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ABSTRACT
In many real-world scenarios, query results must satisfy domain-
specific constraints. For instance, a minimum percentage of inter-
view candidates selected based on their qualifications should be
female. These requirements can be expressed as constraints over
an arithmetic combination of aggregates evaluated on the result of
the query. In this work, we study how to repair a query to fulfill
such constraints by modifying the filter predicates of the query.
We introduce a novel query repair technique that leverages bounds
on sets of candidate solutions and interval arithmetic to efficiently
prune the search space. We demonstrate experimentally, that our
technique significantly outperforms baselines that consider a single
candidate at a time.
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1 INTRODUCTION
Analysts are typically well versed in writing queries that return
data based on obvious conditions, e.g., only return applicants with
a master’s degree. However, a query result often has to fulfill addi-
tional constraints, e.g. fairness, that do not naturally translate into
conditions. While for some applications it is possible to filter the re-
sults of the query to fulfill such constraints this is not always viable,
e.g., because the same selection criterion has to be used for all job
applicants. Thus, the query has to be repaired such that the result
set of the fixed query satisfies all constraints. Prior work in this
area, including query-based explanations [15, 35] and repairs [9]
for missing answers, work on answering why-not questions [5, 15]
as well as query refinement / relaxation approaches [26, 29, 36]
determine why specific tuples are not in the query’s result or how
to fix the query to return such tuples. In this work, we study a
more general problem where the entire result set of the query has
to fulfill some constraint. The constraints we study in this work are
expressive enough to guarantee that query results adhere to legal
and ethical regulations, such as fairness.
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Example 1 (Motivating Example). Consider a job applicant

dataset𝐷 for a tech-company that contains six attributes: ID, Gender,
Field, GPA, TestScore, and OfferInterview. The attribute Offer-
Interview was generated by an external ML model suggesting which

candidates should receive an interview. The employer uses the query

shown below to prescreen candidates: every candidate should be a CS

graduate and should have a high GPA and test score.

Q1: SELECT * FROM D WHERE Major = 'CS'

AND TestScore ≥ 33 AND GPA ≥ 3.80

Aggregate Constraint. The employer wants to ensure that interview

decisions are not biased against a specific gender using statistical

parity difference (SPD) [4, 27]. Given two groups, e.g., male and female,

and a binary outcome attribute 𝑌 where 𝑌 = 1 is assumed to be a

positive outcome (OfferInterview=1 in our case), the SPD is the

difference between the probability for individuals from the two groups

to receive a positive outcome. In our example, the SPD can be computed

as shown below (𝐺 is Gender and 𝑌 is OfferInterview). We use

count(𝜃 ) to denote the number of query results satisfying condition

𝜃 . For example, count(𝐺 =𝑀 ∧ 𝑌 = 1) counts male applicants with

a positive label.

SPD =
count(𝐺 =𝑀 ∧ 𝑌 = 1)

count(𝐺 =𝑀) − count(𝐺 = 𝐹 ∧ 𝑌 = 1)
count(𝐺 = 𝐹 )

The employer would like to ensure that the SPD between male and

female is below 0.2. The model generating the OfferInterview at-
tribute is trusted by the company, but is provided by an external

service and, thus, cannot be fine-tuned to improve fairness. However,

the employer is willing to change their prescreening criteria by ex-

pressing their fairness requirement as long as the same criteria are

applied to judge every applicant to ensure individual fairness. This

can be achieved using an aggregate constraint SPD ≤ 0.2 That is, the
employer desires a repair of the query whose selection conditions are

used to filter applicants. We present additional motivating examples

beyond fairness in [3].

In this work, we model constraints on the query result as arith-
metic expressions involving aggregate queries evaluated over the
output of a user query. When the result of the user query fails to ad-
here to such an aggregate constraint (AC), we would like the system
to fix the violation by repairing the query by adjusting its selection
conditions, similar to [24, 29]. Specifically, we are interested in
computing the top-𝑘 repairs with respect to their distance to the
user query. The rationale is that we would like to preserve the orig-
inal semantics of the user’s query as much as possible. Moreover,
instead of assuming a single best repair, we consider returning 𝑘
repairs ranked by their distance to the original query to allow users
to choose the one that best matches their intent. ACs significantly
generalize the cardinality constraints supported in prior work on
query repair for fairness [13, 14, 26] and on query relaxation &
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Id Test 
Score(T)

Gender
(G)

Y

t1 30 F 1

t2 27 F 0

t3 37 M 1

t4 34 M 1

t5 31 M 1

Dataset R

Q#: SELECT * FROM R  
        WHERE  T ≥ 33 

𝑄1
𝛚 := 𝒄𝒐𝒖𝒏𝒕 𝐺 = 𝑀 𝑎𝑛𝑑 Y = 1

𝑄𝟐
𝛚 ≔ 𝒄𝒐𝒖𝒏𝒕 𝐺 = 𝑀

𝑄𝟑
𝛚 ≔ 𝒄𝒐𝒖𝒏𝒕 𝐺 = 𝐹 𝑎𝑛𝑑 Y = 1

𝑄4
𝛚 ≔ 𝒄𝒐𝒖𝒏𝒕 𝐺 = 𝐹

𝛚# = 𝑄1
𝛚

𝑄𝟐
𝛚  −

𝑄𝟑
𝛚

𝑄4
𝛚 <= 0.2

Query Q# & Constraint 𝛚#

Input
Clustering & 

Materialization

FF: Searching for repairs                  
For candidate condition T ≥ ci: 
Sorted candidates set for T : {34, 31, 30, 37, 27}
For c1= 34: {C7, C8} is covering set for T ≥ 34

RP: Searching for repairs

For a candidate set T ≥ [cmin,cmax] : 
Sorted candidates set for T : {[33, 37], [27, 32]}
For [cmin,cmax]  = [33, 37]:  
C7 is partially covered and C8 is fully covered
for T ≥ [33, 37]

𝑄1
𝛚 = 2, 𝑄𝟐

𝛚 = 2
𝑄3

𝛚 = 0, 𝑄4
𝛚 = 0

𝑄1
𝛚 =[1,2], 𝑄𝟐

𝛚 =[1,2]
𝑄3

𝛚 =[0,0], 𝑄4
𝛚 =[0,0]

Constraint Evaluation 𝚽# = 1 
Not a repair as 

1 > 0.2

𝚽# eval

𝚽# eval
𝚽#= [0.5,2] 

Not a repair as 
0.5 > 0.2

Process next 
repair candidate: 

c2= 31

(b)

(c)

(d)

(e) (f)

[33,37] is pruned. 
Process next 

repair candidate 
set: [27, 32]

(a)

(g)

(h)

(i) (j)

Figure 1: Overview of query repair with aggregate constraints using range-based pruning.

refinement [25, 29]. By allowing arithmetic combinations of ag-
gregation results we support common fairness measures such as
SPD that cannot be expressed as cardinality constraints. Our work
is applicable to any use case where uniform criteria have to be
applied to select a set of entities subject to additional constraints,
e.g., a government agency has to solicit contractors, 20% of which
should be local (see [3] for a detailed example). New challenges
arise from the generality of ACs as ACs are typically not monotone,
invalidating most optimizations proposed in related work.

A brute force approach for solving the query repair problem
is to enumerate all possible candidate repairs in order of their
distance to the user query. Each candidate is evaluated by running
the modified query and checking whether it fulfills the aggregate
constraint. The algorithm terminates once 𝑘 repairs have been
found. The main problem with this approach is that the number
of repair candidates is exponential in the number of predicates in
the user query. Furthermore, for each repair candidate we have to
evaluate the modified user query and one or more aggregate queries
on top of its result. Given that the repair problem is NP-hard in the
number of predicates we cannot hope to avoid this cost in general.
Reusing aggregation results. Nonetheless, we identify two oppor-
tunities for optimizing this process. When two repair candidates are
similar (in terms of the constants they use in selection conditions),
then typically there will be overlap between the aggregate con-
straint computations for the two candidates. To exploit this obser-
vation, we use a kd-tree [6] to partition the input dataset. For each
cluster (node in the kd-tree) we materialize the result of evaluating
the aggregation functions needed for a constraint on the set of tu-
ples contained in the cluster as well as store bounds for the attribute
values within the cluster (as is done in, e.g., zonemaps [31, 40]).
Then to calculate the result of an aggregation function for a repair

candidate, we use the bounds for each cluster to determine whether
all tuples in the cluster fulfill the selection conditions of the repair
candidate (in this case the materialized aggregates for the cluster
will be added to the result), none of the tuples in the cluster fulfill
the condition (in this case the whole cluster will be skipped), or if
some of the tuples in the cluster fulfill the condition (in this case we
apply the same test to the children of the cluster in the kd-tree). We
refer to this approach as Full Cluster Filtering (FF). In contrast to the
brute force approach, FF reuses aggregation results materialized for
clusters. Continuing with Example 1, consider the kd-tree in Fig-
ure 1(b) which partitions the input dataset 𝑅 in Figure 1(a) into a
set of clusters. Here, we simplify 𝑄1 from Example 1 by consider-
ing only a single condition, 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 (𝑇 ) ≥ 33, but use the same
aggregate constraint 𝜔#. Consider cluster 𝐶2 in Figure 1(b), where
the values of attribute TestScore (𝑇 ) are bounded by [27, 34]. For a
repair candidate with a condition 𝑇 ≥ 37 the entire cluster can be
skipped as no tuples in 𝐶2 can fulfill the condition. In contrast, for
condition 𝑇 ≥ 30, all tuples in 𝐶3 satisfy the condition, since the
values of attribute 𝑇 are bounded by [31, 37] (see Figure 1(b)).

Evaluating multiple candidate repairs at once. We extend this
idea to bound the aggregation constraint result for sets of repair
candidates at once. We refer to this approach as Cluster Range
Pruning (RP). A set of repair candidates is encoded as intervals of
values for the constant 𝑐𝑖 of each predicate 𝑎𝑖 op 𝑐𝑖 of the user query,
e.g., 𝑐1 ∈ [33, 37] as shown in Figure 1(g). We again reason about
whether all / none of the tuples in a cluster fulfill the condition for
every repair candidate from the set. The results are valid bounds on
the aggregation constraint result for any candidate repair within
the set. Using these bounds, we validate or disqualify complete
candidate sets at once.
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We make the following contributions in this work:
• A formal definition of query repair under constraints involving

arithmetic combinations of aggregate functions in Section 2.
• We present an optimized algorithm for the aggregate constraint

repair problem that reuses aggregation results when evaluat-
ing repair candidates (Section 3) and evaluates multiple repair
candidates by exploiting sound bounds that hold for all repair
candidates in a set (Section 4).

• A comprehensive experimental evaluation over multiple datasets,
queries, and constraints in Section 5. Compared to the state of
the art [26], we cover significantly more complex constraints.

2 PROBLEM DEFINITION
We consider a dataset 𝐷 = 𝑅1, · · · , 𝑅𝑧 consisting of one or more
relations 𝑅𝑖 , an input query 𝑄 that should be repaired, and an
aggregate constraint. The goal is to find the 𝑘 queries that fulfill
the constraint and minimally differ from 𝑄 .
User Query. A user query 𝑄 is a select-project-join (SPJ) query,
i.e., a relational algebra expression of the form:

𝜋𝐴 (𝜎𝜃 (𝑅1 ⊲⊳ . . . ⊲⊳ 𝑅𝑙 ))

We assume that the selection predicate 𝜃 of such a query is a con-
junction 𝜃 = 𝜃1 ∧ . . . ∧ 𝜃𝑚 of comparisons of the form 𝑎𝑖 op𝑖 𝑐𝑖 . For
numerical attributes 𝑎𝑖 , we allow op𝑖 ∈ {<, >,≤,≥,=,≠} and for
categorical attributes 𝑎𝑖 we only allow op𝑖 ∈ {=,≠}. We use 𝑄 (𝐷)
to denote the result of evaluating 𝑄 over 𝐷 .
Aggregate Constraints (AC). The user specifies requirements on
the result of their query as an AC. An AC is a comparison between
a threshold and an arithmetic expression over the result of filter-
aggregation queries. Such queries are of the form 𝛾𝑓 (𝑎) (𝜎𝜃 (𝑄 (𝐷))
where 𝑓 is an aggregate function – one of count, sum,min,max, avg
– and 𝜃 is a selection condition. We use 𝑄𝜔 to denote such a
filter-aggregation query. These queries are evaluated over the user
query’s result 𝑄 (𝐷). An aggregate constraint 𝜔 is of the form:

𝜔 :=𝜏 op Φ(𝑄𝜔
1 , . . . , 𝑄

𝜔
𝑛 ).

Here, Φ is an arithmetic expression using operators (+,−, ∗, /) over
{𝑄𝜔

𝑖
}, 𝑜𝑝 is a comparison operator, and 𝜏 is a (constant) threshold.

Aggregate constraints are non-monotone in general due to (i) non-
monotone arithmetic operators like division, (ii) non-monotone
aggregation functions, e.g., sum over the integers Z, and (iii) com-
bination of monotonically increasing and decreasing aggregation
functions, e.g., max(𝐴) +min(𝐵).
Query Repair. Given a user query 𝑄 , database 𝐷 , and constraint
𝜔 that is violated on 𝑄 (𝐷), we want to generate a repaired ver-
sion 𝑄 𝑓 𝑖𝑥 of 𝑄 such that 𝑄 𝑓 𝑖𝑥 (𝐷) fulfills 𝜔 . We restrict repairs to
changes of the selection condition 𝜃 of 𝑄 . For ease of presentation,
we consider a single AC, but our algorithms can also handle a con-
junction of multiple ACs, e.g., the cardinality for one group should
be above a threshold 𝜏1 and for another group below a threshold
𝜏2. Given the user query 𝑄 with a condition 𝜃 :=

⋀︁𝑚
𝑖=1 𝑎𝑖 op𝑖 𝑐𝑖 , a

repair candidate is a query 𝑄 𝑓 𝑖𝑥 that differs from 𝑄 only in the
constants used in selection conditions, i.e., 𝑄 𝑓 𝑖𝑥 uses a condition:
𝜃 ′ :=

⋀︁𝑚
𝑖=1 𝑎𝑖 op𝑖 𝑐𝑖 ′. For convenience, we will often use the vector

of constants 𝑐 = [𝑐′1, . . . , 𝑐′𝑚] to denote a repair candidate and use

Cand𝑄 to denote the set of all candidates. A candidate is a repair if
𝑄 𝑓 𝑖𝑥 (𝐷) |= 𝜔 .
Repair Distance. Ideally, we would want to achieve a repair that
minimizes the changes to the user’s original query to preserve
the intent of the user’s query as much as possible. We measure
similarity using a weighted linear combination of distances between
the constants used in selection conditions of the user query and the
repair, similar to [13, 25].1 Consider a user query 𝑄 with selection
condition 𝜃1 ∧ . . . ∧ 𝜃𝑚 and repair 𝑄 𝑓 𝑖𝑥 with selection condition
𝜃1
′ ∧ . . . ∧ 𝜃𝑚 ′. Then the distance 𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 ) is defined as:

𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 ) =
𝑚∑︂
𝑖=1

𝑤𝑖 · 𝑑 (𝜃𝑖 , 𝜃𝑖 ′)

where𝑤𝑖 is a weight in [0, 1] such that
∑︁

𝑖 𝑤𝑖 = 1 and the distance
between two predicates 𝜃𝑖 = 𝑎𝑖 op𝑖 𝑐𝑖 and 𝜃𝑖

′ = 𝑎𝑖 op𝑖 𝑐𝑖 ′ for nu-
meric attributes 𝑎𝑖 is: |𝑐𝑖

′−𝑐𝑖 |
|𝑐𝑖 | . For categorical attributes, the distance

is 1 if 𝑐𝑖 ≠ 𝑐𝑖
′ and 0 otherwise. For example, for Example 1, the

repair candidate with conditions Major = EE, Testscore ≥ 33, and
GPA ≥ 3.9 has a distance of 1 + 33−33

33 +
3.9−3.8
3.8 = 1.026.

We are now ready to formulate the problem studied in this work,
computing the 𝑘 repairs with the smallest distance to the user query.
Among these 𝑘 repairs, the user can then select the repair that best
aligns with their preferences. Here top-k𝑥∈𝑋 𝑓 (𝑥) returns the 𝑘

elements from set 𝑋 with the smallest 𝑓 (𝑥) values.
Aggregate constraint repair problem:
• Input: user query𝑄 , database 𝐷 , constraint 𝜔 , threshold 𝑘
• Output:

top-k
𝑄 𝑓 𝑖𝑥 ∈Cand𝑄 : 𝑄 𝑓 𝑖𝑥 (𝐷 ) |=𝜔

𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 )

Hardness. To generate a repair 𝑄 𝑓 𝑖𝑥 of 𝑄 , we must explore the
combinatorially large search space of possible candidate repairs.
For a single predicate over an attribute 𝑎𝑖 with 𝑁𝑖 distinct values
there are 𝑂 (𝑁𝑖 ) possible repairs. Thus, the size of the candidate set
Cand𝑄 is in 𝑂 (∏︁𝑚

𝑖=1 𝑁𝑖 ), exponential in𝑚, the number of condi-
tions in the user query. Unsurprisingly, the aggregate constraint
repair problem is NP-hard in the schema size. In [3], we provide
more details on the number of repairs for specific predicates.

3 THE FULL CLUSTER FILTERING
ALGORITHM

We now present Full Cluster Filtering (FF), our first algorithm for
the aggregate constraint repair problem that materializes results of
each filter-aggregation query 𝑄𝜔

𝑖
for subsets of the input database

𝐷 in a kd-tree. FF combines these aggregation results to compute
the result of 𝑄𝜔

𝑖
for a repair candidate 𝑄 𝑓 𝑖𝑥 and then uses these

results to evaluate the aggregate constraint (AC)𝜔 for𝑄 𝑓 𝑖𝑥 . Figure 1
shows an example of applying this algorithm: (b) building a kd-tree
and materializing statistics, (c) searching for candidate repairs, and
(d)-(e) evaluating constraints for repair candidates.

1We discuss other possible objectives used in prior work in Section 6. Other options
include returning all repairs that are Pareto optimal regarding predicate-level distances
or to minimize the change to the query’s result. Our algorithms can be extended to
optimize for any distance metric which can be interval-bounded based on bounds for
attribute values of a set of tuples.
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3.1 Clustering and Materializing Aggregations
For ease of presentation, we consider a database consisting of a
single table 𝑅 from now on. However, our approach can be general-
ized to queries involving joins by materializing the join output and
treating it as a single table. As repairs only change the selection
conditions of the user query, there is no need to reevaluate joins
when checking repairs. We use a kd-tree to partition 𝑅 into subsets
(clusters) based on attributes that appear in the selection condition
(𝜃 ) of the user query. The rationale is that the selection conditions
of a repair candidate filter data along these attributes.

To evaluate the AC 𝜔 for a candidate 𝑄 𝑓 𝑖𝑥 = [𝑐′1, . . . , 𝑐′𝑚], we
determine a set of clusters (nodes in the kd-tree) that cover exactly
the subset of 𝐷 that fulfills the selection condition of the candidate.
We can then merge the materialized aggregation results for these
clusters to compute the results of filter-aggregation queries𝑄𝜔

𝑖
used

in 𝜔 for 𝑄 𝑓 𝑖𝑥 (𝐷). To do that, we record the following information
for each cluster 𝐶 ⊆ 𝐷 that can be computed by a single scan over
the tuples in the cluster, or by combining results from previously
generated clusters if we generate clusters bottom up.
• Selection attribute bounds: For each attribute 𝑎𝑖 used in the

condition 𝜃 , we store bounds𝑎𝑖 :=[min(𝜋𝑎𝑖 (𝐶)),max(𝜋𝑎𝑖 (𝐶))].
• Count: The total number of tuples count(𝐶) := |𝐶 | in the cluster.
• Aggregation results: For each filter-aggregation query 𝑄𝜔 in

constraint 𝜔 , we store 𝑄𝜔 (𝐶).
An example kd-tree is shown in Figure 1(b). The user query

filters on attribute𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 (𝑇 ). The root of the kd-tree represents
the full dataset. At each level, the clusters from the previous level
are split into B sub-clusters along one of the attributes in 𝜃 . B,
called the branching factor, is a configuration parameter. We use
B = 2 in the example. For instance, the root cluster 𝐶1 is split into
two clusters 𝐶2 and 𝐶3 by partitioning the rows in 𝐶1 based on
their values in attribute 𝑇 . For cluster 𝐶2 containing three tuples
𝑡1, 𝑡2, and 𝑡4, we have bounds𝑇 = [27, 34] as the lowest 𝑇 value is
27 (from tuple 𝑡2) and the highest value is 34 (tuple 𝑡4). The value
of 𝑄𝜔

2 = count(𝐺𝑒𝑛𝑑𝑒𝑟 (𝐺) =𝑀) for 𝐶2 is 1 as there is one male in
the cluster. Consider a repair candidate with the condition 𝑇 ≥ 37.
Based on the bounds bounds𝑇 = [27, 34], we know that none of
the tuples satisfy this condition. Thus, this cluster and the whole
subtree rooted at the cluster can be ignored for computing the AC
𝜔# for the candidate.

For ease of presentation we assume that the leaf nodes of the
kd-tree contain a single tuple each. As this would lead to very large
trees, in our implementation we do not further divide clusters 𝐶
that contain less tuples than a threshold S. i.e., |𝐶 | ≤ S. We refer
to this parameter as the bucket size.

3.2 Constraint Evaluation for Candidates
The FF algorithm (Algorithm 1) takes as input the condition 𝜃 ′ of
a repair candidate, the root node of the kd-tree 𝐶𝑟𝑜𝑜𝑡 , and returns
a set of disjoint clusters C such that the union of these clusters is
precisely the subset of the relation 𝑅 that fulfills 𝜃 ′:⋃︂

𝐶∈C
= 𝜎𝜃 ′ (𝑅) (1)

The statistics materialized for this cluster set C are then used to
evaluate the AC for the repair candidate.

Algorithm 1 FullCoverClusterSet
Input: kd-tree with root𝐶𝑟𝑜𝑜𝑡 , condition 𝜃 ′ = 𝜃 ′1 ∧ . . . ∧ 𝜃 ′𝑚 , relation 𝑅.
Output: Set of clusters C such that

⋃︁
𝐶∈C𝐶 = 𝜎𝜃 ′ (𝑅) .

1: 𝑠𝑡𝑎𝑐𝑘 ← [𝐶𝑟𝑜𝑜𝑡 ]
2: C← ∅ ⊲ Initialize result set

3: while 𝑠𝑡𝑎𝑐𝑘 ≠ ∅ do
4: 𝐶𝑐𝑢𝑟 ← pop(𝑠𝑡𝑎𝑐𝑘 )
5: 𝑖𝑛 ← true, 𝑛𝑜𝑡𝑖𝑛 ← false
6: for all 𝜃 ′𝑖 = (𝑎𝑖 op𝑖 𝑐′𝑖 ) ∈ 𝜃 ′ do
7: 𝑖𝑛 ← 𝑖𝑛 ∧ eval∀ (𝜃 ′𝑖 , bounds𝑎𝑖 (𝐶𝑐𝑢𝑟 ) ) ⊲ All tuples fulfill 𝜃 ′𝑖 ?

8: 𝑛𝑜𝑡𝑖𝑛 ← 𝑛𝑜𝑡𝑖𝑛 ∨ eval∀ (¬𝜃 ′𝑖 , bounds𝑎𝑖 (𝐶𝑐𝑢𝑟 ) )
9: if 𝑖𝑛 then ⊲ All tuple in𝐶 fulfill 𝜃 ′

10: C← C ∪ {𝐶𝑐𝑢𝑟 }
11: else if ¬𝑛𝑜𝑡𝑖𝑛 then ⊲ Some tuples in𝐶 may fulfill 𝜃 ′

12: for all𝐶 ∈ children(𝐶𝑐𝑢𝑟 ) do ⊲ Process children

13: 𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑎𝑐𝑘 ∪ {𝐶 }
14: return C

Table 1: Given the bounds [𝑎, 𝑎] for the attribute 𝑎 of a con-
dition 𝑎 op 𝑐 or 𝑎 ∈ [𝑐1, 𝑐2], function eval∀ does return true if
the condition evaluates to true for all values in [𝑎, 𝑎]. For RP,
we consider a range [𝑐, 𝑐] (corresponding to a set of candi-
dates) or two ranges [𝑐1, 𝑐1] and [𝑐2, 𝑐2] for operator ∈. reval∀
determines whether for every 𝑐 ∈ [𝑐, 𝑐], the condition is guar-
anteed to evaluate to true for every 𝑎 ∈ [𝑎, 𝑎] while reval∃
determines whether for some 𝑐 ∈ [𝑐, 𝑐], the condition may
evaluate to true for 𝑎 ∈ [𝑎, 𝑎].

Op. eval∀ reval∀ reval∃
>,≥ 𝑎 > 𝑐 , 𝑎 ≥ 𝑐 𝑎 > 𝑐 , 𝑎 ≥ 𝑐 𝑎 > 𝑐 , 𝑎 ≥ 𝑐
<,≤ 𝑎 < 𝑐 , 𝑎 ≤ 𝑐 𝑎 < 𝑐 , 𝑎 ≤ 𝑐 𝑎 < 𝑐 , 𝑎 ≤ 𝑐
= 𝑎 = 𝑎 = 𝑐 𝑎 = 𝑐 = 𝑎 = 𝑐 [𝑎, 𝑎] ∩ [𝑐, 𝑐] ≠ ∅
≠ 𝑐 ∉ [𝑎, 𝑎] [𝑎, 𝑎] ∩ [𝑐, 𝑐] = ∅ ¬(𝑎 = 𝑐 = 𝑐 = 𝑎)

∈ [𝑐1, 𝑐2] 𝑐1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑐2 𝑐1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑐2 [𝑎, 𝑎] ∩ [𝑐1, 𝑐2] ≠ ∅

3.2.1 Determining a Covering Set of Clusters. The algorithm main-
tains a 𝑠𝑡𝑎𝑐𝑘 of clusters to be examined that is initialized with the
root cluster 𝐶𝑟𝑜𝑜𝑡 (line 1). It then processes one cluster at a time
until a set of clusters C fulfilling Equation (1) has been determined
(lines 3-14). For each cluster𝐶 , we distinguish 3 cases (lines 6-8): (i)
we can use the bounds on the selection attributes recorded for the
cluster to show that all tuples in the cluster fulfill 𝜃 ′, i.e., 𝜎𝜃 ′ (𝐶) =𝐶

(line 7). In this case, the cluster will be added to C (lines 9-10); (ii)
based on the bounds, we can determine that none of the tuples in
the cluster fulfill the condition (line 8). Then this cluster can be
ignored; (iii) either a non-empty subset of 𝐶 fulfills 𝜃 ′ or based on
the bounds bounds𝑎𝑖 (𝐶) we cannot demonstrate that 𝜎𝜃 ′ (𝐶) = ∅ or
𝜎𝜃 ′ (𝐶) =𝐶 hold. In this case, we add the children of 𝐶 to the stack
to be evaluated in future iterations (lines 11-13). The algorithm
uses the function eval∀ shown in Table 1 to determine whether
based on the bounds of the cluster 𝐶 , the comparison condition
𝜃 ′𝑖 is guaranteed to be true for all 𝑡 ∈ 𝐶 . Additionally, it checks
whether case (ii) holds by applying eval∀ to the negation 𝜃 ′𝑖 . Note
that to negate a comparison we simply push the negation to the
comparison operator, e.g., ¬(𝑎 < 𝑐) = (𝑎 ≥ 𝑐). As the selection
condition of any repair candidate is a conjunction of comparisons
𝜃 ′1 ∧ . . . ∧ 𝜃 ′𝑚 , the cluster is fully covered (case (i)) if eval∀ returns
true for all 𝜃 ′𝑖 and not covered at all (case (ii)) if eval∀ returns true
for at least one comparison ¬𝜃 ′𝑖 .
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3.2.2 Determining Coverage. In Table 1, we define the function
eval∀ which takes a condition 𝑎 op 𝑐 and bounds bounds𝑎 (𝐶) for
attribute 𝑎 in cluster 𝐶 and returns true if it is guaranteed that
all tuples 𝑡 ∈ 𝐶 fulfill the condition. Ignore reval∀ for now, this
function will be used in Section 4. An inequality > (or ≥) is true for
all tuples if the lower bound 𝑎 of 𝑎 is larger (larger equal) than the
threshold 𝑐 . The case for < and ≤ is symmetric: the upper bound 𝑎
has to be smaller (smaller equals) than 𝑐 . For an equality, we can
only guarantee that the condition is true if 𝑎 = 𝑎 = 𝑐 . For ≠, all
tuples fulfill the inequality if 𝑐 does not belong to the interval [𝑎, 𝑎].

For the running example in Figure 1, consider a repair candidate
with the condition 𝑇 ≥ 34, where 𝑐1 = 34. The algorithm maintains
a stack of clusters initialized to [𝐶1], the root node of the kd-tree. In
each iteration it takes one cluster form the stack. The root cluster𝐶1,
has bounds𝑇 (𝐶1) = [27, 37]. The algorithm evaluates whether all
or none of the tuples satisfy the condition. Since neither is the case,
we proceed to the children of 𝐶1: {𝐶2 and 𝐶3}. The same situation
occurs for𝐶2 and𝐶3 leading to further exploration of their children:
𝐶4 and 𝐶5 for 𝐶2 and 𝐶8 and 𝐶9 for 𝐶3. Since the coverage for 𝐶4
cannot be determined, the algorithm proceeds to process𝐶6 and𝐶7.
Clusters 𝐶5, 𝐶6 and 𝐶9 are determined to not satisfy the condition
while𝐶7 and𝐶8 are confirmed to meet the condition and are added
to C. In this example, we had to explore all of the leaf clusters,
but often we will be able to prune or confirm clusters covering
multiple tuples. For instance, for 𝑇 ≥ 37, 𝐶2 with bounds [27, 34]
with all of its descendents can be skipped as 𝑇 ≥ 37 is false for any
𝑇 ∈ [27, 34].

3.2.3 Constraint Evaluation. After identifying the covering set of
clusters C for a repair candidate 𝑄 𝑓 𝑖𝑥 , our approach evaluates the
AC𝜔 over C. Recall that for each cluster𝐶 we materialize the result
of each filter-aggregation query 𝑄𝜔

𝑖
used in 𝜔 . For aggregate func-

tion avg that is not decomposable, we apply the standard approach
of storing count and sum instead.We then compute𝑄𝜔

𝑖
(𝑄 (𝐷)) over

the materialized aggregation results for the clusters. Concretely,
for such an aggregate query 𝑄𝜔 :=𝛾f (𝑎) (𝜎𝜃 ′ (𝑄 (𝐷)) we compute
its result as follows using C: 𝛾f ′ (𝑎)

(︁⋃︁
𝐶∈C{𝑄𝜔 (𝐶)}

)︁
. Here f ′ is the

function we use to merge aggregation results for multiple subsets
of the database. This function depends on f , e.g., for both count
and sum we have f ′ = sum, for min we use f ′ =min, and for max
we use f ′ =max. We then substitute these aggregation results into
𝜔 and evaluate the resulting expression to determine whether𝑄 𝑓 𝑖𝑥

fulfills the constraints and is a repair or not.
In the example from Figure 1(c), the covering set of clusters

for the repair candidate with 𝑐1 = 34 is C = {𝐶7,𝐶8}. Evaluating
𝑄𝜔
1 = count(𝐺𝑒𝑛𝑑𝑒𝑟 (𝐺) =𝑀 ∧ 𝑌 = 1) over C, we sum the counts:

𝑄𝜔
1 =𝑄𝜔

1𝐶7
+𝑄𝜔

1𝐶8
= 1+1 = 2. Similarly,𝑄𝜔

2 =𝑄𝜔
2𝐶7
+𝑄𝜔

2𝐶8
= 1+1 =

2, 𝑄𝜔
3 =𝑄𝜔

3𝐶7
+𝑄𝜔

3𝐶8
= 0+ 0 = 0, 𝑄𝜔

4 =𝑄𝜔
4𝐶7
+𝑄𝜔

4𝐶8 = 0+ 0 = 0 as
shown in Figure 1(d). Substituting these values into 𝜔#, we obtain
1 ≤ 0.2 = false as shown in Figure 1(e). Since the candidate 𝑇 ≥ 34
does not satisfy the constraint it is not a valid repair.

3.3 Computing Top-𝑘 Repairs
To compute the top-𝑘 repairs, we enumerate all repair candidates
in increasing order of their distance to the user query using the
distance measure from Section 2. For each candidate 𝑄 𝑓 𝑖𝑥 , we ap-
ply Algorithm FF to determine a covering clusterset, evaluate the

Algorithm 2 ParCoverClusterSet
Input: kd-tree with root 𝐶𝑟𝑜𝑜𝑡 , repair candidate set Q =

[[𝑐1, 𝑐1], . . . , [𝑐𝑚, 𝑐𝑚]], condition 𝜃

Output: Partially covering cluster set (C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 )
1: 𝑠𝑡𝑎𝑐𝑘 ← [𝐶𝑟𝑜𝑜𝑡 ]
2: C𝑓 𝑢𝑙𝑙 ← ∅,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ← ∅ ⊲ Initialize cluster sets

3: while 𝑠𝑡𝑎𝑐𝑘 ≠ ∅ do
4: 𝐶𝑐𝑢𝑟 ← pop(𝑠𝑡𝑎𝑐𝑘)
5: 𝑖𝑛 ← true, 𝑝𝑖𝑛 ← true
6: for all 𝜃𝑖 = (𝑎𝑖 op𝑖 𝑐𝑖 ) ∈ 𝜃 do ⊲ 𝐶𝑐𝑢𝑟 fully / part. covered?

7: 𝑖𝑛 ← 𝑖𝑛 ∧ reval∀ (𝜃𝑖 , [𝑐𝑖 , 𝑐𝑖 ], bounds𝑎𝑖 (𝐶𝑐𝑢𝑟 ))
8: 𝑝𝑖𝑛 ← 𝑝𝑖𝑛 ∧ reval∃ (𝜃𝑖 , [𝑐𝑖 , 𝑐𝑖 ], bounds𝑎𝑖 (𝐶𝑐𝑢𝑟 ))
9: if 𝑖𝑛 then ⊲ Add fully covered cluster to the result

10: C𝑓 𝑢𝑙𝑙 ← C𝑓 𝑢𝑙𝑙 ∪ {𝐶𝑐𝑢𝑟 }
11: else if 𝑝𝑖𝑛 then
12: if isleaf (𝐶𝑐𝑢𝑟 ) then ⊲ Partially covered leaf cluster

13: C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ← C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ∪ {𝐶𝑐𝑢𝑟 }
14: else ⊲ Process children of partial cluster

15: for all 𝐶 ∈ children(𝐶𝑐𝑢𝑟 ) do
16: 𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑎𝑐𝑘 ∪ {𝐶}
17: return (C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 )

constraint 𝜔 , and output 𝑄 𝑓 𝑖𝑥 if it fulfills the constraint. Once we
have found 𝑘 results, the algorithm terminates.

4 CLUSTER RANGE PRUNING (RP)
While algorithm FF reduces the effort needed to evaluate aggrega-
tion constraints for repair candidates, it has the drawback that we
still have to evaluate each repair candidate individually. We now
present an enhanced approach that reasons about sets of repair can-
didates. For a user query condition 𝜃1∧ . . .∧𝜃𝑚 where 𝜃𝑖 :=𝑎𝑖 op𝑖 𝑐𝑖 ,
we use ranges of constant values instead of constants to represent
such a set of repairs Q: [[𝑐1, 𝑐1], . . . , [𝑐𝑚, 𝑐𝑚]] . Such a list of ranges
Q represents a set of a repair candidates:

{[𝑐1, . . . , 𝑐𝑚] | ∀𝑖 ∈ [1,𝑚] : 𝑐𝑖 ∈ [𝑐𝑖 , 𝑐𝑖 ]}

Consider an aggregation constraint 𝜔 :=𝜏 opΦ(𝑄𝜔
1 , . . . , 𝑄

𝜔
𝑛 ). Our

enhanced approach RP uses a modified version of the kd-tree from
FF to compute conservative bounds Φ and Φ on the possible values
of arithmetic expression Φ that hold for all repair candidates in
Q. Based on such bounds, if (i) 𝜏 op 𝑐 holds for every 𝑐 ∈ [Φ,Φ],
then every 𝑄 𝑓 𝑖𝑥 ∈ Q is a valid repair, if (ii) 𝜏 op 𝑐 is violated for
every 𝑐 ∈ [Φ,Φ], then no 𝑄 𝑓 𝑖𝑥 ∈ Q is a valid repair and we can
skip the whole set. Otherwise, (iii) there may or may not exist some
candidates inQ that are repairs. In this case, our algorithm partitions
Q into multiple subsets and applies the same test to each partition.
In the following, we first discuss our algorithm that utilizes such
repair candidate sets and bounds on the aggregate constraint results
and then explain how to use the kd-tree to compute such bounds.

4.1 Computing Top-𝑘 Repairs
RP (Algorithm 3) takes as input a kd-tree with root 𝐶𝑟𝑜𝑜𝑡 , a user
query’s condition 𝜃 , an AC 𝜔 , a candidate set Q = [[𝑐1, 𝑐1], . . . ,
[𝑐𝑚, 𝑐𝑚]], and a user query 𝑄 and returns the set of top-𝑘 repairs
Q𝑡𝑜𝑝−𝑘 .

256



Algorithm 3 Top-k Repairs w. Range-based Pruning of Candidates
Input: kd-tree with root 𝐶𝑟𝑜𝑜𝑡 , constraint AC 𝜔 , repair candidate

set Q = [[𝑐1, 𝑐1], . . . , [𝑐𝑚, 𝑐𝑚]], user query condition 𝜃 = 𝜃1 ∧
. . . ∧ 𝜃𝑚 , user query 𝑄

Output: Top-𝑘 repairs Q𝑡𝑜𝑝−𝑘
1: Q𝑡𝑜𝑝−𝑘 ← ∅ ⊲ Queue of repairs𝑄 ′ sorted on 𝑑 (𝑄,𝑄 ′ )
2: 𝑟𝑐𝑎𝑛𝑑 ← ∅ ⊲ Queue of repair sets Q′ sorted on 𝑑 (𝑄,Q′ )
3: 𝑞𝑢𝑒𝑢𝑒 ← [Q] ⊲ Queue of repair candidate sets Q′ sorted on 𝑑 (𝑄,Q′ )
4: while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
5: Q𝑐𝑢𝑟 ← pop(𝑞𝑢𝑒𝑢𝑒)
6: Q𝑛𝑒𝑥𝑡 ← peek(𝑞𝑢𝑒𝑢𝑒) ⊲ Peek at next item in queue

7: (C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) ← ParCoverClusterSet(Q𝑐𝑢𝑟 ,𝐶𝑟𝑜𝑜𝑡 , 𝜃 )
8: if aceval∀ (𝜔,C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) then ⊲ All𝑄 ′ ∈ Q𝑐𝑢𝑟 are repairs?

9: 𝑟𝑐𝑎𝑛𝑑 ← insert(𝑟𝑐𝑎𝑛𝑑,Q𝑐𝑢𝑟 )
10: else if aceval∃ (𝜔,C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) then ⊲ Potential repairs?

11: for Q𝑛𝑒𝑤 ∈ RangeDivide(Q𝑐𝑢𝑟 ) do ⊲ Divide ranges

12: if hasCandidates(Q𝑛𝑒𝑤) then
13: 𝑞𝑢𝑒𝑢𝑒 ← insert(𝑞𝑢𝑒𝑢𝑒,Q𝑛𝑒𝑤)
14: Q𝑡𝑜𝑝−𝑘 ← topkConcreteCand(𝑟𝑐𝑎𝑛𝑑, 𝑘) ⊲ Top 𝑘 repairs

15: if |Q𝑡𝑜𝑝−𝑘 | ≥ 𝑘 then ⊲ Have 𝑘 repairs?

16: if 𝑑 (𝑄,Q𝑛𝑒𝑥𝑡 ) > 𝑑 (𝑄,Q𝑡𝑜𝑝−𝑘 [𝑘]) then ⊲ Rest inferior?

17: break
18: return Q𝑡𝑜𝑝−𝑘

The algorithm maintains three priority queues: (i) Q𝑡𝑜𝑝−𝑘 is a
queue of individual repairs that eventually will store the top-k
repairs. This queue is sorted on 𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 ) where 𝑄 𝑓 𝑖𝑥 is a repair
in the queue; (ii) 𝑟𝑐𝑎𝑛𝑑 is a queue where each element is a repair
candidate set Q encoded as ranges as shown above. For each Q
we have established that for all 𝑄 𝑓 𝑖𝑥 ∈ Q, 𝑄 𝑓 𝑖𝑥 is a repair. Queue
𝑟𝑐𝑎𝑛𝑑 is sorted on the lower bound 𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 ∈ Q) of the distance
of any repair in Q to the user query. Finally, (iii) 𝑞𝑢𝑒𝑢𝑒 is a queue
where each element is a repair candidate set Q. This queue is also
sorted on 𝑑 (𝑄,𝑄 𝑓 𝑖𝑥 ∈ Q). In each iteration of the main loop of the
algorithm, one repair candidate set from 𝑞𝑢𝑒𝑢𝑒 is processed.

The algorithm initializes 𝑞𝑢𝑒𝑢𝑒 to the input repair candidate set
Q. We call the algorithm with a repair candidate set that covers the
whole search space (line 1-3). The algorithm’s main loop processes
one repair candidateQ𝑐𝑢𝑟 at a time (line 5) while keeping track of the
next candidateQ𝑛𝑒𝑥𝑡 (line 6) until a set of top-k repairs fulfilling AC
𝜔 has been determined (lines 4–17). For the current repair candidate
set Q𝑐𝑢𝑟 , we use function ParCoverClusterSet (Algorithm 2) to
determine two sets of clusters C𝑓 𝑢𝑙𝑙 and C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (line 7). For every
cluster𝐶 ∈ C𝑓 𝑢𝑙𝑙 , all tuples in𝐶 fulfill the condition of every repair
candidate 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 and for every cluster 𝐶 ∈ C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , there
may exist some tuples in 𝐶 such that for some repair candidates
𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 , the tuples fulfill the condition of 𝑄 𝑓 𝑖𝑥 . We use these
two sets of clusters to determine bounds [Φ,Φ] on the arithmetic
expression Φ of the AC 𝜔 . The algorithm then uses these bounds to
distinguish between three cases (line 8-13): (i) 𝜔 is guaranteed to
hold for every 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 . We use function aceval∀ which takes
C𝑓 𝑢𝑙𝑙 and C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 as input to test for this case. If case (i) applies
then all 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 are repairs and we add Q𝑐𝑢𝑟 to 𝑟𝑐𝑎𝑛𝑑 (lines
8–9); (ii) some repair candidates 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 may fulfill the AC. In
this caseQ𝑐𝑢𝑟 will be split and further examined in future iterations
(lines 10–13). We test for case (ii) using function aceval∃ ; (iii) no

𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 is a repair and we can discard Q𝑐𝑢𝑟 . Case (iii) applies
if both aceval∀ and aceval∃ return false. We will discuss these
functions in depth in Section 4.3.

For example, if 𝜔 :=0.7 ≤ Φ and we compute bounds [Φ,Φ] =
[0.5, 1] that hold for all 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 , then aceval∀ returns false as
some𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 may not fulfill the constraint. However, aceval∃
return true as some 𝑄 𝑓 𝑖𝑥 ∈ Q𝑐𝑢𝑟 may fulfill the constraint. In
this case, the algorithm partitions Q𝑐𝑢𝑟 into smaller sub-ranges
Q𝑛𝑒𝑤 using the function RangeDivide(Q𝑐𝑢𝑟 ) (line 11). Assume
that Q𝑐𝑢𝑟 = [[𝑐1, 𝑐1], . . . , [𝑐𝑚, 𝑐𝑚]]. RangeDivide splits each range
[𝑐𝑖 , 𝑐𝑖 ] into a fixed number of fragments {[𝑐𝑖1 , 𝑐𝑖1 ], . . . , [𝑐𝑖𝑙 , 𝑐𝑖𝑙 ]}
such that each [𝑐𝑖 𝑗 , 𝑐𝑖 𝑗 ] is roughly of the same size and returns the
following set of repair candidate sets:

{[[𝑐1𝑗1 , 𝑐𝑖 𝑗1 ], . . . , [𝑐𝑚 𝑗𝑚
, 𝑐𝑚 𝑗𝑚

]] | [ 𝑗1, . . . , 𝑗𝑚] ∈ [1, 𝑙]𝑚}

That is, each Q𝑛𝑒𝑤 has one of the fragments for each [𝑐𝑖 , 𝑐𝑖 ] and the
union of all repair candidates in these repair candidate sets is Q𝑐𝑢𝑟 .
We use 𝑙 = 2 in our implementation. The function hasCandidates
(line 12-13) checks whether each range in Q𝑛𝑒𝑤 contains at least
one value that exists in the data. This restricts the search space to
only include candidates with constants that actually appear in the
data (or are the minimum / maximum of an attribute’s domain).
The rationale for this test is that for any other value 𝑐′ not in this
set and supported comparison operators, there exists a value 𝑐 in
the set (occurring in the data or a domain bound) for which the
selection on 𝑐 and 𝑐′ returns exactly the same result. Hence, it is
sufficient to only consider such repair candidates and repair sets
that do not contain such a candidate can be pruned. For example, if
the dataset contains only values 8 and 10 for a given attribute, then
applying a filter 𝑎 ≤ 9 would yield the same result as 𝑎 ≤ 8, since no
data points lie between 8 and 10. If this condition is satisfied, Q𝑛𝑒𝑤

is inserted into the priority queue 𝑞𝑢𝑒𝑢𝑒 to be processed in future
iterations. In each iteration we use function topkConcreteCand
(line 14) to determine the 𝑘 repairs𝑄𝑖 across all Q ∈ 𝑟𝑐𝑎𝑛𝑑 with the
lowest distance to the user query𝑄 . If we can find 𝑘 such candidates
(line 15), then we test whether no repair candidate from the next
repair candidate setQ𝑛𝑒𝑥𝑡 may be closer to𝑄 than the 𝑘th candidate
Q𝑡𝑜𝑝−𝑘 [𝑘] from Q𝑡𝑜𝑝−𝑘 (line 16). This is the case if the lower bound
on the distance of any candidate inQ𝑛𝑒𝑥𝑡 is larger than the distance
of Q𝑡𝑜𝑝−𝑘 [𝑘]. Furthermore, the same holds for all the remaining
repair candidate sets in 𝑟𝑐𝑎𝑛𝑑 , because 𝑟𝑐𝑎𝑛𝑑 is sorted on the lower
bound of the distance to the user query. That is, Q𝑡𝑜𝑝−𝑘 contains
exactly the top-k repairs and the algorithm returns this set.

4.2 Determining Covering Cluster Sets
Similar to FF, we can use the kd-tree to determine a covering cluster
setC. However, as we now deal with a set of candidate repairsQ, we
would have to find a cluster setC such that for all𝑄 𝑓 𝑖𝑥 ∈ Qwe have:
𝑄 𝑓 𝑖𝑥 (𝐷) =

⋃︁
𝐶∈C𝐶 . Such a covering cluster set is unlikely to exist

as for any two𝑄 𝑓 𝑖𝑥 ≠ 𝑄 ′
𝑓 𝑖𝑥
∈ Q it is likely that𝑄 𝑓 𝑖𝑥 (𝐷) ≠ 𝑄 ′

𝑓 𝑖𝑥
(𝐷).

Instead we relax the condition and allow clusters𝐶 that are partially
covered, i.e., for which some tuples in𝐶 may be in the result of some
candidates in Q. We modify Algorithm 1 to take a repair candidate
set as an input and to return two sets of clusters: C𝑓 𝑢𝑙𝑙 which
contains clusters for which all tuples fulfill the selection condition
of all 𝑄 𝑓 𝑖𝑥 ∈ Q and C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 which contains clusters that are only
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partially covered, i.e., may contain tuples that fulfill the condition
of some 𝑄 𝑓 𝑖𝑥 ∈ Q.

Analogous to Algorithm 1, the updated algorithm (Algorithm 2)
maintains a stack of clusters to be processed that is initialized with
the root node of the kd-tree (line 1). In each iteration of the main
loop (line 3-16), the algorithm determines whether all tuples of the
current cluster𝐶𝑐𝑢𝑟 fulfill the conditions 𝜃𝑖 for all repair candidates
𝑄 𝑓 𝑖𝑥 ∈ Q. This is done using function reval∀ (line 7). Additionally,
we check whether it is possible that at least one tuple fulfills the
condition of at least one repair candidate 𝑄 𝑓 𝑖𝑥 ∈ Q. This is done
using a function reval∃ (line 8). If the cluster is fully covered we
add it to the result set C𝑓 𝑢𝑙𝑙 (line 10). If it is partially covered, then
we distinguish between two cases (line 11- 16). Either the cluster
is a leaf node (line 12-13) or it is an inner node (line 14-16). If the
cluster is a leaf, then we cannot further divide the cluster and add
it to C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 . If the cluster is an inner node, then we process its
children as we may be able to determine that some of its children
are fully covered or not covered at all.

Table 1 shows how conditions are evaluated by reval∀ and
reval∃ . For a condition 𝑎 > 𝑐 , if the lower bound of attribute 𝑎
is larger than the upper bound 𝑐 , then all tuples in the cluster fulfill
the condition for all 𝑄 𝑓 𝑖𝑥 ∈ Q. The cluster is partially covered if
𝑎 > 𝑐 as then there exists at least one value in the range of 𝑎 and
constant 𝑐 in [𝑐, 𝑐] for which the condition is true.

In the example from Figure 1, a repair candidate [[33, 37]] is
evaluated. Recall that the single condition in this example is 𝑇 ≥ 𝑐 .
𝐶𝑟𝑜𝑜𝑡 has bounds𝑇 = [27, 37]. The algorithm first applies reval∀
to check if all tuples in 𝐶𝑟𝑜𝑜𝑡 satisfy the condition. Since 27 ̸≥
37, the algorithm proceeds to evaluate the condition for partial
coverage using reval∃ . Since 𝐶1 is partially covered and not a leaf,
the algorithm continues by processing 𝐶1’s children, 𝐶2 and 𝐶3.
For 𝐶3, a similar situation occurs: the lower bound of the attribute,
𝑎 = 31, is not greater than the upper bound of the constant, 𝑐 = 37
and we have to process additional clusters, 𝐶8 and 𝐶9. The same
holds for𝐶2 and we process its children:𝐶4 and𝐶5. Additionally,𝐶4
fails reval∀ but satisfies partial coverage with reval∃ , necessitating
evaluation of its children, 𝐶6 and 𝐶7. Finally, the algorithm applies
reval∀ and reval∃ if necessary to the clusters 𝐶5, 𝐶6, 𝐶7, 𝐶8, and
𝐶9, confirming that 𝐶8 ∈ C𝑓 𝑢𝑙𝑙 and 𝐶7 ∈ C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , as 𝑡3 .𝑇 = 37 ≥ 𝑐

is true for all 𝑐 ∈ [33, 37] and 𝑡4 .𝑇 = 34 ≥ 𝑐 is may be true for some
𝑐 ∈ [33, 37].

4.3 Computing Bounds on Constraints
Given the cluster sets (C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) computed by Algorithm 2, we
next (i) compute bounds on the results of the aggregation queries
𝑄𝜔
𝑖
used in the constraint, then (ii) use these bounds to compute

bounds [Φ,Φ] on the result of the arithmetic expression Φ of the AC
𝜔 over repair candidates inQ. These bounds are conservative in the
sense that all possible results are guaranteed to be included in these
bounds. Then, finally, (iii) function aceval∀ uses the computed
bounds to determine whether all candidates in Q fulfill the con-
straint by applying reval∀ from Table 1. For a constraint𝜔 :=𝜏 opΦ,
aceval∀ calls reval∀ with [Φ,Φ] and 𝜏 . aceval∃ uses reval∃ in-
stead to determine whether some candidates in Q may fulfill the
constraint. This requires techniques for computing bounds on the
possible results of arithmetic expressions and aggregation functions

when the values of each input of the computation are known to be
bounded by some interval.

4.3.1 Bounding Aggregation Results. We now discuss how to com-
pute bounds for the results of the filter-aggregation queries 𝑄𝜔

𝑖
of

an aggregate constraint 𝜔 based on the cluster sets (C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 )
returned by Algorithm 2. As every cluster 𝐶 in C𝑓 𝑢𝑙𝑙 is fully cov-
ered for all repair candidates in Q, i.e., all tuples in the cluster fulfill
the conditions of each 𝑄 𝑓 𝑖𝑥 ∈ Q, the materialized aggregation re-
sults𝑄𝜔

𝑖
(𝐶) of𝐶 contribute to both the lower bound𝑄𝜔

𝑖
and upper

bound 𝑄𝜔
𝑖
as for FF. For partially covered clusters (C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ), we

have to make worst case assumptions to derive valid lower and
upper bounds. For the lower bound, we have to consider the mini-
mum across two options: (i) no tuples from the cluster can lower
the aggregation value if included in the computation. In this case,
the cluster is ignored for computing the lower bound, e.g., this
is always the case for max; (ii) based on the bounds of the input
attribute for the aggregation within the cluster, there are values in
the cluster that if added to the current aggregation result further
lowers the result. For example, for min(𝑎) we have to include 𝑎 if
𝑎 is smaller than the current smallest value of min. For sum we
have the two cases: (i) the attribute for the aggregation has negative
numbers. In this case we multiply 𝑎 with the count for the cluster
(a lower bound on summing up all negative numbers in the cluster)
and add this to the lower bound;2 (ii) otherwise we should ignore
this cluster for computing lower bounds. Computing the upper
bound is symmetric: if there are no tuples in the cluster that would
result in a larger aggregation result, e.g., for sum when all values
of attribute 𝑎 in the cluster are negative, then including any tuple
from the cluster would lower the aggregation result and the cluster
should be ignored. Otherwise, including some values in the cluster
for the aggregation input attribute may increase the aggregation
result, then we include 𝑎 (aggregation function is min or max) or
𝑎 · |𝐶 | (aggregation function is sum) in the computation for the
upper bound.

4.3.2 Bounding Results of Arithmetic Expressions. Given the bounds
on filter-aggregation queries, we use interval arithmetic [17, 33]
which computes sound bounds for the result of arithmetic oper-
ations when the inputs are bound by intervals. In our case, the
bounds on the results of aggregate queries 𝑄𝜔

𝑖
are the input and

bounds [Φ,Φ] on Φ are the result. The notation we use is similar
to [39]. Table 2 shows the definitions for arithmetic operators we
support in aggregate constraints. Here, 𝐸 and 𝐸 denote the lower
and upper bound on the values of expression 𝐸, respectively. For
example, for addition the lower bound for the result of addition
𝐸1 + 𝐸2 of two expressions 𝐸1 and 𝐸2 is 𝐸1 + 𝐸2.

4.3.3 Bounding Aggregate Constraint Results. Consider a constraint
𝜔 :=𝜏 opΦ. There are three possible outcomes for a repair candi-
date set: (i) 𝜏 opΦ is true for all [Φ,Φ] which aceval∀ determines
using reval∀ and bounds [𝜏, 𝜏]; (ii) some of the candidates inQmay
fulfill the condition, which aceval∃ determines using reval∃ ; (iii)

2These bounds can be improved if for each filter-aggregation query with aggregation
function sum we additionally materialize counts and separate sums for negative and
positive values in a cluster for tuples that fulfill the condition of the filter-aggregation
query.
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none of the candidates in Q fulfill the condition (both (i) and (ii)
are false).

In the running example from Figure 1(g), the covering set of
clusters for repair candidate set Q :=[[33, 37]] are C𝑓 𝑢𝑙𝑙 = {𝐶8} and
C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = {𝐶7}. To evaluate 𝑄𝜔

1 = count(𝐺 = 𝑀 ∧ 𝑌 = 1) over
these clusters, the algorithm includes the materialized aggregation
results for 𝐶8 for both the lower bound 𝑄𝜔

𝑖
and upper bound 𝑄𝜔

𝑖
.

For the partially covered 𝐶7, the lower bound of 𝑄𝜔
1𝐶7

is 0 for this
cluster (the lowest count is achieved by excluding all tuples from
the cluster), while the upper bound is 1, as there exists a male in
the cluster satisfying 𝑌 = 1. Thus, we get the following bounds for
𝑄𝜔
1𝐶7

= [0, 1]. Similarly, we compute the remaining aggregation
bounds: 𝑄𝜔

1𝐶8
= [1, 1], 𝑄𝜔

2𝐶7
= [0, 1], 𝑄𝜔

2𝐶8
= [1, 1], 𝑄𝜔

3𝐶7
=

[0, 0], 𝑄𝜔
3𝐶8

= [0, 0], 𝑄𝜔
4𝐶7

= [0, 0], 𝑄𝜔
4𝐶8

= [0, 0].
Next, in Figure 1(h) we sum the lower and upper bounds for each

aggregation𝑄𝜔
𝑖
across all clusters in C:𝑄𝜔

1 =𝑄𝜔
1𝐶7
+𝑄𝜔

1𝐶8
= [1, 2],

𝑄𝜔
2 = 𝑄𝜔

2𝐶7
+ 𝑄𝜔

2𝐶8
= [1, 2], 𝑄𝜔

3 = 𝑄𝜔
3𝐶7
+ 𝑄𝜔

3𝐶8
= [0, 0], 𝑄𝜔

4 =

𝑄𝜔
4𝐶7
+ 𝑄𝜔

4𝐶8
= [0, 0]. We then substitute the computed values

{𝑄𝜔
1 , 𝑄

𝜔
2 , 𝑄

𝜔
3 , 𝑄

𝜔
4 } into 𝜔# and evaluate the resulting expression

using interval arithmetic (Table 2). Given: 𝜔# = Q𝜔
1 /Q𝜔

2 − Q𝜔
3 /Q𝜔

4 the
lower and upper bounds for the first term Q𝜔

1 /Q𝜔
2 are computed

as: [E1/E2, E1/E2] = [1/2, 2]. Similarly, for the second term: Q𝜔
3 /Q𝜔

4 =

[0, 0]. Applying interval arithmetic to compute the subtraction we
get: E1 − E2, E1 − E2. Thus, we obtain bounds [Φ#,Φ#] = [1/2, 2]
(Figure 1(i)). Since Φ# = 1/2 > 0.2, none of the candidates in Q =

[[33, 37]] can be repairs and we can prune Q.
In practice, RP performs best when kd-tree clusters are homo-

geneous with respect to the predicate attributes 𝑎𝑖 in 𝜃 i.e., when
most cluster bounds bounds𝑎𝑖 lie entirely above or below the repair
candidate set’s intervals [𝑐𝑖 , 𝑐𝑖 ]. This enables efficient pruning of
infeasible or fully satisfying candidate sets. The effect is especially
strong when large regions of the search space can be ruled out or
accepted entirely based on the aggregation constraint 𝜔 . If predi-
cate attributes are strongly correlated with those in the arithmetic
expression Φ, cluster inclusion often predicts the outcome of Φ, al-
lowing entire repair sets to be evaluated at once. Conversely, when
many cluster bounds partially overlap with the predicate ranges,
the algorithm must recursively partition Q and evaluate more finer-
grained clusters, eventually matching the cost of brute-force in the
worst case.

Theorem 4.1 (Correctness of FF and RP). Given an instance

(𝑄, 𝐷,𝜔, 𝑘) of the aggregate constraint repair problem, Algorithm 3

computes the solution for this problem instance.

Proof. We present the proof in [3]. □

5 EXPERIMENTS
We start by comparing the brute force approach and the baseline
FF technique (Section 3.2) against our RP algorithm (Section 4)
in Section 5.2. We then investigate the impact of several factors on
performance in Section 5.3, including dataset size and similarity
of the top-k repairs to the user query. Finally, in Section 5.4, we
compare with Erica [26] which targets group cardinality constraints.

Table 2: Bounds on applying an operator to the result of
expressions 𝐸1 and 𝐸2 with interval bounds [39].

op Bounds for the expression (𝐸1 op 𝐸2)

+ 𝐸1 + 𝐸2 = 𝐸1 + 𝐸2 𝐸1 + 𝐸2 = 𝐸1 + 𝐸2
− 𝐸1 − 𝐸2 = 𝐸1 − 𝐸2 𝐸1 − 𝐸2 = 𝐸1 − 𝐸2
× 𝐸1 × 𝐸2 =min(𝐸1 × 𝐸2, 𝐸1 × 𝐸2, 𝐸1 × 𝐸2, 𝐸1 × 𝐸2)

𝐸1 × 𝐸2 =max(𝐸1 × 𝐸2, 𝐸1 × 𝐸2, 𝐸1 × 𝐸2, 𝐸1 × 𝐸2)

/ 𝐸1/𝐸2 =min(𝐸1/𝐸2, 𝐸1/𝐸2, 𝐸1/𝐸2, 𝐸1/𝐸2)

𝐸1/𝐸2 =max(𝐸1/𝐸2, 𝐸1/𝐸2, 𝐸1/𝐸2, 𝐸1/𝐸2)

5.1 Experimental Setup
Datasets. We choose two real-world datasets of size 500K, Adult
Census Income (Income) [21] andHealthcare [22], that are commonly
used to evaluate fairness. We also utilize the TPC-H [34] benchmark,
varying dataset size from 25K to 500K.
Queries. Table 3 shows the queries used in our experiments. For
Healthcare dataset (Healthcare), we use queries𝑄1 and𝑄2 from [26]
and a new query 𝑄3. For Income, we use 𝑄4 from [26] and new
queries 𝑄5 and 𝑄6. 𝑄7 is a query with 3 predicates inspired by
TPC-H’s 𝑄2.
Constraints. For Healthcare and Income, we enforce the SPD
between two demographic groups to be within a certain bound.
Table 4 shows the details of the constraints used. In some experi-
ments, we vary the bounds 𝐵𝑙 and 𝐵𝑢 . For a constraint 𝜔𝑖 we use
𝜔
𝑑=𝑝

𝑖
to denote a variant of 𝜔𝑖 where the bounds have been set

such that the top-k repairs are within the first p% of the repair
candidates ordered by distance. An algorithm that explores the
individual repair candidates in this order has to explore the first p%
of the search space. For the detailed settings see [3]. For Income
(Healthcare), we determine the groups for SPD based on gender
and race (race and age). For TPC-H, we enforce the constraint 𝜔5
which minimizes the impact of supply change disruption, where
the company wants only a certain amount of expected revenue to
be from certain countries. We use Ω to denote a set of ACs. Ω6
through Ω8 are sets of cardinality constraints for comparison with
Erica. As mentioned in Section 2, we present our repair methods
for a single AC. However, the methods can be trivially extended
to find repairs for a set / conjunction of constraints, i.e., the repair
fulfills

⋀︁
𝜔∈Ω 𝜔 . For RP (Algorithm 3), it is sufficient to replace the

condition in Line 8 with
⋀︁

𝜔∈Ω aceval∀ (𝜔,C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ) and in
Line 10 with

⋀︁
𝜔∈Ω aceval∃ (𝜔,C𝑓 𝑢𝑙𝑙 ,C𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ).

Parameters. Recall that we use a kd-tree to perform the clustering
described in Section 3.1. We consider two tuning parameters for
the tree: branching factor - each node has B children; bucket
size - parameter S determines the minimum number of tuples in a
cluster. We do not split nodes with ≤ S tuples. When one of our
algorithms reach such a leaf node we just evaluate computations
over all tuples in the cluster, e.g., to determine which tuples fulfill
a condition. We also control 𝑘 , the number of repairs returned by
our methods. The default settings are as follows: B = 5, 𝑘 = 7, and
S = 15. The default dataset size is 50K tuples.

All algorithms were implemented in Python. Experiments were
conducted on a machine with 2 x 3.3Ghz AMD Opteron CPUs (12

259



Table 3: Queries for Experimentation
SELECT * FROM Healthcare

𝑄1
WHERE income >= 200K AND num -children >= 3

AND county <= 3

𝑄2
WHERE income <= 100K AND complications >= 5

AND num -children >= 4

𝑄3
WHERE income >= 300K AND complications >= 5

AND county == 1

SELECT * FROM ACSIncome

𝑄4
WHERE working_hours >= 40 AND Educational_attainment >= 19

AND Class_of_worker >= 3

𝑄5
WHERE working_hours <= 40 AND Educational_attainment <= 19

AND Class_of_worker <= 4

𝑄6
WHERE Age >= 35 AND Class_of_worker >= 2

AND Educational_attainment <= 15

𝑄7

SELECT * FROM part , supplier , partsupp , nation , region

WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey

AND s_nationkey = n_nationkey AND n_regionkey=r_regionkey

AND p_size >= 10 AND p_type in ('LARGE␣BRUSHED ')

AND r_name in ('EUROPE ')

Table 4: Constraints for Experimentation
ID Constraint
𝜔1

count(race=1∧label=1)
count(race=1) − count(race=2∧label=1)

count(race=2) ∈ [𝐵𝑙 , 𝐵𝑢 ]
𝜔2

count(ageGroup=1∧label=1)
count(ageGroup=1) − count(ageGroup=2∧label=1)

count(ageGroup=2) ∈ [𝐵𝑙 , 𝐵𝑢 ]

𝜔3
count(sex=1∧PINCP≥20𝑘 )

count(sex=1) − count(sex=2∧PINCP≥20𝑘 )
count(sex=2) ∈ [𝐵𝑙 , 𝐵𝑢 ]

𝜔4
count(race=1∧PINCP≥15𝑘 )

count(race=1) − count(race=2∧PINCP≥15𝑘 )
count(race=2) ∈ [𝐵𝑙 , 𝐵𝑢 ]

𝜔5
∑︁
RevenueProductsSelectedFromUK∑︁

RevenueSelected Products
∈ [𝐵𝑙 , 𝐵𝑢 ]

Ω6 𝜔61 :=count(race = race1) ≤ 𝐵𝑢1
𝜔62 :=count(age = group1) ≤ 𝐵𝑢2

Ω7 𝜔71 :=count(race = race1) ≤ 𝐵𝑢1
𝜔72 :=count(age = group1) ≤ 𝐵𝑢2
𝜔73 :=count(age = group3) ≤ 𝐵𝑢3

Ω8 𝜔81 :=count(Sex = Female) ≤ 𝐵𝑢1
𝜔82 :=count(Race = Black) ≤ 𝐵𝑢2
𝜔83 :=count(Marital = Divorced) ≤ 𝐵𝑢3

cores) and 128GB RAM. Each experiment was repeated five times
and we report median runtimes as the variance is low (∼ 3%).

5.2 Performance of FF and RP
We compare FF and RP using datasets Healthcare (ACs 𝜔1 and
𝜔2 from Table 4) and Income (ACs 𝜔3 and 𝜔4) with the default
parameter settings and queries𝑄1,𝑄2, and𝑄3 (Table 3). In addition
to runtime, we also measure number of candidates evaluated (NCE)
which is the total of number of repair candidates for which we
evaluate the AC and number of clusters accessed (NCA) which is
the total number of clusters accessed by an algorithm.

Runtime. Figures 2a and 2b show the runtime of the FF and RP
algorithms for Healthcare and Income, respectively. For a subset
of the experiments we also report results for the Brute Force (BF)
method. For a given constraint 𝜔𝑖 we vary the bounds [𝐵𝑙 , 𝐵𝑢 ] to
control what percentage of repair candidates have to be processed
by the algorithms to determine the top-𝑘 repairs as explained above.
For example, 𝜔𝑑=38

1 in Figure 2a for𝑄1 is the constraint 𝜔1 from Ta-
ble 4 with the bounds set such that 38% of the candidate solutions
have to be explored. We refer to this as the exploration distance

(ED). As expected, both FF and RP outperform BF by at least one or-
der of magnitude in terms of runtime as shown in Figure 2a. The RP
algorithm significantly reduces both NCE and NCA (e.g., Figures 2c
and 2e), while the FF method maintains the same NCE as BF but
decreases the NCA compared to BF (as BF does not use clusters we
count tuple accesses). RP (pink bars) generally outperforms FF (blue
bars) for most settings, demonstrating an additional improvement
of up to an order of magnitude due to its capability of pruning and
confirming sets of candidates at once. The only exception is settings
where the top-k repairs are found by exploring a very small portion
of the search space, e.g., 𝑄4 with 𝜔3.
Total number of candidates evaluated (NCE). We further ana-
lyze how NCE affects the performance of our methods (Figures 2c
and 2d). RP consistently checks fewer candidates compared to FF.
As observed in the runtime evaluation, the difference between the
two algorithms is more pronounced when larger parts of the search
space have to be explored.
Total Number of Cluster Accessed (NCA). The results for the
number of clusters accessed are shown in Figures 2e and 2f for
Healthcare and Income, respectively. Similar to the result for NCE,
RP accesses significantly fewer clusters than FF.

5.3 Performance-Impacting Factors
To gain deeper insights into the behavior observed in Section 5.2,
we investigate the relationship between the exploration distance
(ED) and performance. We also evaluate the performance of FF and
RP in terms of the parameters from Section 5.1.
Effect of Exploration distance. We use queries 𝑄1–𝑄3 and the
constraint 𝜔1 on Healthcare and vary the bounds to control for
ED. The result is shown in Figure 3 . We present results for Income
in [3]. For 𝑄1 and 𝑄2, when ED is 10% or less, FF and RP exhibit
comparable performance. A similar pattern is seen for𝑄3, where FF
performs better than RP for very low ED. The reason behind this
trend is that when solutions are close to the user query (smaller
ED), then there is less opportunity for pruning for RP.
Effect of Bucket Size. We now evaluate the runtime of FF and RP
varying the bucket size S using 𝑄1 with 𝜔1 with bounds [0.44, 0.5]
for the Healthcare dataset and𝑄4 with 𝜔3 using bounds [0.34, 0.39]
for the Income dataset. We vary bucketsize S from 5 to 2500. We
use the default branching factor B = 5. Our algorithm chooses
the number of levels to ensure that the size of leaf clusters is ≤ S.
For example, for S = 200, the tree will have 4 levels. The results of
this experiment are shown in Figure 4 . The advantage of smaller
bucket sizes is that it is more likely that we can find a cluster that
is fully covered / not covered at all. However, this comes at the cost
of having to explore more clusters. In preliminary experiments,
we have identified S = 15 to yield robust performance for a wide
variety of settings and use this as the default.

Table 5: Branching Configuration and Data Distribution
# of Branches # of Leaves # of Branches # of Leaves

5 15625 20 8000
10 10000 25 15625
15 3375 30 27000

Effect of the Branching Factor. We now examine the relation-
ship between the branching factor B and the runtime of FF and
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(a) Runtime (sec) - Healthcare dataset. (b) Runtime (sec) - Income dataset.

(c) Total number of constraints evaluated (NCE) - Healthcare dataset. (d) Total number of constraints evaluated (NCE) - Income dataset.

(e) Total number of cluster accessed (NCA) - Healthcare dataset. (f) Total number of cluster accessed (NCA) - Income dataset.
Figure 2: Runtime, number of candidates evaluated (NCE), and number of clusters accessed (NCA) for FF and RP over the

Healthcare and Income datasets using the queries from Table 3.

Figure 3: Runtime of FF and RP, varying ED.

(a) Healthcare dataset (b) Income dataset
Figure 4: Runtime, varying bucket size S.

(a) Healthcare dataset (b) Income dataset
Figure 5: Runtime, varying the number of branches B.

RP. We use the same queries, constraints, bounds, and datasets
as in the previous evaluation and vary branching factor B from
5 to 30. The corresponding number of leaf nodes in the kd-tree
is shown in Table 5. As we use the default bucket size S = 15,
the branching factor determines the depth of the tree. The result

shown in Figure 5 confirms that, as expected, the performance of
FF and RP correlates with the number of clusters at the leaf level.
For FF, branching factors of 5 and 25 yield nearly identical runtime
because both have the same number of leaf nodes (15,625). A similar
pattern can be observed for B = 10 and B = 20. At B = 15, FF
achieves the lowest runtime, as it involves the smallest number of
leaves (3,375). For B = 30, the number of leaf clusters significantly
increases, leading to a substantial rise in the runtime of FF. For
RP, overall performance trends align with those of FF. However, RP
is less influenced by the branching factor as for smaller clusters it
may be possible to prune / confirm larger candidate sets at once.
Both bucket size 𝑆 and branching factor 𝐵 impact performance,
and the optimal values depend on the characteristics of the dataset
and queries. The intuition is as follows: when 𝑆 is too small, the
resulting tree becomes too deep, leading to an excessive number
of leaf clusters; when 𝑆 is too large, the ability to prune effectively
diminishes because clusters encompass too many data points. Like-
wise, if 𝐵 is too large, data is distributed across many child nodes,
making it harder to prune entire sub-trees; if 𝐵 is too small, the tree
again becomes too deep with many leaf clusters. For new datasets,
we suggest starting with moderate values for both 𝑆 and 𝐵, then
adjusting based on the number of leaf clusters observed: if the tree
has too many leaf clusters, consider increasing 𝑆 or decreasing 𝐵; if
pruning is insufficient, consider decreasing 𝑆 or increasing 𝐵. There
are several additional factors that can affect optimal choices for
these parameters: (i) strong correlations between attributes used
in conditions lead to more homogeneous clusters which in turn
means that larger clusters can be tolerated without significantly
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(a) Runtime (sec) (b) Number of constraints
evaluated (NCE)

Figure 6: Performance of FF and RP varying 𝑘

(a) Runtime (sec) (b) Number of clusters accesses
Figure 7: Evaluation result over TPC-H dataset

impacting pruning power, (ii) if attributes in user query conditions
are correlated with attributes of filter-aggregation queries, then
aggregation results vary widely for clusters potentially leading to a
stronger separation between repairs and more pruning potential
even with larger clusters. We leave automatic parameter tuning,
e.g., based on measuring correlations between attributes over a
sample, to future work.
Effect of 𝑘 . In this experiment, we vary the parameter 𝑘 from 1 to
15. For both FF and RP, as 𝑘 increases, the runtime also increases,
as shown in Figure 6a. When 𝑘 is larger, the algorithms have to
explore a larger fraction of the search space to find additional
repairs. Similarly, the NCE as shown in Figure 6b exhibits the same
increasing trend. RP consistently outperforms FF.
Effect of Dataset Size. Next, we vary the dataset size and mea-
sure the runtime and NCA for the TPC-H dataset using 𝑄7 with
𝜔5. Dataset size impacts both the size of the search space and the
size of the kd-tree. Nonetheless, as shown in Figure 7a, our algo-
rithms scale roughly linearly in dataset size demonstrating the
effectiveness of reusing aggregation results for clusters and range-
based pruning. This is further supported by the NCAmeasurements
shown in Figure 7b, which exhibit the same trend as the runtime.

5.4 Comparison with Related Work
We compare our approach with Erica [26], which solves the related
problem of finding all minimal refinements of a given query that
satisfy a set of cardinality constraints for groups within the result
set. Such constraints are special cases on the ACs we support. Erica
returns all repairs that are not dominated (the skyline [10]) by any
other repair where a repair dominates another repair if it is at least
as close to the user query for every condition 𝜃𝑖 and strictly closer
in at least one condition. Thus, different from our approach, the
number of returned repairs is not an input parameter in Erica. For
a fair comparison, we compute the minimal repairs and then set 𝑘
such that our methods returns a superset of the repairs returned by
Erica. Our algorithms, like Erica, operate by modifying constants
in predicates on attributes already present in the query and do not
introduce new predicates. A key difference is that Erica supports
adding constants to set membership predicates for categorical at-
tributes, e.g., replacing 𝐴 ∈ {𝑐1} with 𝐴 ∈ {𝑐1, 𝑐2, 𝑐3}, while our

(a) Pre-processing (b) Search
Figure 8: Runtimes of FF, RP, and Erica.

approach maps categorical values to numeric codes and adjusts
thresholds. As we will discuss in Section 6, both our approach and
Erica canmodel addition of new predicates by refining dummy pred-
icates that evaluate to true on all inputs. To conduct the evaluation
for Erica, we used the available Python implementation [1]3.

We adopt the queries, constraints, and the dataset from [26]. We
compare the generated refinements and runtime of our techniques
with Erica using𝑄1 and𝑄2 (Table 3) on the Healthcare dataset (50K
tuples) with constraints Ω6 and Ω7 (Table 4), respectively.
Generated Repairs Comparison. We first compare the generated
repairs by our approach and Erica. As mentioned above, we adjust
𝑘 per query and constraint set to ensure that our approach returns
a superset of the repairs returned by Erica. For𝑄1 with Ω6 (𝑄2 with
Ω7), Erica generates 7 (9) minimal repairs whereas our technique
generates 356 (1035), including those produced by Erica. The top-
1 repair returned by our approach is guaranteed to be minimal.
However, the remaining minimal repairs returned by Erica may
have a significantly higher distance to the user query than the
remaining top-k answers returned by our approach. For example,
in 𝑄2, given the condition num-children >= 4 of the user query,
our solution includes a refined condition num-children >= 3
whereas Erica provides a refinement num-children >= 1 which is
dissimilar to the user query.
Runtime Comparison. For this experiment we use 𝑄4 with Ω8
for the 50K Income dataset, which is derived from the dataset,
query, and constraint used to evaluate Erica in [26]. We use the
same bounds in the constraints for both Erica and our algorithms:
𝐵1 :=(𝐵𝑢1 = 30, 𝐵𝑢2 = 150, 𝐵𝑢3 = 10) and 𝐵2 :=(𝐵𝑢1 = 30, 𝐵𝑢2 =

300, 𝐵𝑢3 = 25),𝐵3 :=(𝐵𝑢1 = 10, 𝐵𝑢2 = 650, 𝐵𝑢3 = 50), and𝐵4 :=(𝐵𝑢1 =
15, 𝐵𝑢2 = 200, 𝐵𝑢3 = 15). To ensure a fair comparison of execution
time, we fix the number of generated repairs (i.e., top-𝑘) in our
approach to equal to the number of repairs produced by Erica. We
set 𝑘=17 for constraint sets Ω𝐵1

8 and Ω𝐵2
8 , 𝑘=11 for Ω𝐵3

8 , and 𝑘=13
for Ω𝐵4

8 . Due to the different optimization goals, variations in the
generated repairs between our approach and Erica are expected.
The results shown in Figure 8b demonstrate that the total runtime
of RP and Erica are comparable with RP exhibiting a significantly
lower time for exploring candidate solutions while Erica has a sig-
nificantly lower preprocessing time. The higher preprocessing time
is expected as Erica only has to generate provenance expressions
and build lists of candidate constants sorted by their distance to the
constant in the user’s query. In contrast, our approach has to cluster

3We replaced Erica’s use of pandas for filtering data and constraint evaluation (which
are implemented in C) with equivalent pure-Python loops over lists just as in our own
code, so that both implementations are using the same programming language. This
change ensures that our comparison highlights algorithmic differences rather than
language speed.
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Table 6: Comparison of query repair techniques
Approach Supports

sum, min,
max, avg

Distance
Metric

Constrains
Result Sub-
sets?

Repairs
Joins?

Arithmetic
Expressions
Supported

HC [11] ✗ ✗ ✗ ✗ ✗

TQGen [30] ✗ ✗ ✗ ✗ ✗

SnS [29] ✗ ✗ ✗ ✗ ✗

EAGER [2] ✓ lin. comb. ✗ ✗ ✗

SAUNA [23] ✗ L2 (result) ✗ ✓ ✗

ConQueR [35] ✗ edit-distance ✗ ✓ ✗

FixTed [9] ✗ skyline ✗ ✓ ✗

FARQ [32] ✗ Jacc. (result) ✓ ✗ ✗

Erica [26] ✗ skyline ✓ ✗ ✗

RP (ours) ✓ lin. comb. ✓ ✗ ✓

the data, index the clusters in a kd-tree, and materialize summaries
for each cluster, which is more computationally intensive. However,
this extra work enables us to reason about complex, non-monotone
constraints, which Erica’s list-based approach cannot. Furthermore,
we argue that it can be beneficial to decrease search time at the cost
of higher preprocessing time as some of the preprocessing results
could be shared across user requests. Overall, the total runtime of
RP and Erica is comparable, even though our approach does not
apply any specialized optimizations that exploit monotonicity as
in Erica. These results also highlight the need for our range-based
optimizations, as FF is significantly slower than Erica.

6 RELATEDWORK

Query refinement & relaxation. In Table 6 we compare the capa-
bilities of several query refinement techniques for aggregate con-
straints in terms of supported aggregates (only count or also other
aggregates), distance metric used to compare repairs to the origi-
nal query based on distances between predicates (e.g., lin. comb.:
linear combination of predicate-level distances, skyline: skyline
over predicate-level distances), whether the method allows con-
straints that apply only to a subset of the result (some methods
only constrain the whole query result), whether join conditions
can be repaired, and whether they support arithmetic expressions.
Li et al. [26] determine all minimal refinements of a conjunctive
query by changing constants in selection conditions such that the
refined query fulfills a conjunction of cardinality constraints, e.g.,
the query should return at least 5 answers where gender = female.
A refinement is minimal if it fulfills the constraints and there does
not exist any refinement that is closer to the original query in terms
of similarity of constants used in predicates (skyline). However, [26]
only supports cardinality constraints (count) and does not allow
for arithmetic combinations of the results of such queries as shown
in Table 6. Mishra et al. [29] refine a query to return a given num-
ber 𝑘 of results with interactive user feedback. Koudas et al. [25]
refine a query that returns an empty result to produce at least one
answer. In [9, 35], a query is repaired to return missing results
of interest provided by the user. Campbell et al. [13] repair top-k
queries, supporting non-monotone constraints through the use of
constraint solvers. [11, 30] refine queries for database testing such
that subqueries of the repaired query approximately fulfill cardi-
nality constraints. [11] demonstrated that the problem is NP-hard
in the number of predicates. Both approaches do not optimize for
similarity to the user query. [23] relaxes a query to return approxi-
mately 𝑁 results preferring repairs based on the difference between

the result of the user query and repair. Most work on query refine-
ment has limited the scope to constraints that are monotone in the
size of the query answer. Monotonicity is then exploited to prune
the search space [12, 23, 29, 30, 38]. To the best of our knowledge,
our approach is the only one that supports arithmetic constraints
which is necessary to express complex real world constraints, e.g.,
standard fairness measures, but requires novel pruning techniques
that can handle such non-monotone constraints. While some ap-
proaches explicitly support addition and deletion of predicates,
any approach that can both relax or refine predicates is capable
of supporting adding / deleting predicates: deletion by relaxing a
predicate until it evaluates to true on all inputs and addition by
adding dummy predicates that evaluate to true on all inputs and
then either refine them (adding a new predicate) or not (decide to
not add this predicate).

How-to queries. Like in query repair [26], the goal of how-to
queries [28] is to achieve a desired change to a query’s result. How-
ever, how-to queries change the database to achieve this result
instead of repairing the query. Wang et al. [37] study the problem
of deleting operations from an update history to fulfill a constraint
over the current database. However, this approach does not consider
query repair (changing predicates) nor aggregate constraints.

Explanations for Missing Answers. Query-based explanations
for missing answers [15, 18, 19] identify which operators of a query
are responsible for the failure of the query to return a result of
interest. However, this line of work does not generate query repairs.

Bounds with Interval Arithmetic. Prior work has highlighted
the effectiveness of interval arithmetic across various database ap-
plications [17, 20, 33, 39]. For instance, [20] determines bounds
on query results over uncertain databases. The work in [39] in-
troduced a bounding technique for iceberg cubes, establishing an
early foundation for leveraging interval arithmetic to constrain ag-
gregates. Interval arithmetic has been used extensively in abstract

interpretation [16, 17, 33] to bound the result of computations.

7 CONCLUSIONS AND FUTUREWORK
We introduce a novel approach for repairing a query to satisfy a
constraint on the query’s result. We support a significantly larger
class of constraints than prior work, including common fairness
metrics like SPD. We avoid redundant work by reusing aggregate
results when evaluating repair candidates and present techniques
for evaluating multiple repair candidates at once by bounding their
results. Our approach works best if there is homogeneity among
similar repair candidates that can be exploited. Interesting direc-
tions for future work include (i) the study of more general types of
repairs, e.g., repairs that add or remove joins or change the struc-
ture of the query, (ii) considering other optimization criteria, e.g.,
computing a skyline as in some work on query refinement, (iii)
employing more expressive domains than intervals for computing
tighter bounds, e.g., zonotopes [17], and (iv) supporting dynamic
settings where the table, predicates, constraints, or distance metrics
may change. In this regard, we may exploit efficient incremental
maintenance kd-trees and aggregate summaries [7, 8]. However,
our setting is more challenging as small changes to aggregation
results can affect the validity of large sets of repair candidates.
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