Garnet: A Next-Generation Cache-Store for Accelerating
Applications and Services

Badrish Chandramouli
Lukas M. Maas

Vasileios Zois
Yoganand Rajasekaran

Ted Hart Tal Zaccai
Darren Gehring

Microsoft Research
{badrishc,vazois,tedhar,talzacc,lumaas,yrajas,darrenge}@microsoft.com

ABSTRACT

Remote cache-stores have seen a dramatic rise in importance in
recent years, fueled by a surge in data-driven applications. Most
prior database research has focused on various aspects of traditional
key-value stores with string values and a simple get/set based
remote interface. However, modern cache-stores such as Redis offer
a significantly richer interface that has witnessed unprecedented
popularity and broad adoption across the developer community.
The interface and use cases for such cache-stores in both end-user
applications and large-scale services translate to new requirements
on storage, scale, complex data type support, and durability.
Garnet is a new cache-store that adopts the Redis wire protocol
for compatibility, but rethinks from a database perspective how such
a modern cache-store system should be designed from the ground
up to meet these requirements. Research insights across the storage,
network, and cluster stack allow Garnet to support the large Redis
interface as a drop-in replacement, yet achieve stronger database
features—thread- and node-scalability, durability, transactions—and
better end-to-end performance (up to 100x higher throughput and
4% lower latency at high percentiles). These results translate to
lower end-to-end costs for real-word applications and services.

PVLDB Reference Format:

Badrish Chandramouli, Vasileios Zois, Ted Hart, Tal Zaccai, Lukas M. Maas,
Yoganand Rajasekaran, and Darren Gehring. Garnet: A Next-Generation
Cache-Store for Accelerating Applications and Services. PVLDB, 19(2): 224
- 237, 2025.

doi:10.14778/3773749.3773760

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/microsoft/garnet.

1 INTRODUCTION

Caches and storage systems have seen a dramatic rise in importance
in recent years, fueled by a surge in data-driven applications and
services. More than a decade of database research has gone into
various aspects of traditional key-value stores [4-6, 30, 32, 39] that
focus on string values with a get/set based interface.

However, rich remote cache-stores (or, cache-stores for brevity)
have quickly become the standard in recent years. We define a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773760

224

cache-store as a storage server that exposes one or more remote
endpoints that adhere to a well-defined wire protocol and a rich (or
expressive) command set. A cache-store can be deployed in either
standalone (single instance) or cluster (sharded and/or replicated
set of instances) mode. Clients are typically remote, and may be
implemented in any programming language—they interact with
the cache-store using the specified protocol and command set.
Example cache-stores are Redis [44], its recent fork Valkey [60],
KeyDB [25], and Dragonfly [12]—these systems offer a significantly
richer interface that is now adopted across the developer com-
munity, with clients in nearly every language. All cloud vendors
offer services around cache-stores, such as Google MemoryStore,
Amazon MemoryDB and ElastiCache, and Microsoft’s Azure Redis
Cache. More broadly, the in-memory data store/cache market is
projected to grow from $8 billion in 2024 to $30 billion by 2033 [22].
Beyond the get/set interface, cache-stores offer advanced value
data types such as SortedSet, List, Hash, Set, and Geo, per-key ex-
piration times, analytics capabilities (HyperLogLog [20] and bitmap
sketches), transactions, and stored procedures. Cache-stores are
used in a variety of ways, for example, as a scalable caching tier in
front of databases, to decouple and share session state across appli-
cation instances, and even directly as a fully durable database [47].

1.1 Requirements for Modern Cache-Stores

Our discussions with large application services at Microsoft indi-
cate a common usage pattern. Applications usually start by directly
using database services. As they grow in popularity and usage,
however, the need to lower service costs and reduce latency results
in the introduction of a cache-store layer in front of the database.
The rich cache-store interface eventually leads to applications using
them to store additional state beyond what the database holds, e.g.,
sorted sets with per-key expiration are a convenient way to imple-
ment a sliding window rate limiter [56] for a search service. Other
scenarios include gaming leaderboards, recommendation systems,
real-time streaming analytics, job queues, content and session state
caching, distributed locks, counters, social media state, and LLM
prompt caching [47, 50, 61]. This increased usage in turn leads to
greater expectations in terms of data volumes served, performance
targets, and durability guarantees for the cache-store. A survey
found that over 70% of Redis users treated it as their database and
not just a cache [47]. Based on these and observations, we identify
the following unique requirements for modern cache-stores:

o Larger-Than-Memory but Memory-Optimized (LTM-MO): Given the
increasing cost of memory and scalable IOPS of modern storage,
users want cache-stores over larger-than-memory data sizes. Yet,
they need to be highly optimized for the common case where
the stored data (or its working set) fits in memory.

https://doi.org/10.14778/3773749.3773760
https://github.com/microsoft/garnet
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773760
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Comparing RESP cache-stores (normalized to Redis).

Feature Redis Valkey KeyDB Dragonfly Garnet
Node Throughput (§ 8.3) 1x 1Xx 0.6X 10x 108%x
Latency, batch size 16 (§8.4) 1Xx 1X 1.4X 0.67X 0.25%
Kernel Bypass Ability (§ 3) X v X X v
Tiered Storage (§ 4) X X v X v
Decoupled Storage (§ 4) X X X X v
Tunable Durability (§ 5) v v v X v
Checkpoint Speed (§5,§8.6) 1x 1x 0.57% 59% 257x
Scale-out Speed (§ 6, § 8.7) 1x 1x 0.88% 11x 94x

Bare-Metal Performance: Cache-stores are deployed to reduce
latency and cost as compared to database servers, so high perfor-
mance that is limited only by the underlying hardware is a key
requirement. Concretely, users want (1) high throughput, satu-
rating memory bandwidth for memory operations, disk IOPS for
disk operations, or network bandwidth (remote cache-stores are
typically limited by the latter); (2) low median and 99" percentile
end-to-end latencies, with the ability to leverage kernel bypass
networking [23] for lower latency; (3) scalability with increasing
cores and nodes; and (4) fast non-blocking checkpoints.
Complex Types and Operations: The cache-store should work
efficiently with not just raw string values, but also complex data
types represented as heap objects. We define a heap object as any
in-memory data structure, often with its own internal pointers,
such as a linked list for List. Users expect many data types with
hundreds of commands over them (e.g., more than 250 in Redis).
Given the large and evolving number of commands, a narrow
and safe storage interface is necessary so that developers can add
and maintain these types and operations without understanding
the underlying subtle high-performance storage implementation.
Tunable Durability: Given the diverse use cases and a user pref-
erence [57] to not maintain a separate durable database, a cache-
store should be configurable with a range of durability options
such as ephemeral, periodic checkpoints, lazy durability (contin-
uously commit in the background), and full durability (commit
before acknowledging writes). Users should also be able to con-
figure a variable number of replicas and shards in a cluster mode
without loss of performance.

1.2 Today’s Cache-Store Architectures

Traditional key-value store research [9, 21] has focused on the
get/set interface on strings, with sharded and replicated architec-
tures. The Redis (and now Valkey [60]) cache started as a simple
in-memory hash table, but its protocol—called the Redis Serialization
Protocol (RESP)—and command set have evolved to meet developer
needs over time (250+ commands to date). Complex data types
are implemented as raw C logic and instantiated in main memory,
making new data structure additions difficult and error-prone.
The simplest server architecture for a cache-store is a single-
threaded storage component (e.g., a hash table) accessed by a multi-
threaded network layer. Incoming requests can either be multi-
plexed into a single work queue or directly access the storage com-
ponent under a lock. These two architectures correspond to Redis
and KeyDB respectively, but achieve limited throughput on modern
servers. A slightly improved design replaces the single work queue
with one queue per server core, where each queue handles some
partition of the key space (similar to Redis Enterprise [46]). While

225

this design increases server parallelism, it suffers from the high
cost of examining incoming packets, breaking batches by routing
individual requests to the owning worker, and collating responses
to be returned to clients in the correct order. It can also suffer from
imbalance across queues with skewed workloads. Dragonfly is sim-
ilar, based on shared-nothing shards [13] of in-memory Dash [35]
hash tables. Alternatively, one could run multiple processes of the
single-work-queue server as an “intra-node cluster” and rely on
clients to route requests. However, this design leads to a quadratic
increase in connections, fewer batching opportunities per connec-
tion, and client-side overhead. In Section 8.5, we evaluate these
designs and show that they each have performance limitations.
Features of the leading RESP cache-stores are compared in Table 1.

1.3 A New Design

This paper introduces Garnet!, a new cache-store that adopts the
RESP protocol and command set for compatibility with existing
clients, but rethinks the cache-store design from the ground up.
Garnet offers new research insights across the storage, network,
and cluster stack that together allow the system to support a rich
and ever-growing command set, while satisfying all the cache-store
requirements outlined earlier. Garnet’s research novelty stems from
the confluence of four major design factors:

(1) A new shared-memory and tiered-device storage engine called
Tsavorite? with a narrow-waist [8] storage interface of just
five basic operations—the rich RESP command set sits as user
logic atop this narrow interface. Tsavorite is backed by a latch-
free thread-scalable LTM-MO storage design with a memory-
reuse technique called revivification. Unlike traditional storage
engines, Tsavorite handles string and heap object values as
first-class components with a unique dual store design.

A pluggable thread-switch-free network layer that allows both
standard TCP and kernel bypass network stacks with TLS en-
cryption, coupled with a fast protocol parsing layer. This shared-
nothing layer interacts directly with Tsavorite by mapping
hundreds of RESP commands to the five Tsavorite operations.
In shared memory, cache coherence is used to bring the data
to the network/query thread, maximally leveraging the high
memory-to-CPU bandwidth of modern machines.

Tunable durability, that lets Garnet operate in different modes,
from a pure cache to a durable database. This is enabled by non-
blocking checkpoints coupled with a deterministic operation
log (DOL) abstraction. DOL sits atop tiered storage with a con-
figurable commit depth. The fate and consistency of the dual
stores are coupled by the DOL and checkpoint mechanisms.
A full-fledged cluster design with fast migration and replication
enabled by protocols based on an epoch-protected state machine
(EPSM) abstraction. More generally, EPSMs are used throughout
Garnet as a common non-blocking control plane mechanism.

@

®)

(4

=

Experiments show that Garnet can achieve up to 100X higher
throughput and 4x lower latency end-to-end than comparable
cache-stores. These results translate to lower costs for applica-
tions and services. Garnet is already widely deployed in large-scale
scenarios across Microsoft, and its recent open-source release has

!Garnet stands for a gemstone known for its vibrant red hues, symbolizing vitality.
Tsavorite is a rare form of green gemstone that is part of the Garnet family.

Table 2: Example commands in RESP.

Type Command Description

raw string | GET key Retrieves the value for given key.

raw string | SET key value Assigns a value for a key.

raw string | SETNX key value Sets value if key does not already exist.

raw string | SETXX key value Sets value if key already exists.

raw string | SETEX key seconds | Sets value with an expiration time.

value

List LPUSH key value Adds value to the list’s head.

List RPOPLPUSH src dest Moves element from source key (src)’s
tail to destination key (dst)’s head.

SortedSet | ZADD key score member | Adds member with specified score to
the sorted set stored at key.

Set SPOP key [count] Removes and returns one or more ran-
dom members of the set stored at key.

seen strong user traction, with over 11K stars, more than 600 forks,
and an active developer community on GitHub. Open-source devel-
opers regularly contribute new commands (more than 100 to date)
to Garnet, because its layered storage design means they do not
need to understand how Tsavorite works in order to contribute.

The rest of this paper is organized as follows. Section 2 covers
background, while Section 3 introduces Garnet’s layered architec-
ture, concurrency model, and EPSM. Section 4 covers Tsavorite
in detail, with durability covered in Section 5. Garnet’s powerful
cluster mode is described in Section 6. We briefly cover other imple-
mentation details in Section 7, report evaluation results in Section 8,
cover related work in Section 9, and conclude in Section 10.

2 BACKGROUND ON RESP

RESP is a simple, efficient, and human-readable wire protocol [52]
for remote cache-stores. Commands are processed and responded
to in FIFO order per user session (or connection). Each message
consists of a prefix, followed by the data payload. For example,
a simple string message is prefixed with a +, an integer with a
:, and an error with a -. Binary-safe bulk strings begin with a $,
followed by the length of the string in bytes, a CRLF (\r\n), the
string data itself, and another CRLF. For example, a 4-byte string
“test” is represented as $4\r\ntest\r\n.

At its core, a RESP server simply stores keys and values, but the
values can hold a variety of data types. Table 2 shows some example
commands; the full RESP command set can be accessed online [18].
The simplest value type is a raw string of bytes, and commands on
strings include reads, (blind) updates, atomic modifications, and
time-based expiration. Values can also be complex data structures
such as List, SortedSet, and Hash. Objects are treated as (remote)
heap data structures: specific elements within the object (or object
statistics) can be read, and an object’s internal elements can be
updated in a variety of ways. Further, operations such as RPOPLPUSH
work transactionally across more than one object instance.

3 GARNET SYSTEM ARCHITECTURE

Figure 1 depicts the system architecture of standalone Garnet.

3.1 Network Layer

Garnet exposes network endpoints, which can be TCP sockets, Unix
domain sockets, or user-defined endpoints such as eRPC [23] (with
support for kernel bypass networking stacks such as DPDK and
RDMA). Remote clients establish sessions with the Garnet endpoint,
optionally performing a TLS handshake for encrypted connections.

226

Remote Client Sessions (RESP Interface)
v v v v

Receive data Buffer responses Network
TLS decryption g network S TLS encryption
Assemble packet reads Send data Layef
v v v v
- Parsing and
NS Query
RESP data command set Processing
Tsavorite 4
Session Read, Upsert, Modify, Delete, Scan |¢
Interface log o
index disk 9 | ik tier LIST
; tier . serialized / Linked List
/ objects

B...
5 shared

] shared
memory

memory

~
ENENERRER

Deterministic Operation Log (DOL)

Red-Black Tree +
Hash jsjs

string store object store

SORTEDSET
heap objects

To remote replicas,
durable storage

Figure 1: Garnet system architecture (single node).

Garnet sessions are strictly FIFO: the server receives a stream of
request commands and produces a pipelined stream of responses.
Network buffers in a session are processed by the thread that re-
ceives it, for instance, the OS thread pool thread that handles the
network interrupt or the thread chosen by the kernel bypass library.
This thread performs TLS decryption, and hands over the packet to
the parsing and query processing logic of the Garnet session.

3.2 Parsing and Query Processing

An incoming (decrypted) network packet on the session contains
a batch of RESP commands. We first parse each command using
an optimized predictive parser that prioritizes the most common
commands (such as GET and SET) and exploits the predictability
of the RESP syntax to reduce the number of branches needed to
validate the input. The parsed command, along with its arguments,
is then passed on to the respective processor.

At startup, Garnet creates an instance of its storage engine (Tsa-
vorite) and registers the supported command set. Tsavorite also
supports the notion of FIFO sessions; every Garnet session holds
a reference to its own Tsavorite session. Data commands are pro-
cessed by invoking the narrow Tsavorite session interface called
RUMDS (for Read, Upsert, Modify, Delete, Scan), passing in the
command and its parameters as opaque input. All non-determinism
(e.g., random numbers for commands such as SPOP that remove a
random set member, or the current timestamp for expiration com-
mands such as SETEX) is captured as part of the input parameters to
the Tsavorite interface calls. We cover storage in Sections 4 and 5.

If durability is enabled, data commands that modify the store
(e.g., string set or list insertion) cause an entry to be written to the
DOL, a durable log of deterministic Tsavorite operations. The DOL
is used for both server durability in standalone mode and keeping
secondary replicas up-to-date in cluster mode (Sections 5 and 6).

3.3 Concurrency Model and EPSM

Concurrency in Garnet is corralled to stay within the internals
of Tsavorite: multiple shared-nothing sessions of Garnet and Tsa-
vorite operate on one shared-everything data store (index, memory,

RecordInfo Header (64 bits)

1 ke t ted
S 3 ! BESTj ,Q!EU EP, ey-setoreate [Filler & Other] Valid] Dirty fTombstone]Read Cache] Previous Address ||
i REST ! ponrite capture state variables 1 12 bits 1 bit1 bit 1 bit 1 bit 48 bits |
allocatenewHT " [Mo e T e
,,,,1 ,,,,,,,,, ! thread metadata 3 PREPARE. v : i MIGRATING ! writes delayed Record (string store)
‘ BARR|ER e R T T HRecordInfoﬂKey SizeJKey Bytes|Val SizefExpirationfETag{Val B tesﬂheeH
i sync fer k 2
l ————————— Istan version shift transter keys 4 bits 32 bits ... 32 bits64 bits64 bits --- ---
,,,,,,,,,,,,,,,,,,,,, tdrain (W) txns | SElETING . | > optional
RESIZE v+ 13 run (v + 1) txns L,,?,E,lf,ET,l,N,Ci,,‘ reads & writes delayed Recordintd] Key Pir || Val Pu]
,,,,,,,,,,, end version shift 64 bits 64 bits64 bit
bucket split/merge T e e 1 issue flush of record log heap object (e.g., SortedSet) Record (object store)
free old HT ¢t FLUSH

(a) Hash table resize (b) Checkpoint

Figure 2: Epoch-protected state machine (EPSM) examples.

and tiered storage) per node. This design keeps the layers above
Tsavorite (such as TLS processing and parsing) thread-safe and task-
parallel by construction and provides session isolation, without loss
of performance and scalability. Overall, a batch of commands in
a single network packet on a session execute without any thread-
switching (except for disk IO). This design ensures that registers
and L1/L2 caches are optimally utilized for session state.

We introduce an epoch-protected state machine (EPSM) for infre-
quent yet concurrent control plane operations such as hash table
growth, checkpoints, safe page flush and eviction, and key migra-
tion during scale-out. With EPSM, the system starts at the REST
phase and goes through a sequence of phases. One can register
custom control plane logic, called actions, to execute before a phase
change. After a phase change, EPSM increments (or bumps) a global
epoch counter [27, 33] from E to E + 1. Any thread performing
store operations first enters the current epoch and reads the global
EPSM phase. It can then safely operate assuming that the phase is
stable until it completes the operation and leaves the epoch. When
epoch E is safe to reclaim, i.e., all threads have progressed beyond
epoch E and entered the new phase, EPSM can execute the next set
of actions and move to the next phase. Examples of EPSM use are
summarized in Figure 2 and discussed in subsequent sections.

Traditional epoch-based control planes [31, 43] let application
threads cooperatively perform actions such as page flushes during
epoch refresh. However, this can increase the latency for unlucky
threads that need to complete user operations. This is solved in
Garnet by using a background task that drives EPSM, so that appli-
cation threads do not need to perform the actual EPSM actions.

4 THE TSAVORITE STORAGE LAYER

Tsavorite serves as the key-value storage layer of Garnet. Overall,
it consists of two stores: a string store dedicated to string (or bytex)
values (including bitmaps and HyperLogLog), and an object store
dedicated to storing heap objects. This dual-store architecture al-
lows us to optimize storage for each value type separately. Keys are
always strings. Each store consists of a latch-free concurrent hash
index over a record log of key-value pairs that span main memory
and storage tiers. The record log is organized as a sequence of pages
across storage and main memory, and the index directly points to
the logical addresses of records in these pages.

4.1 Data Model

Records in Tsavorite—see Figure 3—start with a 64-bit record header
that stores a 48-bit logical address of the previous record in the

(c) Migration of Key-Set

227

Deterministic Operation Log (DOL) Entry

“DOL VersmnﬂOp TychStore Verslon“Sess:on ID“DB ID“Op Data (lnpu()H
[T8bits 8 bits 64 bits 32 bits 8 bits

Figure 3: Tsavorite headers.

hash chain. The remaining bits are used to indicate various record
properties such as the existence of optional fields in the record,
tombstoned (deleted) records, and dirty records. This is followed by
the key, which is simply stored as a 4-byte key length followed by
the actual key bytes. For the string store, the value is stored in the
same format as the key. For the object store, the value in memory
is an 8-byte pointer used to de-reference the heap object, while
the same value on disk is a sequence of bytes corresponding to the
serialized object (similar to values in the string store). Large string
keys and values in memory may also be stored on the heap, similar
to objects. Values are optionally associated with a 64-bit expiration
timestamp and/or a 64-bit entity tag (or ETag)—these are covered
below. Finally, any remaining empty space at the end of the record
is marked with an optional 32-bit filler length (Section 4.7).

4.2 Single-Key RUMDS Interface

Each operation in Tsavorite is designed as a pair of concepts: a
front-end interface and a back-end set of callbacks for that interface.
Garnet’s query processor registers the callbacks that perform the
actual storage interactions for each supported RESP command. At
runtime, it simply invokes the corresponding front-end interface
with input parameters, which eventually leads to Tsavorite invoking
callbacks as necessary.

Tsavorite exposes five basic operations: Read, Upsert, Modify,
Delete, and Scan. We call this the RUMDS interface, and find that it is
sufficiently powerful to not only express hundreds of existing RESP
data commands, but also new classes of commands (Section 4.3).
Table 3 shows examples of mapping RESP to RUMDS. Note that in
Garnet, Tsavorite can conceptually be replaced by any storage layer
that implements RUMDS. Further, Tsavorite, using RUMDS, may be
used directly (without the rest of Garnet) to handle functionality
beyond RESP. Both these extensions are outside the scope of this pa-
per. The RUMDS interface and callback semantics are described next;
our latch-free concurrent implementation is covered in Section 4.4.

Read. The Read interface accepts a key, an input, and an output
as parameters. Tsavorite searches the store for the value corre-
sponding to that key. If such an unexpired value does not exist, it
returns NotFound. If it does exist, Tsavorite invokes a registered
callback called Reader—application (i.e., Garnet) logic whose goal
is to transform the value into the output.

In case of Garnet, input is the RESP command ID and output
is usually the network response buffer. Depending on the RESP
command, Garnet’s Reader performs different actions, for example:

(1) GET writes the value as a RESP bulk string to the output.

(2) GETRANGE copies the specified value sub-string to the output.
(3) TTL writes the value’s expiration in the RESP number format.

Note that the callback logic is declarative—its implementer does
not know whether the value was found in main memory or disk.

Upsert. The Upsert interface accepts a key and an input as
parameters, and is responsible for inserting a record into the store.
It is a blind operation, i.e., it does not need to incur an I/O to
retrieve any older record from disk. The application provides several
callbacks for Upsert:

e InPlaceWriter: This callback is responsible for overwriting
an existing record in-place if possible, returning false if not
possible, e.g., the new value did not fit in the available space.

e InitialWriter: This callback is responsible for writing a newly
allocated record of the requested size—determined by a callback
called GetLength—using the specified input.

In case of Garnet, input is the RESP command ID, the value from
the network request buffer, and optional fields such as expiration
times. Depending on the RESP command, Garnet’s SingleWriter
and ConcurrentWriter perform actions such as copying the value
from the network buffer directly into the store’s record in case of
SET, and adding an expiration field to the record in case of SETEX.

Modify. The Modify interface also accepts a key and an input
as parameters. This powerful operation logically represents the
evolution of a record over time, from its initial creation to its even-
tual deletion. Operations on objects such as List and SortedSet
are implemented exclusively using this interface. Most generally, it
stands for atomic read-modify-write, although because it is based
on callbacks, specific phases of the operation may be elided. The
following callbacks are associated with Modify:

e NeedInitialUpdate: This callback returns whether the com-
mand should evolve the record from a non-existent state. Garnet
uses this callback to return false in case of RESP commands
such as SETXX, where we want to atomically update a record
only if it already exists in the store.

e InitialUpdater: This is the initial value based on input. For
INCRBY, it sets the initial value to the specified delta. Objects are
initially created only by this callback, e.g., during an LPUSH (list
push) command on a key that does not yet exist in the store.

e InPlaceUpdater: A record in memory is evolved in-place using
this callback, which accepts a pointer to the existing object or
string in order to update it in-place based on its existing value
and the specified input. For example, INCRBY on a value of say
85 with an input delta of 10 would atomically evolve the value
to become 95. A second INCRBY of delta 10 may not fit in-place
since 105 occupies an extra digit. In this case, the callback returns
false and control flows to NeedCopyUpdate, described next.

o NeedCopyUpdate: This callback determines, after reading the old
value from disk, whether we need to proceed with the operation.
This usually returns true, but is false in case of commands
such as SETNX (set if not exists), as the existence of a previous
value for the key implies that we should not evolve it further.

e CopyUpdater: This callback evolves the record’s value based on
the specified prior state and specified input. For example, INCRBY
on a value of say 95 with an input delta of 10 would allocate
the necessary space—determined by a GetLength callback—and
atomically evolve the value to become 105.

228

Table 3: Examples of mapping RESP commands to RUMDS.

RESPCmd RUMDSOp Callback Action
GET key Read Reader Copy value for the key from storage to buffer
in RESP bulk string response format.
InPlaceWriter Overwrite value over existing one, return true
SET key . .
I Upsert if there was space, false if not.
value GetLength Return length of input value.
Initial Writer Copy value to the allocated space.
NeedInitialUpdate ~ Return false.
InitialUpdater -n/a-
SETXX ke.y Modify InPlaceUpdater Overwrite value over existing one, return true
value (set if R) R
ists) (string) if there was space, false if not.
exts NeedCopyUpdate Return true.
GetLength Return length of input value.
CopyUpdater Copy value to the allocated space.
NeedInitialUpdate ~ Return true.
SETNX key) InitialUpdater Copy value to the allocated space.
! Modify InPlaceUpdater Do not copy, return true.
value (set if R
£ exist (string) NeedCopyUpdate Return false.
not exists) GetLength -n/a-
CopyUpdater -n/a-
NeedInitialUpdate ~ Return true.
InitialUpdater Create new List with value, on the heap.
LPUSH key Modify InPlaceUpdater Push value to existing list, return true.
value (object) NeedCopyUpdate Return true.
GetLength 8 bytes for heap objects (pointers).
CopyUpdater Create new list with old contents, push value.

Delete. The Delete interface is similar to Upsert—it adds a
tombstone record, or sets a tombstone bit in an existing record if it
could be updated in place. We omit the details for brevity.

Scan. This interface performs a scan of the store’s snapshot and
issues callbacks for each live record. It is used for operations such
as DBSIZE and SCAN. DBSIZE returns the total number of keys in the
system, and is implemented by a Scan with a callback that simply
increments a counter. KEYS [pattern] returns keys that match a
specified optional pattern; we again use a Scan with a callback that
performs pattern matching using the standard regular expression
library and writes matching keys to the network response buffer.

4.3 Using RUMDS Beyond RESP

The RUMDS interface has allowed Garnet to expand beyond the
RESP command set. For example, records can store an optional
64-bit ETag, which can be updated and checked as part of RUMDS
operations. ETags have allowed contributors to add commands that
facilitate new use cases. The SETIFGREATER command updates a
value only if the provided ETag is greater that the current one.
This can ensure consistency when multiple clients make updates
to a database and a front-end cache; cache updates succeed only if
the resource has not been modified elsewhere. The GETIFNOTMATCH
command retrieves a locally cached value only it was modified at the
remote cache, avoiding network traffic when values are unchanged.
Such extensions are out-of-scope for this paper; see [17] for details.

4.4 Concurrent Data Structure

Tsavorite’s core building block is a store: a data structure that con-
sists of a record log spanning main memory and storage, accessed
using a hash index. We maintain two stores: the string store holds
strings whereas the object store holds objects. These components
are described next (see Figure 1).

Record Log. The record log consists of a disk portion and a
memory portion. The disk portion is addressed using append-only
48-bit logical addresses starting from 0. Main memory is organized
as a circular buffer of pages, and are addressed by simply concate-
nated (page-id, offset) pairs. The in-memory pages are fixed size
and contain records. In case of the string store, keys and values are

bytes usually stored in-line in the page. The object store is based
on string keys, but the values are pointers to out-of-line heap ob-
jects (e.g., red-black trees for SortedSet), which enables fast object
modification and read operations in memory. Older pages in the
circular buffer are marked read-only and are eventually flushed to
disk. Before evicting the oldest (flushed) page in the circular buffer,
heap objects are serialized and hash chains for records on the page
are updated with disk addresses. We use EPSM to ensure that pages
are safe to flush or evict in the presence of concurrent reader and
writer threads.

The disk portion of the record log is based on IDevice, a device
abstraction for log-structured store [53] operations, i.e., sequential
tail writes and random reads. We implement efficient devices for
local disk and cloud storage. Tiering is achieved using an abstraction
we call a tiered storage device—this is simply a logical IDevice
implementation that holds N real device implementations. Reads
are served by the highest level that has the data, and writes are
written through to all the tiers.

Hash Index. Tsavorite indexes the tiered record log using a
latch-free hash index consisting of a power-of-2 number of 64-byte
cache-line sized buckets. Each bucket contains seven 8-byte bucket
entries. Each entry in a bucket is associated with a tag (¢ bits from
the key hash) and a 48-bit logical address into the record log. The
address serves as the root of a reverse-linked-list hash chain that
threads every colliding record, i.e., the record’s key hash bits map
to that bucket and tag. For example, with a 28 buckets and t = 4
tag bits, we would use the first 8 bits of the key’s hash to choose
the bucket. The entry for this key would store a tag corresponding
to the next 4 bits of the hash. We adapt prior two-phase latch-free
algorithms [5] to ensure that every bucket has at most one entry
per unique tag. The last (eighth) entry in a hash bucket is special: it
stores a 16-bit bucket lock along with a 48-bit address to an overflow
bucket (if present). This design allows the lock table to be accessed
without incurring additional cache misses after a hash lookup.

An EPSM—see Figure 2(a)—is used to resize the hash table. We
allocate the new hash table and enter the BARRIER phase, which
causes threads to synchronize for the upcoming size change. The
next RESIZE phase consists of threads operating on the new hash
table, re-hashing old buckets as necessary. Once all buckets are
transferred, the old table is freed and we end at the REST phase.

4.5 Concurrent RUMDS Implementation

The RUMDS interface is heavily used for most cache-store operations,
and needs to run at high performance in a thread-scalable manner.
Read follows the hash chain, first through memory and then on
disk. A full key comparison is made to ensure that we have found
the requested key. If found, the Reader callback is invoked under a
shared bucket lock. Upsert and Modify operations start similarly,
with the difference that Upsert limits its search to the mutable
region in memory. If the record is found in the mutable region,
modifications are attempted in-place on the record log values using
InPlaceWriter (for Upsert) and InPlaceUpdater (for Modify)
callbacks under an exclusive bucket lock. Otherwise, we need to
add a new entry to the hash chain.

Tsavorite uses latch-free structure modifications, i.e., all changes
to the hash entry and chain are based on the notion of optimistic lo-
cal modification, followed by an atomic compare-and-swap (CAS)

229

to install the update for global visibility. For example, when Upsert
or Modify needs to add a record to the hash chain, it allocates
space at the tail of the record log using fetch-and-add, creates the
record using the InitialWriter (for Upsert) or InitialUpdater
and CopyUpdater (for Modify) callback, and finally updates the
hash chain using a CAS at the hash entry. On CAS failure, the
space is marked for reuse and the operation is retried. Since the
callbacks above were optimistically issued before the CAS, addi-
tional callbacks (PostInitialWriter, PostInitialUpdater, and
PostCopyUpdater) are provided for work that needs to happen af-
ter a successful modification, e.g., writing to the DOL. Note that only
structure modifications are latch-free in Tsavorite; application-level
shared and exclusive bucket locks (Section 4.4) are still necessary
for concurrent reads and updates of records.

4.6

Garnet supports multi-key transactions to handle (1) standard Redis
transactions [49], which consist of a set of commands bracketed
by MULTI and EXEC; (2) server-side Lua scripts [36, 48]; (3) transac-
tional stored procedures; and (4) atomic cross-key commands such
as RPOPLPUSH (Table 2). We achieve thread-scalable transaction
processing by building on Tsavorite’s locking primitives.

Garnet’s concurrency control for transactions is a hybrid model
of pessimistic two-phase locking (2PL) with optimistic watching, de-
signed to be efficient for workloads dominated by single-key op-
erations and rare conflicts. It works orthogonally to EPSM, which
is only used to ensure transactionally consistent snapshots dur-
ing a checkpoint (see Section 5.1). As running example, consider a
transaction that transfers 10 units from key src to key dest:

MULTI

DECRBY src 10
INCRBY dest 10
EXEC

Multi-Key Transactions

Pessimistic Locking. Before the transaction starts, we identify
the read/write set of keys by parsing the queued commands between
MULTI and EXEC. Since INCRBY and DECRBY are Modify operations,
the read and write sets are both {src, dest} in our example above.
We then acquire hash bucket-level shared/exclusive locks for the
read/write set in sorted bucket order for these keys, to prevent
deadlocks. Finally, the commands are executed and the locks are
released. Transactions are optionally logged for durability in the
DOL (see Section 5.2).

Optimistic Watching. Keys may be watched [59] for modifi-
cations before the transaction. Watches are a form of optimistic
concurrency control, where one can watch, then read, certain keys
even before the transaction starts. These values can be optimisti-
cally used as parameters in the actual transaction. For example we
may watch, then read, a key amount in our running example to use
as the transfer amount instead of the hard-coded value of 10 units:

WATCH amount

amt = GET amount

MULTI

DECRBY src $amt
INCRBY dest $amt
EXEC

All watched keys are added to the read set. After all locks are ac-
quired, if we find that any watched key (e.g., amount) was modified
post-WATCH, the transaction is aborted. To detect such modifications

of watched keys, we use a watch table, a small shared array of 64-bit
version numbers. A write operation on a watched record increments
the version number of the watch table entry corresponding to its
key hash (modulo the size of the table). When the WATCH command
is issued for a key, we store the current version number of that key’s
slot as part of the transaction state. After lock acquisition, we check
whether any watched slots have a larger version number. If yes,
we abort the transaction due to a (potential) conflict. Otherwise,
transaction processing proceeds as described earlier.

4.7 Memory Optimizations

Tsavorite is designed to be a larger-than-memory cache-store, but
optimized when the working set fits in main memory. Log-structured
designs generally suffer from space amplification, which is allevi-
ated in Tsavorite by in-place updates in the mutable region of
memory. However, there is wasted space in memory due to record
deletion, failed in-place-updates (e.g., because the new value was
larger), failed CAS operations, and expired records.

Expiration. Records logically expire when time moves past the
stored expiration time. However, they stay in the log and occupy
space. For expired main memory records, we use a background
thread to find and make the space available for future insertions
using a technique called revivification (Section 4.7). For expired and
deleted disk records, log compaction (periodically identifying live
records on the oldest pages and writing them to the tail) is used to
eliminate dead records from disk and reclaim disk space.

Revivification. When records slots in main memory become
invalid, e.g., due to record expiration or deletion, they waste space.
Revivification aims to make such space available for reuse by future
write operations. This allows memory to be used judiciously and
may also relieve contention at the tail and unnecessary log growth.
Revivification primarily involves maintaining a free list—a binned
set of circular buffers that hold pointers to reusable record slots. A
deleted record is eligible for safe elision from the hash chain if we
can determine that no earlier record with the same key exists in the
chain. Such records are elided from the hash chain and added to
the free list. We use epoch protection to make sure that the record
is safe from any further concurrent accesses. When a new record
slot is required, the system attempts to use an available safe record
slot of the closest size from the free list.

Read Cache. Records that are read frequently need to be re-
tained in memory. Garnet uses a read cache—another in-memory
record log that resides between the hash index and the main record
log—to hold read hot records. The hash chain links from the index
to the optional read cache, and then to the main record log.

5 DURABILITY

Large applications and services typically start by deploying caches
in front of a durable database. Such deployments do not require
durability, but “best effort” durability may be necessary. Cached
state may need to be saved (by taking a checkpoint) in order to allow
restart with a warm cache. Applications may desire to eliminate the
overhead of having two (sometimes diverging) data sources, and
want the caching layer to offer durability guarantees [57]. Durability
should have minimal impact on tail latencies and memory footprint
during normal operations. Below, we overview the efficient and
tunable durability mechanisms in Garnet.

230

5.1 Checkpointing

RESP clients can request a SAVE operation, which translates to a
checkpoint of the store. Redis uses a process fork mechanism for
taking the checkpoint. This is expensive since updates during the
checkpoint can (in the worst case) double the memory footprint of
the node and cause severe slowdown in practice [57]. In a multi-
threaded system like Garnet, all threads would need to momentarily
halt for the fork in order to get a consistent checkpoint.

Garnet uses a non-blocking checkpoint mechanism called snap-
shot, inspired by our prior work on concurrent prefix recovery
(CPR) [43]. Briefly, CPR allows a database to take a consistent
checkpoint without blocking individual threads by coordinating
to move the database from the old version v to the new version
v + 1. Garnet uses EPSM—see Figure 2(b)—to implement snapshots:
a prefix-consistent snapshot is obtained by restricting v + 1 threads
(DRAIN and FLUSH phases) from updating unflushed v records in
place, while v records are flushed to disk as the FLUSH action. How-
ever, two new complications arise in Garnet: (1) Garnet needs to
create a consistent checkpoint across two stores (the string store
and the object store), not one; (2) Garnet needs to handle transac-
tions over more than one key, and across the two stores.

To solve the first problem, we decouple the state machine from
the store, allowing more than one store to be registered to the same
state machine. The state machine stores the Garnet database version
number, and drives the CPR checkpoint phases uniformly against
both stores simultaneously. The atomic transition from version v to
v +1is common across the stores, resulting in a consistent snapshot.
We believe this to be a general extension that can be used to take
consistent snapshots in a multi-database setting as well.

One way to solve the second problem is to drain out active (v)
transactions at the version transition point. This would however
cause a hiccup in latency due to blocking. We make the observation
that because Garnet uses pessimistic locking, we have the opportu-
nity to decide a transaction’s version (v or v + 1) after its locks are
acquired. This is safe because there is no longer the risk of av + 1
transaction updating a value that a v transaction is also updating,
or of a v transaction reading a value that a v + 1 transaction has
updated. Based on this insight, we can move the state machine to
v + 1 with a DRAIN phase that lets threads run in either version
concurrently. Once all the v transactions have completed, the v
version is safe to snapshot and we move to FLUSH, where pages
are flushed for a consistent checkpoint. We note that conflicting
transactions will indeed block as usual, but this is fundamental and
unrelated to the checkpoint mechanism.

5.2 Deterministic Operation Logging

Single-key write operations are logged in a unified deterministic
operation log (DOL) in Garnet. Each DOL entry has the format
shown in Figure 3. Instead of logging the user’s RESP commands,
we log at the RUMDS interface of Tsavorite, where we have a tightly
packed operation input that includes the encoded RESP command,
parameters, a database version to correctly skip operations that
were part of a recovered recovered checkpoint, and fields to make
operations deterministic, such as timestamps and random numbers.
Transactions add special entries to the DOL after lock acquisition
and before transaction completion; they enable our recovery and
replay logic to re-apply the transactions in the correct serial order.

Garnet’s DOL is implemented using a shared circular memory
buffer of pages with fetch-and-add on the tail address. Commit
is issued periodically in the background or after every operation,
depending on the level of durability required. The DOL performs the
group commit optimization, and write operations have the option
to either return immediately or wait for the DOL to commit first.

The device we flush to can be a tiered device, e.g., with SSD
and cloud storage. Writes are propagated to all tiers, but we may
identify some tier to indicate commit. For example, we may commit
to SSD (say with 100us latency) and cloud storage (say with 5ms
latency), but acknowledge the write as soon as the SSD completes
the flush. This configuration lets the cache-store fully survive node
restarts and partially survive a fresh start on a new node.

6 GARNET CLUSTER DESIGN

Garnet cluster provides the ability to operate Garnet across mul-
tiple nodes in a distributed system. It supports scale-out through
data sharding, and dynamic scaling though re-sharding with data
migration for availability, fault tolerance via replication.

6.1 Cluster Architecture Overview

Garnet clusters consist of nodes that manage client access to data
through a common configuration. Following the RESP protocol,
every shared-nothing node operates in a virtual key space that is
partitioned into 16,384 hash slots. Data access is determined by
mapping keys to specific slots using a CRC16 [42] hash function.
The nodes rely on the slot assignment information to serve requests
or redirect them to the original owner. Multi-key operations are
restricted to operate on keys within the same slot.

The nodes in a cluster can be characterized by assuming the role
of a primary or a secondary. Primary nodes are owners of a subset
of all slots and can serve both read and write requests. They are
also responsible for coordinating data re-sharding during scale-out
operations. Secondary nodes are associated with a single primary
and can serve only read requests. A primary node can have any
number of secondary nodes, usually as many as required to achieve
the desired level of redundancy or read throughput.

Garnet offers a RESP control interface for cluster that enables
updates to the cluster configuration at runtime. This interface re-
sponds to events such as adding primary nodes (to scale out) and
secondary nodes (for redundancy and read throughput), and pro-
moting a secondary to a primary during failover. Garnet handles
the propagation of configuration changes via a gossip protocol.

6.2 HashSlot Migration

When a hash slot is reassigned to a new node, we need to perform
HashSlot migration, which refers to moving all keys in the slot to its
new owner. Redis relies on the client for HashSlot migration, but this
results in significant network traffic. Instead, Garnet implements
HashSlot migration using direct server-to-server communication
which improves performance and ensures availability.

The Redis cluster specification [45] outlines an API to orchestrate
slot migration. This API relies on tracking the state of each slot
within the node’s local configuration snapshot. At first, all slots
are assigned to distinct primaries, and their state is set to STABLE.
During migration, the state of a given slot is set to IMPORTING at
the target node and MIGRATING at the source node. This change in

231

Algorithm 1 Migration algorithm.

S « Slots to be migrated

M <« Migration key-set

S « Source node T « Target node
1: forX € S do
2 EPSM TransitionSlotRemote(X, T, IMPORTING)
3 EPSM TransitionSlotLocal(X, T, MIGRATING)
4: while M = ScanForNextBatch(X, QUEUED) do
5: EPSM.TransitionKeySet(M, MIGRATING)
6: Send(M)

7 EPSM.TransitionKeySet(M, DELETING)

8: DeleteKeys(M)

9: EPSM TransitionKeySet(M, MIGRATED)

end while

EPSM.TransitionSlotLocal(X, T, STABLE)

EPSM.TransitionSlotRemote(X, T, STABLE)

13: end for

state modifies the way the server responds to client requests. Read
and write requests are served if the key exists; otherwise, the node
redirects the client to the target node with a special ASK response.
At the source node, a RESP command (MIGRATE) is used to trigger
the transfer of key-value pairs that belong to the slot. The target
node assumes ownership of the slot by transitioning its state to
STABLE after data transfer is complete. We use EPSM (Section 3.3)
to implement these slot-level state changes in Garnet.

We require that Garnet RUMDS operations perform their key ex-
istence check and subsequent processing concurrently with migra-
tion. Using slot-level locks would severely impact throughput and
availability. Our solution involves another EPSM—see Figure 2(c)—
this time, for each key-set. A key-set tracks a small batch of keys
that are migrated together, using a compact Bloom filter [3]. The
key-set starts in the QUEUED phase. Phases indicate different levels
of concurrent access to keys in the key-set by operations. EPSM en-
sures that concurrent operations on the store observe the relevant
transition before we take action, eliminating the need for locking.

In the fast path, keys that do not exist in the key-set can be
operated on as usual. The same holds true for keys in the QUEUED?
state. Once a key-set transitions to the MIGRATING state new write
requests are delayed (for keys in the key-set) but read operations
and read-only transactions can continue. State transitions are man-
aged using EPSM which ensures that ongoing transactions and
operations that overlap with the key-set are completed before trans-
mitting the relevant data to the target node. Once data transmission
completes, the key-set enters the DELETING state, where keys are
removed from the source node’s database. In this state, both reads
and writes must be delayed in order to maintain consistency. Finally,
upon deletion of the key batch, the key-set enters the MIGRATED,
signaling waiting operations to proceed Note that false-positives in
the Bloom filter do not affect correctness because they only result in
rare operation delays. Migration is summarized in Algorithm 1. The
slot-level EPSM referenced earlier prohibits sessions from adding
new keys during slot migration.

6.3 Replication

Garnet cluster supports an asynchronous replication protocol that
is based on the primary-secondary model. At its core, the replication
protocol relies on the DOL to stream batch updates to the attached

3The QUEUED state helps preserve availability, as scanning the database for relevant
keys can be time-consuming.

secondaries. Adding secondary nodes can happen at any point
during runtime and is often an operation initiated by the cluster
operator. Once such an operation is initiated, the secondary begins
with transmitting the relevant metadata to the primary. Using the
transmitted information, the primary has to decide to perform
either a full or partial synchronization. This decision is guided by
the primary’s ability to serve the secondary’s request using an
intact DOL address space. In many cases, this may not be feasible
because the DOL has been truncated following an earlier snapshot
to conserve disk space, or the in-memory DOL buffers have been
overwritten due to capacity constraints. If a full synchronization
is necessary, the primary has to take a full snapshot and transmit
that to the secondary, so it can recover before being ready to accept
future DOL records. Note that the primary may proactively take an
on-demand checkpoint to reduce network writes when the resulting
snapshot is smaller than the cumulative size of the DOL records
that would otherwise need to be transmitted.

Once recovery completes, the primary creates a dedicated back-
ground task to be used for streaming DOL records to the secondary.
The secondary then adds these records to its local DOL, whose
contents are kept identical to the primary DOL in order to facilitate
future promotions to primary. An asynchronous task scans the sec-
ondary node’s DOL and applies the Upsert and Modify operations
on Tsavorite. Note that during a concurrent checkpoint, the DOL
may have v and v + 1 entries interspersed in the log. Since each DOL
record has a database version, secondary replay can skip records
that were part of the recovered checkpoint, ensuring that every
operation is applied exactly once at the secondary.

Streaming Snapshot. Full synchronization usually requires
taking a checkpoint at the primary and shipping it to the new sec-
ondary. This is an expensive operation involving the disk at the
primary. We introduce a new checkpoint variant called a streaming
snapshot that overcomes this limitation. The key idea is to stream
database records that together denote a consistent point-in-time
snapshot of the store, without blocking the system from ongoing
operations or interacting with disk. The overall logic uses an EPSM
to orchestrate this procedure. In the first phase, we use Scan (from
RUMDS) for the immutable region of the record log, and incremen-
tally return a stream of live records (liveness is checked using the
hash index). In the second phase, we use EPSM analogous to the
checkpoint EPSM that transitions the database from o to v + 1. How-
ever, unlike a traditional checkpoint, our FLUSH phase does a Scan
through the mutable region of the record log and returns all live
v records. The protocol guarantees that concurrent v + 1 updates
are not applied in-place, thereby ensuring point-in-time snapshot
semantics. As an optimization, an update operation during the
FLUSH phase can directly add live v records to the iterator instead
of performing a read-copy-update; this avoids the record log’s tail
growth during the streaming snapshot. Note that records returned
in the second phase may rarely overlap with records from the first
phase; in these cases, the latest record in the stream represents the
consistent value for the snapshot.

7 IMPLEMENTATION DETAILS

Garnet was implemented in C# after a careful analysis of the avail-
able options. We wanted a high-level language which offers a rich

232

@
o
°

10,000

B Garnet B Garnet
g 3 Valkey 'g 8,000 ¥ Valkey 7
2 w0 S KeyDB 6000 ¥ KeyDB é
5 = Dragonfly = £ Dragonfly § 7
=Y 71 Valkey-S 2 4000 , ;\\ 7
S 200 w “7" @ Valkey-S N\ v
= - &\\] v
° 2,000 § % 7
< . N v
S % , m\N\ E7Z
(a) Memtier throughput. (b) Memtier latency (P99).

Figure 4: Memtier benchmark results.

library of data structures that one could use to quickly implement
the rich command set of RESP. At the same time, the language had
to allow us to write extremely low-level code (e.g., avoiding garbage
collection, using pointer based operations and SIMD instructions).
C# was a good match with its flexibility of object-oriented pro-
gramming, developer familiarity to encourage open-source contri-
butions, ability to work across numerous hardware architectures
(Intel, AMD, ARM) and operating systems (Linux, Windows, An-
droid, MacOS), and friendliness to writing low-level system code.
RESP clients are available in almost every programming language,
so the choice of server language did not affect the system’s broad
usability. Garnet supports most RESP commands today; the docu-
mentation [18] has more details.

Garnet supports stored procedures and modules. These can be
registered dynamically, and cover four classes: (1) Single string
operations; (2) New object types and operations over them; (3)
Stored procedures—with and without transactions; and (4) Lua
scripts. Existing RESP clients can be used to invoke these commands.
Further, Garnet supports modules, which encapsulate server-side
logic that packages and registers these extensibility options.

8 EVALUATION

We evaluate Garnet in two ways. First, we compare end-to-end
throughput, latency, and durability in standalone mode, varying
various workload and system attributes. Next, we evaluate Garnet
in cluster mode, focusing on migration and replication.

8.1 Setup and Workload

We provision several Azure Standard F72s v2 virtual machines
(72 virtual cpus, 144GB memory each) running Linux (Ubuntu
24.04), with accelerated TCP networking [16] enabled. One ma-
chine serves as the client and others run as cache-store servers in
standalone and cluster mode. We use two load generator clients
(memtier_benchmark [51] and Resp.bench [58]) to compare the
performance of Garnet to the latest open-source versions of Valkey
(v8.1), KeyDB (v6.3.4), and Dragonfly (v1.29.0). We also evaluate
Valkey with intra-node sharding (Valkey-S) using the cluster mode
to utilize all cores. We found open-source Redis to perform similarly
to Valkey, since the latter is a fork of the former, and do not include
it in most results. Workloads are based on a RESP translation of the
YCSB-A workload from the Yahoo Cloud Serving Benchmark [7],
with 256 million distinct 8-byte keys, string values ranging in size
from 8 bytes to several KB, and complex objects.

B Garnet

B Garnet
100.0

100.0

—_ —_
» N Valkey » ™ Valkey
g- S KeyDB g- KeyDB
= 100 EDragonfly S 10.0 EDragonfly
s <
= -
-y =
S 10 S 10
® s v
e =
= e
= 01 ;E 0.1
1 2 4 8 1 4 16 64 256 1024 409
Client Sessions Batch Size

(a) Varying clients (256M keys).

Figure 5: GET throughput experiments (Uniform Distribution).

8.2 Memtier Benchmark Results

We run memtier_benchmark [51], an open-source RESP load gen-
eration tool used widely to compare cache-stores. We use a 1:9
SET-to-GET ratio, using a keyspace of 256 million keys and an
8-byte payload. To stress the systems, we use a large number (6400)
of clients, using 128 threads with 50 clients per thread. Figures 4a
and 4b show the measured throughput and P99 latency, respectively.
We see that Garnet achieves at least 20X higher throughput and
3% lower latency compared to standalone Valkey. While intra-node
sharding with Valkey-S narrows this gap, it increases latency due
to sharding overheads. Garnet also outperforms multi-threaded
KeyDB and Dragonfly, delivering up to 40X and 6x higher through-
put respectively. A similar trend is observed for P99 latency at high
load, with Dragonfly the closest: about 1.3x slower than Garnet.

We found that memtier_benchmark causes the client to become
the bottleneck at very high throughput, so the rest of the experi-
ments use Resp.bench [58]-our custom-built lightweight tool that
uses a cache of pre-generated client commands—to ensure that the
client does not limit the reported server performance.

8.3 Standalone Throughput

String Operations. We measured the throughput of GET oper-
ations by varying payload size, batch size, and number of client
sessions over a pre-loaded database; see Figure 5.

With an increasing number of client sessions (Figure 5a), we ob-
serve that Garnet exhibits better scalability than Valkey with 108x
better throughput (note that the y-axis is log scale). KeyDB performs
worse than Valkey due to the global lock contention. Dragonfly
scales well up to 16 threads, but has 10x lower throughput than
Garnet with 128 clients. Note that Dragonfly is a pure in-memory
system. Even for small batch sizes (see Figure 5b), Garnet outper-
forms the competing systems. Finally, Garnet is efficient for larger
payload sizes with a small batch size (16) as shown in Figure 5c.

As a remote cache-store, Garnet saturates the client-server net-
work bandwidth before hitting server-side memory bandwidth
limits. We measured the available network bandwidth using the
iperf [14] tool to be 30Gbit/sec. Garnet saturated this bandwidth
with a 64 byte payload size, when using a batch size of 1024. This
includes the RESP protocol overhead of around 11% (7 bytes for
the 64 byte value). Larger payload sizes proportionally reduced the
batch size needed to saturate network bandwidth, as expected.

In Figure 6, we measure throughput with a 100% SET workload
with a Zipf distribution (o = 0.9). Garnet performs and scales much
better than other systems. As expected, the contention due to skew

Throughput (Mop/s)

(b) Varying batch size (1M keys). (c) Varying payload size (1M keys).

233

@ Garnet

100.0 B Garnet

100.0

—_
N Valkey ﬁ 3 Valkey
§ KeyDB ° S KeyDB
10.0 & Dragonfly = 10.0 =Dragonfly
-
3 §
=% . BN
1.0 g £ 10 & N
)
S
o
4
0.1 '-E 0.1
64 128 256 512 1024 2048 1 2 4 8 16 32 64 128
Payload (bytes) # Client Sessions

Figure 6: SET throughput ex-
periments (Zipf distribution).

B Garnet

B Garnet 100.0

100.0

— —
K4 K Valkey © S Valkey

s KeyDB g- ~KeyDB

= 10.0 =Dragonfly = 10.0 =Dragonfly

~— g

5 E]

o (=3

= 1.0 = 1.0

H % g

= =]

(=] o

= =

= 0.1 a) ﬁ 0.1 — -

= 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Client Sessions #Client Sessions

(a) Varying clients (ZADD, ZREM). (b) Varying clients (PFADD).

Figure 7: Complex object throughput.

affects all systems at high thread counts. Dragonfly outperforms
Valkey and KeyDB, but is significantly worse than Garnet.
Complex Data Type Operations. Next, we benchmark perfor-
mance of operations over complex data types, focusing on SortedSet
(zADD/ZREM) and HyperLogLog (PFADD, which adds a key to the
sketch). Figure 7a shows the results for SortedSet, with 1024 ob-
jects and each operation updating a random object. In spite of more
time being spent in object update, Garnet outperforms the other
systems and scales well. Valkey and KeyDB achieve 1.5X to 40X
lower throughput. Although, Dragonfly fares better, it does not
scale as well as Garnet, achieving 1.8X to 3.5x lower throughput.
In Figure 7b, we evaluate the HyperLogLog PFADD command,
adding keys to a randomly chosen sketch out of a million. As be-
fore, Garnet outperforms the competition when a large number
of sessions is used. Our implementation uses hardware intrinsics
to accelerate hashing when adding to the HyperLogLog sketch.
This adds to the scaling capabilities of Garnet which results in
outperforming its closest competitor by a factor of 10x.

8.4 Standalone Latency

Our latency experiments were performed on an empty database
and for a combined workload issuing a mixture of 80% GET and 20%
commands that operate on a small keyspace (1024 keys). Since we
care about latency, our DB size is kept small while we vary other
parameters of the workload such as client threads, batch size, and
payload size. For every varying experimental parameter, we fix the
value of the other two as indicated below:

Sessions | Batch Size | Payload Size (bytes)
1-128 1 8

128 1-64 8

128 16 64 — 2048

Our experiments concentrate on the P99.9 latency (Figure 8) aver-
aged across multiple runs. Garnet consistently delivers lower and
more stable latency compared to other systems as the number of

2,500 E Garnet 14,000 ®Gamet

25,000 B Garnet 350

300 --e--Redis -®
T 000 | Lotkey @ 12000 Svatey = 20,000 ":a“::;’ Sogg o GametTce e
2 KeyDB 2 10,000 SKeyDB = S ey 2 —&—Gamet-DPDK .-~
‘L:>,. 1500 = Dragonfly § 5000 & Dragonfly E 15,000 = Dragonfly :); 200 /’,,
s S 400 § S 100
500 & @ é & 2,000 5,000 50
of & Nk R ——
0 0
8 16 32 64 128 64 128 256 512 1024 2048 0 10 20 30
Cllent Sessions Batch Size Payload Size (bytes) #Client Sessions
Figure 8: P99.9 GET(80%)-SET(20%) latency for varying parameters. Figure 9: P99 PING latency.
50 _ gz the client side, which is undesirable in practice. We also experi-
—_— & Garnet 8 mmmm Disk bandwidth (bw) d : h k d : f d b : h d f d h
@ . & 25 Hardware specs mented with a skewed Zipf distribution (not shown) and found the
3 Y Garnet-LH D 20 p . X
g Gamet-W1 © g~ - ~Measuredbw(fio) skew to negatively impact Garnet-CQ64 and Garnet-S due to work-
T ® = Garnet-We4 B 10 I load imbalance across threads, which the shared-everything design
> 3 o . . . > :
2 % 2 Garnet-S @ > H I of Tsavorite avoids. To summarize, Garnet’s chosen architecture
o0 777 -
2 . % £ %* & & (shared-nothing sessions operating over a shared-everything data
¢ & & - . :
< % & &S g"\ g"‘\ ‘&‘z store) significantly outperforms all the other considered designs.
= N N S NI
0 ==z [d @ @@ [

Figure 10: Design study. Figure 11: Durability.
clients increases. Designed to leverage adaptive client-side batching,
Garnet outperforms competing systems by an even wider margin
with batched input. While Dragonfly handles medium batch sizes
more effectively, it struggles to sustain that performance at larger
batch sizes. With increasing payload size, we observe that Garnet
continues to perform well—for large payloads, the bottleneck for
all systems becomes the available network bandwidth.
Kernel Bypass Networking. Garnet can work with different

network implementations. We evaluated end-to-end latency at the

99'h percentile, with hardware-accelerated TCP (for Redis and Gar-
net) and DPDK using eRPC [23] (for Garnet). The latter is a proto-
type, not part of open-source Garnet. Clients issue PING commands
with no batching. We see from Figure 9 that Garnet exhibits higher
stability at large percentile values. Further, as expected, kernel
bypass provides a further 4 — 5x reduction in end-to-end latency.

8.5 Design Study

We study Garnet’s chosen design by comparing it to alternatives
(see Section 1.2 for details) that we implemented by modifying
Garnet: (1) Garnet-LH, a design where networking is parallelized
but storage is guarded by a lock; (2) Garnet-W1 (and -W64), in-
process shards of 1 (and 64) storage worker threads that are used
by our multi-threaded network layer; and (3) Garnet-S, which runs
64 independent Garnet processes on a single node, with clients
handling request routing. We use memtier_benchmark as our client
with 256M keys, 8-byte payloads, 64 threads with 1 client per thread,
a batch size of 1024, and a uniform 1:9 SET-to-GET ratio.

Figure 10 shows the results. Garnet achieves a high throughput
of 47Mops/sec. As expected, Garnet-LH does not scale and achieves
poor throughput (1.3Mops/sec). Garnet-W1, which instead uses a
single worker queue does better (4.4Mops/sec) due to better cache
efficiency than a single contended lock. Garnet-W64 does better in
aggregate (9Mops/sec), but does not scale due to the high overhead
incurred by request splitting, data shuffling, and result collation.
Garnet-S achieves better throughput (17.1Mops/sec), but this is
because the request splitting and routing overheads are pushed to

8.6 Durability

We load 256 million keys (12-byte keys, 100-byte values) into each
cache-store and perform a SAVE operation (see Figure 11). We config-
ured storage using RAID [41] with 8 NVMe SSDs (4.2GB/s sustained
write speed [10] each) for a total theoretical write speed of 33.6GB/s.
The measured write speed using the fio [15] tool was 32.5GB/s.
Garnet, using the io_uring [1] library and 8 IO completion threads
(ct), took a checkpoint in 1.06s, saturating this measured limit. In
contrast, Dragonfly was over 4X slower, taking 4.64s for a check-
point. We also see that using fewer io_uring completion threads
or the 1ibaio [28] library, Garnet was not able to saturate the high
available write bandwidth. Finally, Valkey took 273.1s to checkpoint
the same data, and KeyDB was even slower, taking 481.7s.

8.7 Cluster Mode

Migration (Scale-Out). We demonstrate Garnet’s ability to rapidly
scale out with an experiment using two cluster nodes. We measure
the total time required to migrate all slots from one node to the
other. The results of this experiments are shown in Figure 12. The
experiment assumed a preloaded cache with 256 million 8 byte keys
and values. Garnet outperforms Valkey by 94X in terms of time
taken to migrate all slots. This is largely because Valkey requires
clients to migrate the data between the two nodes, which is ex-
tremely expensive. Similar to Garnet, Dragonfly does not require
the client to migrate the actual data. However, Garnet is much faster,
taking 4x to 8x less time to migrate all the data across nodes.
Replication. We evaluated the performance of replication by
focusing on how well each system handles the overhead of both
serving client requests and transferring the DOL to each replica.
Our first experiment (Figure 13) measures the achieved write
throughput with increasing number of secondaries. To eliminate
any other system overheads, apart from that of writing to the DOL
and shipping it to the secondaries, we used 4 clients that perform
100% write on a keyspace of 1024 keys with 8 byte randomly gener-
ated payloads. Every write appends a new entry to the log (DOL)
of each system, stressing their replication implementation. We see
that Garnet outperforms other system and scales well even with
4 secondaries. Valkey and KeyDB sustain overall lower but stable

234

N Valkey

10,000 B Garnet —e—Garnet —A—Valkey
D KeyDB = Dragonfly < - —o—KeyDB ----Dragonfly
2 1,000 § 2 4.00
E N \ 2300 O&—o—o
Z o0 N N = X
s N \ 5 200 e .
£ N 2 A
E n NE D100 Ay
2 R g
= 1 NE B NS NS £ 0.00

32M 64M 128M 256M 1 2 3 4

DB Size (# Keys) # Secondary Nodes

Figure 12: Migration time,

varying batch size. with replication.

write throughput. Dragonfly starts with higher throughput but
quickly deteriorates with the addition of more secondaries.

Next, we evaluate how quickly the server can synchronize the
attaching replicas in the presence of a heavy workload, and the
impact of synchronization on throughput (Figure 14a)/latency (Fig-
ure 14b). For this experiment, we used 128 clients issuing a ratio
8(GET):2(SET) on a pre-warmed database that contains 256 million
keys. While the workload is running, 4 replicas attach and synchro-
nize with the primary. We see that Garnet achieves high throughput
and is able to recover with minimal impact on the main workload.
Dragonfly achieves lower throughput, although it is able to recover
fast with minimal impact. However, its total throughput noticeably
drops due to the increased overhead experienced by the primary
having to serve the attached replicas. Valkey recovers quickly at
the attach point but fails to keep up with the increased demand,
resulting in frequent partial synchronization operations that affect
throughput. We observed the same pattern for latency—Garnet
manages to sustain the overall lowest P99.9 latency.

9 RELATED WORK

KV Stores and Caches. There is a rich body of related work on
key-value stores and caches [9, 37]. FASTER [5, 24] is an embedded
key-value library built for thread-scalable performance of point
workloads. It follows the general model of a concurrent index over
arecord log. Compared to Tsavorite’s RUMDS interface, FASTER’s in-
terface is not sufficiently expressive to handle the RESP APL It does
not have multi-key transactions, read cache, revivification support,
efficient compaction, streaming checkpoints, and cross-store check-
point capability. Other embedded key-value stores include range-
index-based stores such as RocksDB [4], LeanStore [30], and Bw-
Tree [31]; however, these systems are designed to also support range
queries, which are not necessary for a RESP cache-store, and thus
incur the cost of reordering data, expensive compactions, page/level
consolidation, and inner node traversals and binary searches during
reads. Caches such as Kangaroo [38] and CacheLib [2] are designed
as pure caches and may drop tuples, leading to an inability to be
used as a cache-store. Further, all these systems target simple byte
keys and values, and do not handle heap objects. As such, none of
these systems meet the diverse requirements of cache-stores.
Cache-Stores. As discussed in Section 1, existing RESP cache-
stores such as Redis, Valkey, Dragonfly, and KeyDB suffer from
limitations in the areas of thread scalability, larger-than-memory
support, checkpointing, fast scale-out, and tunable durability (Ta-
ble 1 has more details). Shadowfax [26] adds a remote interface to

Figure 13: Write throughput

235

— Garnet ——Valkey ------- Dragonfly ——Garnet ——Valkey ------- Dragonfly
© 8192

< Y = 8192 m
S - 3
- ¥ > sesteeeeataneans :
3 1024 2 1024 i

) "“"'_‘WJTT'} g —_————

©

§ -

£ 128 128

L Time Time

(a) Throughput. (b) P99.9 latency.

Figure 14: SET/GET throughput and latency during secondary
synchronization.

FASTER, but is limited to simple string keys and values, similar
to FaRM [11]. The Cassandra Query Language (CQL) is the cache-
store interface used by Apache Cassandra [29] which is based on
LSM-Tree [37, 40] storage. CQL is also adopted by ScyllaDB [54],
which uses a shared-nothing design along with the Seastar [55] net-
work routing framework. The overheads of a shared-nothing design
have also been previously shown to result in 4X lower throughput
(for memcached [39] with Seastar) at high thread counts [26].

Durability. A traditional consistent checkpoint requires the
system to quiesce, which is not an option for a low-latency cache-
store. One could take a fuzzy checkpoint [19, 34], but this would
necessitate a write-ahead log for consistent recovery, which would
impact scalability. Consistent checkpoints without the write-ahead
log can allow a cache-store to remain scalable and allow recovery
to a stale yet consistent copy, which is critical for warm cache
scenarios. This led us to adapt the CPR [43] protocol for checkpoints,
with changes as mentioned in Section 5.

10 CONCLUSIONS

Garnet is a new cache-store that fulfills key requirements that
we recognize across a range of modern use cases: (1) Larger-than-
memory, but memory-optimized (LTM-MO) capability; (2) Bare-metal
performance; (3) Support for complex types and operations; and (4)
Tunable durability. Garnet uses a hybrid shared-nothing session
coupled with a shared-everything storage design. Garnet’s storage
engine, called Tsavorite, is a latch-free concurrent LTM-MO design
with a narrow-waist interface that is used to express hundreds
of commands. Tsavorite employs optimizations such as optimistic
watching for transactions and epoch-based slot revivification for
memory. Garnet has an efficient cluster design with sharding, repli-
cation, and migration protocols based on epoch-protected state
machines. With tunable durability, Garnet can be deployed as ei-
ther a cache or a database with varying data loss tolerance. Being
Redis wire protocol compatible, it can serve as a drop-in replace-
ment, offering up to orders-of-magnitude higher throughput and
lower latencies than state-of-the-art RESP cache-stores. Garnet is
widely used at Microsoft and is available in open-source.

ACKNOWLEDGMENTS

We would like to thank Johannes Gehrke, Surajit Chaudhuri, Phil
Bernstein, Donald Kossmann, Knut Magne Risvik, and Shireesh
Thota for their support, inspiration, and feedback. We also thank our
product group partners, prior interns, and open-source contributors
for helping improve the system and motivate with real use cases.

REFERENCES

(1]
(2]

3

=

l6

=

[7

[

[10]
(1]

[12]
[13]
[14]

[15]
[16]

[17]

[18

[19]

[20

[21

[22]

[23]

[24

[25

Jens Axboe. 2019. Efficient I/O with io_uring. https://kernel.dk/io_uring.pdf.
Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gu-
nasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design
and Experiences at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 753-768. https:
//www.usenix.org/conference/osdi20/presentation/berg

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13,7 (July 1970), 422-426. https://doi.org/10.1145/362686.
362692

Zhichao Cao and Siying Dong. 2020. Characterizing, modeling, and benchmark-
ing RocksDB key-value workloads at Facebook. In 18th USENIX Conference on
File and Storage Technologies (FAST 20).

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A concurrent key-value store
with in-place updates. In Proceedings of the 2018 International Conference on
Management of Data. 275-290.

Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 49-63. https://www.usenix.
org/conference/atc20/presentation/conway

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143-154.

National Research Council. 1994. Realizing the Information Future: The Internet
and Beyond. The National Academies Press, Washington, DC. https://doi.org/
10.17226/4755

Ali Davoudian, Liu Chen, and Mengchi Liu. 2018. A Survey on NoSQL Stores.
ACM Comput. Surv. 51, 2, Article 40 (April 2018), 43 pages. https://doi.org/10.
1145/3158661

Dell/Kioxia SSD Specs. 2025. https://aka.ms/AAx7d4d.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and Miguel Cas-
tro. 2014. FaRM: fast remote memory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation (Seattle, WA) (NSDI'14).
USENIX Association, USA, 401-414.

Dragonfly. 2025. https://www.dragonflydb.io/.

Dragonfly Architecture. 2025. https://aka.ms/AAx8vtf.

Energy Sciences Network (ESnet). 2014. iperf3: A TCP, UDP, and SCTP Network
Bandwidth Measurement Tool. https://software.es.net/iperf/.

fio - Flexible I/O tester. 2025. https://fio.readthedocs.io/.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
accelerated networking: SmartNICs in the public cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI'18). USENIX Association, USA, 51-64.

Garnet - ETags. 2025. https://microsoft.github.io/garnet/blog/etags-when-and-
how.

Garnet API Compatibility. 2025.
commands/api-compatibility.

R B Hagmann. 1986. A Crash Recovery Scheme for a Memory-Resident Database
System. IEEE Trans. Comput. 35, 9 (Sept. 1986), 839-843. https://doi.org/10.1109/
TC.1986.1676845

Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in prac-
tice: algorithmic engineering of a state of the art cardinality estimation algorithm.
In Proceedings of the 16th International Conference on Extending Database Tech-
nology (Genoa, Italy) (EDBT ’13). Association for Computing Machinery, New
York, NY, USA, 683-692. https://doi.org/10.1145/2452376.2452456

Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery, New
York, NY, USA, 2667-2672. https://doi.org/10.1145/3318464.3383133
In-Memory Database Market Report. 2025. https://www.imarcgroup.com/in-
memory-database-market.

Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 1-16.
https://www.usenix.org/conference/nsdi19/presentation/kalia

Konstantinos Kanellis, Badrish Chandramouli, and Shivaram Venkataraman.
2024. F2: Designing a Key-Value Store for Large Skewed Workloads.

arXiv:2305.01516 [cs.DB] https://arxiv.org/abs/2305.01516
KeyDB. 2025. https://docs.keydb.dev/.

https://microsoft.github.io/garnet/docs/

236

[26

[27]

(28]

[29

a
=

Chinmay Kulkarni, Badrish Chandramouli, and Ryan Stutsman. 2020. Achieving
High Throughput and Elasticity in a Larger-than-Memory Store. In PVLDB, 14(8),
2021. https://www.microsoft.com/en-us/research/publication/achieving-high-
throughput-and-elasticity-in-a-larger-than-memory-store/

H. T. Kung and Philip L. Lehman. 1980. Concurrent manipulation of binary
search trees. ACM Trans. Database Syst. 5, 3 (Sept. 1980), 354-382. https:
//doi.org/10.1145/320613.320619

Benjamin LaHaise. 2002. libaio: The Linux Asynchronous I/O Access Library.
https://man7.org/linux/man-pages/man7/aio.7.html.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.
https://doi.org/10.1145/1773912.1773922

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-memory data management beyond main memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 185-196.
Justin Levandoski, David Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE) (2013 ieee 29th international conference on
data engineering (icde) ed.). IEEE. https://www.microsoft.com/en-us/research/
publication/the-bw-tree-a-b-tree-for-new-hardware/

LevelDB. 2025. https://github.com/google/leveldb.

Tianyu Li, Badrish Chandramouli, and Samuel Madden. 2022. Performant Almost-
Latch-Free Data Structures Using Epoch Protection. In Proceedings of the 18th
International Workshop on Data Management on New Hardware (Philadelphia,
PA, USA) (DaMoN °22). Association for Computing Machinery, New York, NY,
USA, Article 1, 10 pages. https://doi.org/10.1145/3533737.3535091

Jun-Lin Lin and Margaret H. Dunham. 1996. Segmented fuzzy checkpointing
for main memory databases. In Proceedings of the 1996 ACM Symposium on
Applied Computing (Philadelphia, Pennsylvania, USA) (SAC °96). Association for
Computing Machinery, New York, NY, USA, 158-165. https://doi.org/10.1145/
331119.331168

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: scalable
hashing on persistent memory. Proc. VLDB Endow. 13, 8 (April 2020), 1147-1161.
https://doi.org/10.14778/3389133.3389134

Lua Scripting Language. 2025. https://lua.org/.

Chen Luo and Michael J. Carey. 2019. LSM-Based Storage Techniques: A Survey.
The VLDB Journal 29, 1 (jul 2019), 393-418. https://doi.org/10.1007/s00778-019-
00555-y

Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya
Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R.
Ganger. 2021. Kangaroo: Caching Billions of Tiny Objects on Flash. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual
Event, Germany) (SOSP °21). Association for Computing Machinery, New York,
NY, USA, 243-262. https://doi.org/10.1145/3477132.3483568

Memcached. 2025. https://memcached.org/.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351-385.
David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A case for redundant
arrays of inexpensive disks (RAID). SIGMOD Rec. 17, 3 (June 1988), 109-116.
https://doi.org/10.1145/971701.50214

W. W. Peterson and D. T. Brown. 1961. Cyclic Codes for Error Detection. Proceed-
ings of the IRE 49, 1 (1961), 228-235. https://doi.org/10.1109/JRPROC.1961.287814
Guna Prasaad, Badrish Chandramouli, and Donald Kossmann. 2019. Concur-
rent Prefix Recovery: Performing CPR on a Database. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD °19). Association for Computing Machinery, New York, NY, USA, 687-704.
https://doi.org/10.1145/3299869.3300090

Redis. 2025. https://redis.io/.

Redis Cluster Specification. 2025. https://redis.io/docs/latest/operate/oss_and_
stack/reference/cluster-spec/.

Redis Enterprise Cluster Architecture. 2025. https://redis.io/technology/redis-
enterprise-cluster-architecture/.

Redis Labs User Survey (2016). 2025. https://redis.io/blog/redis-labs-customers-
award-accolades/.

Redis Lua API reference. 2025. https://redis.io/docs/latest/develop/interact/
programmability/lua-api/.
Redis Transactions. 2025.
transactions/.

Redis Use Case Examples for Developers. 2025. https://redis.io/blog/5-industry-
use-cases-for-redis-developers/.

RedisLabs - Memtier Benchmark. 2025. https://github.com/RedisLabs/memtier_
benchmark.

RESP Serialization Protocol Specification. 2025. https://redis.io/docs/latest/
develop/reference/protocol-spec/.

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementa-
tion of a log-structured file system. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992),
26-52. https://doi.org/10.1145/146941.146943

ScyllaDB. 2025. https://scylladb.com/.

https://redis.io/docs/latest/develop/interact/

https://kernel.dk/io_uring.pdf
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://www.usenix.org/conference/atc20/presentation/conway
https://www.usenix.org/conference/atc20/presentation/conway
https://doi.org/10.17226/4755
https://doi.org/10.17226/4755
https://doi.org/10.1145/3158661
https://doi.org/10.1145/3158661
https://aka.ms/AAx7d4d
https://www.dragonflydb.io/
https://aka.ms/AAx8vtf
https://software.es.net/iperf/
https://fio.readthedocs.io/
https://microsoft.github.io/garnet/blog/etags-when-and-how
https://microsoft.github.io/garnet/blog/etags-when-and-how
https://microsoft.github.io/garnet/docs/commands/api-compatibility
https://microsoft.github.io/garnet/docs/commands/api-compatibility
https://doi.org/10.1109/TC.1986.1676845
https://doi.org/10.1109/TC.1986.1676845
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/3318464.3383133
https://www.imarcgroup.com/in-memory-database-market
https://www.imarcgroup.com/in-memory-database-market
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://arxiv.org/abs/2305.01516
https://arxiv.org/abs/2305.01516
https://docs.keydb.dev/
https://www.microsoft.com/en-us/research/publication/achieving-high-throughput-and-elasticity-in-a-larger-than-memory-store/
https://www.microsoft.com/en-us/research/publication/achieving-high-throughput-and-elasticity-in-a-larger-than-memory-store/
https://doi.org/10.1145/320613.320619
https://doi.org/10.1145/320613.320619
https://man7.org/linux/man-pages/man7/aio.7.html
https://doi.org/10.1145/1773912.1773922
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
https://github.com/google/leveldb
https://doi.org/10.1145/3533737.3535091
https://doi.org/10.1145/331119.331168
https://doi.org/10.1145/331119.331168
https://doi.org/10.14778/3389133.3389134
https://lua.org/
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/3477132.3483568
https://memcached.org/
https://doi.org/10.1145/971701.50214
https://doi.org/10.1109/JRPROC.1961.287814
https://doi.org/10.1145/3299869.3300090
https://redis.io/
https://redis.io/docs/latest/operate/oss_and_stack/reference/cluster-spec/
https://redis.io/docs/latest/operate/oss_and_stack/reference/cluster-spec/
https://redis.io/technology/redis-enterprise-cluster-architecture/
https://redis.io/technology/redis-enterprise-cluster-architecture/
https://redis.io/blog/redis-labs-customers-award-accolades/
https://redis.io/blog/redis-labs-customers-award-accolades/
https://redis.io/docs/latest/develop/interact/programmability/lua-api/
https://redis.io/docs/latest/develop/interact/programmability/lua-api/
https://redis.io/docs/latest/develop/interact/transactions/
https://redis.io/docs/latest/develop/interact/transactions/
https://redis.io/blog/5-industry-use-cases-for-redis-developers/
https://redis.io/blog/5-industry-use-cases-for-redis-developers/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://redis.io/docs/latest/develop/reference/protocol-spec/
https://redis.io/docs/latest/develop/reference/protocol-spec/
https://doi.org/10.1145/146941.146943
https://scylladb.com/

[55]
[56]

[57]

SeaStar Framework. 2025. https://seastar.io/.

Sliding Window Rate Limiter. 2025. https://redis.io/learn/develop/dotnet/
aspnetcore/rate-limiting/sliding-window.

Yacine Taleb, Kevin McGehee, Nan Yan, Shawn Wang, Stefan C. Miiller, and Allen
Samuels. 2024. Amazon MemoryDB: A Fast and Durable Memory-First Cloud
Database. In Companion of the 2024 International Conference on Management of
Data (Santiago AA, Chile) (SIGMOD/PODS °24). Association for Computing Ma-
chinery, New York, NY, USA, 309-320. https://doi.org/10.1145/3626246.3653380

237

The Resp.Benchhmark Tool. 2025.
benchmarking/resp-bench.
Transactions - Watch Command. 2025. https://microsoft.github.io/garnet/docs/
dev/transactions.

Valkey. 2025. https://valkey.io/.

What is Memorystore. 2025. https://cloud.google.com/blog/topics/developers-
practitioners/what-memorystore.

https://microsoft.github.io/garnet/docs/

https://seastar.io/
https://redis.io/learn/develop/dotnet/aspnetcore/rate-limiting/sliding-window
https://redis.io/learn/develop/dotnet/aspnetcore/rate-limiting/sliding-window
https://doi.org/10.1145/3626246.3653380
https://microsoft.github.io/garnet/docs/benchmarking/resp-bench
https://microsoft.github.io/garnet/docs/benchmarking/resp-bench
https://microsoft.github.io/garnet/docs/dev/transactions
https://microsoft.github.io/garnet/docs/dev/transactions
https://valkey.io/
https://cloud.google.com/blog/topics/developers-practitioners/what-memorystore
https://cloud.google.com/blog/topics/developers-practitioners/what-memorystore

	Abstract
	1 Introduction
	1.1 Requirements for Modern Cache-Stores
	1.2 Today's Cache-Store Architectures
	1.3 A New Design

	2 Background on RESP
	3 Garnet System Architecture
	3.1 Network Layer
	3.2 Parsing and Query Processing
	3.3 Concurrency Model and EPSM

	4 The Tsavorite Storage Layer
	4.1 Data Model
	4.2 Single-Key RUMDS Interface
	4.3 Using RUMDS Beyond RESP
	4.4 Concurrent Data Structure
	4.5 Concurrent RUMDS Implementation
	4.6 Multi-Key Transactions
	4.7 Memory Optimizations

	5 Durability
	5.1 Checkpointing
	5.2 Deterministic Operation Logging

	6 Garnet Cluster Design
	6.1 Cluster Architecture Overview
	6.2 HashSlot Migration
	6.3 Replication

	7 Implementation Details
	8 Evaluation
	8.1 Setup and Workload
	8.2 Memtier Benchmark Results
	8.3 Standalone Throughput
	8.4 Standalone Latency
	8.5 Design Study
	8.6 Durability
	8.7 Cluster Mode

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

