue mentioned in Section 7.1, because transactions are
broadcast to all replicas, and each replica independently generates
and broadcasts its local ordering indicators.

Themis vs FairDAG-RL

In THEMIS, if a Byzantine leader ignore f correct local orderings
containing transaction T and the Byzantine replicas exclude T from
their local orderings, there would be at most n—2f local orderings
n—2f

containing T. Thus, the threshold of deciding edge direction is

in THEMIS. To guarantee the y-Batch-Order-Fairness, it is required
that the votes of the opposite direction cannot reach the threshold,
containing f votes from Byzantine replicas and (1-y) (n—f) votes

n—2f

from correct replicas. That is, f + (1-y)(n—-f) < 5, le, n >

f(22yy_+12) When Yy = 1, THEMIS requires n > 4f.

In FAIRDAG-RL, due to the Validity of DAG-based consensus
protocols, all local orderings from correct replicas will eventually
be committed by all replicas. Then, for each transaction, there are
at least n—f local orderings containing it. Thus, the threshold for
deciding edge direction is “T_f in THEMIS. Then, to guarantee the
y-Batch-Order-Fairness, it is required that f + (1-y)(n—f) < nT_f

_f(zzyy:r;) When y = 1, FAIRDAG-RL requires n > 3f.

ie,n >

7.3 Leader Crash and Asynchronous Network

In PompE and THEMIS, if the leader crashes, a recovery subprocess
must be initiated to replace the leader with a new one, introduc-
ing an additional delay of O(A) before the protocol can resume
normal operation. Moreover, in POMPE, each round corresponds
to a distinct, non-overlapping time slot. If the designated leader
crashes, transactions with assigned ordering indicators that fall
within that time slot cannot be ordered or executed, resulting in
a potential transaction loss or indefinite delays. In THEMIS, if the
leader crashes, replicas have to resend their local orderings to the
new leader, resulting in additional communication overhead.

If the network operates under asynchronous conditions where
messages can experience indefinite delays, additional overhead
will be introduced, similar to the overhead incurred during leader
crashes.

FAIRDAG-AB and FAIRDAG-RL address the aforementioned is-
sues through the multi-proposer design and the Reliable Broadcast
inherent to DAG-based consensus protocols, which ensures that
each correct local ordering eventually deliviers and commits even
in asynchronous settings.

8 EVALUATION

We evaluate FAIRDAG-AB and FAIRDAG-RL by comparing their
performance with other baseline protocols. We implemented the
protocols [38] in Apache ResilientDB (Incubating) [2, 33]. Apache
ResilientDB is an open-source incubating blockchain project that
supports various consensus protocols. It provides a fair comparison
of each protocol by offering a high-performance framework. Re-
searchers can focus solely on their protocols without considering
system structures such as the network and thread models. We set up
our experiments on CloudLAB m510 machines with 64 vCPUs and
64GB of DDR3 memory. Each replica and client run on a separate
machine.

We compared FAIRDAG-AB and FAIRDAG-RL with the following
baseline protocols:

e PBFT [20]: A single-leader consensus protocol without fair-
ness guarantees, n > 3f.

e PoMmPE [79]: an absolute fairness protocol running on top
of PBFT, n > 3f.

e THEMIS [44]: a relative fairness protocol running on top of
f(2y+2)
2y—-1 °
e RCC [31]: a multi-proposer protocol that runs concurrent
PBFT instances without fairness guarantees, n > 3f.
e Tusk [24], a multi-proposer DAG-based consensus protocol

without fairness guarantees, n > 3f.

PBFT, n >

For THEMIs and FAIRDAG-RL, we set y = 1 in the experiments
by default. And we implement the DAG layer of FAIRDAG-AB and
FAIRDAG-RL on top of a variant of Tusk with weak edges.

8.1 Scalability
In the scalability experiments, we measure two metrics:

o Throughput — the maximum number of transactions per
second that the system reaches consensus.

274

—@— PBFT —a— RCC
—4— FAIRDAG-AB —@— THEMIS

l/
0.5 0.6 0.7
Throughput (txn/s)

—A— Tusk
FAIRDAG-RL

PompE

0.4

Figure 10: Throughput vs latency with f = 8.

o Client Latency — the average duration between the time a
client sends a transaction and the time the client receives
f+1 matching responses.

We compare the performance of the protocols with varying f, the
maximum number of faulty replicas allowed, from 5 to 8. With the
same f, different protocols have different minimum replica number
requirements. For example, when f = 5, THEMIS requires n = 21
replicas, while other protocols require n = 16 replicas.

Besides design, the performance of the protocols is highly related
to the workloads. As shown in Figure 10, where we set f = 8, as the
workload increases, the throughput increases until the pipeline is
fulfilled by the transactions. Then, after reaching the throughput
limit, the latency increases as the workload increases. We define by
optimal point the point with the lowest latency while maintaining
the highest throughput. And we evaluate their scalability at the
optimal points of the protocols with varying f.

Throughput. Figure 11 shows that Tusk and RCC achieve higher
throughput than other protocols because they have multiple
proposers and no overhead for fairness guarantees. Due to the
fairness overhead, when f = 5 and f = 8, FAIRDAG-AB reaches
83.5% and 84.9% throughput of Tusk, while FAIRDAG-RL reaches
11.9% and 12.6% throughput of Tusk.

However, compared to PomPE and THEMIS, the multi-proposer
design of the DAG layer brings FAIRDAG-AB and FAIRDAG-RL
advantages in throughput. When f = 5 and f = 8, FAIRDAG-AB ob-
tains 30.2% and 52.6% higher throughput than PoMPE, respectively.
Similarly, FAIRDAG-RL reaches 7.5% and 5.1% higher throughput
than THEMIS.

Latency. Without the fairness overhead, Tusk and PBFT, as the
underlying consensus protocols, have lower latency than the
fairness protocols running on top of them.

With f = 5 and f = 8, FAIRDAG-AB latency is 7.1% and 8.3%
higher than PompE, because Tusk, the underlying DAG consensus
protocol of FAIRDAG-AB, has a higher commit latency than PBFT,
the underlying consensus protocol of POMPE.

FAIRDAG-RL has a latency close to THEMIS when f = 5. As f
grows, FATRDAG-RL has a lower latency than TaHEMIS, which is
20.9% lower when f = 8. FAIRDAG-RL achieves a lower latency
because THEMIS needs f more correct replicas to guarantee fairness,
which causes higher overhead for both consensus and ordering.
By comparing the latency of TaEMmIS with f = 6 and FAIRDAG-RL
with f = 8, we can verify this claim: with the same replica number
n = 25, FAIRDAG-RL achieves a 4.6% higher latency than THEMIS.

‘ —@— PBFT —— RCC —a— Tusk

PoMPE —4— FAIRDAG-AB —@— THEMIS

FAIRDAG-RL

(a) Single-Region

» (b) Single-Region

(¢) Multi-Region, f = 8

(d) Multi-Region, f = 8

Throughput (txn/s)

Latency (s)

Throughput (txn/s)

Latency (5)
-

— —

—
V‘———‘r/‘-

2 3 4 1 2 3 4
Number of Regions Number of Regions

Figure 11: Performance of FAIRDAG and baseline protocols, with varying f (a,b), and varying number of regions (c,d).

‘ —e—Themis FairDAG-RL —+— Themis-Rashnu FairDAG-RL-Rashnu ‘
o (a) Throughput (b) Latency
80
-~ + o
e 60 — —2

~

Latency (ms)

Throughput (txn/s)

o

05
skewness

0.5
skewness

Figure 12: Performance of Rashnu-enhanced variants vs. rel-
ative fairness protocols.

Geo-distributed performance. We conducted experiments
under geo-distributed settings by deploying the systems across
multiple AWS regions. Specifically, we varied the number of regions
from 1 to 4. The regions include North Virginia, Oregon, London,
and Zurich. We fixed f = 8 and deploys ¥ replicas in each region,
where k is the number of regions. Figure 11 (c, d) show that in the
geo-distributed setting, the latencies of all the protocols are high
and increase with the number of regions, caused by the high inter-
regional message delays. Furthermore, FAIRDAG-AB has higher
throughput than the other fairness protocols.

We found that for all protocols except the relative fairness pro-
tocols, increasing the batch size allowed us to achieve throughput
values comparable to those in the single-region setting. However, in
FAIRDAG-RL and THEMIS, a larger batch size leads to a higher over-
head of the fairness layer, which increases quadratically with batch
size. Moreover, while FAIRDAG-RL achieves only a 5.1% through-
put improvement over THEMIS in a single-region setting, we ob-
serve that in the geo-distributed setting, FAIRDAG-RL outperforms
THEMIS by at least 42.1%. This significant gain is attributed to the
robust performance of the underlying multi-proposer DAG-based
consensus protocol in geo-scale settings with limited bandwidth
and higher message delays.

Data-dependent fairness. RAsHNU [53] proposes a technique
to reduce the overhead of the fairness layer in relative fairness pro-
tocols by computing edge directions between only data-dependent
transactions. This method is orthogonal to both FAIRDAG-RL and
TaeMis. We implementeded two RasuNU-enhanced variants, called
THEMIS-RASHNU and FAIRDAG-RL-RAsSHNU, and compared them
to THEMIS and FAIRDAG-RL.

In this experiment, we implemented a transaction workload
with keys following a Zipfian distribution. We fixed f = 8 and
varied the skewness parameter s from 0.01 to 0.99, where a higher
skewness indicates greater data dependency between transactions.
The results presented in Figure 12 show that the RASHNU variants

275

I Pone: —— FAIDAG-AB —@— Trmis o FAIRDAGRL |

Throughput (txn/s)

Sl e e
. f

0 2 1 6 8 10 12 14 16 18 20 22 24 26

Timeline (s)

Figure 13: Real-Time throughput with a faulty leader.

outperform the non-RASHNU variants and perform better as the
skewness decreases. This improvement stems from the reduced
overhead in calculating edge directions when transactions are less
interdependent.

8.2 Tolerance to Byzantine Behavior

Next, we will discuss the impact of Byzantine behaviors on the
performance and transaction ordering fairness of the protocols.

Faulty leader. In this experiment, we make the consensus leader
replica in PompE and THEMIS faulty, which would trigger a
view-change for leader replacement. While for FAIRDAG-AB and
FAIRDAG-RL, we make a replica faulty due to the multi-proposer
design. Figure 13 shows how the faulty leader affects the
performance of THEMIS and POMPE. At time 7, the faulty leader
stops sending any messages. After a period without progress, a
view-change is triggered to replace the faulty leader. At time 15,
the view-change is complete, and the throughput of PompE and
THEMIS recovers to the original level. In contrast, FAIRDAG-RL and
FAIRDAG-AB are not affected because of the resilience provided by
the multi-proposer design.

Adversarial Manipulation. We conduct two experiments in
which Byzantine replicas attempt to manipulate transaction
ordering. We evaluated the fairness quality of the fairness
protocols under two Byzantine behaviors: (1) Reversing order: in
each round, the Byzantine replicas reverse the local orderings of
the transactions it has received. (2) Targeted delay: the Byzantine
replicas intentionally delay targeted transactions by giving them
higher local ordering indicators. In both cases, the Byzantine
leader in PomPE and THEMIs excludes local orderings from f
correct replicas.

For two transactions T; and T, we say that they are correctly
ordered if Ty is ordered before T, and:

(1) in relative fairness protocols, weight[(d1,d2)] > %;

(2) in absolute fairness protocols, the f+1-th smallest local
ordering indicator of d; is not larger than that of dy.

For the reversing order attack, we consider all transaction pairs; for
the targeted delay attack, we consider only the transaction pairs
that involve the targeted transactions.

For FAIRDAG-RL and THEMIS, we measure the ratio of cor-
rectly ordered pairs with different Dist values, where Dist(dy, d2) =
|weight[(d1,d2)] — weight[(d2,d1)]].

For FAIRDAG-AB and PoMPE, we measure the ratio of correctly
ordered pairs with different Dif f values, where Dif f(d1,d2) is
the minimal number of Byzantine local ordering indicators needed
to order d; before dy. Formally, we denote by asc_oisf [i] the i-th
smallest value in the correct local ordering indicators of di, and by
desc_oisg [j] the j-th largest value in the correct local ordering indi-
cators of dy. To order d; before da, we need to find (1) a pair of i and j
such that asc_oisC[i] < desc_oiszc [j1, (2) f+1—i Byzantine local or-

1
dering indicators smaller than asc_ois€[i], and (3) f+1—j Byzantine
C

1
local ordering indicators larger than desc_oisy [j]. Thus, we have
Diff(di,d2) = min{2(f+1)—i—j | asc_oislc[i] < desc_oisg: 1},
which is the minimal number of Byzantine local ordering indicators
needed. We only consider transaction pairs with Dif f(dy,d2) > 0.

We set f = 10 and vary f,, the actual number of Byzantine
replicas, from 0 to 10. For example, THEMIS-7 denotes THEMIS with
f, = 7. As shown in Figure 14, FAIRDAG-RL and FAIRDAG-AB
consistently demonstrate better resilience against adversarial order-
ing manipulation in all experimental settings, compared to THEMIS
and PoMPE, respectively. The results substantiate our claim that
FAIRDAG effectively mitigates adversarial ordering manipulation
through the properties inherent in the DAG-based consensus layer.

9 RELATED WORK

In traditional Byzantine Fault Tolerance (BFT) research, proto-
cols [5, 20, 30, 34] are designed to ensure both safety and live-
ness in the presence of malicious replicas. Although these pro-
tocols do not explicitly guarantee fair transaction ordering, they
mitigate unfair ordering to some extent. Protocols such as Hot-
Stuff [74], which employ leader rotation in a round-robin man-
ner [15, 26, 28, 32, 40, 41, 49], provide each participant with the
opportunity to propose a block. Multi-proposer approaches, includ-
ing concurrent consensus protocols [27, 31, 41, 64] and DAG-based
protocols [6, 8, 24, 43, 62, 63, 71], enable multiple participants to
propose blocks concurrently, ordering them globally through pre-
determined or randomized mechanisms. Although these protocols
reduce the reliance on a single leader and distribute transaction
ordering authority, a Byzantine participant can still manipulate the
ordering of transactions within the blocks it proposes.

Some protocols seek to eliminate the block proposers’ oligarchy
over the ordering of transactions within blocks via censorship re-
sistance [4, 7, 17, 25, 47, 50, 51, 65, 71, 75]. In these protocols, a
transaction is encrypted until the ordering of the transaction is de-
termined. However, block proposers can still engage in censorship
based on metadata, such as IP addresses, or prioritize their own
transactions, knowing the content of encrypted transactions.

There are several prior fairness protocols that generate final
ordering with collected local orderings. Wendy [46] guarantees
Timed-Relative-Fairness similar to Ordering Linearizability, but it

276

Themis-1 — Themis-7 —— Themis-10
FairDAG-RL-1 - - - FairDAG-RL-7 - - - FairDAG-RL-10

— Themis-0
- -- FairDAG-RL-0

(a) Reversing Order (b) Reversing Order

Ratio of Correctly Ordered Pairs

Ratio of Correctly Ordered Pairs

1 6 11 16 21 26 31 36 41
Dist(dy, dy) = |weight[(d), dz)] — weight[(dy, d))]|
(c) Targeted Delay

0 10 20 30 40 50 60 70 80 90 100
Dist(dy,dy)/n (%)
(d) Targeted Delay

°

Ratio of Correctly Ordered Pairs

Ratio of Correctly Ordered Pairs

0.0

0.0

1 6 11 16 21 26 31 36 41 0 10 20 30 40 50 60 70 80 90 100

Dist(dy, dz) Dist(dy, dy) /n (%)
— Pompe-0 Pompe-1 — Pompe-7 — Pompe-10
--- FairDAG-AB-0 FairDAG-AB-1-- - FairDAG-AB-7 - - - FairDAG-AB-10

(¢) Reversing Order (f) Targeted Delay

0.8

Ratio of Correctly Ordered Pairs
Ratio of Correctly Ordered Pairs

i s i TR 1 s T i 2
Diff(dy,dz) Diff(di,dy)

Figure 14: Fairness quality of the fairness protocols under
adversarial ordering manipulation attacks.

relies on synchronized local clocks, which are impractical in asyn-
chronous networks. DCN [22] reaches §-Median Fairness such that
T; can be ordered before T; if T; is sent long enough earlier than T5.
Aequitas [45] guarantees batch-order-fairness but suffers from live-
ness issues due to the existence of infinite Condorcet Cycles, which
THEMIS solves via a batch unspooling mechanism. Quick-Order-
Fairness [18] reaches batch-order-fairness with n > 3f replicas
but incurs O(n®) communication complexity for the consensus
leader. Rashnu [53] improves THEMIS performance by guaranteeing
y-Batch-Order-Fairness between only data-dependent transactions,
but suffers from the same problems as THEMmIS. SpeedyFair [52]
pipelines the consensus layer and fairness layer, but still relies on
a single leader to collect local orderings. Ambush attacks are iden-
tified in [56], which FAIRDAG-RL inherently mitigates with the
underlying DAG-based consensus.

10 CONCLUSION

In this paper, we introduced FAIRDAG, a fair-ordering framework
designed to run fairness protocols atop DAG-based consensus pro-
tocols. Through theoretical demonstration and experimental evalua-
tion, we show that unlike previous fairness protocols, FAIRDAG-AB
and FAIRDAG-RL, the two variants of FAIRDAG, not only uphold
fairness guarantees, but also achieve better performance under nor-
mal and adversarial conditions, effectively constraining adversarial
manipulation of transaction ordering.

ACKNOWLEDGMENTS
This work is partially funded by NSF Award Number 2245373.

REFERENCES

(1]

[7

[

8

=

(1]

[12

[13]

[14]

[15

[16]

[17

(18]

[19

[21]

[22]

[23]

[24]

[25

[26]

2022. Aptos Whitepaper: Safe, Scalable, and Upgradeable Web3 Infrastructure.
https://arxiv.org/abs/2201.01107

2024. Apache ResilientDB (Incubating). https://resilientdb.incubator.apache.org/
Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast: Adap-
tive dynamic mastering for replicated systems. In 2020 IEEE 36th international
conference on data engineering (ICDE). IEEE, 1381-1392.

Amit Agarwal, Kushal Babel, Sourav Das, and Babak Poorebrahim Gilkalaye.
2025. Time-Lock Encrypted Storage for Blockchains. Cryptology ePrint Archive
(2025).

Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,
Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine Fault
Tolerance: A Unified Platform for BFT Protocols Analysis, Implementation, and
Experimentation. In 21st USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2024, Santa Clara, CA, April 15-17, 2024, Laurent Vanbever
and Irene Zhang (Eds.). USENIX Association, 371-400.

Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegel-
man. 2024. Shoal++: High throughput dag bft can be fast! arXiv preprint
arXiv:2405.20488 (2024).

Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,
Ronen Tamari, and David Yakira. 2018. A fair consensus protocol for transaction
ordering. In 2018 IEEE 26th International Conference on Network Protocols (ICNP).
IEEE, 55-65.

Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Al-
berto Sonnino. 2023. Mysticeti: Low-Latency DAG Consensus with Fast Commit
Path. CoRR abs/2310.14821 (2023).

Paddy Baker and Omkar Godbole. 2020. Ethereum Fees Soaring to 2-Year High:
Coin Metrics. CoinDesk (2020). https://www.coindesk.com/defi-hype-has-sent-
ethereum-fees- soaring- to- 2-year- high-coin-metrics

Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto
Sonnino, et al. 2023. Sui lutris: A blockchain combining broadcast and consensus.
arXiv preprint arXiv:2310.18042 (2023).

Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130-143.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérome Lang, and Ariel D. Procaccia.
2016. Handbook of Computational Social Choice. Cambridge University Press,
Cambridge, UK.

Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve
Ellis, Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel
Moroz, et al. 2021. Chainlink 2.0: Next steps in the evolution of decentralized
oracle networks. Chainlink Labs 1 (2021), 1-136.

Christopher Brookins. 2020. DeFi Boom Has Saved Bitcoin From Plummeting.
Forbes (2020). https://www.forbes.com/sites/christopherbrookins/2020/07/12/
defi-boom-has-saved-bitcoin-from-plummeting/

Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. CoRR abs/1807.04938 (2018).

Vitalik Buterin. 2013. Ethereum White Paper: A Next-Generation Smart Contract
and Decentralized Application Platform. https://ethereum.org/en/whitepaper/.
Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524-541.

Christian Cachin, Jovana Mici¢, Nathalie Steinhauer, and Luca Zanolini. 2022.
Quick order fairness. In International Conference on Financial Cryptography and
Data Security. Springer, 316-333.

Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information
dispersal. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05). IEEE,
191-201. https://doi.org/10.1109/SRDS.2005.36

Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398-461. https:
//doi.org/10.1145/571637.571640

Marquis de Condorcet. 1785. Essay on the Application of Analysis to the Probability
of Majority Decisions. Imprimerie Royale, Paris.

Andrei Constantinescu, Diana Ghinea, Lioba Heimbach, Zilin Wang, and Roger
Wattenhofer. 2023. A fair and resilient decentralized clock network for transac-
tion ordering. arXiv preprint arXiv:2305.05206 (2023).

Philip Daian, Steven Goldfeder, Tyler Kell, Yungi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2019. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges. arXiv preprint
arXiv:1904.05234 (2019).

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT
consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems. ACM, 34-50. https://doi.org/10.1145/3492321.3519594

Pranav Garimidi, Joachim Neu, and Max Resnick. 2025. Multiple Concurrent
Proposers: Why and How. arXiv preprint arXiv:2509.23984 (2025).

Rat1 Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-adaptive efficient

277

[27

[28

[30

[31

@
&,

[33

[34

(35]

'S
2

[37

[38

[39

[40]

[41

[42

[43

[44]

[45]

[46]

[47]

consensus with asynchronous fallback. In International conference on financial
cryptography and data security. Springer, 296-315.

Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha
Crooks. 2024. Autobahn: Seamless high speed BFT. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles. 1-23.

Neil Giridharan, Florian Suri-Payer, Matthew Ding, Heidi Howard, Ittai Abraham,
and Natacha Crooks. 2023. BeeGees: Stayin’ Alive in Chained BFT. In Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing (Orlando, FL,
USA) (PODC °23). Association for Computing Machinery, New York, NY, USA,
233-243. https://doi.org/10.1145/3583668.3594572

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. 2019. Scalable Byzantine Reliable Broadcast. In 33rd Interna-
tional Symposium on Distributed Computing (DISC 2019) (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 146. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 21:1-21:17. https://doi.org/10.4230/LIPIcs.DISC.2019.21
Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation. In
Proceedings of the 24th International Conference on Extending Database Technology,
EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, Yannis Velegrakis, Demetris
Zeinalipour-Yazti, Panos K. Chrysanthis, and Francesco Guerra (Eds.). OpenPro-
ceedings.org, 301-312. https://doi.org/10.5441/002/edbt.2021.27

Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC: Resilient
Concurrent Consensus for High-Throughput Secure Transaction Processing. In
37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021. 1EEE, 1392-1403. https://doi.org/10.1109/ICDE51399.2021.00124
Suyash Gupta, Dakai Kang, Dahlia Malkhi, and Mohammad Sadoghi. 2025. Brief
Announcement: Carry the Tail in Consensus Protocols. In 39th International
Symposium on Distributed Computing (DISC 2025). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 59-1.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(2020), 868-883. https://doi.org/10.14778/3380750.3380757

Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mo-
hammad Sadoghi. 2023. Dissecting BFT Consensus: In Trusted Components we
Trust!. In Proceedings of the Eighteenth European Conference on Computer Systems.
ACM, 521-539. https://doi.org/10.1145/3552326.3587455

Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. 2022. Risks and re-
turns of uniswap v3 liquidity providers. In Proceedings of the 4th ACM Conference
on Advances in Financial Technologies. 89-101.

Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. 2023. Caerus: Low-
Latency Distributed Transactions for Geo-Replicated Systems. Proceedings of the
VLDB Endowment 17, 3 (2023), 469-482.

Yuming Huang, Jing Tang, Qianhao Cong, Andrew Lim, and Jianliang Xu. 2021.
Do the Rich Get Richer? Fairness Analysis for Blockchain Incentives (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 790-803. https:
//doi.org/10.1145/3448016.3457285

Dakai Kang, Junchao Chen, Anh Dinh, and Mohammad Sadoghi. 2025. FairDAG.
https://github.com/apache/incubator-resilientdb/tree/fairdag Accessed: 2025-04-
01.

Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh, and Mohammad Sadoghi. 2025.
FairDAG: Consensus Fairness over Multi-Proposer Causal Design. arXiv preprint
arXiv:2504.02194 (2025).

Dakai Kang, Suyash Gupta, Dahlia Malkhi, and Mohammad Sadoghi. 2024.
HotStuff-1: Linear Consensus with One-Phase Speculation. arXiv preprint
arXiv:2408.04728 (2024).

Dakai Kang, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2024.
SpotLess: Concurrent Rotational Consensus Made Practical through Rapid View
Synchronization. In 40th IEEE International Conference on Data Engineering, ICDE
2024, Utrecht, Netherlands, May 13-17, 2024. IEEE.

Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography
(2nd ed.). Chapman and Hall/CRC.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All you need is dag. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing. 165-175.

Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
2023. Themis: Fast, strong order-fairness in byzantine consensus. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security.
475-489.

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
fairness for byzantine consensus. In Advances in Cryptology—CRYPTO 2020: 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part IIl 40. Springer, 451-480.

Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. 25-36.

Rujia Li, Xuanwei Hu, Qin Wang, Sisi Duan, and Qi Wang. 2025. Transaction
fairness in blockchains, revisited. IEEE Transactions on Dependable and Secure
Computing (2025).

https://arxiv.org/abs/2201.01107
https://resilientdb.incubator.apache.org/
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1109/SRDS.2005.36
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3583668.3594572
https://doi.org/10.4230/LIPIcs.DISC.2019.21
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.1109/ICDE51399.2021.00124
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1145/3552326.3587455
https://doi.org/10.1145/3448016.3457285
https://doi.org/10.1145/3448016.3457285
https://github.com/apache/incubator-resilientdb/tree/fairdag

[48

[49

[50]

[51

[52]

o
&

[54]

[55

[56]

[57]

[58

[59]

[60]

[64]

Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. 2013. Low-latency multi-datacenter databases using replicated
commit. Proceedings of the VLDB Endowment 6, 9 (2013), 661-672.

Dahlia Malkhi and Kartik Nayak. 2023. Hotstuff-2: Optimal two-phase responsive
bft. Cryptology ePrint Archive (2023).

Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal extractable value (mev)
protection on a dag. arXiv preprint arXiv:2208.00940 (2022).

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 31-42.

Ke Mu, Bo Yin, Alia Asheralieva, and Xuetao Wei. 2024. Separation is good: A
faster order-fairness Byzantine consensus. (2024).

Heena Nagda, Shubhendra Pal Singhal, Mohammad Javad Amiri, and Boon Thau
Loo. 2024. Rashnu: Data-Dependent Order-Fairness. Proceedings of the VLDB
Endowment 17, 9 (2024), 2335-2348.

Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf

Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain meets database: design and implementation of a
blockchain relational database. Proc. VLDB Endow. 12, 11 (July 2019), 1539-1552.
https://doi.org/10.14778/3342263.3342632

Eunchan Park, Taeung Yoon, Hocheol Nam, Deepak Maram, and Min Suk Kang.
2025. On Frontrunning Risks in Batch-Order Fair Systems for Blockchains
(Extended Version). Cryptology ePrint Archive, Paper 2025/1168. https://doi.
org/10.1145/3719027.3744879

Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais.
2021. An empirical study of defi liquidations: Incentives, risks, and instabilities.
In Proceedings of the 21st ACM Internet Measurement Conference. 336—350.
Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain
extractable value: How dark is the forest?. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 198-214.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking
the defi ecosystem with flash loans for fun and profit. In International conference
on financial cryptography and data security. Springer, 3-32.

Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,
geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019).
Fabian Schir. 2021. Decentralized finance: On blockchain-and smart contract-
based financial markets. FRB of St. Louis Review (2021).

Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. 2023. Shoal:
Improving DAG-BFT latency and robustness. arXiv preprint arXiv:2306.03058
(2023).

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi (Eds.). ACM, 2705-2718.

Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:
High-Throughput BFT for Blockchains. http://arxiv.org/abs/1906.05552

278

(65

[66]

[67]

[69]

[70]

[71

k=
&,

[73

[74]

[75

[76]

=
st

[78

[79

Chrysoula Stathakopoulou, Signe Riisch, Marcus Brandenburger, and Marko
Vukoli¢. 2021. Adding fairness to order: Preventing front-running attacks in bft
protocols using tees. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS). IEEE, 34-45.
Weijie Sun, Zihuan Xu, and Lei Chen. 2022. Fairness Matters: A Tit-for-Tat
Strategy Against Selfish Mining. Proc. VLDB Endow. 15, 13 (Sept. 2022), 4048-4061.
https://doi.org/10.14778/3565838.3565856
Weijie Sun, Zihuan Xu, Wangze Ni, and Lei Chen. 2025. InTime: Towards
Performance Predictability In Byzantine Fault Tolerant Proof-of-Stake Consensus.
Proc. ACM Manag. Data 3, 1, Article 47 (Feb. 2025), 27 pages. https://doi.org/10.
1145/3709740
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel] Abadi. 2012. Calvin: fast distributed transactions for parti-
tioned database systems. In Proceedings of the 2012 ACM SIGMOD international
conference on management of data. 1-12.
Ye Wang, Patrick Zuest, Yaxing Yao, Zhicong Lu, and Roger Wattenhofer. 2022.
Impact and user perception of sandwich attacks in the defi ecosystem. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1-15.
Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State.
2022. A flash (bot) in the pan: measuring maximal extractable value in private
pools. In Proceedings of the 22nd ACM Internet Measurement Conference. 458-471.
Shaokang Xie, Dakai Kang, Hanzheng Lyu, Jianyu Niu, and Mohammad Sadoghi.
2025. Fides: Scalable Censorship-Resistant DAG Consensus via Trusted Compo-
nents. arXiv preprint arXiv:2501.01062 (2025).
Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).
Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022.
Sok: Mev countermeasures: Theory and practice. arXiv preprint arXiv:2212.05111
2022).
g\/[aof:)m Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM,
347-356. https://doi.org/10.1145/3293611.3331591
Pouriya Zarbafian and Vincent Gramoli. 2023. Lyra: Fast and scalable resilience
to reordering attacks in blockchains. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 929-939.
Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decentralized
finance. Journal of Financial Regulation 6, 2 (2020), 172-203.
Jianting Zhang and Aniket Kate. 2024. No fish is too big for flash boys! frontrun-
ning on DAG-based blockchains. Cryptology ePrint Archive (2024).
Meihui Zhang, Zhongle Xie, Cong Yue, and Ziyue Zhong. 2020. Spitz: a verifiable
database system. 13, 12 (Aug. 2020), 3449-3460. https://doi.org/10.14778/3415478.
3415567
Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.
Byzantine ordered consensus without byzantine oligarchy. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). 633-649.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1145/3719027.3744879
https://doi.org/10.1145/3719027.3744879
http://arxiv.org/abs/1906.05552
https://doi.org/10.14778/3565838.3565856
https://doi.org/10.1145/3709740
https://doi.org/10.1145/3709740
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.14778/3415478.3415567

	Abstract
	1 Introduction
	2 Background
	2.1 Receive-Order-Fairness
	2.2 Ordering Linearizability
	2.3 γ-Batch-Order-Fairness
	2.4 DAG-based Consensus Protocols

	3 System Model
	3.1 Clients
	3.2 Replicas
	3.3 Authentication
	3.4 Network

	4 Overview
	4.1 DAG Layer
	4.2 Fairness Layer

	5 FairDAG-AB
	5.1 Transaction Dissemination
	5.2 FairDAG-AB Vertex
	5.3 Managing and Assigning Ordering Indicators
	5.4 Global Ordering

	6 FairDAG-RL
	6.1 Transaction Dissemination
	6.2 Dependency Graph Construction
	6.3 Ordering Finalization

	7 Comparing Fairness Protocols
	7.1 Pompe and Themis
	7.2 Adversarial Manipulation
	7.3 Leader Crash and Asynchronous Network

	8 Evaluation
	8.1 Scalability
	8.2 Tolerance to Byzantine Behavior

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

