
FairDAG: Consensus Fairness over Multi-Proposer Causal Design

Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh†, Mohammad Sadoghi
Exploratory Systems Lab, University of California, Davis

†Deakin University

ABSTRACT
The rise of cryptocurrencies like Bitcoin and Ethereum has driven
interest in blockchain database technology, with smart contracts
enabling the growth of decentralized finance (DeFi). However, re-
search has shown that adversaries exploit transaction ordering to
extract profits through attacks like front-running, sandwich attacks,
and liquidation manipulation. This issue affects blockchains where
block proposers have full control over transaction ordering. To ad-
dress this, a more fair transaction ordering mechanism is essential.

Existing fairness protocols, such as Pompe and Themis, operate
on leader-based consensus protocols, which not only suffer from
low throughput caused by single-leader bottleneck, but also give
adversarial block proposers to manipulate transaction ordering. To
address these limitations, we propose a new framework FairDAG
that runs fairness protocols on top of DAG-based consensus proto-
cols, which improves protocol performance in both throughput and
fairness quality, leveraging the multi-proposer design and validity
property of DAG-based consensus protocols.

We conducted a comprehensive analytical and experimental eval-
uation of two FairDAG variants—FairDAG-AB and FairDAG-RL.
Our results demonstrate that FairDAG outperforms prior fairness
protocols in both throughput and fairness quality.

PVLDB Reference Format:
Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh, Mohammad Sadoghi.
FairDAG: Consensus Fairness over Multi-Proposer Causal Design. PVLDB,
19(2): 265-278, 2025.
doi:10.14778/3773749.3773763

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/apache/incubator-resilientdb/tree/fairdag.

1 INTRODUCTION
The emergence of cryptocurrencies, including Bitcoin [54] and
Ethereum [16], has sparked broad interest in blockchain database
technology [1, 10, 13, 72]. Blockchain enables a new class of applica-
tions, namely decentralized finance (DeFi) [9, 14, 35, 61, 76], whose
market capitalization exceeds 70 billion. DeFi requires consistency
and fairness in transaction ordering. The former ensures that all
participants agree on the same transaction order, which has been
addressed under crash-failure settings of traditional distributed

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773763

databases, for example [3, 36, 48, 60, 68], and under Byzantine-
failure settings in blockchains and verifiable databases [16, 55, 78]
where Byzantine participants can have arbitrary malicious behavior.
In the presence of Byzantine participants, even though transaction
ordering is consistent, its fairness remains vulnerable to order-
ing manipulation attacks. Such an “order manipulation crisis” is
possible because block proposers have full control over transac-
tion selection and ordering. Byzantine proposers can censor or re-
order transactions to extractMaximal Extractable Value (MEV) from
blocks [23, 37, 50, 66, 67, 70, 73, 77], which is unfair to other par-
ticipants. Attacks include front-running, back-running, sandwich
attacks, liquidation manipulation, and time-bandit attacks [23, 57–
59, 69].

The key to achieving fair transaction ordering lies in preventing
proposers from dominating the ordering. Existing studies [18, 22,
44, 46, 52, 53, 79] have proposed various fairness protocols. Unlike
traditional protocols where each block contains a list of transactions,
in fairness protocols, each block contains local orderings from a
set of participants. Once blocks are committed, a final transaction
ordering is derived from the local orderings. Different fairness
protocols guarantee different fairness properties, reflecting the
preferences of correct participants who honestly report the order in
which they receive transactions. For example, Pompe [79] calculates
the assigned ordering indicator for each transaction and orders
transactions based on it. It guarantees that transaction𝑇1 is ordered
before 𝑇2 if every correct participant receives 𝑇1 before any correct
participant receives 𝑇2, a property named Ordering Linearizability.
Themis [44] constructs a dependency graph among transactions
and determines the ordering according to the edges of the graph.
It guarantees that if a 𝛾 proportion of correct participants receive
𝑇1 before 𝑇2, then 𝑇1 will be ordered no later than 𝑇2 -a property
named 𝛾-Batch-Order-Fairness.

We observe that a well-designed fairness protocol should achieve
the following goals:

G1 Resilience toOrderingManipulation.The protocol should
limit Byzantine participants’ influence on the final transac-
tion order to preserve fairness properties.

G2 Minimal Correct Participants Requirement. The pro-
tocol should preserve fairness properties while relying on
as few correct participants as possible.

G3 High Performance. Fairness protocols should minimize
the overhead introduced by fair ordering, achieving high
throughput and low latency.

Unfortunately, previous fairness protocols [18, 44–46, 53, 79]
leverage leader-based consensus protocols [20, 30, 74], relying on
a single leader to collect local orderings from other participants.
A Byzantine leader can manipulate transaction ordering by selec-
tively collecting local orderings to maximize its MEV. Moreover,
even without Byzantine behavior, a single leader may become a

265

https://doi.org/10.14778/3773749.3773763
https://github.com/apache/incubator-resilientdb/tree/fairdag
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773763
https://www.acm.org/publications/policies/artifact-review-and-badging-current

performance bottleneck when the workload exceeds its capacity, as
the message complexity of broadcasting collected local orderings
grows quadratically with the number of participants.

To address the challenges posed by the underlying leader-based
consensus protocols, we propose FairDAG, a novel framework that
runs fairness protocols on top of DAG-based consensus protocols [6,
8, 24, 43, 62, 63], which provide the following features that can
enhance ordering fairness:

• Multi-Proposer High-throughput Design: DAG-based
protocols allow all participants to propose blocks in parallel.
This approach improves system performance by alleviating
the bottleneck introduced by a single leader.

• Validity through Causal Design: Blocks in DAG-based
protocols reference blocks from other participants, forming
a Directed Acyclic Graph (DAG). The causal relationship in
DAG guarantees that vertices from correct participants are
eventually committed by all correct participants.

The Multi-Proposer High-throughput Design removes the bottle-
neck caused by a single leader (G3). The validity constrains the
Byzantine participants’ ability to selectively collect local orderings
(G1), and thus lowers the requirement on the number of correct
participants (G2).

In FairDAG, each participant proposes its block containing the
local ordering as a DAG vertex and reliably broadcasts it, and a
final transaction ordering is deterministically generated based on
the vertices committed by the underlying DAG-based consensus
protocols. We designed two variants of FairDAG, namely absolute-
ordering FairDAG-AB and relative-ordering FairDAG-RL.

There are two main challenges in employing DAG-based proto-
cols as the underlying consensus layer for fairness. First, to mitigate
the high latency of DAG-based consensus protocols, participants
should leverage uncommitted DAG vertices to reduce the latency
for fairness decisions, but participants may hold inconsistent views
of uncommitted vertices. Second, Byzantine participants may at-
tempt to manipulate the ordering by selectively ignoring vertices
proposed by specific participants. FairDAG addresses these chal-
lenges through a novel ordering indicator manager, adaptive fair-
ness thresholds, and new DAG construction rules that collectively
ensure fairness.

We make the following contributions:

(1) We propose FairDAG-AB, a absolute fairness protocol that
guarantees Ordering Linearizability. We propose a Ordering
Indicator Manager and an adaptive fairness threshold called
LPAOI that are compatible with the multi-proposer design
and commit rules of the DAG-based consensus protocols.

(2) We propose FairDAG-RL, a relative fairness protocol that
guarantees 𝛾-batch-order-fairness. Leveraging the validity
property of DAG-based consensus protocols, we adopt new
thresholds for dependency graph construction to improve
system performance and reduce the requirement of minimal
correct participant number.

(3) In FairDAG, we apply new rules for constructing a DAG
to guarantee fairness against adversarial participants.

𝑅1 : {𝑇1,𝑇2,𝑇3,𝑇4}
𝑅2 : {𝑇2,𝑇3,𝑇4,𝑇1}
𝑅3 : {𝑇3,𝑇4,𝑇1,𝑇2}
𝑅4 : {𝑇4,𝑇1,𝑇2,𝑇3}

𝑇1

𝑇2

𝑇3

𝑇4

Figure 1: Condorcet Cycle

(4) We conducted comprehensive analytical and experimental
evaluation of our protocols. The results show that: com-
pared to Pompe and Themis, FairDAG-AB and FairDAG-
RL outperform in both throughput and fairness quality,
which reflects the fairness protocols’ resilience against ad-
versarial ordering manipulations.

This paper is structured as follows. Section 2 presents the back-
ground. Section 3 introduces the system model. Section 4 presents
an overview of FairDAG protocols. Section 5 and Section 6 de-
scribe the details of FairDAG-AB and FairDAG-RL1. Section 7 an-
alytically compares FairDAG with prior fairness protocols Pompe
and Themis. Section 8 presents the experimental evaluation of
FairDAG and baseline protocols. Section 9 discusses other related
works, and Section 10 concludes.

2 BACKGROUND
FairDAG-AB and FairDAG-RL execute fairness protocols atop
DAG-based consensus protocols. Beginning with this section, our
discussion is framed within the context of Byzantine Fault Toler-
ant (BFT) protocols, where participants are referred to as replicas.
Byzantine replicas, corrupted by an adversary, may exhibit arbitrary
malicious behavior, whereas the remaining correct replicas behave
benignly. In this section, we present the definitions of three fairness
properties and introduce the DAG-based consensus protocols.

2.1 Receive-Order-Fairness
Definition 2.1. Receive-Order-Fairness. For any two transac-

tions 𝑇1 and 𝑇2, if all correct replicas receive 𝑇1 before 𝑇2, then 𝑇1
must be ordered before 𝑇2 in the final ordering.

We show that it is impossible to always guarantee Receive-Order-
Fairness in the presence of Byzantine replicas for Condorcet Cycles.
Figure 1 illustrates this impossibility with a concrete example. Con-
sider four replicas 𝑅1, 𝑅2, 𝑅3, 𝑅4, among which at most one may be
Byzantine. Let there be four transactions 𝑇1,𝑇2,𝑇3,𝑇4. As shown on
the left side of the figure, for any two commands 𝑇𝑖 and 𝑇𝑖+1 (mod-
ulo 4) , three replicas receive 𝑇𝑖 before 𝑇𝑖+1 but the fourth differs.
Since the identity of the Byzantine replica is unknown, we respect
all majority-endorsed orderings supported by at least three replicas
when determining the final ordering. The right side of Figure 1 de-
picts a directed graph where an edge𝑇𝑖 → 𝑇𝑗 indicates that at least
three replicas received 𝑇𝑖 before 𝑇𝑗 . The resulting graph contains
a Condorcet Cycle [12, 21]—a cycle of pairwise preferences that
cannot be linearly extended without violating at least one of them.
Hence, the Receive-Order-Fairness is impossible in this case.

1see Section 8 in our extended report [39] for correctness proofs

266

𝑅1 : {(𝑇2, 1), (𝑇1, 2), (𝑇4, 3), (𝑇3, 4)}
𝑅2 : {(𝑇1, 1), (𝑇3, 2), (𝑇2, 3), (𝑇4, 4)}
𝑅3 : {(𝑇1, 1), (𝑇2, 1), (𝑇3, 3), (𝑇4, 4)}
𝑅4 : {(𝑇1, 1), (𝑇2, 2), (𝑇3, 3), (𝑇4, 4)}

Figure 2:𝑇1 will be ordered before𝑇4 if Ordering Linearizabil-
ity holds regardless of the local ordering from 𝑅4.

2.2 Ordering Linearizability
Ordering Linearizability is a fairness property introduced by Pompe [79]
and adopted by our protocol, FairDAG-AB. To achieve this property,
each replica assigns a monotonically increasing ordering indicator
(denoted 𝑜𝑖) to each transaction reflecting the order it receives
the transactions. The final ordering is then derived from ordering
indicators collected from a majority of replicas.

Denoting by 𝑜𝑖𝑠𝐶
𝑖
the set of ordering indicators for the transac-

tion𝑇𝑖 from the correct replicas, we define Ordering Linearizability:

Definition 2.2. Ordering Linearizability. For any two transac-
tions 𝑇1 and 𝑇2, if all ordering indicators in 𝑜𝑖𝑠𝐶1 are smaller than
all those in 𝑜𝑖𝑠𝐶2 , i.e.,

∀𝑜𝑖1 ∈ 𝑜𝑖𝑠𝐶1 ,∀𝑜𝑖2 ∈ 𝑜𝑖𝑠𝐶2 : 𝑜𝑖1 < 𝑜𝑖2 .

then 𝑇1 must be ordered before 𝑇2 in the final ordering.

Figure 2 illustrates this definition with an example involving four
replicas, where replicas 𝑅1, 𝑅2, 𝑅3 are correct, and 𝑅4 is Byzantine.
Each replica assigns local ordering indicators to four transactions.
For transactions𝑇1 and𝑇4, the correct replicas assign𝑜𝑖𝑠𝐶1 = {2, 1, 1}
and 𝑜𝑖𝑠𝐶4 = {3, 4, 4}, respectively. Since all indicators in 𝑜𝑖𝑠𝐶1 are
smaller than those in 𝑜𝑖𝑠𝐶4 , any protocol satisfying Ordering Lin-
earizability—such as Pompe and FairDAG-AB—must place𝑇1 before
𝑇4 in the final ordering, regardless of the Byzantine replica’s input.

2.3 𝛾-Batch-Order-Fairness
In Section 2.1, we showed that it is impossible to guarantee Receive-
Order-Fairness in the presence of unknown Byzantine replicas. How-
ever, a weaker yet practical variant, 𝛾-Batch-Order-Fairness, can be
achieved by both Themis [44] and our protocol FairDAG-RL.

We say that a transaction 𝑇2 is dependent on transaction 𝑇1,
denoted as 𝑇1 → 𝑇2, if 𝑇1 must be ordered before 𝑇2 in the final
ordering. Due to the presence ofCondorcet cycles, such dependencies
can form cycles among transactions.

Definition 2.3. A batch 𝑆 of transactions is cyclic dependent if for
any two transactions 𝑇1,𝑇2 in 𝑆 , there is a list of transactions that
form a dependency path from 𝑇1 to 𝑇2.

The final ordering can be partitioned into a sequence of non-
overlapping batches 𝑆1, 𝑆2, . . . , where each 𝑆𝑖 is amaximal cyclically
dependent batch, i.e., for any 𝑖 , 𝑆𝑖 ∪ 𝑆𝑖+1 is not cyclically dependent.

We say that 𝑇1 is ordered no later than 𝑇2 if 𝑇1 is in the same
or an earlier batch than 𝑇2. And we define 𝛾-Batch-Order-Fairness
as follows:

Definition 2.4. 𝛾-Batch-Order-Fairness. For any two transac-
tions 𝑇1 and 𝑇2, if at least a fraction 𝛾 of correct replicas receive

𝑅1 : {𝑇0,𝑇1,𝑇2,𝑇3,𝑇4,𝑇5}
𝑅2 : {𝑇0,𝑇2,𝑇3,𝑇4,𝑇1,𝑇5}
𝑅3 : {𝑇0,𝑇3,𝑇4,𝑇1,𝑇2,𝑇5}
𝑅4 : {𝑇0,𝑇4,𝑇1,𝑇2,𝑇3,𝑇5}

Final Ordering: {𝑇0,𝑇1,𝑇2,𝑇3,𝑇4,𝑇5}

𝑏1 : {𝑇0}

𝑏2 : {𝑇1,𝑇2,𝑇3,𝑇4}

𝑏3 : {𝑇5}

(b)(a)

Figure 3: A final ordering of six transactions that satisfies
𝛾-Batch-Order-Fairness with 𝛾 = 2

3 , 3 correct replicas, and 1
Byzantine replica.

𝑇1 before 𝑇2, then 𝑇1 must be ordered no later than 𝑇2 in the final
ordering.

Figure 3 presents an example satisfying 𝛾-Batch-Order-Fairness,
where we have n = 4 replicas (at most f = 1 replica can be Byzan-
tine) and 6 transactions. Assuming that the fairness protocol gen-
erates a final ordering that can be split into three cyclic dependent
batches, for any two transactions, 𝛾-Batch-Order-Fairness holds.
For example, 𝑇0 is received earlier than 𝑇1 by correct replicas of
𝛾 (n−f) = 3 and 𝑇0 is ordered in a batch earlier than 𝑇1.

2.4 DAG-based Consensus Protocols

DAG-based BFT consensus protocols [24, 43, 63] operate in
rounds. In each round 𝑟 , every replica proposes a block, referred to
as a DAG vertex. Each vertex references multiple vertices from the
previous round 𝑟−1, represented as edges that encode the causal
dependencies between DAG vertices, forming a Directed Acyclic
Graph (DAG). The causal history of a DAG vertex includes all ver-
tices reachable via the reference paths.

Every 𝑘 rounds (e.g. 𝑘 = 2 in Tusk [24]), a random or predeter-
mined leader vertex is elected. These leader vertices are committed
in an ascending order of round, and their causal histories are com-
mitted in a deterministic order. To ensure reliable dissemination,
most DAG-based protocols employ reliable broadcast (RBC) mecha-
nisms. With RBC and carefully designed commit rules, DAG-based
protocols guarantee the following properties even in an asynchro-
nous network without message delay bound:

• Agreement: If a correct replica commits a vertex 𝑣 , then
all correct replicas eventually commit 𝑣 .

• Total Order: If a correct replica commits 𝑣 before 𝑣 ′, then
every correct replica commits 𝑣 before 𝑣 ′.

• Validity: If a correct replica broadcasts a vertex 𝑣 , then all
correct replicas eventually commit 𝑣 .

Compared to consensus protocols with a single leader, the multi-
proposer design of DAG-based protocols enables higher throughput.
But this comes at the cost of higher commit latency due to the
overhead of RBC and multi-round commit rules.

3 SYSTEM MODEL
We consider a distributed system consisting of a set of replicas
and a potentially unbounded number of clients. The system is
subject to Byzantine faults and operates under either asynchronous

267

or partially synchronous network conditions. Our model covers
client behavior, replica corruption, authentication assumptions, and
fairness-specific threat considerations.

3.1 Clients
Clients issue transactions to replicas and wait for execution results.
They may behave arbitrarily with no correctness assumptions.

3.2 Replicas
In the system, there are a total of n replicas and an adaptive adver-
sary capable of corrupting up to f replicas during execution. The
corrupted replicas, referred to as Byzantine or malicious replicas,
may exhibit arbitrary malicious behavior.

Regarding transaction ordering, Byzantine replicas may reorder
transactions in local orderings and ignore unfavorable local order-
ings from other replicas. Correct replicas are honest about local
orderings in which the transactions are received.

Fairness protocols differ in resilience to Byzantine faults. Specif-
ically, FairDAG-AB and Pompe require n > 3f ; Themis requires
n >

(2𝛾+2)f
2𝛾−1 ; and FairDAG-RL requires n >

(2𝛾+1)f
2𝛾−1 , 12 < 𝛾 ≤ 1.

3.3 Authentication
We assume authenticated communication, where Byzantine replicas
cannot forge messages from correct replicas. Authentication is
enforced through Public Key Infrastructure (PKI) [42].

For integrity verification, each transaction 𝑇𝑖 is associated with
a digest 𝑑𝑖 , computed using a secure collision-resistant cryptographic
hash function [42].

3.4 Network
External network (client–replica).We make no assumptions
about synchrony but assume the external network is
non-adversarial. This assumption is necessary for preserving
fairness, as an adversarial external network could arbitrarily
control the order in which replicas receive transactions and then
the final ordering.

Internal network (replica–replica). The internal network may
operate either asynchronously or partially synchronously:

• Asynchronous network: Messages are never lost and are
eventually delivered, but there is no bound on the message
delays.

• Partially synchronous network: There exists an un-
known Global Stabilization Time (GST) after which the mes-
sage delays are bounded by a known constant Δ, i.e., any
message sent at time 𝑡 will be delivered by max(𝑡,GST) +Δ.

4 OVERVIEW
Previous fairness protocols, such as Pompe [79] and Themis [44],
are built atop leader-based consensus. Although the final order-
ing is derived from local orderings collected from a majority of
the replicas, existing fairness protocols have these problems: (1)
Byzantine leaders manipulate orderings and compromise fairness
by selectively picking up the local orderings. (2) Byzantine or slow
leaders can become system performance bottlenecks. To address

𝑅1

𝑣1,1 : 𝐿𝑂1,1

𝑣1,2 : 𝐿𝑂1,2

𝑣1,3 : 𝐿𝑂1,3

𝑅2

𝑣2,1 : 𝐿𝑂2,1

𝑣2,2 : 𝐿𝑂2,2

𝑣2,3 : 𝐿𝑂2,3

𝑅3

𝐿𝑂3,1 : {𝑑3}

𝐿𝑂3,2 : {𝑑1,𝑑4}

𝐿𝑂3,3 : {𝑑2}

𝑅4

𝐿𝑂4,1 : {𝑑1}

𝐿𝑂4,2 : {𝑑4,𝑑2}

𝐿𝑂4,3 : {𝑑3}

(a)

(b)

(c)

(d)

(e)

(f)

𝐿𝑂1,1

𝐿𝑂2,1

𝐿𝑂3,1

𝐿𝑂4,1

𝐿𝑂1,2

𝐿𝑂2,2

𝐿𝑂3,2

𝐿𝑂1,3

𝐿𝑂2,3

𝐿𝑂3,3

After 𝐿1 is committed:

After 𝐿3 is committed:

𝐴1
𝐴3

𝑇1 → 𝑇2 → 𝑇3 → 𝑇4

𝑑1

𝑑2

𝑑3

𝑑4𝑑1 .𝐴𝑂𝐼
𝑑2 .𝐴𝑂𝐼
𝑑3 .𝐴𝑂𝐼
𝑑4 .𝐴𝑂𝐼

DAG Layer

Fairness Layer

Figure 4: Architecture of FairDAG: (a) Replicas reliably
broadcast blocks containing their local ordering fragments.
(b) Each replica receives blocks delivered through Reliable
Broadcast. (c) Each replica forms a local view of the DAG
using received blocks and reference links, where different
colors represent the subdags of different committed leader
vertices. (d) Local orderings in subdag 𝐴𝑟 are used as input
of the fairness layer after 𝐿𝑟 is committed. (e) Finalize trans-
action ordering using absolute ordering mechanism (left) or
relative ordering mechanism (right), based on the committed
local orderings. (f) A final transaction ordering is generated.

these problems, FairDAG runs fairness protocols on top of multi-
proposer DAG-based consensus with two layers:

• DAG Layer handles the dissemination (Figure 4(a,b)) and
commitment (Figure 4(c)) of local orderings.

• Fairness Layer takes these committed local orderings (Fig-
ure 4(d)) as input to a transaction ordering algorithm (Fig-
ure 4(e)) to produce a final ordering (Figure 4(f)).

4.1 DAG Layer
TheDAG layer adopts existingDAG-based consensus protocols—such
as Tusk [24], DAG-Rider [43], and Bullshark [63]—with minimal
modifications to support fairness guarantees.
Directed-Acylic-Graph

DAG-based protocols proceed in rounds where each replica con-
currently proposes one vertex per round 𝑟 . Each vertex references

268

previous vertices, forming a DAG, where references are edges.
Specifically, a vertex in round 𝑟 references at least n−f vertices
from round 𝑟 − 1 via strong edges, and optionally up to f vertices
from earlier rounds via weak edges.

Let 𝑣𝑖,𝑟 denote the vertex proposed by replica 𝑅𝑖 in round 𝑟 . A
valid vertex satisfies:

• 𝑠𝑡𝑟𝑜𝑛𝑔_𝑒𝑑𝑔𝑒𝑠 : includes at least n − f strong edges,
• 𝑤𝑒𝑎𝑘_𝑒𝑑𝑔𝑒𝑠: includes up to f weak edges.

To guarantee the fairness properties in the presence of adversary,
we extend existing DAG-based protocols by applying new rules of
forming DAG vertices:

(1) In FairDAG, replicas include weak edges in vertices to
incorporate local orderings from slower replicas, ensuring
that all correct local orderings eventually get committed.

(2) To preserve the integrity of a replica’s local ordering, each
vertex 𝑣𝑖,𝑟 must include a strong edge to its vertex in the
previous round 𝑣𝑖,𝑟−1 (for 𝑟 > 0).

Figure 4(c) shows an DAG example where black arrows represent
strong edges, and blue arrows represent weak edges.
Reliably broadcasting a vertex

To address issue (1), in FairDAG, instead of relying on a leader to
collect local orderings, each replica 𝑅𝑖 autonomously reliably broad-
cast [11, 19, 24, 29] its local ordering 𝐿𝑂𝑖 . As Figure 4(a) shows,
FairDAG vertex 𝑣𝑖,𝑟 contains 𝑟 -th slice of the replica 𝑅𝑖 ’s local
ordering (𝐿𝑂𝑖,𝑟)—a sequence reflecting the order in which transac-
tions were received by replica 𝑅𝑖 . Each local ordering is represented
as a sequence of transaction digests paired with monotonically
increasing ordering indicators.
Constructing a DAG

As illustrated in Figure 4 (a,b), the DAG layer of FairDAG enables
replicas to reliably broadcast and deliver vertices from one another.
This multi-proposer design alleviates the performance bottlenecks
associated with a single leader, thereby addressing issue (2).

Using the delivered vertices and the references within them, each
replica constructs its local view of the DAG, as shown in Figure 4(c).
As mentioned in Section 2.4, the DAG protocols guarantee that all
correct replicas eventually have consistent DAG views.
Committing DAG vertices

The commit rules in DAG-based consensus protocols—leveraging
the causal dependencies between vertices—further mitigate leader
manipulation in selecting local orderings, addressing issue (1).

DAG protocols group rounds into waves, each containing one
or more leader vertices. A leader vertex 𝐿𝑟𝑖 in round 𝑟𝑖 is com-
mitted once specific conditions are met. Let 𝐶𝑟𝑖 denote its causal
history—the set of vertices reachable from 𝐿𝑟𝑖 , including 𝐿𝑟𝑖 itself.
DAG protocols ensure that all correct replicas commit leader ver-
tices in a consistent, round-increasing order (𝐿𝑟1 , 𝐿𝑟2 , . . .) such that
𝐶𝑟𝑖 ⊂ 𝐶𝑟𝑖+1 for all 𝑖 .

A vertex 𝑣 is said to be in the subdag of leader 𝐿𝑟𝑖 if 𝑣 ∈ 𝐶𝑟𝑖 and
𝑣 ∉ 𝐶𝑟 𝑗 for all 𝑗 < 𝑖 . Let𝐴𝑟𝑖 denote the vertices in the subdag of 𝐿𝑟𝑖 .
The committed DAG can thus be partitioned into non-overlapping
subdags (𝐴𝑟1 , 𝐴𝑟2 , . . .), each corresponding to a committed leader.

For example, in Figure 4(c), 𝐿1 is the green vertex 𝑣2,1 and 𝐿3 is
the blue vertex 𝑣3,3. Then 𝐴1 consists of the green vertices, and 𝐴3
consists of the blue ones.

As shown in Figure 4(d), each time a leader 𝐿𝑟 is committed, the
fairness layer processes 𝐴𝑟 to compute the final ordering.

The DAG layer satisfies a necessary condition to guarantee that
final ordering aligns with the preferences of the majority of correct
replicas, as each subdag 𝐴𝑟 aggregates local orderings from at least
n−f replicas—guaranteeing the inclusion of at least n−2f correct
replicas. (Note: n−2f ≥ n−f

2 holds for all protocols.)

4.2 Fairness Layer
Taking local orderings within the committed subdags as input, the
fairness layer runs a transaction ordering algorithm to calculate
the final transaction ordering.

In absolute fairness protocols (Figure 4(e), left), each transaction
gets an assigned ordering indicator (AOI) based on the input local
orderings. The final ordering (Figure 4(f)) is then derived, sorting
transactions by their AOI. FairDAG-AB is an absolute fairness
protocols and satisfies the Ordering Linearizability property.

In relative fairness protocols (Figure 4(e), right) construct a
dependency graph of transaction nodes, where edges encode pair-
wise ordering dependencies derived from the input local orderings.
The final ordering is a Hamiltonian path within the graph (Fig-
ure 4(f)). FairDAG-RL is an relative fairness protocol and satisfies
the 𝛾-Batch-Order-Fairness property.

5 FAIRDAG-AB
FairDAG-AB is an absolute fairness protocol. In this section, we
demonstrate how FairDAG-AB calculates the assigned ordering
indicator (AOI) for each transaction and orders the transactions
based on the AOI values.

5.1 Transaction Dissemination
To prevent leader-driven manipulation, clients broadcast transac-
tions to all replicas. This prevents adversarial replicas from censor-
ing transactions to influence their position in final ordering.

Upon receiving a client transaction 𝑇 , replica 𝑅 gives 𝑇 a mono-
tonically increasing ordering indicator 𝑜𝑖 from its local timer, ap-
pends digest 𝑑 of 𝑇 and 𝑜𝑖 to its lists 𝑑𝑔𝑠 and 𝑜𝑖𝑠 (Figure 5, Line 4),
respectively, which are in-memory variables storing transaction
digests and ordering indicators of pending transactions (Lines 9-12).

5.2 FairDAG-AB Vertex
Built atop a DAG-based consensus protocol, each FairDAG-AB
replica constructs and reliably broadcasts a DAG vertex when pro-
tocol conditions are met. In addition to DAG-specific metadata (as
described in Section 4.1), a FairDAG-AB vertex includes (and clears)
the replica’s local ordering of pending transactions it received after
it broadcast the last vertex, encoded in 𝑑𝑔𝑠 , 𝑜𝑖𝑠 (Lines 13-17).

5.3 Managing and Assigning Ordering
Indicators

FairDAG-AB leverages local orderings within committed DAG
vertices to determine the final transaction ordering. However, a
delay exists between receiving and committing the DAG vertices. To
efficiently manage and utilize local orderings from both committed
and uncommitted vertices, FairDAG-AB maintains an Ordering

269

1: State Variables (per replica)
2: txns_w_assigned_oi := {}
3: ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖_𝑙𝑖𝑠𝑡 [1..n] := 0
4: 𝑑𝑔𝑠, 𝑜𝑖𝑠 := []
5: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑

6: Ordering Indicator Manager (𝑂𝐼𝑀)
7: 𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [1..n] := ∞, 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [1..n] := ∞
8: 𝐿𝑃𝐴𝑂𝐼 := ∞, 𝐴𝑂𝐼 := ∞

Client Thread (processing client transactions) :
9: event On receive transaction𝑇 do
10: if 𝑇 is valid then
11: 𝑜𝑖 := 𝑙𝑜𝑐𝑎𝑙_𝑡𝑖𝑚𝑒𝑟

12: 𝑑𝑔𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇 .𝑑𝑖𝑔𝑒𝑠𝑡) ; 𝑜𝑖𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑖)

DAG Layer Thread (constructing the DAG) :
13: event On propose DAG vertex do
14: 𝑣 := 𝐷𝐴𝐺𝑉𝑒𝑟𝑡𝑒𝑥 (𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑)
15: Add pending local ordering 𝑑𝑔𝑠 and 𝑜𝑖𝑠 into 𝑣

16: Clear 𝑑𝑔𝑠 and 𝑜𝑖𝑠
17: Reliably broadcast 𝑣

18: event On deliver 𝑣𝑖,𝑟 do
19: ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖_𝑙𝑖𝑠𝑡 [𝑖] := the highest 𝑜𝑖 in 𝑣𝑖,𝑟 .𝑜𝑖𝑠

20: for (𝑑,𝑜𝑖) ∈ (𝑣𝑖,𝑟 .𝑑𝑔𝑠, 𝑣𝑖,𝑟 .𝑜𝑖𝑠) do
21: 𝑂𝐼𝑀 (𝑑) .𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [𝑖] := 𝑜𝑖

22: event On commit 𝐿𝑟 do
23: Send 𝐴𝑟 to Fairness Layer

Fairness Layer Thread (Ordering transactions) :
24: ⊲Update 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠
25: event On receive 𝐴𝑟 do
26: for 𝑣 ∈ 𝐴𝑟 , (𝑑,𝑜𝑖) ∈ (𝑣.𝑑𝑔𝑠, 𝑣.𝑜𝑖𝑠) do
27: 𝑂𝐼𝑀 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑣.𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑] := 𝑜𝑖

28: 𝐿𝑃𝐴𝑂𝐼min := ∞
29: for 𝑑 such that𝑂𝐼𝑀 (𝑑) = ∞ do
30: if 𝑂𝐼𝑀 (𝑑) has at least n − f 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 then
31: ⊲Calculate 𝐴𝑂𝐼

32: 𝑂𝐼𝑀 (𝑑) .𝐴𝑂𝐼 := (f+1)-th smallest in 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠
33: Add 𝑑 to txns_w_assigned_oi
34: else
35: ⊲Calculate 𝐿𝑃𝐴𝑂𝐼

36: for 𝑖 = 1 to n do
37: 𝑙𝑝_𝑜𝑖𝑠 [𝑖] := min(𝑑.𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [𝑖], ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖_𝑙𝑖𝑠𝑡 [𝑖])
38: 𝑑.𝐿𝑃𝐴𝑂𝐼 := (f+1)-th smallest in 𝑙𝑝_𝑜𝑖𝑠
39: ⊲Track the minimal LPAOI of all transactions without an AOI
40: 𝐿𝑃𝐴𝑂𝐼min := min(𝐿𝑃𝐴𝑂𝐼min, 𝑑 .𝐿𝑃𝐴𝑂𝐼)
41: sort txns_w_assigned_oi sorted by 𝐴𝑂𝐼

42: execute all transactions with an 𝐴𝑂𝐼 lower than 𝐿𝑃𝐴𝑂𝐼𝑚𝑖𝑛

Figure 5: FairDAG-AB Algorithm.

Indicator Manager (𝑂𝐼𝑀 (𝑑)) for each transaction digest 𝑑 , which
tracks the replica’s local view of the DAG and ordering indicators
within the vertices.

We say that a replica 𝑅 has seen an ordering indicator 𝑜𝑖 if 𝑜𝑖 is
in a vertex in 𝑅’s local DAG view. 𝑅 has committed 𝑜𝑖 if 𝑜𝑖 is in

𝑣4,1
(𝑑1, 1)
(𝑑2, 2)

𝑣3,1
(𝑑2, 1)
(𝑑1, 2)

𝑣2,1
(𝑑1, 1)

𝑣1,1
(𝑑1, 1)

𝑣4,2
(𝑑3, 3)

𝑣3,2
(𝑑4, 3)

𝑣2,2
(𝑑2, 2)
(𝑑4, 3)

𝑣4,3
(𝑑5, 4)

𝑣3,3
(𝑑3, 4)

𝑣2,3
(𝑑3, 4)

𝑣4,4
(𝑑4, 5)

𝑣3,4
(𝑑6, 5)

𝑣2,4
(𝑑5, 5)

Figure 6: Example of calculating AOI and LPAOI.

a committed vertex. 𝑂𝐼𝑀 (𝑑) contains the following information
(Lines 6-8):

• 𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 : ordering indicators of 𝑑 that 𝑅 has seen.
• 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 : ordering indicators of 𝑑 that 𝑅 has commit-

ted.
• 𝐿𝑃𝐴𝑂𝐼 : the lowest possible value of the assigned ordering

indicator of 𝑑 .
• 𝐴𝑂𝐼 : the value of the assigned ordering indicator of 𝑑 .

The final ordering is determined using 𝐴𝑂𝐼 values derived from
𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 . 𝐿𝑃𝐴𝑂𝐼 , computed from 𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 , helps determine
when it is safe to decide the position of a transaction in the final
ordering (see Section 5.4). The 𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 and 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 are
indexed from 1 to n and each item is initialized to ∞. For example,
if 𝑂𝐼𝑀 (𝑑).𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [2] = 3, it means that 𝑅 has seen an ordering
indicator 3 for the transaction with digest 𝑑 from replica 𝑅2.
Managing Ordering Indicators

Besides the 𝑂𝐼𝑀 of each transaction digest 𝑑 , each FairDAG-
AB replica 𝑅 also maintains ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖𝑠: a vector of the highest
ordering indicators received from each replica, initialized to be 0
and indexed from 1 to n (Line 3). This vector is essential for checking
whether it is safe to determine the position of a transaction in final
ordering (See details in Section 5.4).

Upon a DAG vertex 𝑣𝑖,𝑟 is delivered and added to replica 𝑅’s local
DAG view, 𝑅 updates ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖𝑠 [𝑖] to the highest ordering indica-
tor in 𝑣𝑖,𝑟 . For each digest 𝑑 in 𝑣𝑖,𝑟 , 𝑅 updates 𝑂𝐼𝑀 (𝑑).𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [𝑖]
(Lines 18-21).

Upon a DAG leader vertex 𝐿𝑟 is committed, its subdag𝐴𝑟 is input
to the fairness layer (Lines 22-23). And 𝑅 updates 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠
for the digests in 𝐴𝑟 accordingly (Lines 25-27).
Calculating Assigned Ordering Indicator

If 𝑂𝐼𝑀 (𝑑) has at least n−f non-∞ 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖 values 𝑅 calcu-
lates 𝑂𝐼𝑀 (𝑑) .𝐴𝑂𝐼 . The 𝐴𝑂𝐼 is the (f+1)-th smallest value of the
𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 , which definitely falls within the range of ordering
indicators from correct replicas. Then,𝑑 is added to txns_w_assigned_oi,
which is set of transactions digests with valid 𝐴𝑂𝐼 values (Lines 29-
33). Note: The value of 𝐴𝑂𝐼 is immutable once calculated, even if
more ordering indicators of 𝑑 are committed.

Example 5.1. Figure 6 illustrates how to calculate 𝐴𝑂𝐼 values.
Suppose 𝑣4,2 and 𝑣3,4 are committed leader vertices 𝐿2 and 𝐿4, with
yellow𝐴2 and green𝐴4, respectively. In𝐴2, digest𝑑1 has committed
ordering indicators∞, 1, 2, 1. Since this includes at least n−f valid

270

values, its 𝐴𝑂𝐼 is the (f+1)-th lowest, which is 1 (Lines 29-33). Al-
though an additional 𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 of 1 appears in 𝑣1,1 ∈ 𝐴4, it is ignored
since 𝐴𝑂𝐼 is immutable once calculated after 𝐿2 is committed. In
𝐴4, digest 𝑑2 has committed ordering indicators ∞, 1, 2, 3, yielding
an 𝐴𝑂𝐼 of 2. Similarly, 𝑑3 receives an 𝐴𝑂𝐼 of 3. Other digests in 𝐴4
lack sufficient 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 data for 𝐴𝑂𝐼 .

5.4 Global Ordering

Due to the randomness in message arrival times, DAG vertices
with smaller local ordering indicators may be committed later than
vertices from other replicas with higher ordering indicators. As a
result, a transaction 𝑑1 may get a smaller 𝐴𝑂𝐼 than 𝑑2, even if 𝑑1
obtains its 𝐴𝑂𝐼 in a later round than 𝑑2. To ensure strict ordering
of transactions based on their 𝐴𝑂𝐼 values—which is essential for
achieving Ordering Linearizability—it is necessary to guarantee that
no other transaction could get a lower 𝐴𝑂𝐼 before determining the
position of a transaction in the final ordering. To enforce it, for each
transaction without an𝐴𝑂𝐼 , we calculate its 𝐿𝑃𝐴𝑂𝐼 , the lowest AOI
value it could possibly get. And we track 𝐿𝑃𝐴𝑂𝐼𝑚𝑖𝑛 , the minimal
𝐿𝑃𝐴𝑂𝐼 of transactions without an 𝐴𝑂𝐼 .
Calculating LPAOI

For each transaction digest 𝑑 without a valid 𝐴𝑂𝐼 , replica 𝑅 con-
structs a vector 𝑙𝑝_𝑜𝑖𝑠 , where each entry is computed as 𝑙𝑝_𝑜𝑖𝑠 [𝑖] =
min(𝑂𝐼𝑀 (𝑑).𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 [𝑖], ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖𝑠 [𝑖]). The 𝐿𝑃𝐴𝑂𝐼 of 𝑑 is then
defined as the (f+1)-th smallest value in 𝑙𝑝_𝑜𝑖𝑠 . And 𝐿𝑃𝐴𝑂𝐼min is
the minimal value across all 𝐿𝑃𝐴𝑂𝐼 values (Lines 34-40).

𝐿𝑃𝐴𝑂𝐼min serves as a threshold: only transactions with 𝐴𝑂𝐼 <

𝐿𝑃𝐴𝑂𝐼min can determine its position in final ordering. The fairness
layer sorts all digests in txns_w_assigned_oi by 𝐴𝑂𝐼 , executes all
transactions with an 𝐴𝑂𝐼 lower than the threshold. The ordered
digests are then removed from txns_w_assigned_oi (Lines 41-42).

Example 5.2. As shown in Figure 6, transaction digests 𝑑1, 𝑑2, and
𝑑3 have 𝐴𝑂𝐼 values of 1, 2, and 4, respectively. Given ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑜𝑖𝑠 =
(2, 6, 6, 6) and 𝑂𝐼𝑀 (𝑑4) .𝑠𝑒𝑒𝑛_𝑜𝑖𝑠 = (∞, 3, 3, 5), digest 𝑑4 derives its
𝑙𝑝_𝑜𝑖𝑠 = (2, 3, 3, 5) and obtains 𝐿𝑃𝐴𝑂𝐼 = 3. Similarly, 𝑑5 and 𝑑6
have 𝐿𝑃𝐴𝑂𝐼 values of 4 and 5. 𝐿𝑃𝐴𝑂𝐼min is then 3, (Lines 34-40) so
𝑑1 and 𝑑2 can be ordered and executed. In contrast, 𝑑3 cannot be
executed since its 𝐴𝑂𝐼 exceeds 𝐿𝑃𝐴𝑂𝐼min, implying that 𝑑4 could
possibly get a lower 𝐴𝑂𝐼 than 𝑑3.

6 FAIRDAG-RL

FairDAG-RL is a relative fairness protocol. In this section, we
demonstrate how to construct dependency graphs between transac-
tions and derive a final transaction ordering from the dependency
graphs.

6.1 Transaction Dissemination
As in FairDAG-AB, clients broadcast transactions to all replicas
for censorship resistance. Upon meeting the conditions in DAG
protocols, each replica broadcasts a vertex. A FairDAG-RL vertex is
a restricted form of a FairDAG-AB vertex: it includes a sequence of
incrementing counter values as ordering indicators corresponding
to received transactions (Figure 7 Lines 7-8). For simplicity, we omit
the ordering indicators in Figure 9.

1: State Variables
2: 𝑔𝑟𝑎𝑝ℎ𝑠 := []
3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 , 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 := 0

Client Thread (processing transactions from clients) :
5: event On receive a transaction𝑇 do
6: if 𝑇 is valid then
7: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 := 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
8: 𝑜𝑖𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑜𝑢𝑛𝑡𝑒𝑟) , 𝑑𝑔𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇 .𝑑𝑖𝑔𝑒𝑠𝑡)

DAG Layer Thread (forming the DAG) :
9: event On propose vertex do
10: 𝑣 := 𝐷𝐴𝐺𝑉𝑒𝑟𝑡𝑒𝑥 (𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑)
11: Add pending local ordering 𝑑𝑔𝑠 and 𝑜𝑖𝑠 into 𝑣

12: Clear 𝑑𝑔𝑠 and 𝑜𝑖𝑠
13: Reliably broadcast 𝑣

14: event On commit(𝐿𝑟) do
15: Send 𝐴𝑟 to Ordering Layer

Figure 7: FairDAG-RL: Transaction dissemination and DAG
vertex proposal.

The local orderings in subdag 𝐴𝑟 will be input to the fairness
layer after 𝐿𝑟 is committed in FairDAG-RL (Lines 14-15).

6.2 Dependency Graph Construction
The fairness layer of FairDAG-RL utilizes local orderings in com-
mitted DAG vertices to construct dependency graphs that reflect
the ordering preferences of replicas. Every time a leader vertex is
committed, a new dependency graph is constructed:

First, transaction digests from 𝐴𝑟 are added as graph nodes if it
has not been added to any dependency graph is previously rounds.
Each transaction digest 𝑑 is associated with a node that stores:

• 𝑡𝑦𝑝𝑒: the type of the transaction node (See details later in
Adding nodes)

• 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠: a vector of committed ordering indicators
for 𝑑 .

• 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑟𝑜𝑢𝑛𝑑𝑠 : the rounds in which the corresponding
𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑_𝑜𝑖 is committed.

• 𝐺 : the graph to which the node is added.
Second, pairwise ordering preferences are aggregated into a

weight function: 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑1, 𝑑2) denotes the number of replicas
who have a lower 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖 for 𝑑1 than 𝑑2. Each dependency
graph contains the following information:

• 𝑛𝑜𝑑𝑒𝑠: the set of transaction digest nodes.
• 𝑤𝑒𝑖𝑔ℎ𝑡 : mapping of the pairs of nodes to their weights.
• 𝑒𝑑𝑔𝑒𝑠: directed edges representing inferred ordering con-

straints between the transaction digest nodes.
Third, a directed edge from 𝑑1 to 𝑑2 is added if 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑1, 𝑑2)

exceeds a quorum-based threshold n−f
2 and is not lower than

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑2, 𝑑1).
Thresholds

To construct a dependency graph that reflects the ordering pref-
erences of the majority and mitigates manipulation by Byzantine

271

replicas, relative fairness protocols should leverage as many correct
local orderings as possible. Prior protocols such as Themis [44] and
Rashnu [53] rely on a single leader to collect local orderings, where
a Byzantine leader may intentionally exclude local orderings from
up to f correct replicas. As a result, a transaction may appear in at
most n−2f committed local orderings if Byzantine replicas ignore
the transaction and the Byzantine leader excludes f correct local
orderings, increasing both the susceptibility to ordering manipu-
lation and the minimal requirement of number of correct replicas
(see Section 7 for details).

In contrast, DAG-based consensus protocols ensure that all cor-
rect local orderings are eventually committed. This guarantees that
each transaction can appear in at least n − f committed local or-
derings. Consequently, FairDAG-AB raises the thresholds used in
the construction of dependency graphs from n− 2f and n−2f

2 (used
in Themis and Rashnu) to n − f and n−f

2 , respectively. We will
elaborate on the details below.
Adding nodes

For each transaction digest 𝑑 in 𝐴𝑟 , let 𝑛𝑜𝑑𝑒 (𝑑) represent its
dependency graph node. Its 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 and 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑟𝑜𝑢𝑛𝑑𝑠
are updated using information contained in 𝐴𝑟 , and the node is
added to𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 , a set of transactionswhose 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠
are updated because of 𝐴𝑟 (Figure 8 Lines 3-10) 2.

Then, we check if any transaction digests can be added as nodes
into the new dependency graph of round 𝑟 . We define 𝑎𝑝 (𝑑, 𝑟) as the
number of ordering indicators for 𝑑 that are committed by round 𝑟 :

𝑎𝑝 (𝑑, 𝑟) := |{𝑖 |𝑛𝑜𝑑𝑒 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑟𝑜𝑢𝑛𝑑𝑠 [𝑖] ≤ 𝑟 }|
Each node in 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 whose type is 𝑏𝑙𝑎𝑛𝑘 , which means

that it has not been added into any dependency graph previously,
is classified as:

• 𝑠𝑜𝑙𝑖𝑑 , if 𝑎𝑝 (𝑑, 𝑟) ≥ n − f .
• 𝑠ℎ𝑎𝑑𝑒𝑑 , if n−f

2 ≤ 𝑎𝑝 (𝑑, 𝑟) < n − f .
• 𝑏𝑙𝑎𝑛𝑘 , if 𝑎𝑝 (𝑑, 𝑟) < n−f

2 .
The we add the non-blank nodes to𝐺𝑟 (Lines 11-18). Since classi-

fication is only applied to previously 𝑏𝑙𝑎𝑛𝑘 nodes, it is guaranteed
that each digest is inserted into at most one dependency graph.
Updating weights between nodes

After classifying and adding nodes to𝐺𝑟 , we update edge weights
based on local orderings in𝐴𝑟 . Vertices in𝐴𝑟 are processed in round-
increasing order.

For each vertex 𝑣 from replica 𝑅𝑖 , we iterate through the trans-
action digests in 𝑣 .𝑑𝑔𝑠 . For each digest 𝑑 , we compare the value
of 𝑛𝑜𝑑𝑒 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖] with all other nodes in the graph 𝐺

of 𝑛𝑜𝑑𝑒 (𝑑). For each pair (𝑑,𝑑2), we increment 𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑, 𝑑2)]
if 𝑛𝑜𝑑𝑒 (𝑑).𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖] < 𝑛𝑜𝑑𝑒 (𝑑2) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖]; other-
wise, we increment 𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑)] (Lines 21-30).

During this process, wemaintain a set𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠 to track the
edges that can be added to the dependency graph. If𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑, 𝑑2)]
or𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑)] reaches the threshold n−f

2 , the corresponding
pair is added to 𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠 (Lines 31-32).

2All operations related to dependency graph construction only apply to transactions
that are not ordered yet. We omit this for simplicity in the protocol description and
the pseudocode.

Fairness Layer Thread (Ordering Transactions) :
1: event On receive 𝐴𝑟 do
2: 𝐺𝑟 := 𝑁𝑒𝑤𝐺𝑟𝑎𝑝ℎ () , 𝑔𝑟𝑎𝑝ℎ𝑠.𝑝𝑢𝑠ℎ (𝐺𝑟)
3: ⊲Find nodes updated with 𝐴𝑟

4: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 := {}
5: for 𝑣 ∈ 𝐴𝑟 do
6: 𝑖 := 𝑣.𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑
7: for (𝑑,𝑜𝑖) ∈ (𝑣.𝑑𝑔𝑠, 𝑣.𝑜𝑖𝑠) do
8: 𝑛𝑜𝑑𝑒 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖] := 𝑜𝑖

9: 𝑛𝑜𝑑𝑒 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑟𝑜𝑢𝑛𝑑𝑠 [𝑖] := 𝑟

10: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑑)
11: ⊲Update node types and add new non-blank nodes to𝐺𝑟

12: for 𝑑 ∈ 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 do
13: if 𝑛𝑜𝑑𝑒 (𝑑) .𝑡𝑦𝑝𝑒 = 𝑏𝑙𝑎𝑛𝑘 then
14: Let 𝑎𝑝 (𝑑, 𝑟) be the number of ordering indicators for 𝑑 that

are committed by round 𝑟
15: if 𝑎𝑝 (𝑑, 𝑟) ≥ n − f then
16: 𝑛𝑜𝑑𝑒 (𝑑) .𝑡𝑦𝑝𝑒 := 𝑠𝑜𝑙𝑖𝑑 ; 𝐺𝑟 .𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒 (𝑑))
17: else if 𝑎𝑝 (𝑑, 𝑟) ≥ n−f

2 then
18: 𝑛𝑜𝑑𝑒 (𝑑) .𝑡𝑦𝑝𝑒 := 𝑠ℎ𝑎𝑑𝑒𝑑 ; 𝐺𝑟 .𝑛𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒 (𝑑))
19: ⊲Find all candidate edges in all existing graphs𝐺𝑟

20: 𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠 := {}
21: for 𝑣 ∈ 𝐴𝑟 do
22: 𝑖 := 𝑣.𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑
23: for (𝑑,𝑜𝑖) ∈ (𝑣.𝑑𝑔𝑠, 𝑣.𝑜𝑖𝑠) do
24: 𝐺 ′ := 𝑛𝑜𝑑𝑒 (𝑑) .𝐺
25: 𝑑_𝑜𝑖 := 𝑛𝑜𝑑𝑒 (𝑑) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖]
26: for 𝑛𝑜𝑑𝑒 (𝑑2) ∈ 𝐺 ′ .𝑛𝑜𝑑𝑒𝑠 do
27: if 𝑑_𝑜𝑖 < 𝑛𝑜𝑑𝑒 (𝑑2) .𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑜𝑖𝑠 [𝑖] then
28: increment𝐺 ′ .𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑,𝑑2)]
29: else
30: increment𝐺 ′ .𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑)]
31: if either weight reaches threshold n−f

2 then
32: 𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑑,𝑑2)
33: ⊲Add edge if weight reaches threshold
34: for (𝑑,𝑑2) ∈ 𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠 do
35: 𝐺 := 𝑛𝑜𝑑𝑒 (𝑑) .𝐺
36: if 𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑,𝑑2)] ≥ 𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑)] then
37: 𝐺.𝑒𝑑𝑔𝑒𝑠.𝑎𝑑𝑑 (𝑒 (𝑑,𝑑2))
38: else
39: 𝐺.𝑒𝑑𝑔𝑒𝑠.𝑎𝑑𝑑 (𝑒 (𝑑2, 𝑑))
40: ⊲Finalize Transaction Ordering in𝐺𝑟 when𝐺𝑟 is a tournament
41: OrderFinalization()

Figure 8: Dependency graph construction in FairDAG-RL.

Adding edges
For each pair (𝑑,𝑑2) ∈ 𝑎𝑑𝑑𝑎𝑏𝑙𝑒_𝑒𝑑𝑔𝑒𝑠 , if there is no edge be-

tween𝑛𝑜𝑑𝑒 (𝑑) and𝑛𝑜𝑑𝑒 (𝑑2), an edge is added based on themajority
preference (Lines 33-39):

• If𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑,𝑑2)] ≥ 𝐺.𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑)], add edge 𝑒 (𝑑,𝑑2)
from 𝑛𝑜𝑑𝑒 (𝑑) to 𝑛𝑜𝑑𝑒 (𝑑2) ;

• Otherwise, add edge 𝑒 (𝑑2, 𝑑) from 𝑛𝑜𝑑𝑒 (𝑑2) to 𝑛𝑜𝑑𝑒 (𝑑).

Example 6.1. Figure 9 illustrates how FairDAG-RL constructs
dependency graphs. In Figure 9(a), after processing 𝐴2, graph 𝐺2
contains six nodes. Nodes 𝑑0, 𝑑1, 𝑑2, and 𝑑4 are classified as solid
(solid circles), while 𝑑3 and 𝑑5 are shaded (dashed circles). All node
pairs form edges except (𝑑3, 𝑑5), as neither 𝐺2 .𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑3, 𝑑5)]

272

𝐴2 :

𝑅1 : {𝑑0, 𝑑1, 𝑑2, 𝑑5, 𝑑3}
𝑅2 : {𝑑0, 𝑑2, 𝑑3, 𝑑4, 𝑑5}
𝑅3 : {𝑑0, 𝑑4, 𝑑1, 𝑑6}
𝑅4 : {𝑑0, 𝑑4, 𝑑1, 𝑑2}

𝐴4 :

𝑅1 : {𝑑4, 𝑑6}
𝑅2 : {𝑑1, 𝑑6}
𝑅3 : {𝑑3, 𝑑2, 𝑑5, 𝑑7}
𝑅4 : {𝑑3, 𝑑5, 𝑑6, 𝑑7}

After processing 𝐴2:

𝐺2:

𝑑0

𝑑1

𝑑2

𝑑3

𝑑4

𝑑5

After processing 𝐴4:

𝐺2:

𝑑0

𝑑1

𝑑2

𝑑3

𝑑4

𝑑5

𝐺4:

𝑑6 𝑑7

(b)(a)

Figure 9: Constructing dependency graphs with n = 4, 𝛾 =

1, f = 1.

nor 𝐺2 .𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑5, 𝑑3)] reaches the threshold n−f
2 = 3

2 . In Fig-
ure 9(b), after processing 𝐴4,𝐺4 is constructed with two additional
nodes, and an edge between 𝑛𝑜𝑑𝑒 (𝑑3) and 𝑛𝑜𝑑𝑒 (𝑑5) is added once
𝐺2 .𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑3, 𝑑5)] reaches the threshold.

6.3 Ordering Finalization
FairDAG-RL finalizes the ordering of transactions within a de-
pendency graph after it becomes a tournament. A tournament is a
dependency graph such that there is an edge between each pair of
transaction nodes in the dependency graph. When finalizing the or-
dering, FairDAG-RL condenses the dependency graph into multiple
Strongly Connected Components (SCCs) and generates a topological
sorting of them. Transactions that are sorted behind the last SCC
containing at least one solid transaction will be readded into later
dependency graphs, as they might be dependent on some transac-
tions in later dependency graphs (see more detailed explanation in
Section 8.4 of our extended report [39].)

As we use the same algorithm to finalize transaction ordering
within tournaments as Themis, we put the detailed algorithm in
Section 6.3 our extended report [39].

7 COMPARING FAIRNESS PROTOCOLS

In this section, we demonstrate how FairDAG-AB and FairDAG-
RL outperform Pompe [79] and Themis [44] in limiting the adver-
sary’s manipulation of transaction ordering. We achieve this by
comparing how these protocols perform under adversarial condi-
tions, such as those caused by Byzantine replicas or an asynchro-
nous network.

7.1 Pompe and Themis
Pompe and Themis run fairness protocols atop leader-based consen-
sus protocols such as PBFT [20] and HotStuff [74], where a single
leader is responsible for collecting local orderings from a quorum
of n−f replicas.

Beyond the difference in underlying consensus protocols, Pompe
assigns non-overlapping intervals to consensus rounds, allowing

only transactions whose𝐴𝑂𝐼 fall within the corresponding interval
to be executed, increasing the overhead of recovery when the leader
fails. Additionally, in Pompe, each client transaction is sent to a
single replica instead of being broadcast, making the protocol more
susceptible to transaction censorship.

7.2 Adversarial Manipulation
We now analyze how an adversary can manipulate transaction
ordering in Pompe and Themis by selectively collecting local order-
ings. Additionally, we demonstrate how FairDAG-AB and FairDAG-
RL mitigate these vulnerabilities, ensuring more resilient and fair
transaction orderings.

Pompe vs FairDAG-AB

In Pompe, a Byzantine replica who is responsible for collect-
ing ordering indicators can selectively choose n−f local ordering
indicators to calculate an assigned ordering indicator. This selec-
tive collection allows the adversary to manipulate the ordering of
transactions whose ranges of correct ordering indicators overlap.

Furthermore, if at most f correct replicas have received the as-
signed ordering indicator for a transaction 𝑇 before a Byzantine
leader replica collects assigned ordering indicators for a new block,
the leader can exclude𝑇 from the new block. Since the leader is only
required to collect from n−f replicas, it can selectively collect from
n−f replicas that have not received𝑇 , thus delaying the position of
𝑇 in the final ordering.

In FairDAG-AB, the client broadcasts its transaction to all repli-
cas, and each replica independently broadcasts its ordering indica-
tors. The Validity property and the round-robin or random leader
rotation of the underlying DAG protocols guarantees that reduce
the chance of selective collection of ordering indicators by Byzan-
tine replicas. Thus, FairDAG-AB is more resilient against ordering
manipulation than Pompe.

Additionally, Pompe effectively mitigates the transaction cen-
sorship issue mentioned in Section 7.1, because transactions are
broadcast to all replicas, and each replica independently generates
and broadcasts its local ordering indicators.

Themis vs FairDAG-RL

In Themis, if a Byzantine leader ignore f correct local orderings
containing transaction𝑇 and the Byzantine replicas exclude𝑇 from
their local orderings, there would be at most n−2f local orderings
containing𝑇 . Thus, the threshold of deciding edge direction is n−2f

2
in Themis. To guarantee the 𝛾-Batch-Order-Fairness, it is required
that the votes of the opposite direction cannot reach the threshold,
containing f votes from Byzantine replicas and (1−𝛾) (n−f) votes
from correct replicas. That is, f + (1−𝛾) (n−f) < n−2f

2 , i.e., n >
f (2𝛾+2)
2𝛾−1 . When 𝛾 = 1, Themis requires n > 4f .
In FairDAG-RL, due to the Validity of DAG-based consensus

protocols, all local orderings from correct replicas will eventually
be committed by all replicas. Then, for each transaction, there are
at least n−f local orderings containing it. Thus, the threshold for
deciding edge direction is n−f

2 in Themis. Then, to guarantee the
𝛾-Batch-Order-Fairness, it is required that f + (1−𝛾) (n−f) < n−f

2 ,
i.e., n >

f (2𝛾+1)
2𝛾−1 . When 𝛾 = 1, FairDAG-RL requires n > 3f .

273

7.3 Leader Crash and Asynchronous Network
In Pompe and Themis, if the leader crashes, a recovery subprocess
must be initiated to replace the leader with a new one, introduc-
ing an additional delay of 𝑂 (Δ) before the protocol can resume
normal operation. Moreover, in Pompe, each round corresponds
to a distinct, non-overlapping time slot. If the designated leader
crashes, transactions with assigned ordering indicators that fall
within that time slot cannot be ordered or executed, resulting in
a potential transaction loss or indefinite delays. In Themis, if the
leader crashes, replicas have to resend their local orderings to the
new leader, resulting in additional communication overhead.

If the network operates under asynchronous conditions where
messages can experience indefinite delays, additional overhead
will be introduced, similar to the overhead incurred during leader
crashes.

FairDAG-AB and FairDAG-RL address the aforementioned is-
sues through the multi-proposer design and the Reliable Broadcast
inherent to DAG-based consensus protocols, which ensures that
each correct local ordering eventually deliviers and commits even
in asynchronous settings.

8 EVALUATION
We evaluate FairDAG-AB and FairDAG-RL by comparing their
performance with other baseline protocols. We implemented the
protocols [38] in Apache ResilientDB (Incubating) [2, 33]. Apache
ResilientDB is an open-source incubating blockchain project that
supports various consensus protocols. It provides a fair comparison
of each protocol by offering a high-performance framework. Re-
searchers can focus solely on their protocols without considering
system structures such as the network and thread models. We set up
our experiments on CloudLAB m510 machines with 64 vCPUs and
64GB of DDR3 memory. Each replica and client run on a separate
machine.

We compared FairDAG-AB and FairDAG-RL with the following
baseline protocols:

• Pbft [20]: A single-leader consensus protocol without fair-
ness guarantees, n > 3f .

• Pompe [79]: an absolute fairness protocol running on top
of Pbft, n > 3f .

• Themis [44]: a relative fairness protocol running on top of
Pbft, n >

f (2𝛾+2)
2𝛾−1 .

• RCC [31]: a multi-proposer protocol that runs concurrent
Pbft instances without fairness guarantees, n > 3f .

• Tusk [24], a multi-proposer DAG-based consensus protocol
without fairness guarantees, n > 3f .

For Themis and FairDAG-RL, we set 𝛾 = 1 in the experiments
by default. And we implement the DAG layer of FairDAG-AB and
FairDAG-RL on top of a variant of Tusk with weak edges.

8.1 Scalability
In the scalability experiments, we measure two metrics:

• Throughput – the maximum number of transactions per
second that the system reaches consensus.

Pbft RCC Tusk Pompe
FairDAG-AB Themis FairDAG-RL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
·106

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Throughput (txn/s)

La
te
nc
y
(s
)

Figure 10: Throughput vs latency with f = 8.

• Client Latency – the average duration between the time a
client sends a transaction and the time the client receives
f+1 matching responses.

We compare the performance of the protocols with varying f , the
maximum number of faulty replicas allowed, from 5 to 8. With the
same f , different protocols have different minimum replica number
requirements. For example, when f = 5, Themis requires n = 21
replicas, while other protocols require n = 16 replicas.

Besides design, the performance of the protocols is highly related
to the workloads. As shown in Figure 10, where we set f = 8, as the
workload increases, the throughput increases until the pipeline is
fulfilled by the transactions. Then, after reaching the throughput
limit, the latency increases as the workload increases. We define by
optimal point the point with the lowest latency while maintaining
the highest throughput. And we evaluate their scalability at the
optimal points of the protocols with varying f .
Throughput. Figure 11 shows that Tusk and RCC achieve higher
throughput than other protocols because they have multiple
proposers and no overhead for fairness guarantees. Due to the
fairness overhead, when f = 5 and f = 8, FairDAG-AB reaches
83.5% and 84.9% throughput of Tusk, while FairDAG-RL reaches
11.9% and 12.6% throughput of Tusk.

However, compared to Pompe and Themis, the multi-proposer
design of the DAG layer brings FairDAG-AB and FairDAG-RL
advantages in throughput. When f = 5 and f = 8, FairDAG-AB ob-
tains 30.2% and 52.6% higher throughput than Pompe, respectively.
Similarly, FairDAG-RL reaches 7.5% and 5.1% higher throughput
than Themis.
Latency. Without the fairness overhead, Tusk and Pbft, as the
underlying consensus protocols, have lower latency than the
fairness protocols running on top of them.

With f = 5 and f = 8, FairDAG-AB latency is 7.1% and 8.3%
higher than Pompe, because Tusk, the underlying DAG consensus
protocol of FairDAG-AB, has a higher commit latency than Pbft,
the underlying consensus protocol of Pompe.

FairDAG-RL has a latency close to Themis when f = 5. As f
grows, FairDAG-RL has a lower latency than Themis, which is
20.9% lower when f = 8. FairDAG-RL achieves a lower latency
because Themis needs f more correct replicas to guarantee fairness,
which causes higher overhead for both consensus and ordering.
By comparing the latency of Themis with f = 6 and FairDAG-RL
with f = 8, we can verify this claim: with the same replica number
n = 25, FairDAG-RL achieves a 4.6% higher latency than Themis.

274

PBFT RCC Tusk Pompe FairDAG-AB Themis FairDAG-RL

5 6 7 80.0

0.5

1.0

·106

f

Th
ro
ug

hp
ut

(tx
n/
s)

(a) Single-Region

5 6 7 80.0

0.1

0.2

0.3

f

La
te
nc
y
(s
)

(b) Single-Region

1 2 3 40.0

0.5

1.0

·106

Number of Regions

Th
ro
ug

hp
ut

(tx
n/
s)

(c) Multi-Region, f = 8

1 2 3 40

2

4

6

Number of Regions

La
te
nc
y
(s
)

(d) Multi-Region, f = 8

Figure 11: Performance of FairDAG and baseline protocols, with varying f (a,b), and varying number of regions (c,d).

Themis FairDAG-RL Themis-Rashnu FairDAG-RL-Rashnu

0.01 0.5 0.990

2

4

·105

skewness

Th
ro
ug

hp
ut

(tx
n/
s)

(a) Throughput

0.01 0.5 0.990

20

40

60

80

skewness

La
te
nc
y
(m

s)

(b) Latency

Figure 12: Performance of Rashnu-enhanced variants vs. rel-
ative fairness protocols.

Geo-distributed performance. We conducted experiments
under geo-distributed settings by deploying the systems across
multiple AWS regions. Specifically, we varied the number of regions
from 1 to 4. The regions include North Virginia, Oregon, London,
and Zurich. We fixed f = 8 and deploys n

𝑘
replicas in each region,

where 𝑘 is the number of regions. Figure 11 (c, d) show that in the
geo-distributed setting, the latencies of all the protocols are high
and increase with the number of regions, caused by the high inter-
regional message delays. Furthermore, FairDAG-AB has higher
throughput than the other fairness protocols.

We found that for all protocols except the relative fairness pro-
tocols, increasing the batch size allowed us to achieve throughput
values comparable to those in the single-region setting. However, in
FairDAG-RL and Themis, a larger batch size leads to a higher over-
head of the fairness layer, which increases quadratically with batch
size. Moreover, while FairDAG-RL achieves only a 5.1% through-
put improvement over Themis in a single-region setting, we ob-
serve that in the geo-distributed setting, FairDAG-RL outperforms
Themis by at least 42.1%. This significant gain is attributed to the
robust performance of the underlying multi-proposer DAG-based
consensus protocol in geo-scale settings with limited bandwidth
and higher message delays.

Data-dependent fairness. Rashnu [53] proposes a technique
to reduce the overhead of the fairness layer in relative fairness pro-
tocols by computing edge directions between only data-dependent
transactions. This method is orthogonal to both FairDAG-RL and
Themis. We implementeded two Rashnu-enhanced variants, called
Themis-Rashnu and FairDAG-RL-Rashnu, and compared them
to Themis and FairDAG-RL.

In this experiment, we implemented a transaction workload
with keys following a Zipfian distribution. We fixed f = 8 and
varied the skewness parameter 𝑠 from 0.01 to 0.99, where a higher
skewness indicates greater data dependency between transactions.
The results presented in Figure 12 show that the Rashnu variants

Pompe FairDAG-AB Themis FairDAG-RL

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

·105

Timeline (s)

Th
ro
ug

hp
ut

(tx
n/
s)

Figure 13: Real-Time throughput with a faulty leader.

outperform the non-Rashnu variants and perform better as the
skewness decreases. This improvement stems from the reduced
overhead in calculating edge directions when transactions are less
interdependent.

8.2 Tolerance to Byzantine Behavior
Next, we will discuss the impact of Byzantine behaviors on the
performance and transaction ordering fairness of the protocols.

Faulty leader. In this experiment, we make the consensus leader
replica in Pompe and Themis faulty, which would trigger a
view-change for leader replacement. While for FairDAG-AB and
FairDAG-RL, we make a replica faulty due to the multi-proposer
design. Figure 13 shows how the faulty leader affects the
performance of Themis and Pompe. At time 7, the faulty leader
stops sending any messages. After a period without progress, a
view-change is triggered to replace the faulty leader. At time 15,
the view-change is complete, and the throughput of Pompe and
Themis recovers to the original level. In contrast, FairDAG-RL and
FairDAG-AB are not affected because of the resilience provided by
the multi-proposer design.

Adversarial Manipulation.We conduct two experiments in
which Byzantine replicas attempt to manipulate transaction
ordering. We evaluated the fairness quality of the fairness
protocols under two Byzantine behaviors: (1) Reversing order : in
each round, the Byzantine replicas reverse the local orderings of
the transactions it has received. (2) Targeted delay: the Byzantine
replicas intentionally delay targeted transactions by giving them
higher local ordering indicators. In both cases, the Byzantine
leader in Pompe and Themis excludes local orderings from f
correct replicas.

For two transactions 𝑇1 and 𝑇2, we say that they are correctly
ordered if 𝑇1 is ordered before 𝑇2 and:

(1) in relative fairness protocols,𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑1, 𝑑2)] > 𝑛
2 ;

275

(2) in absolute fairness protocols, the f+1-th smallest local
ordering indicator of 𝑑1 is not larger than that of 𝑑2.

For the reversing order attack, we consider all transaction pairs; for
the targeted delay attack, we consider only the transaction pairs
that involve the targeted transactions.

For FairDAG-RL and Themis, we measure the ratio of cor-
rectly ordered pairs with different𝐷𝑖𝑠𝑡 values, where𝐷𝑖𝑠𝑡 (𝑑1, 𝑑2) =
|𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑1, 𝑑2)] −𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑1)] |.

For FairDAG-AB and Pompe, we measure the ratio of correctly
ordered pairs with different 𝐷𝑖 𝑓 𝑓 values, where 𝐷𝑖 𝑓 𝑓 (𝑑1, 𝑑2) is
the minimal number of Byzantine local ordering indicators needed
to order 𝑑1 before 𝑑2. Formally, we denote by 𝑎𝑠𝑐_𝑜𝑖𝑠𝐶1 [𝑖] the 𝑖-th
smallest value in the correct local ordering indicators of 𝑑1, and by
𝑑𝑒𝑠𝑐_𝑜𝑖𝑠𝐶2 [𝑗] the 𝑗-th largest value in the correct local ordering indi-
cators of𝑑2. To order𝑑1 before𝑑2, we need to find (1) a pair of 𝑖 and 𝑗

such that 𝑎𝑠𝑐_𝑜𝑖𝑠𝐶1 [𝑖] < 𝑑𝑒𝑠𝑐_𝑜𝑖𝑠𝐶2 [𝑗], (2) f+1−𝑖 Byzantine local or-
dering indicators smaller than 𝑎𝑠𝑐_𝑜𝑖𝑠𝐶1 [𝑖], and (3) f+1− 𝑗 Byzantine
local ordering indicators larger than 𝑑𝑒𝑠𝑐_𝑜𝑖𝑠𝐶2 [𝑗]. Thus, we have
𝐷𝑖 𝑓 𝑓 (𝑑1, 𝑑2) = min{2(f+1)−𝑖− 𝑗 | 𝑎𝑠𝑐_𝑜𝑖𝑠𝐶1 [𝑖] < 𝑑𝑒𝑠𝑐_𝑜𝑖𝑠𝐶2 [𝑗]},
which is the minimal number of Byzantine local ordering indicators
needed. We only consider transaction pairs with 𝐷𝑖 𝑓 𝑓 (𝑑1, 𝑑2) > 0.

We set f = 10 and vary f𝑎 , the actual number of Byzantine
replicas, from 0 to 10. For example, Themis-7 denotes Themis with
f𝑎 = 7. As shown in Figure 14, FairDAG-RL and FairDAG-AB
consistently demonstrate better resilience against adversarial order-
ing manipulation in all experimental settings, compared to Themis
and Pompe, respectively. The results substantiate our claim that
FairDAG effectively mitigates adversarial ordering manipulation
through the properties inherent in the DAG-based consensus layer.

9 RELATEDWORK
In traditional Byzantine Fault Tolerance (BFT) research, proto-
cols [5, 20, 30, 34] are designed to ensure both safety and live-
ness in the presence of malicious replicas. Although these pro-
tocols do not explicitly guarantee fair transaction ordering, they
mitigate unfair ordering to some extent. Protocols such as Hot-
Stuff [74], which employ leader rotation in a round-robin man-
ner [15, 26, 28, 32, 40, 41, 49], provide each participant with the
opportunity to propose a block. Multi-proposer approaches, includ-
ing concurrent consensus protocols [27, 31, 41, 64] and DAG-based
protocols [6, 8, 24, 43, 62, 63, 71], enable multiple participants to
propose blocks concurrently, ordering them globally through pre-
determined or randomized mechanisms. Although these protocols
reduce the reliance on a single leader and distribute transaction
ordering authority, a Byzantine participant can still manipulate the
ordering of transactions within the blocks it proposes.

Some protocols seek to eliminate the block proposers’ oligarchy
over the ordering of transactions within blocks via censorship re-
sistance [4, 7, 17, 25, 47, 50, 51, 65, 71, 75]. In these protocols, a
transaction is encrypted until the ordering of the transaction is de-
termined. However, block proposers can still engage in censorship
based on metadata, such as IP addresses, or prioritize their own
transactions, knowing the content of encrypted transactions.

There are several prior fairness protocols that generate final
ordering with collected local orderings. Wendy [46] guarantees
Timed-Relative-Fairness similar to Ordering Linearizability, but it

Themis-0 Themis-1 Themis-7 Themis-10
FairDAG-RL-0 FairDAG-RL-1 FairDAG-RL-7 FairDAG-RL-10

1 6 11 16 21 26 31 36 410.7

0.8

0.9

1.0

𝐷𝑖𝑠𝑡 (𝑑1, 𝑑2) = |𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑1, 𝑑2)] −𝑤𝑒𝑖𝑔ℎ𝑡 [(𝑑2, 𝑑1)] |

Ra
tio

of
Co

rr
ec
tly

O
rd
er
ed

Pa
irs

(a) Reversing Order

0 10 20 30 40 50 60 70 80 90 1000.7

0.8

0.9

1.0

𝐷𝑖𝑠𝑡 (𝑑1, 𝑑2)/n (%)

Ra
tio

of
Co

rr
ec
tly

O
rd
er
ed

Pa
irs

(b) Reversing Order

1 6 11 16 21 26 31 36 410.0

0.5

1.0

𝐷𝑖𝑠𝑡 (𝑑1, 𝑑2)

Ra
tio

of
Co

rr
ec
tly

O
rd
er
ed

Pa
irs

(c) Targeted Delay

0 10 20 30 40 50 60 70 80 90 1000.0

0.5

1.0

𝐷𝑖𝑠𝑡 (𝑑1, 𝑑2)/n (%)

Ra
tio

of
Co

rr
ec
tly

O
rd
er
ed

Pa
irs

(d) Targeted Delay

Pompe-0 Pompe-1 Pompe-7 Pompe-10
FairDAG-AB-0 FairDAG-AB-1 FairDAG-AB-7 FairDAG-AB-10

1 6 11 16 20

0.6

0.8

1.0

𝐷𝑖 𝑓 𝑓 (𝑑1, 𝑑2)
Ra

tio
of

Co
rr
ec
tly

O
rd
er
ed

Pa
irs

(e) Reversing Order

1 6 11 16 20

0.6

0.8

1.0

𝐷𝑖 𝑓 𝑓 (𝑑1, 𝑑2)

Ra
tio

of
Co

rr
ec
tly

O
rd
er
ed

Pa
irs

(f) Targeted Delay

Figure 14: Fairness quality of the fairness protocols under
adversarial ordering manipulation attacks.

relies on synchronized local clocks, which are impractical in asyn-
chronous networks. DCN [22] reaches 𝛿-Median Fairness such that
𝑇1 can be ordered before𝑇2 if𝑇1 is sent long enough earlier than𝑇2.
Aequitas [45] guarantees batch-order-fairness but suffers from live-
ness issues due to the existence of infinite Condorcet Cycles, which
Themis solves via a batch unspooling mechanism. Quick-Order-
Fairness [18] reaches batch-order-fairness with n > 3f replicas
but incurs 𝑂 (n3) communication complexity for the consensus
leader. Rashnu [53] improves Themis performance by guaranteeing
𝛾-Batch-Order-Fairness between only data-dependent transactions,
but suffers from the same problems as Themis. SpeedyFair [52]
pipelines the consensus layer and fairness layer, but still relies on
a single leader to collect local orderings. Ambush attacks are iden-
tified in [56], which FairDAG-RL inherently mitigates with the
underlying DAG-based consensus.

10 CONCLUSION
In this paper, we introduced FairDAG, a fair-ordering framework
designed to run fairness protocols atop DAG-based consensus pro-
tocols. Through theoretical demonstration and experimental evalua-
tion, we show that unlike previous fairness protocols, FairDAG-AB
and FairDAG-RL, the two variants of FairDAG, not only uphold
fairness guarantees, but also achieve better performance under nor-
mal and adversarial conditions, effectively constraining adversarial
manipulation of transaction ordering.

ACKNOWLEDGMENTS
This work is partially funded by NSF Award Number 2245373.

276

REFERENCES
[1] 2022. Aptos Whitepaper: Safe, Scalable, and Upgradeable Web3 Infrastructure.

https://arxiv.org/abs/2201.01107
[2] 2024. Apache ResilientDB (Incubating). https://resilientdb.incubator.apache.org/
[3] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast: Adap-

tive dynamic mastering for replicated systems. In 2020 IEEE 36th international
conference on data engineering (ICDE). IEEE, 1381–1392.

[4] Amit Agarwal, Kushal Babel, Sourav Das, and Babak Poorebrahim Gilkalaye.
2025. Time-Lock Encrypted Storage for Blockchains. Cryptology ePrint Archive
(2025).

[5] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,
Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine Fault
Tolerance: A Unified Platform for BFT Protocols Analysis, Implementation, and
Experimentation. In 21st USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2024, Santa Clara, CA, April 15-17, 2024, Laurent Vanbever
and Irene Zhang (Eds.). USENIX Association, 371–400.

[6] Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegel-
man. 2024. Shoal++: High throughput dag bft can be fast! arXiv preprint
arXiv:2405.20488 (2024).

[7] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,
Ronen Tamari, and David Yakira. 2018. A fair consensus protocol for transaction
ordering. In 2018 IEEE 26th International Conference on Network Protocols (ICNP).
IEEE, 55–65.

[8] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Al-
berto Sonnino. 2023. Mysticeti: Low-Latency DAG Consensus with Fast Commit
Path. CoRR abs/2310.14821 (2023).

[9] Paddy Baker and Omkar Godbole. 2020. Ethereum Fees Soaring to 2-Year High:
Coin Metrics. CoinDesk (2020). https://www.coindesk.com/defi-hype-has-sent-
ethereum-fees-soaring-to-2-year-high-coin-metrics

[10] Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto
Sonnino, et al. 2023. Sui lutris: A blockchain combining broadcast and consensus.
arXiv preprint arXiv:2310.18042 (2023).

[11] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130–143.

[12] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia.
2016. Handbook of Computational Social Choice. Cambridge University Press,
Cambridge, UK.

[13] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve
Ellis, Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel
Moroz, et al. 2021. Chainlink 2.0: Next steps in the evolution of decentralized
oracle networks. Chainlink Labs 1 (2021), 1–136.

[14] Christopher Brookins. 2020. DeFi Boom Has Saved Bitcoin From Plummeting.
Forbes (2020). https://www.forbes.com/sites/christopherbrookins/2020/07/12/
defi-boom-has-saved-bitcoin-from-plummeting/

[15] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. CoRR abs/1807.04938 (2018).

[16] Vitalik Buterin. 2013. EthereumWhite Paper: A Next-Generation Smart Contract
and Decentralized Application Platform. https://ethereum.org/en/whitepaper/.

[17] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[18] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. 2022.
Quick order fairness. In International Conference on Financial Cryptography and
Data Security. Springer, 316–333.

[19] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information
dispersal. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05). IEEE,
191–201. https://doi.org/10.1109/SRDS.2005.36

[20] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398–461. https:
//doi.org/10.1145/571637.571640

[21] Marquis de Condorcet. 1785. Essay on the Application of Analysis to the Probability
of Majority Decisions. Imprimerie Royale, Paris.

[22] Andrei Constantinescu, Diana Ghinea, Lioba Heimbach, Zilin Wang, and Roger
Wattenhofer. 2023. A fair and resilient decentralized clock network for transac-
tion ordering. arXiv preprint arXiv:2305.05206 (2023).

[23] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, andAri Juels. 2019. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges. arXiv preprint
arXiv:1904.05234 (2019).

[24] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT
consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems. ACM, 34–50. https://doi.org/10.1145/3492321.3519594

[25] Pranav Garimidi, Joachim Neu, and Max Resnick. 2025. Multiple Concurrent
Proposers: Why and How. arXiv preprint arXiv:2509.23984 (2025).

[26] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-adaptive efficient

consensus with asynchronous fallback. In International conference on financial
cryptography and data security. Springer, 296–315.

[27] Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha
Crooks. 2024. Autobahn: Seamless high speed BFT. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles. 1–23.

[28] Neil Giridharan, Florian Suri-Payer, Matthew Ding, Heidi Howard, Ittai Abraham,
and Natacha Crooks. 2023. BeeGees: Stayin’ Alive in Chained BFT. In Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing (Orlando, FL,
USA) (PODC ’23). Association for Computing Machinery, New York, NY, USA,
233–243. https://doi.org/10.1145/3583668.3594572

[29] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. 2019. Scalable Byzantine Reliable Broadcast. In 33rd Interna-
tional Symposium on Distributed Computing (DISC 2019) (Leibniz International
Proceedings in Informatics (LIPIcs)), Vol. 146. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 21:1–21:17. https://doi.org/10.4230/LIPIcs.DISC.2019.21

[30] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation. In
Proceedings of the 24th International Conference on Extending Database Technology,
EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, Yannis Velegrakis, Demetris
Zeinalipour-Yazti, Panos K. Chrysanthis, and Francesco Guerra (Eds.). OpenPro-
ceedings.org, 301–312. https://doi.org/10.5441/002/edbt.2021.27

[31] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC: Resilient
Concurrent Consensus for High-Throughput Secure Transaction Processing. In
37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021. IEEE, 1392–1403. https://doi.org/10.1109/ICDE51399.2021.00124

[32] Suyash Gupta, Dakai Kang, Dahlia Malkhi, and Mohammad Sadoghi. 2025. Brief
Announcement: Carry the Tail in Consensus Protocols. In 39th International
Symposium on Distributed Computing (DISC 2025). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 59–1.

[33] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(2020), 868–883. https://doi.org/10.14778/3380750.3380757

[34] Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mo-
hammad Sadoghi. 2023. Dissecting BFT Consensus: In Trusted Components we
Trust!. In Proceedings of the Eighteenth European Conference on Computer Systems.
ACM, 521–539. https://doi.org/10.1145/3552326.3587455

[35] Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. 2022. Risks and re-
turns of uniswap v3 liquidity providers. In Proceedings of the 4th ACM Conference
on Advances in Financial Technologies. 89–101.

[36] Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. 2023. Caerus: Low-
Latency Distributed Transactions for Geo-Replicated Systems. Proceedings of the
VLDB Endowment 17, 3 (2023), 469–482.

[37] Yuming Huang, Jing Tang, Qianhao Cong, Andrew Lim, and Jianliang Xu. 2021.
Do the Rich Get Richer? Fairness Analysis for Blockchain Incentives (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 790–803. https:
//doi.org/10.1145/3448016.3457285

[38] Dakai Kang, Junchao Chen, Anh Dinh, and Mohammad Sadoghi. 2025. FairDAG.
https://github.com/apache/incubator-resilientdb/tree/fairdag Accessed: 2025-04-
01.

[39] Dakai Kang, Junchao Chen, Tien Tuan Anh Dinh, and Mohammad Sadoghi. 2025.
FairDAG: Consensus Fairness over Multi-Proposer Causal Design. arXiv preprint
arXiv:2504.02194 (2025).

[40] Dakai Kang, Suyash Gupta, Dahlia Malkhi, and Mohammad Sadoghi. 2024.
HotStuff-1: Linear Consensus with One-Phase Speculation. arXiv preprint
arXiv:2408.04728 (2024).

[41] Dakai Kang, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2024.
SpotLess: Concurrent Rotational Consensus Made Practical through Rapid View
Synchronization. In 40th IEEE International Conference on Data Engineering, ICDE
2024, Utrecht, Netherlands, May 13-17, 2024. IEEE.

[42] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography
(2nd ed.). Chapman and Hall/CRC.

[43] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All you need is dag. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing. 165–175.

[44] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
2023. Themis: Fast, strong order-fairness in byzantine consensus. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security.
475–489.

[45] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
fairness for byzantine consensus. In Advances in Cryptology–CRYPTO 2020: 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17–21, 2020, Proceedings, Part III 40. Springer, 451–480.

[46] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. 25–36.

[47] Rujia Li, Xuanwei Hu, Qin Wang, Sisi Duan, and Qi Wang. 2025. Transaction
fairness in blockchains, revisited. IEEE Transactions on Dependable and Secure
Computing (2025).

277

https://arxiv.org/abs/2201.01107
https://resilientdb.incubator.apache.org/
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1109/SRDS.2005.36
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3583668.3594572
https://doi.org/10.4230/LIPIcs.DISC.2019.21
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.1109/ICDE51399.2021.00124
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1145/3552326.3587455
https://doi.org/10.1145/3448016.3457285
https://doi.org/10.1145/3448016.3457285
https://github.com/apache/incubator-resilientdb/tree/fairdag

[48] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. 2013. Low-latency multi-datacenter databases using replicated
commit. Proceedings of the VLDB Endowment 6, 9 (2013), 661–672.

[49] Dahlia Malkhi and Kartik Nayak. 2023. Hotstuff-2: Optimal two-phase responsive
bft. Cryptology ePrint Archive (2023).

[50] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal extractable value (mev)
protection on a dag. arXiv preprint arXiv:2208.00940 (2022).

[51] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 31–42.

[52] Ke Mu, Bo Yin, Alia Asheralieva, and Xuetao Wei. 2024. Separation is good: A
faster order-fairness Byzantine consensus. (2024).

[53] Heena Nagda, Shubhendra Pal Singhal, Mohammad Javad Amiri, and Boon Thau
Loo. 2024. Rashnu: Data-Dependent Order-Fairness. Proceedings of the VLDB
Endowment 17, 9 (2024), 2335–2348.

[54] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf

[55] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain meets database: design and implementation of a
blockchain relational database. Proc. VLDB Endow. 12, 11 (July 2019), 1539–1552.
https://doi.org/10.14778/3342263.3342632

[56] Eunchan Park, Taeung Yoon, Hocheol Nam, Deepak Maram, and Min Suk Kang.
2025. On Frontrunning Risks in Batch-Order Fair Systems for Blockchains
(Extended Version). Cryptology ePrint Archive, Paper 2025/1168. https://doi.
org/10.1145/3719027.3744879

[57] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais.
2021. An empirical study of defi liquidations: Incentives, risks, and instabilities.
In Proceedings of the 21st ACM Internet Measurement Conference. 336–350.

[58] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain
extractable value: How dark is the forest?. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 198–214.

[59] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking
the defi ecosystem with flash loans for fun and profit. In International conference
on financial cryptography and data security. Springer, 3–32.

[60] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,
geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019).

[61] Fabian Schär. 2021. Decentralized finance: On blockchain-and smart contract-
based financial markets. FRB of St. Louis Review (2021).

[62] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. 2023. Shoal:
Improving DAG-BFT latency and robustness. arXiv preprint arXiv:2306.03058
(2023).

[63] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi (Eds.). ACM, 2705–2718.

[64] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:
High-Throughput BFT for Blockchains. http://arxiv.org/abs/1906.05552

[65] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko
Vukolić. 2021. Adding fairness to order: Preventing front-running attacks in bft
protocols using tees. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS). IEEE, 34–45.

[66] Weijie Sun, Zihuan Xu, and Lei Chen. 2022. Fairness Matters: A Tit-for-Tat
Strategy Against SelfishMining. Proc. VLDB Endow. 15, 13 (Sept. 2022), 4048–4061.
https://doi.org/10.14778/3565838.3565856

[67] Weijie Sun, Zihuan Xu, Wangze Ni, and Lei Chen. 2025. InTime: Towards
Performance Predictability In Byzantine Fault Tolerant Proof-of-Stake Consensus.
Proc. ACM Manag. Data 3, 1, Article 47 (Feb. 2025), 27 pages. https://doi.org/10.
1145/3709740

[68] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transactions for parti-
tioned database systems. In Proceedings of the 2012 ACM SIGMOD international
conference on management of data. 1–12.

[69] Ye Wang, Patrick Zuest, Yaxing Yao, Zhicong Lu, and Roger Wattenhofer. 2022.
Impact and user perception of sandwich attacks in the defi ecosystem. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–15.

[70] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State.
2022. A flash (bot) in the pan: measuring maximal extractable value in private
pools. In Proceedings of the 22nd ACM Internet Measurement Conference. 458–471.

[71] Shaokang Xie, Dakai Kang, Hanzheng Lyu, Jianyu Niu, and Mohammad Sadoghi.
2025. Fides: Scalable Censorship-Resistant DAG Consensus via Trusted Compo-
nents. arXiv preprint arXiv:2501.01062 (2025).

[72] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).

[73] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022.
Sok: Mev countermeasures: Theory and practice. arXiv preprint arXiv:2212.05111
(2022).

[74] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM,
347–356. https://doi.org/10.1145/3293611.3331591

[75] Pouriya Zarbafian and Vincent Gramoli. 2023. Lyra: Fast and scalable resilience
to reordering attacks in blockchains. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 929–939.

[76] Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decentralized
finance. Journal of Financial Regulation 6, 2 (2020), 172–203.

[77] Jianting Zhang and Aniket Kate. 2024. No fish is too big for flash boys! frontrun-
ning on DAG-based blockchains. Cryptology ePrint Archive (2024).

[78] Meihui Zhang, Zhongle Xie, Cong Yue, and Ziyue Zhong. 2020. Spitz: a verifiable
database system. 13, 12 (Aug. 2020), 3449–3460. https://doi.org/10.14778/3415478.
3415567

[79] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.
Byzantine ordered consensus without byzantine oligarchy. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). 633–649.

278

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1145/3719027.3744879
https://doi.org/10.1145/3719027.3744879
http://arxiv.org/abs/1906.05552
https://doi.org/10.14778/3565838.3565856
https://doi.org/10.1145/3709740
https://doi.org/10.1145/3709740
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.14778/3415478.3415567

	Abstract
	1 Introduction
	2 Background
	2.1 Receive-Order-Fairness
	2.2 Ordering Linearizability
	2.3 γ-Batch-Order-Fairness
	2.4 DAG-based Consensus Protocols

	3 System Model
	3.1 Clients
	3.2 Replicas
	3.3 Authentication
	3.4 Network

	4 Overview
	4.1 DAG Layer
	4.2 Fairness Layer

	5 FairDAG-AB
	5.1 Transaction Dissemination
	5.2 FairDAG-AB Vertex
	5.3 Managing and Assigning Ordering Indicators
	5.4 Global Ordering

	6 FairDAG-RL
	6.1 Transaction Dissemination
	6.2 Dependency Graph Construction
	6.3 Ordering Finalization

	7 Comparing Fairness Protocols
	7.1 Pompe and Themis
	7.2 Adversarial Manipulation
	7.3 Leader Crash and Asynchronous Network

	8 Evaluation
	8.1 Scalability
	8.2 Tolerance to Byzantine Behavior

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

