
AGIS: Fast Approximate Graph Pa�ern Mining with
Structure-Informed Sampling

Seoyong Lee
Seoul National University

Seoul, South Korea
sylee2685@snu.ac.kr

Jinho Lee
Seoul National University

Seoul, South Korea
leejinho@snu.ac.kr

ABSTRACT

Approximate Graph Pattern Mining (AGPM) is essential for ana-
lyzing large-scale graphs where exact counting is computationally
prohibitive. While there exist numerous sampling-based AGPM sys-
tems, they all rely on uniform sampling and overlook the underlying
probability distribution. This limitation restricts their scalability to
a broader range of patterns.

In this paper, we introduce AGIS, an extremely fast AGPM sys-
tem capable of counting arbitrary patterns from huge graphs. AGIS
employs structure-informed neighbor sampling, a novel sampling
technique that deviates from uniformness but allocates speci�c
sampling probabilities based on the pattern structure. We �rst de-
rive the ideal sampling distribution for AGPM and then present
a practical method to approximate it. Furthermore, we develop a
method that balances convergence speed and computational over-
head, determining when to use the approximated distribution.

Experimental results demonstrate that AGIS signi�cantly outper-
forms the state-of-the-art AGPM system, achieving 28.5⇥ geometric
mean speedup and more than 100,000⇥ speedup in speci�c cases.
Furthermore, AGIS is the only AGPM system that scales to graphs
with tens of billions of edges and robustly handles diverse patterns,
successfully providing accurate estimates within seconds. We will
open-source AGIS to encourage further research in this �eld.

PVLDB Reference Format:

Seoyong Lee and Jinho Lee. AGIS: Fast Approximate Graph Pattern Mining

with Structure-Informed Sampling. PVLDB, 19(2): 238 - 251, 2025.

doi:10.14778/3773749.3773761

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/syleeKR/AGIS.

1 INTRODUCTION

Graph pattern mining (GPM) [1, 24, 32, 44, 51, 71, 77, 82] is one
of the most time-consuming applications within graph processing
workloads. Given a large data graph and a relatively small pattern
graph, GPM searches for embeddings of the pattern from the data
graph. Explicit pattern counts provide concise, deterministic sum-
maries of higher-order graph structure, serving as fundamental
descriptive statistics that underpin rigorous statistical analysis [49].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773761

Moreover, as graphs are ubiquitous, pattern mining is employed
across diverse domains, including bioinformatics [28, 38, 52], so-
cial network analysis [39, 87], and chemical compound classi�ca-
tion [31]. More importantly, pattern counts are essential for in-
terpretability and accountability in high-stakes settings, such as
fraud detection and cybersecurity, where auditability and regulatory
compliance depend on precise, reproducible evidence [3, 6, 27, 29].
Despite its signi�cance in numerous real world scenarios, GPM
su�ers from its inherent high computational complexity, making it
hard to scale to large graphs or complex patterns. This challenge
is especially pertinent in the current era, as modern applications
demand low-latency analysis on massive graphs [6, 27, 65].

One popular approach to alleviate this is approximate graph
pattern mining (AGPM). Using the fact that GPM tasks, such as
frequent subgraph mining [86] and motif counting [53], are em-
ployed in applications where estimated embedding counts su�ce,
AGPM computes approximate embedding counts for a given pat-
tern within speci�ed error bounds and con�dence intervals. While
there exist several seminal AGPM systems [7, 43, 91], they still have
di�culties as the data graphs and patterns become larger. Upon
characterizing them, we identify that certain patterns experience
especially larger slowdowns. Our analysis shows that this can be
attributed to the scale-free distribution [10, 11, 30] often found in
real-world graphs. Such a distribution leads to a large variance in
the embedding count depending on which part of the data graph is
sampled. Because it makes the estimated count di�cult to converge,
this results in a long execution time for AGPM systems.

Fortunately, we identify that such a problem can be alleviated by
assigning di�erent probabilities to each sampling candidate. While
existing methods also try to reduce the estimation variances, they
often focus on narrowing down the candidates by only consider-
ing neighbors of already sampled vertices [43], or neighbors that
satisfy certain constraints [7]. However, once the candidates set
is constructed, the probability of each candidate to be sampled is
uniform.

Instead of applying naive uniform sampling probability distribu-
tion, we propose to use uneven distribution where the probability
to sample each candidate vertex is proportional to the number of
potential embeddings found by choosing the vertex. In theory, this
leads to a correct count without variance with a single sampler.
However, this requires prior knowledge about the true embedding
count, which defeats the purpose of AGPM. To construct an ap-
propriate sampling probability distribution without relying on the
true embedding count, we develop a method to approximate the
distribution based on the structural characteristics of the data and
pattern graph. By carefully examining the nearby structures of the

238

https://doi.org/10.14778/3773749.3773761
https://github.com/syleeKR/AGIS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773761
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Sampling strategies of existing AGPM systems.

target vertex to be sampled, we calculate a distribution close to the
ideal one with a small overhead.

Based on this, we propose AGIS, a fast and scalable AGPM sys-
tem. At the heart of AGIS is structure-informed neighbor sampling.
Structure-informed neighbor sampling leverages the calculated dis-
tribution and strategically determines when to apply it, thereby
achieving an optimal balance between faster convergence and min-
imal computational overhead. In addition, we provide a heuristic
to construct a matching order such that the bene�t of structure-
informed neighbor sampling is maximized. We evaluate AGIS over
a various data graph and patterns, against several state-of-the-art
baselines. Experimental results show that AGIS outperforms all the
baselines, sometimes by an order of several magnitudes. AGIS sets
a new state-of-the-art, further extending the applicability of AGPM
methodology.

Our contributions can be summarized as follows:

• We show that by assigning di�erent probabilities to each
vertex in the sampling candidates, signi�cantly faster con-
vergence can be obtained for AGPM.

• We develop a method for constructing an approximate ideal
sampling distribution and a heuristic decision process that
determines when to apply it.

• We build AGIS, a fast AGPM system that signi�cantly out-
performs prior art over a diverse set of experiments.

2 BACKGROUND

In this section, we provide a comprehensive background on approx-
imate graph mining and its core strategies in existing work. We use
⌧ = (+⌧ , ⇢⌧) and % = (+% , ⇢%) to represent the data and pattern
graphs, respectively. We assume that both graphs are undirected;
thus, ⇢⌧ and ⇢% are sets of unordered pairs {0,1}. For a vertex E ,
3 (E) denotes its degree, N(E) its set of neighbor vertices, and E .id
its id. We use E for vertices in ⌧ and D for vertices in % .

2.1 Approximate Graph Mining Systems

Graph Pattern Mining. Graph Pattern Mining (GPM) is the prob-
lem of �nding all embeddings, i.e., matches, of a pattern % within a
given graph ⌧ . Formally, we de�ne an embedding as a subgraph
isomorphism from % to ⌧ . Speci�cally, it is a one-to-one mapping
M : +% ! +⌧ such that if (D8 ,D 9) 2 ⇢% , then (M(D8),M(D 9)) 2
⇢⌧ . We let ⇠ (⌧, %) denote the total number of such embeddings.
Example tasks in GPM include subgraph counting [32], subgraph
listing (subgraph matching) [32], motif counting [53], and frequent
subgraph mining [86].

Approximate Graph Pattern Mining. Approximate Graph Pat-
tern Mining (AGPM) addresses the subgraph counting problem
in an approximate manner. Given a graph ⌧ , a pattern % , an error
bound n , and a con�dence level 1�X , AGPM seeks to return a (1±n)
approximation of the exact number of embeddings ⇠ (⌧, %), with
probability at least 1 � X . AGPM systems enable users to mine arbi-
trary patterns using two major components: (1) a general sampling
method applicable to any pattern, and (2) a convergence detection
method that determines when to terminate sampling given (n, X).

2.2 Sampling Strategies of AGPM

To obtain approximate values for ⇠ (⌧, %), existing approaches [7,
43, 91] employ the sampling method. As a simple example, suppose
we were to approximate the number of triangles in graph ⌧ . In
a straightforward Naive sampling method shown in Figure 1, a
sampler randomly samples three edges 41, 42, 43 and checks if they
form a triangle. If they do form a triangle, the sampler estimates
the number of triangles as |⇢⌧ |

3 since each of the three edges
is sampled randomly with a probability of 1

|⇢⌧ |
. Otherwise, the

sampler estimates the number of triangles as 0. The average from
many such samplers will converge toward the true triangle count.

One signi�cant issue with the Naive sampling method is its
large variance between the sampler outputs. Because each sampler
outputs either 0 or the substantially large value |⇢⌧ |

3, the average of
samplers converges slowly. Neighbor Sampling (NS) [59] addresses
this problem by leveraging the connectivity of the pattern graph.
Speci�cally, a NS sampler operates as follows: it �rst samples an edge
41 uniformly at random from ⇢⌧ , similar to the sampler using Naive
method. However, instead of sampling the next edge uniformly
from ⇢⌧ , it samples 42 from the set of edges adjacent to 41. Then,
it performs a closure check, which determines whether an edge 43
exists between the non-shared vertices of 41 and 42. This procedure
con�rms whether a triangle embedding can be formed from the
sampled edges. The probability is 1

|⇢⌧ | · |# (41) |
, where # (41) denotes

the set of neighboring edges of 41. Because |⇢⌧ | · |# (41) | is smaller
and closer to the true triangle count compared to |⇢⌧ |

3, the NS

sampler outputs have lower variance and converges faster.
The aforementioned methods can easily be generalized to an

arbitrary pattern % . A sampler sequentially samples vertices until
the number of sampled vertices reaches |+% |. Then, the probability
? of this sampling sequence is given by

? =

|+% |÷

8=1

%A (E8 |E1, . . . , E8�1),

where %A (E8 |E1, . . . , E8�1) denotes the probability to sample E8 given
E1, . . . E8�1 is sampled. Each sampler returns 1

?
if the vertices form

an embedding of % and returns 0 otherwise. This sampler serves as
an unbiased estimator for ⇠ (⌧, %) [43].

The NS method can further be modi�ed by imposing restrictions
on neighbor selection [19, 45]. For example, when sampling the
k-star pattern (a pattern where : vertices are connected to a cen-
tral vertex), we can sample the next edge only from the neighbors
of the central vertex to maximize the success rate of the closure
check. Building on this idea, ScaleGPM [7] proposes a modi�ed
version of NS called NS-prune. This method not only exploits the

239

connectivity of the pattern % but also leverages its speci�c topology.
It introduces two concepts of exact GPM systems:

Matching Order. A matching order [24, 36] c : {1, . . . , |+% |}!
+% is a permutation of the pattern vertices that speci�es the or-
der in which the vertices of % are matched to the graph ⌧ . We
denote D8 = c (8) 2 +% as the 8-th vertex of % in the matching order.
Correspondingly, we write E8 2 +⌧ as the 8-th sampled vertex of ⌧ .

Restriction Set. Given a matching order c , a restriction set [50]
Rc is a set of ordered pairs of pattern vertices (D8 ,D 9). R

c is ap-
plied with symmetry breaking [50], which enforces the condition
E8 .id < E 9 .id for all (D8 ,D 9) 2 Rc . This is bene�cial for exact mining
systems, as it reduces the search space by exactly the number of au-
tomorphisms of % . Although this approach does not enumerate all
embeddings, the total count can be recovered by simply multiplying
the result accordingly.

NS-prune utilizes these concepts as follows. Taking the triangle
pattern again as an example, it �rst samples 41 = {E1, E2} randomly
like the prior methods. Then, instead of sampling any 42 from the
neighbors, it leverages the fact that D3 is connected to D1 and D2.
Thus, the next vertex E3 must be selected from the intersection
of the neighbors of E1 and E2, that is, E3 2 N(E1) \N(E2). By en-
forcing these connectivity constraints at each step, the success rate
of �nding an embedding increases, leading to faster convergence.
Additionally, the triangle pattern has 3! number of automorphisms,
having a restriction set Rc

= {(D2,D1), (D3,D2), (D3,D1)}. By apply-
ing symmetry breaking, the condition E3 .id < min(E1 .id, E2 .id) is
enforced. The enforcement of these restrictions reduces the set size
of possible vertices. Since the sampling probability is equal to the
inverse of the set size, the estimator’s variance is reduced. Lastly,
for general patterns, the NS-prune avoids sampling vertices from
the previously sampled vertices.

Considering the above techniques, NS-prune samples the last
vertex E3 uniformly from the candidate set

(= {E | E 2 N(E1) \N(E2), E .83 < min(E1 .83, E2 .83)} .

It then returns |⇢⌧ | · |(| as the sampler’s output. In ScaleGPM,
this value serves as an unbiased estimate of ⇠ (⌧, %) divided by the
number of automorphisms of the pattern, due to the use of the
restriction set. Since the sampler produces non-zero outputs more
frequently, its variance is reduced, leading to faster convergence.

2.3 Convergence Method

An important issue to be addressed from AGPM is to ensure conver-
gence of⇠ (⌧, %) within the error bound n . ASAP [43] and Arya [91]
utilize the error-latency pro�le (ELP) heuristic that predetermines
the number of samplers needed for convergence based on concentra-
tion inequalities. For example, Arya uses Chebyshev’s inequality [8]
to obtain the number of samplers as follows:

samplers needed =

 ⇥ |⇢⌧ |
d

⇠ (⌧, %) ⇥ n2 ⇥ X ,

where d represents a pattern speci�c value, and is a constant:
However, the equation requires the value of ⇠ (⌧, %), where the
constant is also unknown. To address this, they rely on sampling
from a smaller subgraph of ⌧ to estimate and ⇠ (⌧, %).

Unfortunately, the method based on ELP lacks a theoretical guar-
antee as it relies on a subgraphwhose and⇠ (⌧, %)will be di�erent

Algorithm 1 Online Convergence Detection

1: procedure C��������(n , X , L)

2: # |L| ù L is the list of sampler outputs

3: ` 1
#

Õ#
8=1 !8 , f2 1

#

Õ#
8=1 !

2
8 � `2

4: n̂ �
�1 �1 � X

2

�
· fp

#
· 1
`

ù Estimated error

5: return n̂  n
6: end procedure

Figure 2: Number of samplers needed for convergence. Live-

Journal graph, using n = 0.1, X = 0.01.

from that of the original ⌧ . To address this problem, ScaleGPM [7]
proposes a mathematically sound method to determine the termina-
tion of the sampling, as described in Algorithm 1where� is the CDF
of the standard normal distribution. Instead of predetermining the
number of samplers, it detects convergence by using the mean and
variance of the sampler results. The method is proven for arbitrary
sampling-based techniques that provide unbiased estimates.

3 MOTIVATION

3.1 Limitations of Existing Methods

Even though AGPM systems achieve signi�cantly shorter execution
times compared to exact GPM systems, they are known to su�er
from low convergence speed as the pattern size increases. Specif-
ically, we �nd that the severity of such a problem is exacerbated
by certain types of patterns. One example is patterns with many
bridges [33], which are de�ned as edges whose removal would re-
sult in the separation of the graph. Figure 2 illustrates the number
of samplers required for convergence on two patterns—k-star and
2-star-k-star—on Livejournal [9] graph using ScaleGPM. Com-
pared to the clique and cycle patterns with the same number of
vertices, the two patterns we examine require more samplers to con-
verge, with much steeper growth rates. Considering that a clique
has far more edges than the examined patterns at an equal number
of vertices, the results indicate that there exists some ine�ciencies
on top of pure complexity growth.

One reason for this is the scale-free distribution [10, 11, 30]
observed in many real-world graphs, where the degree distribution
of vertices is highly skewed. Supposewe are sampling the 8-th vertex
E8 , following a bridge {D 9 ,D8 } 2 ⇢? (with 9 < 8). Accordingly, the
connectivity constraints from Section 2.2 cannot be applied because,
by the de�nition of a bridge, no other vertex D with c�1 (D) < 8 ,
except D 9 , shares an edge with D8 . Therefore, omitting symmetry
breaking for simplicity, |(| is approximately equal to 3 (E 9), the

240

degree of E 9 . Since the degrees vary signi�cantly in graphs with
a scale-free distribution, the sampler’s outputs will also have a
high variance in the estimate and ultimately slower convergence.
Moreover, if vertex D 9 in the pattern is connected to : bridges,

the sampler’s output will be roughly proportional to 3 (E 9)
:�1 (see

Section 3.2), which exacerbates this issue.

3.2 Rethinking Sampling Probability

In the three sampling methods described in Section 2.2 (Naive, NS,
and NS-prune) improvements weremade by reducing the size of the
sampling set. With a more promising candidate set, the probability
of �nding an embedding increases, leading to faster convergence.

These three methods di�er in how they form a candidate set
(, but they all assign uniform sampling probability to elements
within (. In the Naive sampling method, the candidate set is the
entire edge set ⇢⌧ with the uniform sampling probability. In NS,
the candidate set is narrowed to the edges neighboring the already-
sampled vertices. For NS-prune, the candidate set is further re�ned
only to the vertices that satisfy the connectivity constraints and
symmetry-breaking restrictions. Assigning uniform probabilities to
these set elements is a reasonable choice. However, such a choice is
not mandatory. In fact, these methods can already be interpreted as
assigning non-uniform probabilities restricted to the �rst vertex. All
three methods uniformly sample a random edge at the beginning
which can be interpreted as having all vertices in the set and having
probability proportional to their degrees.

From these observations, we propose to further add an extra step
to calculate a tailored sampling distribution, allowing us to assign
distinct probabilities to each element in a way that it achieves faster
convergence. As a motivational example, consider the k-star pat-
tern. Suppose we use NS-prune without symmetry breaking and
start with the central vertex. Since sampling the �rst edge uniformly
is equivalent to sampling the �rst vertex with a probability propor-
tional to its degree, a central vertex E is sampled with probability
3 (E)
2 |⇢⌧ |

. Subsequently, for the remaining : outer vertices, the candi-

date set is de�ned as the set of all neighbors of the central vertex,
excluding any vertices that have already been sampled. Thus the

sampler outputs 2 |⇢⌧ |
3 (E)
⇥3 (E)⇥

�
3 (E)�1

�
⇥· · ·⇥

�
3 (E)� (:�1)

�
. Since

3 (E) varies greatly per vertex, it would need numerous iterations
to achieve convergence.

On the other hand, an interesting aspect of k-star is that a

vertex E can form exactly
�3 (E)

:

�
such patterns. What if we dis-

card uniform sampling and instead sample the �rst vertex E with

probability proportional to
�3 (E)

:

�
; that is, ? =

(3 (E)
:)

Õ
G 2+⌧ (3 (G)

:)
? The

sampler’s output will then be
Õ
G 2+⌧ (3 (G)

:)

(3 (E)
:)

⇥ 3 (E) ⇥
�
3 (E) � 1

�
⇥

· · · ⇥
�
3 (E) � (: � 1)

�
=

Õ
G2+⌧

�3 (G)
:

�
⇥ :!, which is a constant

value equal to ⇠ (⌧, %). This means that our sampler will always
return the same value, resulting in zero variance, and convergence
to ⇠ (⌧, %) will occur immediately with a single sampler.

4 BUILDING SAMPLING DISTRIBUTIONS

While the result from Section 3.2 is highly appealing, two key
challenges arise when applying the principle to general patterns.

First, while identifying the ideal distribution for a simple pattern like
k-star is straightforward—we can precompute the sampler outputs
exactly—it is unclear how to �nd such a distribution for a general
pattern. Second, even if we could determine the ideal distribution
for a complex pattern, computing it directly could be prohibitively
expensive, diminishing the advantages of faster convergence. In this
section, we �rst discuss an ideal distribution for a general pattern
(Section 4.1), how to approximate it (Section 4.2), the theoretical
intuition behind it (Section 4.3) and how to preprocess the data
graphs accordingly (Section 4.4).

4.1 Ideal Distribution for General Patterns

In this section, we �rst provide the ideal sampling probability dis-
tribution for a generalized pattern.

D��������� 1 (S������� T���������). Given a graph ⌧ , a sam-
pling trajectory g is an ordered sequence of vertices sampled from+⌧ ,

denoted by

g = (E1, E2, . . . , E:),

where E8 2 +⌧ is the 8-th sampled vertex.

If we sample a vertex E 2 +⌧ after g , we denote the new sampling

trajectory as g 0 = g � E , where � represents concatenation.

D��������� 2 (S��������� T���������). A sampling trajectory

g is successful if it represents an embedding. That is,

|g | = |+% | and 8 (D8 ,D 9) 2 ⇢% , (E8 , E 9) 2 ⇢⌧ .

D��������� 3 (N����� �� S��������� E���������). Given a

sampling trajectory g = (E1, E2, . . . , E:) with 0  |g |  |+% |, the

number of successful extensions =g is the total number of distinct

successful trajectories that extend g by adding vertices from +⌧ . For-

mally,

=g =

�����

(

g 0 2 +⌧ |+% |

����
g 0 = (E1, E2, . . . , E: , E:+1, . . . , E |+% |)

g 0 is a successful trajectory

)�����
.

For example, if g = ;, the value =g is ⇠ (⌧, %). Also for g with
|g | = |+% |, =g is either 1 (g is successful) or 0 (is not).

T������ 1 (I���� S������� D�����������). Suppose there ex-

ists at least one embedding of P in G. Assign a probability to each

vertex E 2 +⌧ such that the probability is proportional to the num-

ber of successful extensions that can be generated when E is selected,

8 .4 .,=g�E . Formally,

fideal (E | g) =
=g�EÕ

G2+⌧ =g�G
, fideal (· | g) 2 R |+⌧ |

.

Then, a sampler using this probability assignment is ideal in that it

returns ⇠ (⌧, %) with zero variance.

P����. Suppose we follow the above distribution fideal for sam-
pling. Since g is an empty sequence () at the beginning, we sample
the �rst vertex E1 from distribution f1, which is

f1 (E) = fideal (E | g = ()) =
= (E)Õ

G2+⌧ = (G)
.

We sample the �rst vertex E1 with probability
= (E1)Õ

G 2+⌧ = (G)
. Then the

next vertex is sampled from

f2 (E) = fideal (E | g = (E1)) =
= (E1)�EÕ

G2+⌧ = (E1)�G
.

241

Repeating this process, at step 8 , we have the sampling trajectory
g = (E1, E2, . . . , E8�1), and we sample the 8-th vertex E8 from the
distribution f8 , which is:

f8 (E) = fideal (E | g = (E1, . . . , E8�1)) =
=g�EÕ

G2+⌧ =g�G
.

Since there exists at least one embedding of % in ⌧ , and we never
sample a vertex E such that=g�E = 0, the sampling process continues
until |g | = |+% |, and the sampling trajectory g = (E1, E2, . . . , E |+% |) is
always a successful one.

Moreover, for any such g , the sampler output -g becomes

-g =

Õ
G 2+⌧ = (G)

= (E1)
·

Õ
G 2+⌧ = (E1)�G

= (E1,E2)
· · · ·

Õ
G 2+⌧ = (E1,...E|+% |�1)�G

= (E1,...E|+% |)

=⇠ (⌧,%),

since =g = = (E1,...,E|+% |)
= 1,

Õ
G2+⌧ = (G) = ⇠ (⌧, %), and the terms

cancel out as
Õ

G2+⌧ = (E1,... E8)�G = = (E1,...E8) . The sampler always
returns the number of embeddings ⇠ (⌧, %) with variance 0. É

4.2 Approximating the Ideal Distribution

We have established that sampling from the ideal distribution
fideal (· | g) yields an unbiased, zero-variance estimate. However,
constructing the ideal probability distribution requires prior knowl-
edge of the ratios of =g�E , which necessitates knowing ⇠ (⌧, %)
beforehand. Since this is infeasible, we need an e�cient method to
build an approximate distribution fapprox (· | g) that closely approxi-
mates fideal (· | g) and yields unbiased results.

4.2.1 Unbiasedness of a sampling distribution. Prior to construct-
ing fapprox, a natural question arises: can arbitrary sampling dis-
tributions be employed while still preserving the unbiasedness of
the resulting estimator? The following theorem a�rms this, under
speci�c conditions.

T������ 2. Suppose the sampling distribution f (E | g) assigns a

positive probability to every vertex E 2 +⌧ such that =g�E > 0. That is,

the distribution ensures that every successful trajectory is reachable.

Then the sampler is an unbiased estimator of ⇠ (⌧, %).

P����. Let - be the output of the sampler. By de�nition, the
expectation of - is given by

E[-] =
’

g

{g is successful}-g ?g .

where -g represents the sampler’s output for trajectory g , and
?g denotes the probability that the sampler follows trajectory g .
This expression holds because a sampler outputs -g = 0 for any
trajectory g that is not successful.

First, note that each successful trajectory corresponds to a unique
embedding of % . Second, every unique embedding is reachable
through the sampling process. Therefore, for all ⇠ (⌧, %) em-
beddings of ⌧ , there exist corresponding successful trajectories
g1, . . . , g⇠ (⌧,%) . Thus we can write

E[-] =
’

g

(g is successful)-g ?g =

⇠ (⌧,%)’

8=1

-g8?g8 .

Also, for each successful g8 , the sampler outputs -g8 =
1

?g8
, which

is well-de�ned. Therefore, the expected value becomes

E[-] =

⇠ (⌧,%)’

8=1

-g8 ?g8 =

⇠ (⌧,%)’

8=1

1

?g8
?g8 =

⇠ (⌧,%)’

8=1

1 =⇠ (⌧, %) .

Thus, the sampler is an unbiased estimator of ⇠ (⌧, %). É

4.2.2 Generalized Approximation Framework. We begin by �ltering
out unpromising vertices by applying connectivity constraints and
excluding already sampled vertices, following [7]. To sample the 8th
vertex (i.e. 8 = |g | + 1), we de�ne the candidate set Sg of promising
vertices as

Sg =

8>><
>>:
E

������
E 8 g, E 2

Ÿ

D 9 242B, 9<8
N(E 9)

9>>=
>>
;
,

where B is the set of backward edges connecting D8 to already
sampled vertices, that is

B = {{D 9 ,D8 } 2 ⇢% | 9 < 8}.

We assign fapprox (E | g) = 0 to all E 8 Sg , because it is guaranteed
that =g�E = 0.

Our goal is now to approximate the ratios of =g�E for vertices
E 2 Sg . The key idea is to consider the structural components of the
pattern % in relation to the data graph ⌧ . We begin by grouping
the vertices based on their distance from D8 within the subgraph
%8 = (+8 , ⇢8), which comprises the yet-to-be-sampled vertices of % :

+8 = {D 9 2 +% | 9 � 8}, ⇢8 = {{D0,D1 } 2 ⇢% | D0,D1 2 +8 }. (1)

We then de�ne the :-hop vertex group as the set of vertices in
%8 that are at a distance : from D8 in %8 . Using this information,
we decompose =g�E into a product of terms, each accounting for
di�erent types of edges divided by :-hop information:

=g�E ⇡
⇡÷

:=1

) [F:] (E)) [I:] (E), (2)

where

•) [F:] (E) is the term accounting for the set of forward edges,
F: . Speci�cally, F: ✓ ⇢8 consists of all edges that connect
vertices at hop (: � 1) to vertices at hop : .

•) [I:] (E) is the term accounting for the set of internal edges,
I: . Speci�cally, I: ✓ ⇢8 consists of all edges among vertices
at the same hop : .

• ⇡ is the maximum number of hops from D8 to any other
connected vertex in %8 .

Note that Eq. (2) does not account for all edges of % . For exam-
ple, there may be vertices in %8 that are not connected to D8 , or
edges connecting vertices at hop : to previously sampled vertices.
Although it is theoretically possible to consider all those edges,
we �nd that focusing on edges of type F: and I: is su�ciently
e�ective. Moreover, while calculating all ⇡-hop terms can yield
more accurate probability approximations, we �nd that it incurs
excessive computational overhead with minimal improvements. We
�nd that using the �rst three terms of the equation provides an
e�ective approximation:

=g�E ⇡) [F1] (E) ·) [I1] (E) ·) [F2] (E).

242

Figure 3: Example graph and patterns for the approximation.

This introduces a small degree of approximation error; however,
such errors a�ect only the rate of convergence and do not impact
the correctness of the embedding count ⇠ (⌧, %). We will present,
in Section 4.2.3, an equation for each term that ensures no vertex is
assigned a zero probability unless it is certain, thereby guaranteeing
unbiasedness (Theorem 2).

4.2.3 Approximation Details. In the example illustrated in Figure 3,
we are sampling the third vertex c (3) = D3 of the pattern %1, %2, %3
from the graph⌧ . SinceD3 is connected toD1 andD2, the correspond-
ing vertex E3 must be connected to both E1 and E2 in ⌧ . Therefore,
the candidate set Sg consists of the vertices adjacent to both E1 and
E2 that are not already in g ; in this case, Sg = {0,1}.

Now, consider the term) [F1] (E) with pattern %1. In %1, we have
B = {{D1,D3}, {D2,D3}}, and F1 = {{D3,D4}, {D3,D5}, {D3,D6}}. For
a vertex E 2 Sg , it is already connected to the previously sampled
vertices with |B| edges. Thus, we need to choose |F1 | edges out of
3 (E) � |B| possible neighbors. Thus we use,

) [F1] (E) =

✓
3 (E) � |B|

|F1 |

◆
.

For example, for a vertex 0 2 Sg ,) [F1] (0) =
�6�2

3

�
.

Next consider the term) [I1] with a more general pattern %2.
In this case, I1 = {{D4,D5}, {D5,D6}}. To account for these edges,
we must estimate the probability ?E that |I1 | necessary edges exist
among the |F1 | neighbors of E . One naive way to estimate ?E is by
using the local clustering coe�cient⇠E of E [85]. Since⇠E represents
the probability that two neighbors of E are connected by an edge,

and there are |I1 | such edges required, we can estimate ?E as ⇠
| I1 |
E .

However, naively estimating ?E as ⇠
| I1 |
E tends to overemphasize

the e�ect of ⇠E , leading to inaccurate approximations. This is be-
cause real-world graphs tend to form clusters [34, 35, 56, 57, 84], and
that |I1 | edges are not independent from each other. For example,
the probability that an edge {0,1} exists given that 0,1, 2 2 N(E)

and edges {0, 2}, {1, 2} exist is generally higher than ⇠E due to the
clustering e�ect.

Therefore, instead of multiplying ⇠E for every edge in I1, we
construct an e�ective subset Ie�ective ✓ I1 of edges that can be
considered independent. For this, we consider the subgraph induced
by I1: %ind = (+ind, ⇢ind), where +ind = {D | D 2 4 2 I1} and
⇢ind = I1. We then select a spanning forest of %ind, whose edge set
is Ie�ective. We then estimate

) [I1] (E) =⇠
| Ie�ective |
E .

In the case of pattern %2, the induced subgraph %ind forms a simple
path over three vertices D4,D5,D6. Since a path is already a tree, the
entire edge set I1 serves as its own spanning tree. Therefore, for
this particular case, we set Ie�ective = I1 = {{D4,D5}, {D5,D6}}. We
then have) [I1] (0) =⇠

2
0 = (5/15)2.

Lastly,) [F2] (E) accounts for the two-hop topology of the pat-
tern. For the pattern %3, F2 = {{D4,D7}, {D6,D8}}. For each edge in
F2, the number of successful extensions is estimated to increase
proportionally to the degree of the corresponding vertices. For ex-
ample,) [F2] (E) = 3 (E4) ·3 (E6) appropriately accounts for potential
connections to D7 and D8. However, since we do not know the exact
1-hop neighbors (E4, E6) that will be sampled in the future, we use
the average degree of the neighbors of E for actual computation.
Thus,

) [F2] (E) =

✓Õ
G2N(E) 3 (G)

3 (E)

◆ | F2 |
.

For example,) [F2] (0) =
�
4+4+3+3+3+3

6

�2
, considering neighbors of

0 starting from E1 in a clockwise manner.
We provide a formal de�nition and an equation to calculate

fapprox (· | g).

D��������� 4 (A��������A�����). Given a pattern % withmatch-

ing order c : {1, . . . , |+% |} ! +% , so that D8 = c (8) 2 +% is the

8-th pattern vertex, we de�ne the Auxiliary Arrays �c as collections

of arrays of sets:

�c
=

�
Bc

, F c
1 , F c

2 , Ic
e�ective

,

where eachBc
, F c

1 , F c
2 ,Ic

e�ective
is an array indexed by 8 = 1, . . . , |+% |,

and each element Bc [8], . . . ,Ic
e�ective

[8] is the set associated with the

vertex D8 = c (8).

Based on �c , the equation for approximating =g�E , where E is
the candidate for the 8-th vertex E8 , is given by

=g�E ⇡
✓
3 (E) � |Bc [8] |

|F c
1 [8] |

◆

| {z }
) [F1]

⇥⇠ | Ic
e�ective

[8] |

E| {z }
) [I1]

⇥
✓Õ

G2N(E) 3 (G)

3 (E)

◆ | Fc
2 [8] |

| {z }
) [F2]

. (3)

We compute this value for all candidate vertices E 2 Sg , and use
normalized values as the distribution fapprox (· | g).

4.3 Analysis on Sample Complexity

To develop theoretical insight on our sampler proposed in Sec-
tion 4.2.3, we analyze the sample complexity. For each successful
trajectory g8 , the sampler’s output can be written as

-g8 =⇠ (⌧, %) ⇥ (1 + [8),

where [8 denotes the multiplicative error associated with trajectory
g8 arising from the use of fapprox in place of the ideal distribution
fideal. Since an unsuccessful trajectory yields -g = 0, the second
moment of the sampler output is

E[- 2] =
’

g

{g successful} -
2
g ?g =

⇠ (⌧,%)’

8=1

-g8

=⇠ (⌧, %)2 (1 + [),

243

where [is the average multiplicative error

[=

1

⇠ (⌧, %)

⇠ (⌧,%)’

8=1

[8 .

Combining Theorem 2with Chebyshev’s inequality, a (1±n)-relative
error is achieved with probability at least 1 � X whenever

� [

n2X
. (4)

This yields an explicit relationship between # (the number of sam-
plers required), the accuracy of fapprox, and the parameters (n, X).
The closer fapprox is to fideal, the closer [is to zero, and the fewer
samplers are required.

To illustrate, consider the simplest non-degenerate pattern, the
triangle. For a successful trajectory g8 = (E1, E2, E3), the multiplica-
tive error [8 for the proposed sampler output is

[8 =


1

3 (E1)
�
3 (E1) � 1

�
⇠E1

’

E2N(E1)

�
3 (E)�1

�
·

��N(E1) \ N(E2)
��

3 (E2) � 1

�
�1. (5)

The ratio |N (E1)\N(E2) |
3 (E2)�1 approximates the fraction of edges ema-

nating from a neighbor of E1 that remain inside N(E1). BecauseÕ
E2N(E1) (3 (E) � 1) counts all edges incident toN(E1), the product

’

E2N(E1)

�
3 (E) � 1

� |N (E1) \N(E2) |

3 (E2) � 1

serves as a proxy for the number of edges internal toN(E1), whose
exact value is 3 (E1)

�
3 (E1) � 1

�
⇠E1 . Consequently, regardless of the

data graph ⌧ , Eq. (5), and thus [, is typically close to zero.
On the other hand, for a sampler based on NS-prune without

symmetry breaking, the error is given as

[08 =


2|⇢⌧ | · |N (E1) \N(E2) |

⇠ (⌧, %)

�
� 1. (6)

If ⌧ is uniform, every edge produces the same number of trian-
gles and Eq. (6) is exactly 0. However, as the graph deviates from
uniformity, [08 deviates further from 0, and more samplers are re-
quired. Thus, Eqs. (4) to (6) suggest that the approximation strategy
in Section 4.2.3 can be substantially more e�ective than existing
approaches.

4.4 Preprocessing Data Graphs

For a given graph ⌧ , we preprocess three pieces of information,
which are used for the calculation of fapprox from Eq. (3).

(1) The binomial coe�cient table
�=
:

�
for = � : .

(2) The average neighbor degree information
Õ
G 2N(E) 3 (G)

3 (E)
.

(3) The clustering coe�cient ⇠E .

While the �rst two items are relatively cheap to process during
the graph loading phase, computing the exact value of ⇠E is time-
consuming since it is equivalent to counting all the triangles in
the graph. Instead, we estimate ⇠E by sampling. For each vertex
E , we perform sampling 3 (E) times and estimate ⇠E from the col-
lected data. We will discuss the preprocessing time in Section 6. We
also note that we bound the estimated clustering coe�cient values
to a small nonzero constant so that fapprox does not contain any
unintended zeros which guarantees the assumption of Theorem 2.

5 AGIS SYSTEM DESIGN

Based on fapprox, we build the AGIS system. We describe how to
strategically use fapprox to accelerate the system (Section 5.1), how
to build the matching order (Section 5.2), followed by the complete
procedure (Section 5.3), and system overview with implementation
details (Section 5.4).

5.1 Structure-Informed Neighbor Sampling

The proposed fapprox can dramatically reduce the required number
of samplers for convergence. However, naively using fapprox can
sometimes lead to longer execution time compared to using funiform.
While sampling from funiform can be done in $ (1) time, sampling
from fapprox takes $ (|+⌧ |) time for constructing the distribution.
Even though the number of samplers is still signi�cantly smaller
than that of using funiform, the overall latency can be longer.

To address this problem, the proposed structure-informed neigh-

bor sampling comprises a decision heuristic that determines the
type of sampling distribution for each vertex based on the structure
of the remaining unsampled subgraph of % . In the decision heuristic,
we consider the density of the remaining unsampled subpattern. We
�nd that as the unsampled portion of the pattern gets denser, =g�E
becomes less predictable, and utilizing funiform is more bene�cial.

Using the di�erence between the number of edges and the num-
ber of vertices to represent density, we de�ne the following decision
function:

D��������� 5 (D������� F�������). Given a pattern % , a match-

ing order c : {1, . . . , |+% |} ! +% , so that D8 = c (8) 2 +% , and a
threshold V  1, the decision function Dc : {1, . . . , |+% |}! {0, 1} is

de�ned as follows:

(1) Modeling the Certainty of Using fapprox:

• De�ne the set of vertices at least two hops away from D8 in %8 =

(+8 , ⇢8) ✓ % (Eq. (1)):

+
�2hop
8 = {D 2 +8 | 2  dist%8 (D8 ,D) < 1}.

• De�ne the set of edges connected to +
�2hop
8 :

⇢
�2hop
8 =

n
{D0,D1 } 2 ⇢%

���D0 2 + �2hop8 or D1 2 +
�2hop
8

o
.

• De�ne the certainty to use fapprox:

Certainty(8) = 1 �
|⇢
�2hop
8 | � |+

�2hop
8 |

|+8 |
.

The value is bounded above by one, i.e., Certainty(8)  1.

(2) Decision Function:

Dc (8) = (Certainty(8)�V)

Here, we use V = 0.8 as the default value. Dc (8) = 1 indicates
that we use fapprox for sampling E8 , and Dc (8) = 0 means we use
funiform. This allows us to combine the strengths of both distribu-
tions based on the topology of the remaining subpattern. Note that
this can be precomputed only from % with negligible cost.

5.2 Matching Order Construction

Since the decision function Dc depends on the matching order c ,
it is crucial to construct c wisely to maximize the use of fapprox. To

244

Figure 4: Overview of AGIS System.

achieve this, we propose an algorithm that incrementally builds the
matching order in a greedy manner, as detailed in Algorithm 2.

Algorithm 2Matching Order Construction

1: Initialize empty list c []

2: for 8 in [1, |+% |] do

3: if 8 = 1 then

4: N +%
5: else

6: N {D 2 +% \ c | 9D0 2 c such that {D,D0} 2 ⇢% }
7: end if

8: for D 2 N do

9: cD c + D, B (D) |F
cD
1 [8] | + |I

cD
1 [8] |

10: end for

11: c c + argmaxD2N B (D)
12: end for

13: return c

As shown in Lines 3–7, we �rst construct a candidate set N of
neighboring vertices so that we always explore the pattern in a
connected fashion. In Lines 8–10, we calculate the score B (D) for all
D 2 N , where |F cD

1 [8] | and |I
cD
1 [8] | are de�ned as in Section 4.2.3,

assuming that vertex D 2 +% is selected as the next vertex in the
matching order. In Line 11, by selecting the vertex that maximizes
this sum, we prioritize vertices with the largest unsampled 1-hop
structures. This approach results in fapprox being selected more
frequently, as the Certainty value in De�nition 5 will be higher.

5.3 Complete Sampling Procedure

The procedure of the sampling algorithm used in AGIS is displayed
in Algorithm 3. In Lines 4–9, we construct the candidate set (g using
connectivity constraints. If no possible vertices exist (Lines 10), we
return a value of 0 and terminate the sampling process. Otherwise,
we build a probability distribution function according to the deci-
sion functionDc (Lines 11–17). We then sample one vertex from (g
following this distribution and update the probability ? accordingly
(Lines 18–19). By repeating this vertex sampling process |+% | times,
we return 1/? as the sampler output.

We note that sampling solely based on funiform is equivalent
to ScaleGPM’s NS-prune procedure without applying symmetry
breaking. The de�nition of funiform varies depending on step 8 . For
8 = 1 (sampling the �rst vertex), funiform is edge-uniform, meaning
that vertices are sampled with probability proportional to their

Algorithm 3 Structure-Informed Neighbor Sampling

1: procedure S�����(⌧ , % , c , Dc , Ac)
2: Initialize g [], ? 1.0

3: for 8 in [1, |+% |] do

4: ù Build set Sg of candidate vertices

5: if 8 = 1 then

6: Sg +⌧
7: else

8: Sg {E | E 8 g, E 2
—

{D 9 ,D8 }2⇢% , 9<8 N(E 9)}

9: end if

10: if |Sg | = 0 then return 0
11: ù Build probability distribution

12: if Dc (8) = 1 then

13: calculate fapprox using (Sg ,A
c
, 8) with Eq. (3)

14: f fapprox

15: else

16: f funiform

17: end if

18: E A0=3_B4;42C (Sg , f)
19: g g + E, ? = ? · f (E)

20: end for

21: return 1
?

22: end procedure

degrees. For 8 � 2, funiform is vertex-uniform, so each vertex in Sg is
sampled with equal probability.

5.4 System Overview

Based on structure-informed neighbor sampling, we propose AGIS,
a system for fast approximate graph pattern mining. The high-level
sketch of AGIS is given in Figure 4. It �rst receives four inputs
from the user: (1) a graph �le ⌧ , (2) a pattern �le % , (3) n , and
(4) X . The graph is read and loaded in CSR format. If the graph
has not been preprocessed, the preprocessor calculates additional
information (Section 4.4). For the pattern, the system �rst constructs
the matching order c which is then used to calculate Dc and Ac .

Once the information is ready, the sampling engine is run in
parallel, where each thread is assigned an individual sampler. For
every �xed number of iterations, the sampler outputs are checked
for convergence by the online convergence detector (Algorithm 1)
proposed by ScaleGPM , utilizing n and X . Finally, the results, such
as the estimated pattern count, are output to the user.

When the queried pattern % is a clique, a popular approach is
to apply orientation optimization [24, 40, 73, 79]. It converts the
undirected graph into a directed acyclic graph (DAG) by removing
edges pointing from high-degree vertex to low-degree vertex. Simi-
lar to ScaleGPM [7], which utilizes this method, we apply the same
optimization for clique patterns.

6 EVALUATION

AGIS is implemented in C++ with OpenMP for multithreading. We
evaluated AGIS over a diverse set of data graphs and patterns. We
used real-world graphs spanning a wide range of sizes, as sum-
marized in Table 1. For the patterns to be mined, we selected a
diverse set of patterns, partly drawn from prior works [7, 91], as

245

Graph |+⌧ | |⇢⌧ | Max Degree

LiveJournal (Lj) [9, 48] 4.8 ⇥ 106 4.3 ⇥ 107 2.0 ⇥ 104

Uk-2002 (Uk) [15–17] 1.8 ⇥ 107 2.6 ⇥ 108 1.9 ⇥ 105

Twitter (Tw) [47, 48] 4.2 ⇥ 107 1.2 ⇥ 109 3.0 ⇥ 106

Friendster (Fs) [48, 88] 6.6 ⇥ 107 1.8 ⇥ 109 5.2 ⇥ 103

Gsh-2015 (Gsh) [16, 17] 9.9 ⇥ 108 2.6 ⇥ 1010 5.9 ⇥ 107

Table 1: Graph datasets used for evaluation.
Figure 5: Patterns used for evaluation.

I�������

4-clique 4-clique-2-dot 6-clique

Lj Uk Tw Fs Lj Uk Tw Fs Lj Uk Tw Fs

AGIS 0.002 0.006 0.016 0.028 0.003 0.069 5.330 0.045 0.001 0.005 0.017 0.143

S����GPM 0.007 0.014 0.018 0.005 0.052 191.9 1930 0.089 0.095 0.843 0.377 2.460

Arya 504.4 688.6 TO TO 2126 1528 TO TO TO TO TO TO

ASAP 958.2 462.4 TO TO TO TO TO TO TO TO TO TO

Peregrine 6.779 128.0 TO 199.5 TO TO TO TO TO TO TO 1114

I�������

3-star-2-star triangle-2-star triangle-triangle

Lj Uk Tw Fs Lj Uk Tw Fs Lj Uk Tw Fs

AGIS 0.002 0.024 0.840 0.028 0.002 0.081 4.701 0.030 0.001 0.013 4.738 0.044

S����GPM 404.1 TO TO 0.054 0.197 40.53 5009 0.043 0.025 0.186 33.75 0.096

Arya 216.4 1345 154.1 135.4 140.2 177.2 632.1 1640 686.3 1827 9148 TO

ASAP 2372 TO TO 3.067 TO TO TO 6273 4628 TO TO TO

Peregrine TO TO TO TO TO TO TO TO TO TO TO TO

Table 2: Execution time (sec.) for patterns where Dc
= 1. TO: timed out. Fastest time in bold.

illustrated in Figure 5. We compared AGIS against the state-of-the-
art AGPM systems ASAP [43], Arya [91] and ScaleGPM [7] and an
exact mining system Peregrine [44]. We used the o�cial implemen-
tations for Peregrine, and Arya. We faithfully reproduced ASAP
from scratch as their codes are not publicly available. Because the
o�cial ScaleGPM implementation requires custom implementation
for individual patterns, we implemented a general-purpose version
of ScaleGPM and, where applicable, reported the minimum execu-
tion time observed between our implementation and the o�cial
code.

For all systems, we excluded the time required to load the in-
put graphs. We also excluded the time spent on pattern-speci�c
preprocessing steps such as solving linear programs for pattern de-
composition in Arya, constructing automorphisms and restriction
sets for ScaleGPM, and computing Ac

,Dc in AGIS. For ScaleGPM,
we used only the strict mode (default) of ScaleGPM. This is because
the loose mode of ScaleGPM uses graph sparsi�cation with exact
counting, which does not use online convergence and thus cannot
provide results with high con�dence.

To validate the estimated values, we compared the results against
Peregrine for all (graph, pattern) pairs that Peregrine can mine
within a moderate time. For pairs where Peregrine fails to produce
an exact count, the ground truth is unknown. However, for all of
the cases, we con�rmed that ScaleGPM and AGIS produce similar
estimates, ensuring that | (-B � -0)/((-B + -0)/2) |< 2n , where
-B and -0 are the results from ScaleGPM and AGIS, respectively.

For all baselines and AGIS, the experiments were conducted on
an AMD Ryzen Threadripper PRO 7985WX with 48 physical cores
with 512GB DRAM. We used a timeout of 1.0 ⇥ 104 s for all runs.

6.1 Overall Performance

Table 2 and Table 3 show the main results for diverse patterns.
We follow the most common practice of n = 0.1, X = 0.01 if not
speci�ed otherwise. Overall, AGIS achieves the fastest speed for
the majority of patterns and successfully mines all patterns without
encountering timeouts. Speci�cally, AGIS obtains 28.5 ⇥ speedup
(using 104s for timeouts) against ScaleGPM, and 63,108⇥ speedup
against Peregrine in geometric mean.

As expected, Peregrine, the exact GPM system fails to produce
results within the given time limit for most cases. For graphs larger
than Lj, Peregrine can only mine clique patterns where heavy
pruning can be applied. This clearly demonstrates the need for
AGPM systems over exact mining systems.

Among the baselines, ScaleGPM achieves the best overall per-
formance. We also observe that ScaleGPM performs the best for
clique patterns due to the bene�ts of DAG orientation optimization.
However, ScaleGPM requires a long time to converge for some
(graph pattern) pairs. For instance, a 3-star-2-star pattern on Lj

takes more than 100,000⇥ longer to converge compared to AGIS.
This observation aligns with those in Section 3.1, where patterns
containing bridges pose signi�cant challenges under skewed degree
distributions.

We can further observe this phenomenon by comparing results
on the Fs graph. Fs is distinctive due to its near-uniform degree
distribution. As shown in Table 1, Fs contains more edges than
Tw, yet its maximum degree is only about 0.2% of that of Tw. Since

246

I�������

5-house 6-cycle-diagonals 5-cycle-triangle

Lj Tw Lj Tw Lj Tw

AGIS 0.003 2.775 0.003 0.580 0.036 188.9

S����GPM 0.009 31.72 0.022 27.25 0.041 2002

Arya 65.83 5490 TO TO TO TO

ASAP 117.8 TO TO TO TO TO

Peregrine 669.1 TO 1483 TO TO TO

Table 3: Execution time (sec.) for patterns where Dc
< 1. TO: timed out.

Figure 6: Impact of V on execution time over

Tw graph.

P������ 4-clique 5-house triangle-triangle

AGIS 0.443 89.11 1120

S����GPM 0.130 731.1 TO

Arya OoM OoM OoM

ASAP TO TO TO

Peregrine TO TO TO

(a) Execution time on Gsh graph.

Lj, 4-clique Lj, 5-house

Error bound n 10% 1% 0.1% 10% 1% 0.1%

AGIS 0.002 0.008 0.528 0.003 0.026 2.314

S����GPM 0.008 0.689 68.86 0.012 1.240 129.0

Arya 504.4 8545 TO 65.83 1037 3910

ASAP 958.2 1901 TO 117.8 573.6 TO

(b) Execution time for di�erent error bounds.

Table 4: Execution time (sec.) for (a) huge graph and (b) di�erent error bounds. TO: timed out. Fastest time in bold.

Figure 7: Real error compared to the estimated error from

online convergence algorithm on AGIS.

the degree distribution in Fs is not highly skewed, ScaleGPM ef-
fectively handles 3-star-2-star and triangle-2-star patterns. Addi-
tionally, from a more fundamental standpoint, funiform takes an
unintended advantage on Fs, since funiform will be closer to fideal.

Furthermore, we can understand why Arya outperforms
ScaleGPM on such patterns for highly skewed graphs through a
similar reasoning process. This is because, unlike ScaleGPM, Arya
attempts to achieve convergence on a subsampled graph, thereby ef-
fectively reducing the range of its degree distribution. However, as
noted in Section 2.3, ELP provides no convergence guarantees and
the results of the ELP heuristic are observed to be highly unstable.

The patterns are grouped into two tables. For the patterns exam-
ined in Table 2, the certainty values (De�nition 5) are always maxi-
mal (equal to 1). Thus, regardless of which V  1 value is chosen,
AGIS consistently uses fapprox. In contrast, for the patterns in Table 3,
the certainty values are not consistently equal to 1. Speci�cally, in
the 5-house pattern one of �ve vertices is sampled uniformly; in
the 6-cycle-diagonals one of six; and in the 5-cycle-triangle three of
eight. By testing for numerous patterns including those in Figure 6,
we �nd that selecting a threshold value of 4

5
 V  5

6
yields robust

and strong performance across a variety of patterns. Figure 6 illus-
trates how V a�ects the performance. Here, V = �1 indicates that
fapprox is always used, whereas V = 1 denotes the most conservative
use of fapprox. For experimental purposes, we extend the range of V

to include values where V > 1, which is equivalent to always choos-
ing funiform. As observed, employing fapprox (V = �1) generally
results in faster convergence compared to using funiform (V = +1).
Nevertheless, every pattern achieves its optimal performance for
some value of V within the range �1 < V  1, indicating that an
optimal point exists between the extremes of exclusively utilizing
fapprox and exclusively utilizing funiform. By utilizing the proposed
Dc , AGIS e�ectively balances the use of fapprox and funiform.

Table 4a presents the performance results on the massive graph
Gsh, containing more than 25 billion edges. As shown, only AGIS
successfully scales to this large size. ScaleGPM is faster solely for the
4-clique pattern, where the overhead of building fapprox outweighs
the complexity of the pattern. In addition, Table 4b reports the
performance under di�erent error bounds. As indicated, AGIS is the
only framework that can handle n = 10�3 within a few seconds. We
also veri�ed that the returned counts respect the given n . In Figure 7,
we plot the estimated error provided by the online convergence
detector against the actual error, measured using exact mining
results. For error levels up to 10�3, the real error remains bounded
by the estimated error, con�rming that the online convergence
method functions e�ectively within AGIS.

We note that there are a few corner cases where AGIS is slower
than ScaleGPM (4-clique on the Fs, Gsh). The upfront cost of com-
puting the full-graph vertex sampling distribution can outweigh its
bene�ts when the target pattern is small and the ideal distribution
is nearly uniform, rendering the sophisticated setup unnecessary.

6.2 Analysis on the Approximate Distribution

We now examine our estimation technique for the sampling distri-
bution in greater detail. Table 5 compares the number of samplers
required for convergence between AGIS and ScaleGPM, both of
which employ the same convergence detection algorithm. As shown,
AGIS requires orders of magnitude fewer samplers. For instance,
ScaleGPM demands three million times more samplers to achieve

247

I�������
4-clique 4-cliqe-2-dot 6-clique 3-star-2-star triangle-2-star triangle-triangle

Lj Tw Lj Tw Lj Tw Lj Tw Lj Tw Lj Tw

AGIS (S���������I������� NS) 5.0e2 2.3e3 5.0e2 4.0e3 7.5e2 1.0e3 5.0e2 5.0e2 2.8e3 1.4e4 5.0e2 1.1e4

S����GPM (NS������) 5.7e4 1.3e5 2.9e5 8.2e7 1.2e6 2.8e6 1.5e9 X 8.8e5 5.6e7 1.5e5 2.3e6

Table 5: Number of samplers needed for convergence. X for failure in convergence. The smallest number is in bold.

(a) KL divergence from each distribution (fapprox and funiform) to the

ideal distribution fideal. (b) Number of samplers needed for convergence.

Figure 8: E�ciency of the proposed approximation technique. Tested on Lj graph.

convergence for the 3-star-2-star pattern in Lj. This highlights
that the fundamental speedup of AGIS arises from leveraging a
well-calculated fapprox rather than relying on a naive funiform.

Figure 8 demonstrates how fapprox improves as we incorporate
additional terms. In Figure 8a, we �rst count the actual value of
= (E) for every vertex E 2 +⌧ . With this information, we calculate
the ideal distribution for sampling the �rst vertex of the pattern,
f8340; (E | ()). We then measure the KL divergence of fideal for several
other distributions: funiform of NS/NS-prune, and fapprox of AGIS.
We analyze three incremental versions of fapprox: (1) using only
) [F1], (2) adding) [I1], and (3) further incorporating) [F2], the
full version employed in AGIS. This breakdown allows us to observe
the e�ect of each added term on the accuracy of the approximation.

For all patterns, fapprox of AGIS achieves orders of magnitude
smaller KL divergence than funiform, indicating a much closer ap-
proximation to fideal. We also �nd that all three terms are necessary.
For instance, in 4-clique, using only the �rst term yields a KL di-
vergence slightly larger than funiform. By adding the term) [I1], we
decrease the value to nearly 0. Similarly, for 4-chain, including the
�nal term) [F2] further boosts the deduction in KL divergence.

Figure 8b presents the number of samplers required for conver-
gence with incremental addition of the terms. Here, we include
larger patterns for which it is not feasible to compute fideal. As
shown, having all three terms yields clear bene�ts. However, as
discussed in Section 4.2, the marginal improvement from adding the
third term is the smallest. This observation aligns with the notion
that incorporating higher-order terms leads to diminishing returns,
since edges further along the pattern introduce greater uncertainty.

6.3 Comparison with MCMC based method

Markov Chain Monte Carlo (MCMC)–based counting tech-
niques [13, 26, 37, 83] provide an alternative to NS-based sampling
methods for estimating the concentration, the proportion of a spe-
ci�c pattern among all patterns of the same size in a given graph.
These techniques construct a higher-order auxiliary graph whose

Figure 9: Variation distance to the true concentration.

vertices correspond to embeddings in the original graph. Two ver-
tices of the auxiliary graph are adjacent if their embeddings di�er
by a small local modi�cation, such as replacing, deleting, or adding
a vertex. An MCMC algorithm then performs a random walk on
this auxiliary graph until mixing, using the visitation frequencies
to approximate the concentration.

Figure 9 compares AGIS with an MCMC-based counting algo-
rithm on size-�ve patterns over the Lj graph and size-four pat-
terns over the Uk graph. We implemented SRW2, the MCMC-based
algorithm described in [26], which returns the estimated concen-
tration for a speci�ed pattern size. For AGIS, there are a total of
21 connected non-isomorphic size-�ve patterns and 6 connected
non-isomorphic size-four patterns. We enumerated each pattern
individually to obtain its approximate count, and then normalized
these counts by the total number of patterns of the corresponding
size to derive their concentrations. Ground-truth concentrations
were obtained with the exact system Peregrine. Accuracy was mea-
sured by variation distance, de�ned as one half of the !1 distance
between concentration vectors. The �gure shows that, whileMCMC
methods enjoy strong theoretical guarantees, AGIS produces much
more accurate estimates within the same time budget. Speci�cally,
at 1 s, the MCMC method exhibits variation distances that are 8.3⇥
and 41.7⇥ larger than those of AGIS.

248

(a) Tw preprocessing time. (b) Twmining time breakdown.

Figure 10: Execution time analysis.

Graph Lj Uk Tw Fs

Total Time (s) 0.477 3.069 34.93 55.37

Table 6: Preprocessing time across di�erent graph datasets.

6.4 Execution Time Breakdown

We now consider the time spent on preprocessing. For ASAP and
Arya, a subsampling step must be performed once per given graph.
This step involves randomly sampling edges at a speci�ed ratio,
converting them into an undirected graph representation, and then
re�ning them into a CSR format. For ScaleGPM, a directed acyclic
graph (DAG) must be constructed for orientation optimization. In
the case of AGIS, in addition to the DAG construction, we must
also compute the required graph information (Section 4.4).

Figure 10a presents the preprocessing times for the four AGPM
systems. By employing the sampling technique described in Sec-
tion 4.4, the preprocessing phase for AGIS is not prohibitively slow,
and remains comparable to that of ELP-based methods. For com-
pleteness, Table 6 reports the total preprocessing time for each
graph. This one-time overhead is amortized over all pattern queries
and thus negligible in practice, particularly when mining complex
patterns or when mining under tight error bounds.

Lastly, we present a detailed timing breakdown of AGIS’s runtime
in Figure 10b. We partition the execution into three components: (1)
set operations for constructing the candidate set Sg , (2) numerical
calculations for fapprox and (3) sampling via building a cumulative
distribution. The analysis indicates that the computation of fapprox
accounts for slightly more than half of the total runtime. However,
as demonstrated in Section 6.1 and Section 6.2, this additional cost is
justi�ed, as a meticulously constructed fapprox leads to a substantial
improvement in overall runtime.

7 RELATED WORK

Exact Graph Pattern Mining Systems. There have been nu-
merous attempts to develop e�cient exact Graph Pattern Mining
systems. Systems such as [22, 25, 44, 50, 82], use various optimiza-
tion techniques to improve performance. For instance, Dwarves-
Graph [22] uses a decomposition algorithm and computes the
counts for each decomposed pattern. GraphZero [50] uses a re-
labeling technique to generalize the orientation algorithm to arbi-
trary patterns. Peregrine [44] adopts pattern-aware algorithms to
prune early, thus bypassing expensive isomorphism and canonical-
ity checks. [23, 60] develops a combinatorial framework for e�cient

counting. Notably, [51, 71] employ a performance model with sim-
ilar approximation logic to AGIS. They approximate the size of
set intersections using a global constant (e.g., the total number of
triangles), whereas AGIS leverages local �ne grained information.
Other Approximate Counting Schemes. Beyond NS-based meth-
ods andMCMC-basedmethods, several alternative approaches have
been developed for approximate subgraph counting. One example
is the Color Coding (CC) approach [4, 5, 20, 75, 90]. The core idea is
to assign each vertex a random color and focus on colorful matches,
where all vertices in the pattern have distinct colors. This count-
ing step can be done e�ciently via dynamic programming, and by
repeating the color assignment and counting procedure multiple
times, the approximation can be re�ned.

Another line of research focuses on sparsifying the graph before
applying exact counting procedures. Various studies have intro-
duced distinct sparsi�cation techniques to approximate speci�c
patterns, including triangles [58, 78], cliques [69], 5-cycles [70], and
butter�y patterns [67]. In a similar vein, ScaleGPM [7] introduces a
“loose mode” that leverages sparsi�cation when its primary strategy
is anticipated to fail or become excessively time-consuming.

Some streaming algorithms [2, 81] maintain an edge reservoir
by assigning each edge an inclusion probability proportional to its
marginal contribution to the overall pattern count. This is analogous
to AGIS, in which optimal sampling probabilities are proportional
to the number of pattern instances incident on each vertex.
Counting Across Di�erent Graph Types. While homogeneous
graphs were considered in this paper, counting on heterogeneous
graphs and hypergraphs is another important line of research.
Type-aware counting techniques have been developed to e�ciently
handle constraints on heterogeneous graphs. These include com-
binatorial methods that exploit algebraic relationships to avoid
exhaustive enumeration [55, 61, 63, 68, 74], discriminative min-
ing approaches that discover frequent typed patterns [14, 21], and
sampling-based estimators [64, 72].

For hypergraphs and simplicial complexes, recent systems [76,
89] leverage hyperedge features and parallelism. A growing body
of work proposes sketch-based approximations for counting small
sub-hypergraphs at scale [18, 46, 54, 80]. Recent studies adapt
random-walk–based sampling [12, 41, 42, 62, 66].

8 CONCLUSION

In this paper, we introduced AGIS, a fast approximate graph pattern
mining system that leverages a novel structure-informed neighbor
sampling technique. By integrating structural properties from both
data and pattern graphs, AGIS constructs an approximate ideal
sampling distribution and then adaptively decides when to apply
it for optimal e�ciency. Experiments on diverse datasets show
that AGIS outperforms state-of-the-art baselines by more than an
order of magnitude (28.5⇥ in geometric mean), achieving rapid
convergence and scaling to graphs with tens of billions of edges.

ACKNOWLEDGMENTS

This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) (RS-2024-00395134,
RS-2024-00347394, RS-2023-00256081, RS-2021II211343, RS-2025-
00564840). Jinho Lee is the corresponding author.

249

REFERENCES
[1] Charu C Aggarwal, Haixun Wang, et al. 2010. Managing and mining graph data.

Vol. 40. Springer.
[2] Nesreen K Ahmed, Nick Du�eld, Theodore L Willke, and Ryan A Rossi. 2017.

On Sampling from Massive Graph Streams. Proceedings of the VLDB Endowment
10, 11 (2017).

[3] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery 29
(2015), 626–688.

[4] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and
S Cenk Sahinalp. 2008. Biomolecular network motif counting and discovery by
color coding. Bioinformatics 24, 13 (2008), i241–i249.

[5] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4
(1995), 844–856.

[6] Naomi A Arnold, Peijie Zhong, Cheick Tidiane Ba, Ben Steer, Raul Mondragon,
Felix Cuadrado, Renaud Lambiotte, and Richard G Clegg. 2024. Insights and
caveats from mining local and global temporal motifs in cryptocurrency transac-
tion networks. Scienti�c Reports 14, 1 (2024), 26569.

[7] Anna Arpaci-Dusseau, Zixiang Zhou, and Xuhao Chen. 2025. Accurate and Fast
Approximate Graph Pattern Mining at Scale. Proceedings of the VLDB Endowment
18, 2 (2025), 93–107.

[8] Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. 2018. A simple sublinear-
time algorithm for counting arbitrary subgraphs via edge sampling. arXiv
preprint arXiv:1811.07780 (2018).

[9] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In KDD.

[10] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[11] Albert-László Barabási, Réka Albert, and Hawoong Jeong. 1999. Mean-�eld
theory for scale-free random networks. Physica A: Statistical Mechanics and its
Applications 272, 1-2 (1999), 173–187.

[12] Hamid Beigy, Mohammad Mahini, Salman Qadami, and Morteza Sagha�an.
2024. Approximating Simplet Frequency Distribution for Simplicial Complexes.
arXiv:2402.16777 [cs.CG] https://arxiv.org/abs/2402.16777

[13] Mansurul A Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and Mohammad
Al Hasan. 2012. Guise: Uniform sampling of graphlets for large graph analysis.
In ICDM.

[14] Zhichun Li Zhenyu Wu Zhiyun Qian Xifeng Yan Ambuj K. Singh Guofei Jiang
Bo Zong, Xusheng Xiao. 2015. Behavior query discovery in system-generated
temporal graphs. Proceedings of the VLDB Endowment 9, 14 (2015), 240–251.
https://doi.org/10.14778/2856318.2856320

[15] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.
Ubicrawler: A scalable fully distributed web crawler. Software: Practice and
Experience 34, 8 (2004), 711–726.

[16] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: A multiresolution coordinate-free ordering for compressing
social networks. In WWW.

[17] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW.

[18] Marco Bressan, Julian Brinkmann, Holger Dell, Marc Roth, and Philip
Wellnitz. 2025. The Complexity of Counting Small Sub-Hypergraphs.
arXiv:2506.14081 [cs.CC] https://arxiv.org/abs/2506.14081

[19] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro
Panconesi. 2018. Motif counting beyond �ve nodes. Transactions on Knowledge
Discovery from Data 12, 4 (2018), 1–25.

[20] Venkatesan T Chakaravarthy, Michael Kapralov, Prakash Murali, Fabrizio Petrini,
Xinyu Que, Yogish Sabharwal, and Baruch Schieber. 2016. Subgraph counting:
Color coding beyond trees. In IPDPS.

[21] Yuan Fang; Wenqing Lin; Vincent W. Zheng; Min Wu; Jiaqi Shi; Kevin Chen-
Chuan Chang and Xiao-Li Li. 2021. Metagraph-Based Learning onHeterogeneous
Graphs. IEEE Transactions on Knowledge and Data Engineering 33, 1 (2021), 154–
168.

[22] Jingji Chen and Xuehai Qian. 2020. Dwarvesgraph: a high-performance graph
mining system with pattern decomposition. arXiv preprint arXiv:2008.09682
(2020).

[23] Jingji Chen andXuehai Qian. 2022. Decomine: A compilation-based graph pattern
mining system with pattern decomposition. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1. 47–61.

[24] Xuhao Chen et al. 2022. E�cient and scalable graph pattern mining on GPUs. In
OSDI.

[25] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
2021. Sandslash: a two-level framework for e�cient graph pattern mining. In
ICS.

[26] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John Lui. 2016. A general
framework for estimating graphlet statistics via random walk. arXiv preprint
arXiv:1603.07504 (2016).

[27] Yuhang Chen, Jiaxin Jiang, Shixuan Sun, Bingsheng He, and Min Chen. 2024.
Rush: Real-time burst subgraph detection in dynamic graphs. Proceedings of the
VLDB Endowment 17, 11 (2024), 3657–3665.

[28] Young-Rae Cho and Aidong Zhang. 2009. Predicting protein function by fre-
quent functional association pattern mining in protein interaction networks.
Transactions on information technology in biomedicine 14, 1 (2009), 30–36.

[29] Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and
John Feo. 2015. A selectivity based approach to continuous pattern detection in
streaming graphs. arXiv preprint arXiv:1503.00849 (2015).

[30] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[31] Mukund Deshpande, Michihiro Kuramochi, NikilWale, and George Karypis. 2005.
Frequent substructure-based approaches for classifying chemical compounds.
Transactions on Knowledge and Data Engineering 17, 8 (2005), 1036–1050.

[32] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira, and Srini-
vasan Parthasarathy. 2019. Fractal: A general-purpose graph pattern mining
system. In SIGMOD. 1357–1374.

[33] Reinhard Diestel. 2024. Graph theory. Springer (print edition); Reinhard Diestel
(eBooks).

[34] David Easley, Jon Kleinberg, et al. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Vol. 1. Cambridge university press Cambridge.

[35] Mark S Granovetter. 1973. The strength of weak ties. American journal of
sociology 78, 6 (1973), 1360–1380.

[36] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee
Tan. 2020. Gpu-accelerated subgraph enumeration on partitioned graphs. In
SIGMOD.

[37] Guyue Han and Harish Sethu. 2016. Waddling random walk: Fast and accurate
mining of motif statistics in large graphs. In ICDM.

[38] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet
counting. Bioinformatics 30, 4 (2014), 559–565.

[39] Paul W Holland and Samuel Leinhardt. 1976. Local structure in social networks.
Sociological methodology 7 (1976), 1–45.

[40] Yang Hu, Hang Liu, and HHowie Huang. 2018. Tricore: Parallel triangle counting
on gpus. In SC.

[41] Fanchen Bu Jihoon Ko Kijung Shin Hyunju Kim, HeechanMoon. 2025. Estimating
simplet counts via sampling: Estimating simplet counts... The VLDB Journal 34,
2 (2025). https://doi.org/10.1007/s00778-024-00890-9

[42] Fanchen Bu Kijung Shin Hyunju Kim, Jihoon Ko. 2023. Characterization of
Simplicial Complexes by Counting Simplets Beyond Four Nodes. In Proceedings of
the ACMWeb Conference 2023. 317–327. https://doi.org/10.1145/3543507.3583332

[43] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, ShivaramVenkataraman, Vladimir
Braverman, and Ion Stoica. 2018. ASAP: Fast, approximate graph pattern mining
at scale. In OSDI 18.

[44] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. 2020. Peregrine: a pattern-
aware graph mining system. In EuroSys.

[45] Madhav Jha, C Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts. In WWW.

[46] John Kallaugher, Michael Kapralov, and Eric Price. 2018. The Sketching Complex-
ity of Graph and Hypergraph Counting. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS). 556–567. https://doi.org/10.1109/FOCS.
2018.00059

[47] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In WWW.

[48] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network
dataset collection.

[49] Dean Lusher, Johan Koskinen, and Garry Robins. 2013. Exponential random
graph models for social networks: Theory, methods, and applications. Cambridge
University Press.

[50] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu.
2021. Graphzero: A high-performance subgraph matching system. ACM SIGOPS
Operating Systems Review 55, 1 (2021), 21–37.

[51] Daniel Mawhirter and Bo Wu. 2019. Automine: harmonizing high-level abstrac-
tion and high performance for graph mining. In SOSP.

[52] Tijana Milenković, Weng Leong Ng, Wayne Hayes, and Nataša Pržulj. 2010.
Optimal network alignment with graphlet degree vectors. Cancer informatics 9
(2010), CIN–S4744.

[53] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824–827.

[54] Richard Montgomery and Matías Pavez-Signé. 2024. Counting spanning sub-
graphs in dense hypergraphs. Combinatorics, Probability and Computing 33, 6
(2024), 729–741. https://doi.org/10.1017/S0963548324000178

[55] Ryan A. Rossi Nick G. Du�eld Theodore L. Willke Nesreen K. Ahmed, Jen-
nifer Neville. 2017. Graphlet Decomposition: Framework, Algorithms, and Ap-
plications. Knowledge and Information Systems 50, 3 (2017), 689–722. https:
//doi.org/10.1007/s10115-016-0965-5

[56] Mark EJ Newman. 2001. Clustering and preferential attachment in growing
networks. Physical review E 64, 2 (2001), 025102.

250

https://arxiv.org/abs/2402.16777
https://arxiv.org/abs/2402.16777
https://doi.org/10.14778/2856318.2856320
https://arxiv.org/abs/2506.14081
https://arxiv.org/abs/2506.14081
https://doi.org/10.1007/s00778-024-00890-9
https://doi.org/10.1145/3543507.3583332
https://doi.org/10.1109/FOCS.2018.00059
https://doi.org/10.1109/FOCS.2018.00059
https://doi.org/10.1017/S0963548324000178
https://doi.org/10.1007/s10115-016-0965-5
https://doi.org/10.1007/s10115-016-0965-5

[57] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[58] Rasmus Pagh and Charalampos E Tsourakakis. 2012. Colorful triangle counting
and a mapreduce implementation. Inform. Process. Lett. 112, 7 (2012), 277–281.

[59] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2013.
Counting and sampling triangles from a graph stream. Proceedings of the VLDB
Endowment 6, 14 (2013), 1870–1881.

[60] Ali Pinar, Comandur Seshadhri, and Vaidyanathan Vishal. 2017. Escape: E�-
ciently counting all 5-vertex subgraphs. In Proceedings of the 26th international
conference on world wide web. 1431–1440.

[61] Ryan A. Rossi, Nesreen K. Ahmed, Aldo Carranza, David Arbour, Anup
Rao, Sungchul Kim, and Eunyee Koh. 2019. Heterogeneous Network Motifs.
arXiv:1901.10026 [cs.SI] https://arxiv.org/abs/1901.10026

[62] Marc Roth and Johannes Schmitt. 2020. Counting Induced Subgraphs: A Topo-
logical Approach to W[1]-hardness. Algorithmica 82, 8 (2020), 2267–2291.
https://doi.org/10.1007/s00453-020-00676-9

[63] Aldo Carranza David Arbour Anup Rao Sungchul Kim Eunyee Koh Ryan A. Rossi,
Nesreen K. Ahmed. 2020. Heterogeneous Graphlets. ACM Transactions on
Knowledge Discovery from Data (TKDD) 15, 1, Article 9 (2020), 43 pages. https:
//doi.org/10.1145/3418773

[64] Tung Mai Nesreen K. Ahmed Ryan A. Rossi, Anup Rao. 2020. Fast and Accurate
Estimation of Typed Graphlets. In Companion Proceedings of the Web Conference
2020. 32–34. https://doi.org/10.1145/3366424.338268

[65] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer
Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph
processing. Proceedings of the VLDB Endowment 11, 4 (2017), 420–431.

[66] Gennady Samorodnitsky and Takashi Owada. 2023. Large deviations for subcom-
plex counts and Betti numbers in multiparameter simplicial complexes. Random
Structures Algorithms 63, 2 (2023), 533–556. https://doi.org/10.1002/rsa.21146

[67] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018.
Butter�y counting in bipartite networks. In KDD. 2150–2159.

[68] Fazle E. Faisal Shawn Gu, John Johnson and Tijana Milenković. 2018. From ho-
mogeneous to heterogeneous network alignment via colored graphlets. Scienti�c
Reports 8, 12524 (2018).

[69] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel clique counting
and peeling algorithms. In ACDA.

[70] Jessica Shi, Louisa Ruixue Huang, and Julian Shun. 2022. Parallel Five-cycle
Counting Algorithms. Journal of Experimental Algorithmics 27 (2022), 1–23.

[71] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020. Graphpi: High per-
formance graph pattern matching through e�ective redundancy elimination. In
SC.

[72] Wonseok Shin, Siwoo Song, Kunsoo Park, and Wook-Shin Han. 2024. Cardinality
Estimation of Subgraph Matching: A Filtering-Sampling Approach. Proceedings
of the VLDB Endowment 17, 7 (2024), 1697–1709. https://arxiv.org/abs/2309.15433

[73] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computations
without tuning. In ICDE.

[74] Honglong Chen Ivan Lee Lianhua Chi Hanghang Tong Shuo Yu, Feng Xia. 2024.
Heterogeneous network motif coding, counting, and pro�ling. ACM Transactions
on Knowledge Discovery from Data 18, 9 (2024), Article 231. https://doi.org/10.

1145/3687465
[75] George M Slota and Kamesh Madduri. 2013. Fast approximate subgraph counting

and enumeration. In ICPP.
[76] Yuhang Su, Yu Gu, Zhigang Wang, Ying Zhang, Jianbin Qin, and Ge Yu. 2023.

E�cient Subhypergraph Matching Based on Hyperedge Features. IEEE Trans-
actions on Knowledge and Data Engineering 35, 6 (2023), 5808–5822. https:
//doi.org/10.1109/TKDE.2022.3160393

[77] Carlos HC Teixeira, Alexandre J Fonseca, Marco Sera�ni, Georgos Siganos, Mo-
hammed J Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a system for distributed
graph mining. In SOSP.

[78] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.
Doulion: counting triangles in massive graphs with a coin. In KDD.

[79] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. 2017. Parallel
triangle counting and k-truss identi�cation using graph-centric methods. In
HPEC.

[80] Jozef Skokan Vojtĕch Rödl. 2005. Counting subgraphs in quasi-random 4-uniform
hypergraphs. Random Structures Algorithms 26, 1-2 (2005), 160–203. https:
//doi.org/10.1017/S0963548324000178

[81] Kaixin Wang, Cheng Long, Da Yan, Jie Zhang, and HV Jagadish. 2023. Reinforce-
ment learning enhanced weighted sampling for accurate subgraph counting on
fully dynamic graph streams. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 1084–1097.

[82] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. 2018. RStream: Marrying relational algebra with streaming for e�cient
graph mining on a single machine. In OSDI.

[83] Pinghui Wang, John CS Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and
Xiaohong Guan. 2014. E�ciently estimating motif statistics of large networks.
Transactions on Knowledge Discovery from Data 9, 2 (2014), 1–27.

[84] Duncan J Watts. 1999. Small worlds: the dynamics of networks between order
and randomness.

[85] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

[86] Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based substructure pattern
mining. In ICDM.

[87] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei Han. 2018. Node,
motif and subgraph: Leveraging network functional blocks through structural
convolution. In ASONAM.

[88] Jaewon Yang and Jure Leskovec. 2012. De�ning and evaluating network commu-
nities based on ground-truth. In SIGKDD workshop on mining data semantics.

[89] Zhengyi Yang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Shunyang Li. 2023.
HGMatch: A Match-by-Hyperedge Approach for Subgraph Matching on Hyper-
graphs. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
2063–2076. https://doi.org/10.1109/ICDE55515.2023.00160

[90] Zhao Zhao, Maleq Khan, VS Anil Kumar, and Madhav VMarathe. 2010. Subgraph
enumeration in large social contact networks using parallel color coding and
streaming. In ICPP.

[91] Zeying Zhu, Kan Wu, and Zaoxing Liu. 2023. Arya: Arbitrary Graph Pattern
Mining with Decomposition-based Sampling. In NSDI.

251

https://arxiv.org/abs/1901.10026
https://arxiv.org/abs/1901.10026
https://doi.org/10.1007/s00453-020-00676-9
https://doi.org/10.1145/3418773
https://doi.org/10.1145/3418773
https://doi.org/10.1145/3366424.338268
https://doi.org/10.1002/rsa.21146
https://arxiv.org/abs/2309.15433
https://doi.org/10.1145/3687465
https://doi.org/10.1145/3687465
https://doi.org/10.1109/TKDE.2022.3160393
https://doi.org/10.1109/TKDE.2022.3160393
https://doi.org/10.1017/S0963548324000178
https://doi.org/10.1017/S0963548324000178
https://doi.org/10.1109/ICDE55515.2023.00160

	Abstract
	1 Introduction
	2 Background
	2.1 Approximate Graph Mining Systems
	2.2 Sampling Strategies of AGPM
	2.3 Convergence Method

	3 Motivation
	3.1 Limitations of Existing Methods
	3.2 Rethinking Sampling Probability

	4 Building Sampling Distributions
	4.1 Ideal Distribution for General Patterns
	4.2 Approximating the Ideal Distribution
	4.3 Analysis on Sample Complexity
	4.4 Preprocessing Data Graphs

	5 AGIS System Design
	5.1 Structure-Informed Neighbor Sampling
	5.2 Matching Order Construction
	5.3 Complete Sampling Procedure
	5.4 System Overview

	6 Evaluation
	6.1 Overall Performance
	6.2 Analysis on the Approximate Distribution
	6.3 Comparison with MCMC based method
	6.4 Execution Time Breakdown

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

