
Incremental Stream�ery Deployment under
Continuous Infrastructure Changes in the Cloud-Edge Continuum

Ankit Chaudhary
BIFOLD, TU Berlin

ankit.chaudhary@tu-berlin.de

Felix Lang
TU Berlin

f.lang@tu-berlin.de

Danila Ferents
TU Berlin

danila.ferents@campus.tu-berlin.de

Nils L. Schubert
BIFOLD, TU Berlin

nils.schubert@dima.tu-berlin.de

Varun Pandey
Technische Universität Nürnberg

varun.pandey@utn.de

Jeyhun Karimov
Microsoft Corporation

jkarimov@microsoft.com

Ste�en Zeuch
BIFOLD, TU Berlin

ste�en.zeuch@tu-berlin.de

Kaustubh Beedkar
Indian Institute of Technology Delhi

kbeedkar@cse.iitd.ac.in

Volker Markl
BIFOLD, TU Berlin, DFKI

volker.markl@tu-berlin.de

ABSTRACT

Distributed data stream processing engines (DSPEs) operating over

the cloud-edge continuummust deploy data processing operators

across a distributed infrastructure. However, the volatile nature of

these infrastructure nodes—where devices frequently join, leave,

or move—can invalidate existing query operator-to-topology node

mappings, leading to interruptions in query execution and poten-

tial data loss. To ensure continuous processing while maintaining

correctness, DSPEs must dynamically adapt these mappings and

redeploy (part of) a�ected queries.

In this paper, we introduce incremental stream query deployment

(ISQD), a framework that e�ciently redeploys queries a�ected by

topology changes. ISQD employs a greedy strategy to identify and

redeploy only a�ected operators. It uses ad-hoc queries to migrate

operator state seamlessly, and leverages recon�guration markers to

synchronize the redeployment process. Our evaluation shows that

ISQD achieves up to 7.5× lower deployment latency and up to 39×

lower event time latency compared to state-of-the-art approaches,

even under high-frequency topology changes.

PVLDBReference Format:

Ankit Chaudhary, Felix Lang, Danila Ferents, Nils L. Schubert, Varun Pandey,

Jeyhun Karimov, Ste�en Zeuch, Kaustubh Beedkar, and Volker Markl.

Incremental Stream Query Deployment under Continuous Infrastructure

Changes in the Cloud-Edge Continuum. PVLDB, 19(2): 210-223, 2025.

doi:10.14778/3773749.3773759

PVLDBArtifact Availability:

The source code, data, and/or other artifacts have been made available at

https://anonymous.4open.science/r/nebulastream-isqd/ and https://github.

com/nebulastream/topology-change-generator.

1 INTRODUCTION

Massively distributed applications, such as smartmobility, �eetman-

agement, predictive maintenance, video surveillance, or connected

This work is licensed under the Creative Commons BY-NC-ND
4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/
to view a copy of this license. For any use beyond
those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773759

cars [1, 2, 4, 17, 23, 25], increasingly demand near real-time analytics

(i.e., latency < 100ms). These applications consume data streams

from thousands of geo-distributed and mobile devices that are lo-

cated outside cloud data centers [14, 46].

State-of-the-art (SOTA) approaches commonly rely on cloud-

centric stream processing pipelines. These involve transferring data

to the cloud, (generally) persisting it in queues (e.g., Apache Kafka or

blob stores), and subsequently consuming it via stream processing

engines for analytics. For example, recent studies show that user-to-

cloud (ping) latency can range from 20 to 250 ms [13]. In addition,

Apache Kafka, despite its popularity, has frequently been identi�ed

as a performance bottleneck during data retrieval [24, 26, 32, 53],

while blob storage access latency can range from 50 to 800 ms [16].

Moreover, a recent work [9, 11, 53] has shown that cloud-centric

DSPEs do not e�ectively utilize the available sources. These limi-

tations result in increased end-to-end latency, network congestion,

high data transfer cost, and increased energy consumption, making

cloud-based streaming pipelines inadequate.

To mitigate these drawbacks, a new class of DSPEs [34, 36, 40, 52]

was designed to push analytical computations (�lter, aggregation,

join, etc) on the edge and end devices in a single uni�ed system.

Combining expandable cloud with existing edge resources o�ers ad-

vantages over traditional cloud-only processing, such as reducedpro-

cessing latency [51], e�cient network and compute utilization [52],

and reduced energy consumption [47].

DSPEs utilize operator placement as a crucial step during query

optimization [6]. Operator placement maps query operators to in-

frastructure nodes [5–7, 10]. Themappedoperators are subsequently

deployed in a serial and holistic manner using the deploymentmech-

anism of the underlying DSPE [8]. However, in a dynamic infras-

tructure such as sensor-edge-cloud, DSPEs face challenges to ensure

valid deployments during the lifetime of query execution.

DPSEs must consider the volatility in the sensor-edge-cloud infras-

tructure [36, 52, 54] as a result of frequent connection/disconnection,

failure, or relocation of the devices, unlike robust cloud-only infras-

tructure [34]. For example, IoT/sensor devices (e.g., trains, cars) use

cellular modems to connect to the nearest edge data centers, depend-

ing on their proximity and signal strength [41]. Themobility of these

devices can also cause them to approach another edge data center,

thereby changing the optimal edge data center location to the new

210

https://doi.org/10.14778/3773749.3773759
https://anonymous.4open.science/r/nebulastream-isqd/
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-generator
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773759
https://www.acm.org/publications/policies/artifact-review-and-badging-current

one [12], resulting in topology changes. These topology changes

result in the interruption or failure of running queries and the in-

validation of existing operator placements and deployments [8].

To tackle this, DSPEs must identify a�ected queries, perform re-

placement, redeployment, and recon�guration within a reasonable

time while preventing tuple or state loss.

Several works have addressed dynamic workload redeployment

and recon�guration in response to sudden stream changes (e.g., tu-

ple rate, key distribution) [22, 33, 50], but they mainly target stable,

cloud-only infrastructures that support proactive planning [15].

Recent works have also proposed solutions for volatile sensor-edge-

cloud infrastructure. Falcon [34] launches new instances of a�ected

operators on globally accessible cloud nodes and uses special compo-

nents to route tuples frommobile devices to the old edgenode (where

the data source was connected before relocation) and cloud nodes.

This results in increasedCPU and network bandwidth utilization, ad-

ditional processing latency, and increased system complexity due to

special routing components. ISQP [8] proposes an e�cient approach

to incrementally and concurrently re-optimize operator mappings

to keep them valid in a volatile topology, but does not address rede-

ploying these mappings. Overall, a solution is required to redeploy

queries in a volatile sensor-edge-cloud infrastructure e�ciently. We

further motivate this requirement using a real-world application.

SmartMobility Application. Consider a real-time public trans-

port application that computes the number of passengers on trains

and their distribution across coaches [39]. Each train has passenger

counting units that record the number of passengers, bikes, or strollers

boarding and alighting at each stop. A stream query processes this data

to display real-time occupancy information at the next train station

or joins the occupancy data from incoming and outgoing trains at a

transfer station to identify potential overcrowding situations.While the

trains can perform local computations (�lter, transformation, partial

aggregation), more holistic computations (joins, global aggregation)

need to be placed on an edge or cloud node to access holistic data.

To assess the impact of topology changes on query processing latency,

we emulated a smart mobility scenario. We simulated a circular train

line, similar to Berlin’s S41/S42, with 40 trains running simultaneously.

Ten continuous queries were deployed, each processing data from a

group of four trains. Under stable conditions, when trains are stationary

and no topology changes occur, the DSPE maintains an average event

time latency (excludes window size [26]) of 5.7 ms.

At the 20th second of the experiment, we introduced mobility by em-

ulating the movement of all trains for 120 seconds, ending at the 140th

second.As the trains circulate, they frequently disconnect and reconnect

between base stations. This results in 10 reconnects per second—i.e., 10

topology changes per second—each a�ecting all 10 running queries.

Due to these frequent topology changes, the DSPE continuously ad-

justs operator placement and redeploys a�ected queries. However, this

persistent redeployment process overwhelms the system, causing it to

stop processing data beyond the 27th second. The optimizer re-triggers

operator re-placement and redeployment every second, consuming

resources that would otherwise be used for actual data processing.

Consequently, latency-sensitive downstream applications experience

signi�cant disruptions in data delivery. Similar scenarios arise in con-

nected car applications [23], which can generate even larger volumes

of data per hour across numerous mobile vehicles [29, 42].

25 50 75 100 125 150
Runtime (s)

101

102

103

Av
g.

 E
ve

nt
 T

im
e

 L
at

en
cy

 (m
s)

Ex
p.

 S
ta

rt
Pr

oc
es

sin
g

St
op

Ex
p.

 E
nd

Figure 1: Impact of topology changes on event time latency.

This example shows the need for an e�cient deployment mecha-

nism that canhandle high-frequencyunplanned topology changes in

sensor-edge-cloudwhilemaintainingcontinuousprocessingandcor-

rectness. To this end, a DSPE must address the following challenges.

C1:Resume interruptedquerieswhilekeepingdeployment

latency low. To resume interrupted queries, SOTADSPEs: (1.) un-

deploys operators of the a�ected queries from the topology, (2.)

performs operator re-placement, (3.) redeploys all operators on the

topology, and (4.) resumesprocessing from last checkpoint.However,

when the topology changes often, the a�ected queries continuously

invoke expensive undeploy, optimize, and redeploy phases of the

optimizer to resume execution. This adversely a�ects the latency of

deploying updated placements resulting in higher event latency as

little data gets processed (cf. Figure 1). Thus, a DSPE must minimize

deployment latency under frequent topology changes.

C2: Resuming stateful queries in a dynamic and hierar-

chical infrastructure. An edge infrastructure enables near-data

processing, i.e., processing closer to the sensors. This allows for sev-

eral optimization opportunities; for instance, a DSPE can compute

aggregations closer to the sensor nodes to reduce processing latency

and minimize data transfer. Generally, when migrating stateful op-

erators due to a topology change, their state must also be migrated.

This migration is typically done by DSPEs through state transfer or

state replicationusing specialized components [15, 22]. Furthermore,

peer-to-peer protocols are widely used for state transfer; yet, they

are not suitable for use in a hierarchical network topology. In a dy-

namic and hierarchical topology, it is di�cult to predict the location

of mobile device reconnections, complicating the identi�cation of

nodes for state replication. Therefore, another critical challenge is to

perform statemigration in a dynamic and hierarchical infrastructure.

In this paper, we propose Incremental Stream Query Deployment

(ISQD) to e�ciently redeploy queries a�ected by unplanned topol-

ogy changes. ISQD is designed for dynamic sensor-edge-cloud in-

frastructures that ensures uninterrupted operation similar to cloud

environments [18] while enabling near-data processing on volatile

sensor-edge infrastructures [34, 36]. To reduce the deployment

latency (C1), ISQD concurrently identi�es the minimum set of oper-

ators to redeploy for all a�ected queries while continuing to process

and bu�er data at the una�ected operators. This avoids unnecessary

undeployments and redeployments of una�ected operators, helping

to reduce deployment latency. To address state migration (C2), ISQD

deploys ad-hoc stream queries to perform state transfer between

topology nodes. This enables ISQD to perform state migration in a

hierarchical and dynamic infrastructure using existing data process-

ing capability of the DSPE. It further simpli�es system design by

eliminating the need for additional components and protocols.

We implement ISQD in the state-of-the-art DSPE NebulaStream

[52] and show that ISQD keeps up with a high rate of topology

211

changeswhile ensuring low query deployment and event-time laten-

cies relative to baseline approaches. ISQD reduces deployment and

event-time latencies by up to 7.5× and 39×, respectively, relative to

the strongest baselines, while accommodating high-frequency topol-

ogy changes. In sum, we make the following major contributions

after discussing preliminaries in Sec. 2:

• Wepresent ISQD, a framework that keeps deployment latency low

under continuous changes to the physical topology (Sec. 3).

• ISQD computes a minimum set of redeployments to resume the

a�ected query and reduce the overall deployment latency (Sec. 4).

• We introduce ad-hoc state migration queries to handle the rede-

ployment of stateful operators in a dynamic and hierarchical

infrastructure (Sec. 5).

• We present a protocol that combines deployment contexts and

ad-hoc state migration queries to allow the resumption of queries

interrupted due to topology changes (Sec. 6).

• Weconduct detailed evaluation of ISQDwith state-of-the-art base-

lines. We show that ISQD reduces overall deployment latency and

keeps the event time latency to a minimum (Sec. 7).

2 PRELIMINARIES

Physical Topology.We denote the underlying physical infrastruc-

ture by a directed graph T= (N,L) where# is a set of nodes (devices)

with compute and memory resources, and ! is a set of network links

between pairs of nodes.

GlobalQueryPlan.Theglobal queryplan (GQP) captures all concur-

rently running queries in the DSPE. We represent GQP as a directed

acyclic graph G= (O,E) whereO denotes the set of operators, and

E denotes the set of directed data �ow edges between operators.

If queries share common sub-expressions, the optimizer may have

connected their plans in the GQP. However, queries that do not share

common operators result in disconnected components in the GQP.

Operator State. Each operator> ∈O is associatedwith a state (C (>),

which captures the tuples retainedby theoperator at time C . Formally,

the state of an operator is a function: St (o)=W(o,Ht (o)) where:

• , is a function that periodically prunes�C (>) based on its seman-

tics (e.g., time-based or count-based constraints).1

• �C (>) represents the processed tuples retained by > up to time C .

Some operators, such aswindowed aggregations or joins, maintain a

non-empty state, while stateless operators (e.g., selections, projects)

have (C (>)=∅ at all times.

Operator Placement. The operator placement determines how op-

erators from the global query plan (GQP) are assigned to nodes in

the physical topology. Formally, the operator placement PG,) is a

relationPG,T ⊆O×Nwhere:

• O is the set of operators in the GQP G.

• # is the set of physical topology nodes in the system

• Eachpair (>,=) ∈PG,) indicates that operator> is placedonnode=.

The mapping de�nes how the GQP is distributed across the topol-

ogy, in�uencing performance, resource utilization, and fault toler-

ance [10, 30].Operatorsmaybemapped to a single node or replicated

acrossmultiple nodes dependingon theDSPEspartitioning and repli-

cation strategies.

1In practice, (C (>) can often be derived from (C−1 (>) . For example, when the window
function is associative aggregate function.

N2

N4

N1

N3

N7 N8

N5

O7

O5

O3

O1 O2

O6

(b)

N6O4

N7
O1

N8
O2

N5
O4

N4
O3

N3
O5

N2
O6

N1
O7

N6

TopologyGlobal Query
Plan

Deployment

N2

N4

N1

N3

N7 N8

N5

(c)

N6

N7
O1

N8
O2

N5
O4

N4
O3

N3
O5

N2
O6

N1
O7

N6

Topology Deployment

O4 O4

ToBe
Undeployed

ToBe
Deployed

(a)

x

ToBe
Updated

Figure 2: (a) Example global query plan; (b) Example topology

and deployed DQPs at C0; (c) Topology and deployed DQPs at C1.

Decomposed Query Plan. After the operator placement is per-

formed, the GQP G = (O,E) is partitioned into decomposed query

plans (DQP), each deployed on a speci�c topology node. A DQP is

formally de�ned as a tupleD= (OD,ED,nD) where:

• O� ⊆ O is a maximal connected subset of operators that are

co-located on the same node =� .

• E� = {(>8 ,> 9) ∈ E | >8 ,> 9 ∈O� } represents the directed data �ow

edges within the DQP.

• =� is the topology node where all operators in � are placed, as

determined byPG,) .

The global query plan G is then represented as a collection of de-

composed query plans distributed across di�erent topology nodes

D= {D1,D2,...,Dk} where each�8 corresponds to a distinct DQP run-

ning on a speci�c topology node.

Example (Decomposed Query Plans). Figure 2(a) shows an example

GQP representing a query computing the number of passengers board-

ing and alighting trains based on a session window. Operators$1 and

$2 represent the sources, operators $3 and $4 compute the partial

aggregates on passenger count, operator$5 computes the holistic ag-

gregation, and operators$6 and$7write output to external systems.

Figure 2(b) shows the infrastructure topology at time C0 and all DQPs

deployed after performing operator placement of the GQP. For example,

the operator $1 from the GQP is placed on the mobile node #7 and

forms the only deployed DQP on that node. Similarly, operators$2,$3,

$4,$5,$6, and$7 form the DQPs on topology nodes # 8, # 4, # 5, # 3,

2, and # 1, respectively.

Operator Deployment and Recon�guration in a Dynamic En-

vironment. We �rst formally de�ne a valid DQP before discussing

scenarios leading to invalid DQPs and their recon�guration.

Valid Decomposed Query Plan. Given a GQP G and a physical

topology) , after performing operator placementPG,) , we say that

the set of decomposed query plansD is valid if and only if the fol-

lowing conditions hold:

(1) ValidOperator Placements inDQP: For each DQP� ∈D deployed

on a node =, every operator in� must be placed on = according

to the operator placement mapping: ∀o∈OD, ∃(o,n) ∈PG,T.

This ensures that a DQP does not contain operators that are not

assigned to the nodes where it is deployed.

(2) Connectivity Between Distributed Operators: Given two oper-

ators >1 ∈�1 and >2 ∈�2 deployed on nodes =1 and =2, respec-

tively, if there exists an edge between them in the global query

plan ((>1,>2) ∈ E), then there must be a valid communication

212

Monitoring

DSPE

1

Placement Change
Computer

Topology
Change
Event

ISQD

L-N-

L+N+

Queue

Deployer

1

Identifies the changes in
the placement mappings

of affected queries.

Computes deployment contexts
for changed placements.

Deployment
Context Computer

4

2

Optimizer
Change
Event
Batch

Consumes batch of change events,
updates topology, performs
placement amendments.

2

Handles processing of
deployment contexts and
reconfiguration messages

Migration Query
Computer

3

Computes queries for
state migration.

Figure 3: System overview of ISQDwithin a DSPE.

path % (=1,=2) between the nodes in the physical topology:

∃(>1,>2) ∈E∧{(>1,=1),(>2,=2)} ∈PG,) =⇒∃% (=1,=2) ∈)

This guarantees that tuples can be correctly transmitted across

operators in di�erent DQP instances over the infrastructure.

(3) State Integrity for Query Processing: At any time C , the state

of each operator must retain tuples processed since the start of

query execution, subject to pruning by the state management

functionW :∀o∈O,St (o)=W(o,Ht (o))where�C (>) represents

the tuple history and, de�nes the state management function.

This condition ensures that stateful operators (e.g., aggregations,

joins) maintain complete and valid state information necessary

for correct query results.

Maintaining Valid DQPs During Recon�guration. The above

conditions collectively ensure that each DQP deployed on node =

remains valid. Condition (1) ensures correct operator placement,

preventing an operator from being executed on an unintended node.

Condition (2) enforces connectivity constraints, ensuring tuples are

propagated correctly through the infrastructure. Condition (3) guar-

antees state correctness, preventing state loss during recon�gura-

tions. However, dynamic changes in the infrastructure can invalidate

existing DQPs. To reveal this, consider the following example.

Example (InvalidDecomposedQuery Plans). Consider that theDSPE

receives a topology change event as the train represented by node N8

moves and gets connected to node N6. The optimizer adapts the place-

ment and performs redeployment of the DQP containing operator$4

from the node N5 to N6. Figure 2(c) shows the updated topology and the

existing deployments where DQPs become invalid (all DQPs that are not

in blue color). In particular, the DQP containing operator$5 on node N3

violates Condition (1) as there exists no placement of operator$4 on

N5. The DQP containing$2 violates Condition (2) as it tries to connect

to the DQP containing the older instance of$4 on N5 but neither the

path between the nodes N8 and N5 exists nor the mapping of placement

mapping of$4 on N5. The newly deployed DQP containing the operator

$4 violates Condition (3) as the state of the operator does not contain

tuples arrived since the start of the GQP. The DQP on the node N3 vio-

lates Condition (2) as it receives the tuples from DQP on N5 containing

operator$4with invalid mapping.

Discussion. In this paper, we seek to incrementally un-deploy, rede-

ploy, and recon�gure DQPswhen a newoperator placementmapping

Pnew
G,)

is computed under continuous infrastructure changes. In par-

ticular, our goal is to (1) incrementally migrate operators to ensure

that they are executed on the correct topology nodes and that the

data�owpaths are (incrementally) recon�gured to preserve operator

connectivity and (2) ensure state consistency by devising operator

state transfer mechanisms for new operator instances to continue

processing without loss of data.

3 SYSTEMOVERVIEW

This section provides an overview of our framework ISQD. ISQD sup-

ports incremental redeployment of queries impacted by infrastructure

changes in dynamic sensor-edge-cloud environments. It ensures min-

imal downtime and uninterrupted query execution, making DSPEs

resilient to infrastructure �uctuations.

3.1 SystemArchitecture

Figure 3 illustrates the integration of ISQDwithin a DSPE and high-

lights its internal componentswithin the green box. ADSPE consists

of the following primary components:

1 Monitoring Component: The monitoring component con-

tinuously tracks topology events caused by node/link additions

or removals. It registers these events in a queue for processing.

2 Optimizer: The DSPE batches topology change events to

improve processing throughput. For each batch, the optimizer

(1) identi�es queries a�ected by the infrastructure changes, and

(2) updates their operator placement mappings accordingly.

Note that DSPEs can use various placement strategies to adapt

operator placementswith respect to infrastructure changes [8].How-

ever, ISQD operates independent of the selected placement strategy

and focuses only on the deployment and recon�guration of a�ected

queries. Additionally, we designed ISQD as a central component to

reduce system complexity, number of communication and synchro-

nization points, and easy integration within SOTADSPEs.

3.2 Components of ISQD

Wenow introduce themain components of ISQD. These components

enable ISQD to avoid touching operators that are not impacted by

the topology changes and perform �ne-grained redeployments of

only the necessary operators.

1 Placement Change Computer: The placement change com-

puter identi�es all operator placements a�ected by topology

changes and determineswhether they require redeployment. This

design allows ISQD to work with arbitrary operator placement

algorithm. Instead of redeploying entire queries, it selectively up-

dates only the necessary operators, thus minimizing deployment

overhead and reducing latency. The placement change computer

invokes the deployment context computer for each a�ected query

to determine the necessary deployment actions concurrently.

2 Deployment Context Computer: The deployment context

computer determines the deployment mode for each a�ected op-

erator. In particular, these modes include un-deploy and redeploy

if the operator moves to a new node or update if the operator

remains on the same node but requires recon�guration. Since

operators belong to decomposed query plans (DQP) (cf. Sec. 2),

the deployment context computer updates DQPs and represents

213

them within DCs. These deployment contexts (DCs) make up the

fundamental units for incremental query redeployment. Details

about DCs are discussed in Sec. 4. A critical challenge in the re-

deployment of operators is state migration for stateful operators

(e.g., aggregations, joins), as incorrect transfer or missing state

can lead to incorrect results or data loss. To this end, ISQD uses

ad-hoc state migration queries.

3 MigrationQueryComputer:TheMigrationQueryComputer

issues state migration queries, which are ad-hoc queries, to trans-

fer state between nodes during redeployment. ISQD leverages

existing DSPE query infrastructure instead of introducing spe-

cialized state migration components or modifying peer-to-peer

protocols to work in a hierarchical infrastructure. This approach

has two key advantages: (i) it simpli�es the system design by elim-

inating the need for a dedicated state migration service, and (ii) it

supports dynamic and hierarchical infrastructure (C2) by han-

dling arbitrary state migrations. The Migration Query Computer

determines how to partition andmigrate operator state e�ciently

andwhere to deploy auxiliary DCs to facilitate state transfer. Sec. 5

presents more details on state migration.

4 Deployer: The Deployer initiates the recon�guration process

by sending computedDCs to the appropriate topologynodes. Since

multiple DCs and thus DQPs can be updated simultaneously at

di�erent nodes, a critical challenge lies in synchronizing updates

to avoid any tuple loss. For example, consider that two connected

DQPs (DQP1 ↦→ DQP2) need to be updated. If DQP2 is updated before

DQP1 sends its in-�ight tuples to DQP2, these in-�ight tuples may

get lost or processed incorrectly. To prevent this, ISQD introduces

a Recon�guration Marker Mechanism that we discuss next.

Recon�gurationMarkerMechanism. The Recon�guration Mar-

ker ensures correct synchronization between deployment actions.

Each marker contains: the a�ected DQP identi�er and the action to

be performed (un-deploy, deploy, update, etc.). The Deployer inserts

recon�guration markers into the data�ow pipeline to synchronize

the execution of DCs. In more detail, when the Deployer receives a

batch of DCs, it performs the following steps:(1) it transmits all DCs

to their target nodes; (2) it computes a recon�guration marker based

on the DCs; and (3) it inserts the recon�guration marker into the

data�ow pipeline to synchronize the processing of DCs. This ensures

that all required redeployment instructions are present before the

processing begins. Further details on recon�guration markers and

their processing logic are discussed in Sec. 4 and Sec. 6, respectively.

End-to-end Processing.Overall, when the monitoring component

detects topology changes,ISQD reacts to the changes by invoking the

optimizer to update operator placement mappings. The Placement

Change Computer determines a�ected operators, while the Deploy-

ment Context Computer computes necessary deployment actions.

For stateful operators, the Migration Query Computer issues ad-hoc

statemigration queries, ensuring the correct operator statewhile ini-

tializing thenew instanceof amigrating stateful operator. Finally, the

Deployer executes recon�guration by deploying updated (DCs)while

synchronizing updates using recon�guration markers to prevent

tuple loss. The processing of topology changes, performing operator

re-placement, and computation of DCs and RM is done centrally. In

contrast, the processing and recon�guration of updated DQPs de-

ployedusingDCs isdecentralizedat eachworkernode.Note thatISQD

ToBe
Deployed

ToBe
Updated

ToBeUn-
deployedDeployed

Figure 4: Decomposed query plan state transition diagram.

gracefully handles failures caused by topology changes during rede-

ployment and recon�guration by reverting the system to its previous

stable state. All current and new topology changes are then reconsid-

ered in the subsequent ISQD invocation. Overall, by incrementally

identifying and adapting a�ected queries, ISQDminimizes deploy-

ment latency and ensures continuous query execution, making it

robust for latency-sensitive applications. This e�cient handling of

topology changes enables ISQD to keep up with high-throughput

topology changes despite being a centralized component.

Discussion. ISQD relies on a centralized monitoring component

to collect updated information on the infrastructure topology. As a

future direction, decentralized network protocols could be leveraged

to detect topology changes more rapidly [47, 48]. Integrating these

protocols with ISQD’s deployment and recon�guration strategies

may further reduce redeployment and recon�guration latency. We

leave the exploration of such optimizations to future work.

4 DEPLOYMENTCONTEXTS
ANDRECONFIGURATIONMARKERS

First, we explore various scenarios that arise when redeploying a

query a�ected by topology changes and explain how DCs capture

these scenarios in Sec. 4.1. Then, we discuss the role of recon�gu-

ration markers alongside DCs and their internals in Sec. 4.2.

4.1 Deployment Context

DQP States. Once the operator re-placement is complete for the

queries a�ected by topology changes, the next step is to compute and

deploy DQPs on the topology nodes to resume query execution. How-

ever, holistically deploying all DQPs can result in a high deployment

latency. ISQDmitigates this by identifying the DQPs a�ected due to

operator re-placement optimization and redeploys them exclusively.

In particular, ISQD focuses on the redeployment and recon�guration

of DQPs that satisfy one of the following three scenarios: (1) adding

new DQPs on the topology nodes; (2) removing existing DQPs in case

all operators need to be removed from a topology node; or (3) updat-

ing existing DQPs when either new operators are added, or existing

operators are removed from the DQPs.

Based on these three scenarios, DQPs can be in one of three states:

ToBeDeployed, ToBeUpdated, and ToBeUndeployed (illustrated in

Figure 4 with transitions). The deployment contdetailext computer

computes a deployment context (DC) for each of the a�ected DQPs

to re�ect these states. To this end, ISQD computes placement di�er-

ences for a�ected queries and updates only those DQPs with changed

placements to minimize deployment time.

The example fromFigure 2(c) represents all three states. In particu-

lar, theDQPonN6 ismarked forToBeDeployed to start a new instance

of operator$4, DQPs on N8 and N3 are marked for ToBeUpdated as

the DQPs need to send and receive data to and from new DQPs respec-

tively, and the DQP deployed on N5 is marked for ToBeUndeployed

as the optimizer removed the placement.

214

Computing Deployment Contexts.Deployment contexts (DCs)

represent the information necessary to redeploy a�ected DQPs, as

the changes in DQPs may require di�erent handling during redeploy-

ment. In particular, ISQD analyzes the a�ected DQP as follows: (1) For

eachDQPmarked forToBeDeployed, theDC contains the location and

the connected operator graph deployed on the node; (2) For each DQP

marked for ToBeUpdated, the DC contains the node location, iden-

ti�er of the existing DQP, and updated connected operator graph; (3)

For each DQPmarked for ToBeUndeployed, the DC contains the node

location, and the identi�er of the DQP. Once all DCs are computed,

they are transmitted to the appropriate topology nodes. However,

concurrently processing these DCs is not trivial and presents several

challenges. In the subsequent section, we examine these challenges

and explain how ISQD addresses them.

4.2 Recon�gurationMarker

Recon�guration Marker. DCs encapsulate the instructions re-

quired by the topology nodes to recon�gure existing DQPs. These DCs

can be transmitted concurrently to the topology nodes. However,

processing these instructions concurrently can result in loss of tuples,

leading to incorrect results. In Figure 2(c), if the DQP on N3 is updated

to receive data from the newly deployed DQP on N6without account-

ing for in-�ight tuples from the DQP on N5, the in-�ight tuples will be

lost resulting in incorrect results produced by the query. Therefore,

a mechanism is required to synchronize the processing of DCs.

To address this issue, ISQD utilizes a recon�guration marker to

establish a synchronization barrier, ensuring that the deployed DCs

are processed in the correct order. Marker-based recon�guration

protocols have been proposed to enable the dynamic recon�guration

of stream processing systems [15, 27, 33–35, 45]. A similar concept is

employed in Apache Flink [18], where asynchronous snapshots are

computed using markers to ensure fault tolerance and failure recov-

ery.ISQDbuildsupon these ideasandadopts recon�gurationmarkers

to establish synchronization barriers within a recon�gured query.

The core idea is to send the computed DCs to topology nodes,

insert a recon�gurationmarker into the data �owgraph, and use this

marker to trigger DC processing. As the marker �ows through DQPs,

each one checks for instructions to update or terminate itself based

on the DCs deployed on the node. The marker then continues down-

stream to the next DQP, propagating the remaining DCs. Section 6 de-

tails how DCs and the recon�gurationmarker enable recon�guration.

The Deployer component analyzes DCs and generates a recon�gu-

ration marker. This marker includes a set of DQP identi�ers, actions,

and metadata, specifying which DQP needs recon�guration and how

to recon�gure it. As the marker moves through a DQP, the identi�er

helps determine whether the DQP should respond. The actions and

metadata provide the necessary details for processing the marker.

Recon�guration Actions.A recon�guration marker can specify

one of three actions: drain, update, and update then drain The drain

action signals a DQP to �ush all in-�ight tuples and terminate. It is

used to safely remove DQPs that the placement optimizer no longer

needs, ensuring in-�ight data is processedwithout loss. For example,

in Figure 2(c), the marker includes a drain action for the DQP on N5,

ensuring its in-�ight tuples are correctly handled before termination.

The update action indicates that the intended DQP needs to �ush

and update to a newer DQP included in the deployed DC. This action

updates therunningDQPsbyadding, removing,orupdatingoperators

N7
O1

N8
O2

N4
O3

N3
O5

N2
O6

N1
O7

Deployment

N7
O1

N8
O2

N4
O3

O5

N2
O6

N1
O7

Deployment

N5

O4

N6

O4 O4

N3

Ad-hoc state
migration query

N5
O4

N6
O4 O4

Operator
state

before
change

New operator
state without

tuples that
arrived before

change

(b)(a)
Figure 5: (a) Issue with recon�guring DQPwith stateful oper-

ators. (b) Using an ad-hoc query to perform statemigration.

with new information from the optimizer. For example, in Figure 2(c),

the recon�guration marker will include update action for DQPs on

nodes N8 and N3. The operators on these nodes must be updated to

transmit and receive data from the new DQP on N6 instead of N5.

The update then drain action indicates that the target DQPmust

�rst update to a new DQP and subsequently terminate by �ushing all

in-�ight tuples. This action brie�y updates a DQP to a newer version

to perform necessary cleanup tasks. For instance, this action can

be used to transfer intermediate data of a DQP to another node for

persistence prior to its termination. For brevity, we defer additional

details and the application of this action to Sec. 5.

A DC representing a new DQP does not require synchronization via

a recon�guration marker during initial deployment. However, if the

new DQP includes a stateful operator previously running on another

node, synchronization is necessary. The new operator must wait for

the state transfer to complete before starting execution, ensuring

compliance with condition (3) in Def. 2.

Discussion. ISQD leverages deployment contexts and recon�gu-

ration markers to minimize redeployments, enabling faster recon-

�guration of existing decomposed query plans (C1). While ISQD

supports incremental deployment, handling query dynamism—i.e.,

continuous changes in query structure due to operator additions or

removals—remains an orthogonal challenge that depends on state-

sharingmechanisms [27, 28]. This aspect,which underpins optimiza-

tions such as multi-query compute sharing and adaptive resource

management, is an important direction for future research.

5 HANDLING STATEFULOPERATORS

This section details the approach used by ISQD for recon�guring

DQPs with stateful operators. We highlight why deploying new and

draining old instances of an operator is insu�cient for provisioning

a stateful operator (Sec 5.1). Lastly, we present how ISQD uses ad-hoc

queries in conjunctionwith theupdate then drain action to guarantee

that no tuple loss occurs, thereby ensuring the correctness of the

result after recon�guration (Sec. 5.2).

5.1 Redeploying Stateful Operators

Redeploying a DQP can involve starting new instances of operators

on another node while terminating all old operator instances. Rede-

ployment of a DQPwith only stateless operators is relatively simpler,

as the new instances of stateless operators can start while the older

instances terminate. On the contrary, this does not apply to the DQPs

with stateful operators, as the processing of incoming tuples may

215

Algorithm 1: Processing topology changes

Input :TC⃗

1 UpdateTopology(TC⃗)

2 Qaffected =FindAffectedQueries(GQP,TC⃗)

3 for all Q ∈ Qaffected in parallel do
4 UpdatePlacement(Q)

5 ΔPnew
G,)

=ComputePlacementChanges(Q)

6 DC⃗=ComputeDeploymentContexts(ΔPnew
G,)

)

7 DC⃗mig=ComputeStateMigrationQueries(ΔP
new
G,)

)

8 DeployDeploymentContexts(DC⃗+DC⃗mig)

9 RM=ComputeReconfigurationMarker(DC⃗+DC⃗mig)

10 SendReconfigurationMarker(RM)

rely on the results of previously processed tuples (cf. Sec. 2). In par-

ticular, stateful operators retain the results of previously processed

tuples or computations as internal states. Therefore, when a stateful

operator is moved to a new node, its state must be transferred as

well in order for the processing to continue correctly.

Figure 5(a) presents an example of DQPs involving stateful oper-

ators. The state of operator O4 on the previous node N5 contains

the results of tuples processed prior to the change in the underlying

topology. However, the state of the operator O4 on the new node N6

is initially empty. Simply starting execution with this new instance

of operator O4 will result in an incorrect computation, as the output

depends on the computation performed by the operator on N5, ren-

dering thedeployment invalidperDef. 2. Toaddress this problem, the

operator statemust bemigrated from the old to the new deployment.

Statemigrationhas beenwidely studied,with existing approaches

falling into three categories: state replication, recreation, and trans-

fer [15, 33, 38, 50]. However, these methods are ine�ective in sensor-

edge-cloud infrastructures because: (1) sparse connectivity makes

peer-to-peer state transfer unreliable, and (2) unpredictable mobile

device locations hinder e�ective state replication. ISQD addresses

these challenges by using ad-hoc queries for state migration.

5.2 Ad-hoc StateMigration Queries

ISQD leverages existing infrastructure and runs ad-hoc queries to

perform state migration. Such queries, however, require additional

deployment contexts and changes to the recon�guration marker.

The migration query computer analyzes the computed DCs to

identify stateful operators migrating to new nodes (cf. Figure 3). For

example, in Figure 5(a), it detects that operator$4 is moving from N5

to N6 and generates an ad-hoc query for state migration. This query

includes a source operator (on the terminating node) to read the state

and a sink operator (on the new node) to write it in binary format for

initialization. If intermediate nodes exist, DSPE inserts routing oper-

ators as in standard streaming queries. Figure 5(b) shows the ad-hoc

query transferring$4’s state fromN5 toN6. Themigrationquerycom-

puter also generates additional DCs to deploy these ad-hoc queries.

Topreventdata lossduringrecon�guration, aDQPmustbeupdated

and its statemigrated before termination. This involves: (1) updating

the DQP to include the ad-hoc query’s source operator linked to the

stateful operator, and (2) migrating the state to the new node. ISQD

achieves this using the update-then-drain action (Section 4.2), which

�rst updates the DQP and thenmigrates its state. For instance, the DQP

on node N5 in Figure 5(a) is updated with the ad-hoc query shown

in Figure 5(b); the query is terminated after migration completes.

Algorithm2:Processingof recon�gurationmarker byaDQP

Input :RM
1 if RM.contains(DQP.ID,DQP.Version) then
2 RE=RM.get(DQP.ID,DQP.Version)

3 switch (RE.action) do
4 caseDrain do
5 flushAndCloseDQP(DQP.ID,DQP.Version)

6 case Update do
7 flushAndCloseDQP(DQP.ID,DQP.Version)

8 startDQP(RE.mData.ID,RE.mData.Version)

9 case Update then Drain do
10 flushAndCloseDQP(DQP.ID,DQP.Version)

11 startDQP(RE.mData.ID,RE.mData.Version)

12 flushAndCloseDQP(RE.mData.ID,RE.mData.Version)

13 dispatch(RM)

The current version of ISQD migrates operator states without

prioritizing which portion of the state should be transferred �rst.

Meces [21] andMegaphone [22] shows that prioritizing state chunks

during migration can reduce the time required to resume processing

at the new operator instance. Nonetheless, ISQD can be extended to

add such migration priorities or incorporate additional compression

techniques [19] to reduce the data transferred during migration.

Discussion.We note that the state migration technique using ad-

hoc queries relies on the availability of the node hosting the old

instance of the stateful operators. However, this cannot always be

guaranteed, making it prone to node failures. ISQD can be extended

to handle node failures using two key approaches: upstream backup

and state replication [15, 30]. The current implementation of ISQD

uses upstreambackups available in the underlyingDSPE (cf. Sec. 7.2).

However, extending ISQDwith an inherent fault-tolerance protocol

remains an important direction for future research.

6 RECONFIGURATION PROTOCOL

This sectionpresents howISQDperformsoverall incremental deploy-

ments of queries interrupted due to topology changes. In particular,

ISQD �rst processes the topology changes to identify and compute

DCs using the extended optimizer. Algo. 1 describes the processing

done by ISQD at the optimizer. Afterward, ISQD performs the �ne-

grained recon�gurations and provisioning of updated DQPs deployed

using DCs at the topology nodes. Algo. 2 describes the recon�gura-

tion process of DQPs. To explain how ISQD performs the processing,

we use the example global query plan, topology, and correspond-

ing deployments from Figure 2. In addition, we refer to Figure 6 to

illustrate various processing stages.

Processing Topology Changes. ISQD processes topology changes

in batch at-a-time fashion using Algo. 1. When a batch of topology

changes (TC⃗) arrives, ISQD �rst updates the topology and determines

whichqueries area�ected (Lines1–2). For example, Figure6(a) shows

the topology after the train representing #8 disconnects from N5

and connects to N6 and the deployed DQPs. This disruption leads to

two immediate issues: (I) The DQP on N8 can no longer forward its

locally processed tuples due to the lost connectionwith downstream

N5. To ensure continued operation, it begins bu�ering the processed

tuples. Once the recon�guration completes, these bu�ered tuples are

forwarded to thenewdownstreamDQP,minimizing theprocessing la-

tency. (II) This disconnection also causes, albeit indirectly, the DQP on

N3 to stagnate. It prevents the stateful operator on N3 from receiving

216

O5 V1
O5

N3
O5 V2V1

V1
N3

O5 V2
V1

N6

O4V3
V1

N5

O4
V1

N8
O2

V1

N7
O1

N4
O3

V1

O5

V1

V1

N1
O7

N2
O6 V1 V1

N2

N4

N1

N3

N7 N8

N5

(a)

N6

Updated Topology

x
N7

O1
N8

O2

N5
O4

N4
O3

N3

N2
O6

N1
O7

N6

Interrupted Query

O5

N3

N6

Transmit computed DCs

(I) Connectivity
lost and Buffering

Started

Re-configuring

Insert Reconfiguration Marker

Re-configuring

N8

N5

N2
O6

N1
O7

Re-configuring

O2

Valid Deployment

(II) Resumes
operation

N7
O1

N8
O2

N5
O4

N4
O3

N3

N2
O6

N1
O7

N6

O5

(b) (c)

(h)(g)(e)(d)

N7
O1

N8

N5N4
O3

N3

N2
O6

N1
O7

N6

Re-configuring

O5

O2

O5

O4

(I) Terminated
after migrating

state

(III) Update

(II) State available
but waiting for

downstream DQP

(f)

N3
O5

O4
N6

(II) Window
Progress

Interrupted

DQP Version

Operator of running
DQP

State
Incomplete State

Processed but
waiting

O2

O5

O4
O4

V1 V1

V1V1

V1

V1V1

(I) Compute
and Transmit

DUs
V2

V1

V3
V1

V2

V2

N7
O1

N4
O3

V1

V1

N1
O7

N2
O6 V1 V1

N8
O2

N5

O4

O5 V1

N3

N6

O5

O4
O4

V2
V1

V3
V1

V1
O2

V2

V1 V2
RM

4-V1 - Update & Drain
2-V1 - Update

5-V1 - Update

Expanded

(I) Inserting
Reconfiguration

Marker

(II) Waiting
for state to

be available

N7
O1

N4
O3

V1

V1

N1
O7

N2
O6 V1 V1

N8
O2

N5

O4 O4

V1
O2

V2

V1 V2

(I) Update
and Drain

(II) Update

N6

O4 V3
V1

N7
O1

N4
O3

V1

V1

N1
O7

N2
O6 V1 V1

N8

N5

O4

O2
V2

V2

(II) Waiting for
downstream DQP

(I) Drain and
Migrating state

V1

V1

V3

V2

V1 V2 V2

V3

V2

N7
O1

N4
O3

V1

V1

V2

V3

V2

V1 V1 V1 V1

V1

V1 V1

V1

Operator for state
migration
Operator of DQP to
be updated
Operator of DQP to
be removed
Operator of DQP to
be deployed

Vx

DUs

(I) Resumes
operation

Figure 6: ISQD processing topology changes and performing recon�guration.

updatedwatermarks from N8, which are necessary to trigger thewin-

dow computation. This results in the disruption of the entire query.

ISQD �rst spawns threads to process a�ected queries in parallel

(Line3). Foreachquery, itupdatesoperatorplacementsandcomputes

the resulting con�guration changes (Lines 4–5). Since re-placement

may modify existing DQPs or create new ones (cf. Sec. 4.1), ISQD

identi�es the impacted DQPs and generates the necessary DCs (Line

6). It then checks whether any stateful operator has migrated (Line

7); if so, it creates an ad-hoc state-migration query, updates the corre-

sponding DQP, and computes its DQPs and DCs. Finally, all generated

DCs are deployed to their worker nodes (Line 8).

Figure 6(b) shows the newly computed and deployed DCs. The

DQPs on the N8 and N3 are updated to new versions of DQPs (shown

in orange) as they need to send and receive data from new DQPs, re-

spectively. A new DQP for the stateful operator O4 is deployed on N6

(shown in green). Since O4 is stateful, an ad-hoc query is generated

to migrate its state from the old instance on N5 to the new one on N6.

Accordingly, the DQP on N5 is updated (shown in red) to connect to

the DQPs of the ad-hoc query (shown in black). Note, all other DQPs

remain unchanged, allowing ISQD to minimize deployment time.

To synchronize the processing of newly deployed DCs, ISQD an-

alyzes all DCs and computes a recon�guration marker, which is then

inserted at all a�ected leaf DQPs (Lines 9–10). Figure 6(c)(I) shows the

recon�guration marker’s entries, listing DQP identi�ers, required ac-

tions, and related metadata. For instance, DQPs at N2 and N5 (version

V1) need updates, while the DQP at N4 (version V1) must be updated

and then terminated. The marker is inserted into the leaf DQPs on

N5 and N8. Entries for new DQPs to be deployed are not created in

the recon�guration marker, as they can be started asynchronously.

However, new DQPs containing migrating stateful operators wait for

old states to be available before starting. Figure 6(c)(II) shows that the

DQPonN6with themigratedoperatorO4waits for the statemigration.

Recon�guring DQPs. Recon�guration of new DQPs deployed via

DCs occur in a decentralized manner. However, these recon�gura-

tions are synchronized using a recon�guration marker that is propa-

gated through the data�ow graph. Upon receiving a recon�guration

marker, a DQP checks if its id and version are listed. If so, then it per-

forms the processing based on the action de�ned in the recon�gura-

tionmarker. Otherwise, the DQP propagates themarker downstream.

For example, Figure 6(d) illustrates how DQPs at N5 and N8 process

recon�guration markers. In Figure 6(d)(I), the DQP at N5 detects the

actionupdate thendrain (Line 9), �ushes in-�ight tuples, andupdates

fromversionV1 toV2,which includesanad-hoc statemigrationoper-

ator for transferring the state of operatorO4 (Lines 10–11).After com-

pleting the state transfer, it terminates (Line 12) and passes the recon-

�guration marker downstream (Line 13). Similarly, in Figure 6(d)(II),

the DQP at N8 detects the action update, �ushes in-�ight tuples, ter-

minates, and updates to version V2 (Lines 6–8). It then discards the

recon�guration marker, as the V1 instance has no downstream DQPs.

Figure 6(e) shows the updated DQPs on N5 and N8, respectively.

(I) The DQPwith version V2 at N5 starts to transmit the state of the

operator O4 to the newer instance on N6. (II) The updated DQP at N8

waits for the downstream DQP on N6 to start and to connect with it.

In the meantime, the DQP at N8 continues the processing and bu�ers

the processed tuples for later transmission. This allows the query

to progress even when the recon�guration is not completed.

Figure 6(f) illustrates the continued processing of the recon�gu-

ration marker and the initialization of DQPs with migrating stateful

operators. (I) The DQP on N5, which hosts the old instance of operator

O4 along with ad-hoc query DQPs, terminates after completing state

transfer. The recon�guration marker is then forwarded to the down-

stream DQP on N3. (II) The DQP on N6 initializes operator O4 using

the migrated state but waits for its downstream DQP on N3 to start.

(III) Meanwhile, the DQP on N3 receives the recon�guration marker

and begins updating from version V1 to V2.

Figure 6(g) illustrates the DQP on N3 updating to version V2 and

propagatingRMs to downstreamDQPs onN2 andN1. Since these down-

streamDQPs have no recon�guration entries, they discard themarker

and continue normal processing. (I) Simultaneously, the DQP on N6

connects to the updated DQP on N3 and resumes processing. (II) This,

in turn, enables theDQPonN8 to resumeaswell. Figure 6(h) shows the

217

�nal deployment state post-recon�guration. This example demon-

strates how ISQD incrementally deploys only a�ected DQPs and uses

recon�guration markers to coordinate their updates.

7 EVALUATION

We experimentally evaluate ISQP using an emulated edge–cloud

infrastructure and compared it against SOTA redeployment ap-

proaches for queries with both stateless and stateful operators.

7.1 Experimental Setup

We implement ISQD and multiple baselines in NebulaStream [52],

a state-of-the-art DSPE, to negate the in�uence of the underlying

DSPE on experiment results.

End-to-End Baselines.We implement the following two baselines

to evaluate the performance of using incremental and concurrent

deployment strategy used by ISQD: (1) Holistic Serial Query Rede-

ployment(HSQD): is the default behavior of NebulaStream and other

state-of-the-art DSPEs [52]. This baseline �rst updates the topol-

ogy; second identi�es the a�ected queries; third serially performs

placement updates for a�ected queries; and lastly, performs holistic

redeployment of the a�ected queries. It uses the concept of upstream

backups and checkpoints to ensure exactly-once guarantee between

successive query restarts [30]. (2) Holistic Concurrent stream Query

Redeployment(HCQD): performs the same steps as HSQD. However, it

concurrently performs holistic placement and deployment for the

a�ected queries to reduce the deployment and optimization time.

State Migration Baselines.We implement the following two base-

lines for evaluating the state migration strategy: (1) State Recreation

(SR) strategy replays the previously played data streams from the

source(s) to the downstream operators. This allows any downstream

stateful operator to recreate the state without the need to do state

migration. To this end, this strategy makes use of upstream backups

and checkpoints to track the progress and replay the stream [30].

(2) State Transfer (ST) strategy transfers the snapshot of a pre-built

state from the older instance of an operator to the newer instance

of the operator. These strategies are commonly used in cloud data

centerswhere a state snapshot is transferred between nodes residing

in the same network area [15, 22]. However, for hierarchical infras-

tructure, two nodes can be connected via multiple hops. To handle

this hierarchical nature, wemodi�ed the ST approach to transfer the

state from a source to a destination node one hop at a time.

Topology.We base our experiment on an emulated infrastructure

represented by combining OpenCelliD database [37] and the trajec-

tory data fromVBB (a public transport company) [20]. The OpenCel-

liD and trajectory dataset allows us to represent a dynamic sensor-

edge-cloud infrastructure for smart transport use cases. In this infras-

tructure, IoT devices onboard the trains dynamically change their

locations and the intermediate node to which they are connected as

the train moves. We use the open-source tool from our recent pub-

lication that combines OpenCelliD and trajectory data to generate

topology changes [8, 43] and simulate them [44]. These topology

changes, in turn, impact the query processing of the data from IoT

devices onboard the moving trains.

EvaluationMetrics.We evaluate the performance of ISQD and the

baselines using the following metrics: Event time latency: The time

from tuple creation to its eviction after processing by the DSPE [26];

25 50 75 100 125 150
Runtime (s)
(a) HSQD

100

101

102

103

104

Av
g.

Ev
en

t T
im

e
 La

te
nc

y (
ms

)

Ex
p.

St
ar

t

Ex
p.

En
d

25 50 75 100 125 150
Runtime (s)
(b) HCQD

Ex
p.

St
ar

t

Ex
p.

En
d

25 50 75 100 125 150
Runtime (s)

(c) ISQD

Ex
p.

St
ar

t

Ex
p.

En
d

Figure 7: E�ect of di�erent strategies on the event time

latency of running queries.

Aggregated deployment latency: The total time spent handling topol-

ogychanges, identifyinga�ectedqueries, and redeploying themto re-

sumeexecution;Stateavailability time:The timerequired tomake the

operator’s state available at the new instance to resume processing.

7.2 Experiments

This section summarizes extensive analysis of ISQD, HSQD, and HCQD.

We vary the following parameters during our analysis: (a) number

of sources per query to increase the size of a�ected queries, (b) num-

ber of mobile sources per query to increase the number of a�ected

operators within queries, and (c) rate of topology changes to evaluate

the performance of di�erent approaches under stress. For all experi-

ments (unless stated otherwise), we use a server with an AMDEPYC

7742 CPU and 1 TB of RAM.We set up a hierarchical infrastructure

topology based on mobility data as discussed in Sec. 7.1.

7.2.1 Analyzing Deployment and Execution Latency: In this

experiment, we analyze the deployment and event time latency

incurred when using HSQD, HCQD, and ISQD for handling topology

changes. We initialize the experiment by deploying 10 queries with

stateless operators (maps and�lters) that process data fromavarying

number of moving trains.

(1) Analyzing event time latency. We �rst perform a detailed

analysis of event time latency incurred in di�erent approacheswhile

keeping all three parameters mentioned above constant.

Setup. We deploy 10 queries, each with 16 sources and 1 mobile

source, under a topology change rate of 1s. Each experiment runs

for 150s and is repeated three times. The run begins with a 20s sta-

bilization phase, followed by 120s of continuous topology changes

a�ecting all queries, and ends with a 10s recovery period. This setup

ensures a consistent and controlled evaluation under dynamism.

Results. Figure 7 presents the evaluation of the three approaches.

During the initial 20s, when no topology changes occur, the average

event time latency remains around 5.7ms. However, during the sub-

sequent 120s of continuous topology changes, both HSQD and HCQD

struggle to keep up. As a result, all queries stop processing after 39s

with HSQD and 58s with HCQD. Throughout this period, HSQD incurs

an average event time latency of 238 ms, while HCQD experiences a

signi�cantlyhigher latencyof 1306ms. In contrast,ISQD successfully

handles all topology changes within 12s-14s, i.e., 10.9× lower than

HSQD and 2 to 7.5× lower than HCQD, and shows event time latency

of 6.1ms, i.e., 39× and 214× lower than HSQD and HCQD respectively.

Discussion. This experiment shows that both HSQD and HCQD fail

to handle all topology changes within the runtime. Their failure

stems from repeatedly triggering full placement and redeployment

between changes, leaving no time for data processing. HSQD fails

earlier due to its sequential execution, while HCQD bene�ts from con-

currency and lasts slightly longer. In contrast, ISQD detects that only

218

2 4 8 16
Num. of Sources per Query

(a)

100

101

102

103

Ag
g.

 D
ep

lo
ym

en
t

 L
at

en
cy

 (s
) 128

12
6.
9

25

12
.8

12

6.
1

49
24

.1
12

6.
2

98

49
.7

13

6.
4

14

6.
6

HSQD HCQD ISQD

TO TO TO TO

Opt
Dep

Opt
Dep

Opt
Dep

2 4 8 16
Num. of Sources per Query

(b)

100

101

102

103

Ev
en

t T
im

e
 L

at
en

cy
 (m

s)

TO TO TO TO

HSQD HCQD ISQD

Figure 8: Impact of varying num of sources on (a) Agg.

deployment latency; (b) Event time latency.

1 of 16 sources is a�ected and applies incremental changes, preserv-

ing una�ected operators. This allows ISQD to reduce deployment

time and maintain continuous data processing.

(2) Varying the number of sources per query.We evaluate how

query plan size impacts performance by increasing the number of

sources per query. Large queries adversely a�ect deployment latency.

Setup.Wemaintain 1 mobile source per query and set the topology

change rate to 1s. We vary the number of sources per query, increas-

ing the size of query plans. In particular, we vary the number of

sources from 2 to 16 and observe the aggregated deployment latency,

the total topology changes, and the event time latency.

Results. Figure 8(a) and (b) show the aggregated deployment and

event-time latencies for di�erent approaches as the number of data

sources increases. Aggregated latency is further broken down into

placement optimization (shaded) and deployment time.

HSQD reaches 128s latencywith two sources and times out beyond

that. HCQD starts at 25s with two sources and rises to 98s with eight

sources, failing to complete all topology changes (72%) at 16 sources.

In contrast, ISQDmaintains stable latency (12–14s) across all source

counts, processes all topology changes, and keeps the 95th percentile

of event-time latency under 10ms.

Discussion. This experiment demonstrates that ISQD outperforms

HSQD andHCQD by selectively redeploying only the operators a�ected

by topology changes, rather than applying a holistic approach. Since

only one source per query moves per topology change, ISQD fo-

cuses on redeploying plans only for the a�ected source. As a result,

it achieves the lowest deployment latency, successfully processes

all topology changes, and maintains minimal event time latency,

outperforming the other approaches.

7.2.2 Analyzing Performance Under Stress. This experiment

stresses redeployment and recon�guration approaches by varying

topology change rates and the number of mobile sources. Alongside

stateless queries, we evaluate stateful queries with join operators,

which involve 2×more total and mobile sources compared to state-

less queries due to the binary nature of joins.

(1) Varying number of mobile sources per query. This exper-

iment examines the impact of increasing the number of operators af-

fectedby topology changes across both stateless and stateful queries.

Setup. For stateless queries, we set the number of sources per query

to 8, and for stateful queries, we set the number of sources to 16. We

�x the topology change rate to 2s. To control the number of a�ected

operators, we vary the mobile sources from 1 to 8 for stateless and

2 to 16 for stateful queries.

Results. Figure 9 shows deployment and event-time latencies for

stateless queries (a, b) and stateful queries (c, d) as the number of

mobile sources varies. HSQD fails to handle topology changes for

both query types, regardless of source count. HCQDmaintains a 37s

deployment latency for stateless queries but fails for stateful ones,

1 2 4 8
Num. of Mobile Sources per Query

(a)

100

101

102

103

Ag
g.

 D
ep

lo
ym

en
t

 L
at

en
cy

 (s
)

37

18
.6

5

2.
5

37

18
.5

9

4.
6

37

18
.4

17

8.
4

36

18
.0

32

15
.8

HSQD HCQD ISQD

TO TO TO TO

Opt
Dep

Opt
Dep

1 2 4 8
Num. of Mobile Sources per Query

(b)

100

101

102

103

Ev
en

t T
im

e
 L

at
en

cy
 (m

s)

TO TO TO TO

HSQD HCQD ISQD

2 4 8 16
Num. of Mobile Sources per Query

(c)

100

101

102

103

Ag
g.

 D
ep

lo
ym

en
t

 L
at

en
cy

 (s
)

28

11
.7

50

22
.4

96

44
.5

HSQD HCQD ISQD

TO TO TO TOTO TO TO TOTO

Opt Dep

2 4 8 16
Num. of Mobile Sources per Query

(d)

102

103

Ev
en

t T
im

e
 L

at
en

cy
 (m

s)

TO TO TO TOTO TO TO TO TO

HSQD HCQD ISQD

Figure 9: Impact of varying mobile sources on (a) Agg.

deployment latency and (b) Event time latency for stateless

queries; (c) Agg. deployment latency and (d) Event time

latency for stateful queries.

similar to HSQD. For stateless queries, HCQDmaintains a stablemedian

event-time latency (1ms), while the 75th percentile varies between

3ms to 9ms as the number of mobile sources increases

ISQD, in contrast, achieves the lowest deployment latency among

all baselinesbut showsan increasewith thenumberofmobile sources.

For stateless queries, the latency advantage drops to just 10%, while

for stateful queries, ISQD times out at higher source counts.

Discussion. This experiment shows that ISQD’s deployment la-

tency is impacted by the number of operators a�ected by topology

changes. In the worst case, its latency approaches that of HCQD and

may even fail to complete recon�gurations. However, unlike HCQD,

the event time latency of ISQD remains una�ected by the number

of re-deployments. While HCQD replays tuples from the last check-

point, ISQD bu�ers tuples at source operators during interruptions

and replays them after redeployment, enabling continuous query

progress and smoother execution under topology changes.

(2) Varying rate of topology changes. In this experiment, we

evaluate the impact of topology change rates. A higher rate results

in more topology changes being added to the queue (cf. Sec. 3). For

stateless queries, we deploy 10 queries, with each query consuming

data from 8 sources and 1 mobile source. For stateful queries, we

deploy 10 queries, with each query consuming data from 16 sources

and 2 mobile sources.

Setup.Wevary the rate of topology changes from4s to 0.25s.A lower

value of the rate means more frequent topology changes, increasing

the processing load on di�erent approaches.

Results.Figure 10 shows the aggregateddeployment latencyand the

event time latency for stateless ((a),(b)) and stateful ((c),(d)) queries as

topology changes rates vary. HSQD fails to process topology changes

across all rates and query types, except for the 4s stateless queries,

within the experiment runtime. In contrast, HCQDmaintains an ag-

gregated deployment latency between 18s and 72s till the topology

change rate of 1s for stateless queries, after that, it also times out.

For stateful queries, it only operates reliably at a 4s rate. As topol-

ogy change rates increase, event-time latency for stateless queries

rises from 1ms to 25ms (median) and 1.09s to 52ms (75th percentile).

For stateful queries, the median and 75th percentile latencies reach

341ms and 869ms, respectively, before timeouts at higher rates.

ISQD consistently achieves 7× lower deployment latency than

HCQD for stateless and stateful queries. Unlike HSQD and HCQD, ISQD

219

4s 2s 1s .5s .25s
Rate of Topology Changes

(a)

100

101

102

103

Ag
g.

 D
ep

lo
ym

en
t

 L
at

en
cy

 (s
)

92

90
.5

18

9.
2 3

1.3

36
18

.3 5
2.5

72

36
.6

10

5.
0

20

9.
9

41

20
.0

HSQD HCQD ISQD

TO TO TO TOTO TO

Opt
Dep

Opt
Dep

Opt
Dep

4s 2s 1s .5s .25s
Rate of Topology Changes

(b)

101

103

Ev
en

t T
im

e
 L

at
en

cy
 (m

s)

TO TO TOTO TO TO

HSQD HCQD ISQD

4s 2s 1s .5s .25s
Rate of Topology Changes

(c)

100

101

102

103

Ag
g.

 D
ep

lo
ym

en
t

 L
at

en
cy

 (s
)

99

51
.4

14

6.
0

28

12
.0

56

23
.9

115

50
.8

HSQD HCQD ISQD

TO TO TO TO TOTO TO TO TOTO

Opt
Dep

Opt
Dep

4s 2s 1s .5s .25s
Rate of Topology Changes

(d)

102

103

Ev
en

t T
im

e
 L

at
en

cy
 (m

s)
TO TOTO TOTO TOTO TOTOTO

HSQD HCQD ISQD

Figure 10: Impact of varying the rate of topology changes

on: (a) Deployment latency and (b) Event-time latency for

stateless queries; (c) Deployment latency and (d) Event-time

latency for stateful queries.

handles all topology changes for stateless querieswithout failure. For

stateful queries, it remains e�ective until a 0.25s change rate, after

which it times out. Event-time latency for stateless queries stays near

1ms regardless of topology rate, while for stateful queries, median

latency increases from 134ms to 202ms and the 75th percentile from

203ms to 258ms as the rate increases.

Discussion. In conclusion, ISQD e�ectively handles high rates of

topology changes by redeploying only the a�ected operators. Its

bu�ering mechanism allows una�ected operators to progress, re-

sulting in lower event-time latency compared to baselines. However,

ISQD incurs up to 5.5×higher deployment latency for stateful queries

due to the added overhead of statemigration during recon�guration.

7.2.3 E�ect of Topological Complexities. We investigate how

infrastructure topologycomplexity impacts theperformanceof ISQD.

Weconductedexperimentsonvarious topologies, including star/tree,

full graph, and circular. As we focus on infrastructure connectivity,

we throttle the network to 250 Mbps to highlight the impact of the

data transmission path on redeployment and recon�guration.

Setup.We deployed 10 stateful queries while keeping the number

of sources, the number of mobile sources, and the rate of topology

changes constant. In each experiment, eachqueryperforms analytics

over four sources, including 2 sources moving at a rate of 2s.

Results. Our analysis con�rms that the node count and network

connectivity signi�cantly impact ISQD’s performance. Deployment

latency is highest in circular topologies (65s), followed by star/tree

(55s) and full-graph (52s). In circular topologies, persistent connec-

tivity between intermediate nodes andmobile sources requiresmore

system operator redeployments to reroute data, increasing deploy-

ment latency. Full-graph topologies require only single-hop deploy-

ments due to full inter-connectivity. Star/tree topologies require,

while requiring stateful operatormigration due to sparse links, avoid

additional hops, resulting in slightly higher deployment latency but

lower event-time latency compared to full-graph setups.

Our analysis indicates that greater inter-connectivity often re-

duces the need for operator redeployment andmigration after topol-

ogy changes. To isolate this e�ect, we ran experiments on star/tree

topologies with 1–16 intermediate nodes. As the number of inter-

mediates increases from 1 to 4, deployment latency rises from 55s

to 75s due to (a) more DCs being computed and (b) increased state

migration overhead. With 8 intermediates, ISQD fails to complete

16MB 32MB 64MB 128MB 256MB 512MB 1GB
Data Size

103

104

105

Av
g.

 S
ta

te
 A

va
il.

 T
im

e(
m

s)
 (l

og
 sc

al
e)

15
5 24
2 43
4 78
7 15
76 31
12 63
67

38
7

2k

8k

40
k

14
k 39

k

16K
56K

40
5 73
8 1k

3k

5k

10
k 39

k

TO TO TO
TO TO TO TO TO
TO TO TO TO TO

Timeout

Intermediate Nodes:2
ISQD SR-B SR-A SR-W ST

Figure 11: E�ect of varying the size of data on the state

availability time.

recon�guration within the experiment time. We omit the plots and

only report numbers due to space restrictions.

7.2.4 E�ect of Using Ad-hoc StateMigration�eries: In this

experiment, we compare ISQD’s ad-hoc query-based state migration

with ST and SR strategies (cf. Sec. 7.1). Additionally, when using SR, a

stateful operator may perform extra work by re-triggering windows

during stream replay. To assess the impact of window triggering, we

de�ne three SR variants: SR-B (Best): No extra work fromwindow

triggers, only state creation time. SR-A (Average): Half of the tuple

bu�ers trigger windows, adding some extra work. SR-W (Worst):

Every tuple bu�er triggers windows, maximizing additional work.

We migrate the state of a join operator containing tuples from

two streams andmeasure the total state availability time.We vary (1)

the size of the state and (2) the total number of intermediate nodes

between nodes hosting old and new instances of the join operator.

Each topology node in these experiments is a server with an Intel(R)

Xeon(R) Silver 4216 CPU and 500 GB of RAM.

(1)Varyingsizeofdata tobemigrated. In this experiment,wevary

thesizeof thestate tobemigrated from16MBto1GB.ForSR, the state

size corresponds to the total size of the tuple bu�ers that need to be

replayed to reconstruct the operator state. To evaluate performance

in a hierarchical infrastructure, we con�gure a NebulaStream cluster

with two intermediate worker nodes positioned between the source

and destinationnodes. ForISQD andST, these intermediate nodes are

located between theworker nodes hosting the old and new instances

of a stateful operator. However, for SR, the intermediate nodes are

positioned between theworker nodes hosting the upstreamoperator

(which contains the tuples to be replayed) and the stateful operator.

Additionally, we set the experiment cuto� to 100s, i.e., if the state is

not available within 100s, we mark the experiment as timeout.

Results. Figure 11 shows that both ST and ISQD achieve the fastest

average state availability times across all data sizes, with ISQD out-

performing ST by 2.6× to 6.2×. SR-W and SR-A perform the worst,

timing out beyond 32MB. SR-B handles up to 128MB but is up to 50×

slower than ISQD. As data size increases, all methods see longer state

availability times due to higher data replay (SR-B, SR-A, and SR-W)

or transferred (ST and ISQD).

Discussion. In this experiment, we conclude that ISQD delivers

the best performance. For smaller datasets (≤16 MB), SR-B slightly

outperforms baselines SR-A, SR-W, and ST as it only needs to recon-

struct the state on a new node without experiencing the overhead

of window triggers. However, as the data size grows (>16 MB), the

overhead of building state from scratch for a larger volume of data

exceeds transferring pre-built state (ST and ISQD).

The other two SR variants, SR-A and SR-W, incur overhead due to

frequent window triggers. SR-A triggered 5331 to 15662 windows,

220

0 2 4 8 16
Number Of Intermediate Nodes

103

104

105

Av
g.

 S
ta

te
 A

va
il.

 T
im

e(
m

s)
(lo

g
sc

al
e)

17
2

24
2

31
9

39
6 52
32k 2k 2k 2k 2k

37
k

39
k

40
k

41
k

43
k50K 56K 55K 56K 59K

39
7 73
8 1k

2k

3k

Data Size:32MB
ISQD SR-B SR-A SR-W P2P

Figure 12: E�ect of varying the number of intermediate nodes

on the state availability time.

while SR-W triggered 14625 to 62122 windows while processing dif-

ferent amounts of replayed streams. This frequent triggering leads

to back-pressure, increasing replay processing time and state avail-

ability time. ST su�ers frommulti-hop data transfer ine�ciencies,

waiting for the complete state chunk at each hop, which adds to the

delays. Additional experiments with varying intermediate nodes

and data sizes showed consistent trends across all approaches, but

we omit some results due to space constraints.

(2) Varying number of intermediate nodes. In this experiment,

weevaluate the impactofvarying thenumberof intermediateworker

nodes while keeping the data migration size constant at 32MB.We

chose 32 MB as this is the maximum data size for which all baselines

work within 100s timeout (cf. Figure 11).

Results. Figure 12 presents the results of our evaluation. We ob-

serve that ISQD consistently achieves the fastest state availability

time as the number of intermediate worker nodes increases. ISQD

demonstrates a signi�cant speedup of 112 to 290× compared to the

slowest approach, SR-W. In comparison to the best baseline, ST, it

shows a speedup between 2× and 5×. Interestingly, as the number of

intermediate nodes grows to 16, we see best baseline ST experiences

a slowdown of 50% compared to SR-B.

Discussion.Overall, for ISQD, ST, SR-A, and SR-W, the average state

availability time increases as the number of intermediate nodes

grows. Since the data size remains constant, the computational e�ort

required to reconstruct the operator state at the new instance does

not change. The increase in state availability time is primarily due

to the additional network latency introduced by data transfer across

multiple hops. However, for ST, the impact is more signi�cant as the

state availability time increases from 397 ms to 3s. This approach

requires the entire state chunk to be fully received at each hop before

forwarding it to the next node, leading to a more pronounced in-

crease in state availability time. Overall, ISQD is the fastest approach

among all, as it transmits the state in binary chunks and reassembles

them at the destination without triggering windows (unlike SR-B,

SR-A, SR-W) or transmitting the entire state one-hop-at-a-time (ST).

8 RELATEDWORK

Prior work has shown that sub-/super-aggregation and broadcast

joins can enhance processing e�ciency [31, 49]. However, these ap-

proaches assume stable infrastructures and do not address frequent

recon�guration needs in dynamic sensor-edge-cloud environments.

In contrast, ISQD enables e�cient query redeployment and recon�g-

uration under continuous topology changes with minimal overhead.

Zhu et al. propose moving state and parallel track strategies to re-

con�gure states of windowed join operators on the samemachine

after changing join orders [55].Wu et al. proposeChronoStream that

enables elastic scaling of stateful stream operators by replicating

states on multiple cloud nodes to create passive backups [50]. Mai et

al. propose Chi, a systemwith a specialized control plane that allows

on-the-�y recon�guration of running stream queries to scale up and

down operator parallelism [33]. Similarly, Bartnik et al.[3] propose

a checkpoint-based mechanism that stores and restores operator

state from external storage duringmigration. DelMonte et al. extend

the previous approach for on-the-�y re-con�guring operators with

terabytes of state with their system Rhino [15]. Rhino replicates an

operator’s state to prede�ned nodes and migrates the operator’s

execution to them upon observing reduced operator performance.

Similarly, Rajadurai et al.[38] proposeGlos,which recon�gures state-

ful/stateless data�ow graphs without downtime, though it requires

concurrent execution of old and new instances. Ho�mann et al. and

Gu et al. proposed Megaphone [22] andMeces [21], respectively, to

enable �ne-grained state migration, unlike the single-shot approach

in ISQD. Megaphone performs key-by-key migration and optimizes

it by batching keys at various granularities. Meces prioritizes state

migration based on the arrival order of keys, reducing queueing

delays for incoming tuples. Both systems support dynamic scaling in

cloud-based DSPEs and rely on multiple operator instances to grad-

ually transfer state. Warnke et al. proposed using network protocols

to collect information about the underlying infrastructure topology,

and use this information to make decentralized query placement

decisions to reduce network transfer between nodes [47, 48].

In contrast to these approaches, ISQD focuses on the redeploy-

ment, recon�guration, and migration of stateful operators within

a dynamic edge-cloud continuum. It does so within a hierarchical

infrastructure, without prior knowledge of where new instances

of operators will be deployed, and without introducing additional

components for routing tuples or migrating states.

9 CONCLUSION

We proposed ISQD, a framework that enables DSPEs to e�ciently

redeploy and recon�gure running queries in response to frequent

operator placement changes due to continuously evolving infras-

tructure topology. ISQD selectively identi�es only the operators that

require redeployment due to placement adjustmentsmade by the op-

timizer. It thendetermines thenecessary actions required to redeploy

and recon�gure the a�ected operators incrementally. Additionally,

ISQD identi�es stateful operators that need to be redeployed and

computes ad-hoc queries to migrate their state from one node to

another. Our experimental evaluation shows that ISQD incurs up

to 7.5× less deployment latency and up to 39× less event time la-

tency compared to the strongest baseline while keeping up with

high-frequency topology changes.

ACKNOWLEDGMENT

Thisworkwas funded by theGerman FederalMinistry for Education

and Research as BIFOLD - Berlin Institute for the Foundations of

Learning and Data (ref. BIFOLD24B) and Software Campus Project

ESPAT (01IS23068). Additionally, we want to thank Dr. Stefan Half-

pap for his valuable feedback.

221

REFERENCES
[1] Telia Company AB. 2023. Smart Public Transport. https://business.teliacompany.

com/internet-of-things/smart-public-transport. (Accessed on 03/22/2023).
[2] Suliman Abdulmalek, Abdul Nasir, Waheb A Jabbar, Mukarram AMAlmuhaya,

Anupam Kumar Bairagi, Md Al-Masrur Khan, and Seong-Hoon Kee. 2022.
IoT-Based Healthcare-Monitoring System towards Improving Quality of Life:
A Review. InHealthcare, Vol. 10. MDPI, 1993.

[3] Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, and Volker Markl. 2019.
On-the-�y recon�guration of query plans for stateful stream processing engines.
BTW 2019 (2019).

[4] Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan,
Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, Kevin Innerebner,
Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko, Sergey
Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian BenjaminWrede, and
Ste�en Zeuch. 2021. ExDRa: Exploratory Data Science on Federated Raw Data. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2450–2463. https://doi.org/10.1145/3448016.3457549

[5] Boris Jan Bon�ls and Philippe Bonnet. 2004. Adaptive andDecentralizedOperator
Placement for In-Network Query Processing. Telecommun. Syst. 26, 2-4 (2004),
389–409. https://doi.org/10.1023/B:TELS.0000029048.24942.65

[6] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo
Russo. 2022. Runtime Adaptation of Data Stream Processing Systems: The
State of the Art. ACM Comput. Surv. 54, 11s, Article 237 (sep 2022), 36 pages.
https://doi.org/10.1145/3514496

[7] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Ste�en Zeuch, and
Volker Markl. 2024. E�cient Placement of Decomposable Aggregation Functions
for Stream Processing over Large Geo-Distributed Topologies. Proc. VLDB Endow.
17, 6 (2024), 1501–1514. https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf

[8] Ankit Chaudhary, Kaustubh Beedkar, Jeyhun Karimov, Felix Lang, Ste�en Zeuch,
and Volker Markl. 2025. Incremental Stream Query Placement in Massively
Distributed and Volatile Infrastructures. In 41st IEEE International Conference
on Data Engineering, ICDE 2025, Hong Kong SAR, China, May 19-23, 2025. IEEE.

[9] Ankit Chaudhary, Jeyhun Karimov, Ste�en Zeuch, and Volker Markl. 2023.
Incremental Stream Query Merging. In Proceedings of the 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March
28-31, 2023. OpenProceedings.org.

[10] Ankit Chaudhary, Ste�en Zeuch, and Volker Markl. 2020. Governor: Oper-
ator Placement for a Uni�ed Fog-Cloud Environment. In Proceedings of the
23rd International Conference on Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan
Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan Olteanu, George
H. L. Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org, 631–634.
https://doi.org/10.5441/002/edbt.2020.81

[11] Ankit Chaudhary, Ninghong Zhu, Laura Mons, Ste�en Zeuch, Varun Pandey,
and Volker Markl. 2025. Incremental Stream Query Merging In Action. In
Datenbanksysteme für Business, Technologie und Web (BTW 2025). Gesellschaft
für Informatik, Bonn, 907–915. https://doi.org/10.18420/BTW2025-58

[12] Pedro Cruz, Nadjib Achir, and Aline Carneiro Viana. 2022. On the Edge of the
Deployment: A Survey on Multi-access Edge Computing. ACM Comput. Surv.
55, 5, Article 99 (Dec. 2022), 34 pages. https://doi.org/10.1145/3529758

[13] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski,
Jörg Ott, and Jussi Kangasharju. 2021. Cloudy with a chance of short RTTs:
analyzing cloud connectivity in the internet. In IMC ’21: ACM Internet Mea-
surement Conference, Virtual Event, USA, November 2-4, 2021. ACM, 62–79.
https://doi.org/10.1145/3487552.3487854

[14] Andy Davis, Jay Parikh, and William E. Weihl. 2004. Edgecomputing: ex-
tending enterprise applications to the edge of the internet. In Proceedings of
the 13th international conference on World Wide Web - Alternate Track Papers
& Posters, WWW 2004, New York, NY, USA, May 17-20, 2004. ACM, 180–187.
https://doi.org/10.1145/1013367.1013397

[15] Bonaventura Del Monte, Ste�en Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: E�cient management of very large distributed state for stream processing
engines. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2471–2486.

[16] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. Proc. VLDB Endow. 16, 11 (2023),
2769–2782. https://doi.org/10.14778/3611479.3611486

[17] Fleetio. [n.d.]. Fleet Management IoT: Bene�ts & Steps to Enhance E�ciency.
https://www.�eetio.com/blog/�eet-iot [Online; accessed 2025-07-29].

[18] Apache Flink. 2023. Flink Architecture | Apache Flink. https://nightlies.apache.
org/�ink/�ink-docs-master/docs/concepts/�ink-architecture/#task-slots-and-
resources. (Accessed on 12/01/2023).

[19] Haralampos Gavriilidis, Kaustubh Beedkar, Matthias Boehm, and Volker Markl.
2025. Fast and Scalable Data Transfer Across Data Systems. Proc. ACMManag.
Data 3, 3, Article 157 (June 2025), 28 pages. https://doi.org/10.1145/3725294

[20] VBB Verkehrsverbund Berlin-Brandenburg GmbH. 2024. VBB timetable data via
GTFS | Open data Berlin. https://daten.berlin.de/datensaetze/vbb-fahrplandaten-

gtfs. (Accessed on 04/22/2024).
[21] Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, and Yihua Huang. 2022.

Meces: Latency-e�cient Rescaling via Prioritized State Migration for Stateful
Distributed Stream Processing Systems. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 539–556.
https://www.usenix.org/conference/atc22/presentation/gu-rong

[22] Moritz Ho�mann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious state
migration for distributed streaming data�ows. Proceedings of the VLDB
Endowment 12, 9 (2019), 1002–1015.

[23] Otonomo Inc. 2023. Use Cases for Connected Car Data Driver Services | Otonomo.
https://otonomo.io/use-cases/. (Accessed on 01/31/2023).

[24] Redpanda Data Inc. 2025. The State of Streaming Data Report.
https://www.redpanda.com/resources/state-of-streaming-data-report. (Ac-
cessed on 07/20/2025).

[25] DELOITTE INSIGHTS. 2022. Smart cities and digital health | Deloitte Insights.
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-
city-with-smart-digital-health.html. (Accessed on 03/22/2023).

[26] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev,
Henri Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream
Data Processing Systems. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). 1507–1518. https://doi.org/10.1109/ICDE.2018.00169

[27] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: ad-hoc stream
joins at scale. Proceedings of the VLDB Endowment 13, 4 (2019), 435–448.

[28] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AStream: Ad-
Hoc Shared Stream Processing. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD
’19). Association for Computing Machinery, New York, NY, USA, 607–622.
https://doi.org/10.1145/3299869.3319884

[29] Fiodar Kazhamiaka, Matei Zaharia, and Peter Bailis. 2021. Challenges and
Opportunities for Autonomous Vehicle Query Systems.. In CIDR.

[30] Anastasiia Kozar, Bonaventura Del Monte, Ste�en Zeuch, and Volker Markl. 2024.
Fault Tolerance Placement in the Internet of Things. Proc. ACM Manag. Data
2, 3, Article 138 (May 2024), 29 pages. https://doi.org/10.1145/3654941

[31] Chang Liu, Jiaxing Zhang, Hucheng Zhou, Sean McDirmid, Zhenyu Guo, and
Thomas Moscibroda. 2014. Automating Distributed Partial Aggregation. In
Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SOCC ’14). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2670979.2670980

[32] Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya
Ganesan. 2024. LazyLog: A New Shared Log Abstraction for Low-Latency
Applications. In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, SOSP 2024, Austin, TX, USA, November 4-6, 2024. ACM, 296–312.
https://doi.org/10.1145/3694715.3695983

[33] LuoMai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,
Paolo Costa, Terry Kim, SaravananMuthukrishnan, Vamsi Kuppa, et al. 2018. Chi:
A scalable and programmable control plane for distributed stream processing
systems. Proceedings of the VLDB Endowment 11, 10 (2018), 1303–1316.

[34] Pritish Mishra, Nelson Bore, Brian Ramprasad, Myles Thiessen, Moshe
Gabel, Alexandre Da Silva Veith, Oana Balmau, and Eyale De Lara.
2024. Falcon: Live Recon�guration for Stateful Stream Processing on the
Edge. In 2024 IEEE/ACM Symposium on Edge Computing (SEC). 234–248.
https://doi.org/10.1109/SEC62691.2024.00026

[35] J Nogiec and K Trombly-Freytag. 2005. A dynamically recon�gurable data stream
processing system. (2005).

[36] DanO’Kee�e, Theodoros Salonidis, and Peter R. Pietzuch. 2018. Frontier: Resilient
Edge Processing for the Internet of Things. Proc. VLDB Endow. 11, 10 (2018),
1178–1191. https://doi.org/10.14778/3231751.3231767

[37] OpenCellid. 2024. OpenCelliD - Largest Open Database of Cell Towers & Geolo-
cation - by Unwired Labs. https://opencellid.org/#zoom=16&lat=37.77889&lon=-
122.41942. (Accessed on 04/22/2024).

[38] Sumanaruban Rajadurai, Je�rey Bosboom, Weng-Fai Wong, and Saman P.
Amarasinghe. 2018. Gloss: Seamless Live Recon�guration and Reoptimization
of Stream Programs. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng
Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 98–112.
https://doi.org/10.1145/3173162.3173170

[39] Global Railway Review. 2023. DB introducing new display system to make
travel more convenient. https://www.globalrailwayreview.com/news/140633/db-
introducing-new-display-system-to-make-travel-more-convenient/. (Accessed
on 07/19/2024).

[40] Zhitao Shen, Vikram Kumaran, Michael J Franklin, Sailesh Krishnamurthy, Amit
Bhat, Madhu Kumar, Robert Lerche, and KimMacpherson. 2015. CSA: Streaming
Engine for Internet of Things. IEEE Data Eng. Bull. 38, 4 (2015), 39–50.

[41] Suresh Singh, MikeWoo, and C. S. Raghavendra. 1998. Power-Aware Routing in
Mobile AdHocNetworks. In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (Dallas, Texas, USA) (MobiCom

222

https://business.teliacompany.com/internet-of-things/smart-public-transport
https://business.teliacompany.com/internet-of-things/smart-public-transport
https://doi.org/10.1145/3448016.3457549
https://doi.org/10.1023/B:TELS.0000029048.24942.65
https://doi.org/10.1145/3514496
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://doi.org/10.5441/002/edbt.2020.81
https://doi.org/10.18420/BTW2025-58
https://doi.org/10.1145/3529758
https://doi.org/10.1145/3487552.3487854
https://doi.org/10.1145/1013367.1013397
https://doi.org/10.14778/3611479.3611486
https://www.fleetio.com/blog/fleet-iot
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://doi.org/10.1145/3725294
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs
https://www.usenix.org/conference/atc22/presentation/gu-rong
https://otonomo.io/use-cases/
https://www.redpanda.com/resources/state-of-streaming-data-report
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1145/3299869.3319884
https://doi.org/10.1145/3654941
https://doi.org/10.1145/2670979.2670980
https://doi.org/10.1145/3694715.3695983
https://doi.org/10.1109/SEC62691.2024.00026
https://doi.org/10.14778/3231751.3231767
https://opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://doi.org/10.1145/3173162.3173170
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/

’98). Association for Computing Machinery, New York, NY, USA, 181–190.
https://doi.org/10.1145/288235.288286

[42] Felix Sterk, David Dann, and Christof Weinhardt. 2022. Monetizing Car Data:
A Literature Review on Data-Driven Business Models in the Connected Car
Domain.. InHICSS. 1–10.

[43] NebulaStream Team. 2025. This repository contains code to produce a collection
of topology changes generated by mobile devices. https://github.com/
nebulastream/topology-change-generator [Online; accessed 2025-04-01].

[44] NebulaStream Team. 2025. This repository contains code to simulate topology
changes. https://github.com/nebulastream/topology-change-simulator [Online;
accessed 2025-07-31].

[45] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting
punctuation semantics in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003), 555–568.

[46] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo
Wang. 2017. A Survey on Mobile Edge Networks: Convergence of Com-
puting, Caching and Communications. IEEE Access 5 (2017), 6757–6779.
https://doi.org/10.1109/ACCESS.2017.2685434

[47] BenjaminWarnke, Stefan Fischer, and Sven Groppe. 2023. Distributed SPARQL
queries in collaboration with the routing protocol. In Proceedings of the 27th
International Database Engineered Applications Symposium (Heraklion, Crete,
Greece) (IDEAS ’23). Association for Computing Machinery, New York, NY, USA,
99–106. https://doi.org/10.1145/3589462.3589497

[48] BenjaminWarnke, Stefan Fischer, and SvenGroppe. 2023. Usingmachine learning
and routing protocols for optimizing distributed sparql queries in collaboration.
Computers 12, 10 (2023), 210.

[49] Randall T.Whitman, BryanG.Marsh,Michael B. Park, and Erik G. Hoel. 2019. Dis-
tributed Spatial and Spatio-Temporal Join onApache Spark. ACMTrans. SpatialAl-
gorithms Syst. 5, 1, Article 6 (June 2019), 28 pages. https://doi.org/10.1145/3325135

[50] Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream
computation in the cloud. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, Johannes Gehrke,
Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.).
IEEE Computer Society, 723–734. https://doi.org/10.1109/ICDE.2015.7113328

[51] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From cloud to edge: a �rst look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference (Virtual Event) (IMC ’21). Association for Computing Machinery, New
York, NY, USA, 37–53. https://doi.org/10.1145/3487552.3487815

[52] Ste�enZeuch,Ankit Chaudhary, BonaventuraDelMonte,HaralamposGavriilidis,
Dimitrios Giouroukis, PhilippM. Grulich, Sebastian Breß, Jonas Traub, and Volker
Markl. 2020. The NebulaStream Platform for Data and Application Management
in the Internet of Things. In 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

[53] Ste�en Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019.
Analyzing e�cient stream processing on modern hardware. Proceedings of the
VLDB Endowment 12, 5 (2019), 516–530.

[54] Ste�en Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis,
Ankit Chaudhary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M.
Grulich, Ariane Ziehn, and Volker Markl. 2020. NebulaStream: Complex
Analytics Beyond the Cloud. Open J. Internet Things 6, 1 (2020), 66–81.
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html

[55] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. 2004. Dynamic Plan
Migration for Continuous Queries over Data Streams. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data (Paris, France)
(SIGMOD ’04). Association for Computing Machinery, New York, NY, USA,
431–442. https://doi.org/10.1145/1007568.1007617

223

https://doi.org/10.1145/288235.288286
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-simulator
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1145/3589462.3589497
https://doi.org/10.1145/3325135
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1145/3487552.3487815
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html
https://doi.org/10.1145/1007568.1007617

	Abstract
	1 Introduction
	2 Preliminaries
	3 System Overview
	3.1 System Architecture
	3.2 Components of ISQD

	4 Deployment Contexts and Reconfiguration Markers
	4.1 Deployment Context
	4.2 Reconfiguration Marker

	5 Handling Stateful Operators
	5.1 Redeploying Stateful Operators
	5.2 Ad-hoc State Migration Queries

	6 Reconfiguration Protocol
	7 Evaluation
	7.1 Experimental Setup
	7.2 Experiments

	8 Related Work
	9 Conclusion
	References

