Incremental Stream Query Deployment under
Continuous Infrastructure Changes in the Cloud-Edge Continuum

Ankit Chaudhary
BIFOLD, TU Berlin
ankit.chaudhary@tu-berlin.de

Nils L. Schubert
BIFOLD, TU Berlin
nils.schubert@dima.tu-berlin.de

Felix Lang
TU Berlin
flang@tu-berlin.de

Varun Pandey
Technische Universitat Nirnberg
varun.pandey@utn.de

Danila Ferents
TU Berlin
danila.ferents@campus.tu-berlin.de

Jeyhun Karimov
Microsoft Corporation
jkarimov@microsoft.com

Steffen Zeuch Kaustubh Beedkar Volker Markl
BIFOLD, TU Berlin Indian Institute of Technology Delhi BIFOLD, TU Berlin, DFKI
steffen.zeuch@tu-berlin.de kbeedkar@cse.iitd.ac.in volker.markl@tu-berlin.de

ABSTRACT

Distributed data stream processing engines (DSPEs) operating over
the cloud-edge continuum must deploy data processing operators
across a distributed infrastructure. However, the volatile nature of
these infrastructure nodes—where devices frequently join, leave,
or move—can invalidate existing query operator-to-topology node
mappings, leading to interruptions in query execution and poten-
tial data loss. To ensure continuous processing while maintaining
correctness, DSPEs must dynamically adapt these mappings and
redeploy (part of) affected queries.

In this paper, we introduce incremental stream query deployment
(ISQD), a framework that efficiently redeploys queries affected by
topology changes. ISQD employs a greedy strategy to identify and
redeploy only affected operators. It uses ad-hoc queries to migrate
operator state seamlessly, and leverages reconfiguration markers to
synchronize the redeployment process. Our evaluation shows that
ISQD achieves up to 7.5% lower deployment latency and up to 39x
lower event time latency compared to state-of-the-art approaches,
even under high-frequency topology changes.

PVLDB Reference Format:

Ankit Chaudhary, Felix Lang, Danila Ferents, Nils L. Schubert, Varun Pandey,
Jeyhun Karimov, Steffen Zeuch, Kaustubh Beedkar, and Volker Markl.
Incremental Stream Query Deployment under Continuous Infrastructure
Changes in the Cloud-Edge Continuum. PVLDB, 19(2): 210-223, 2025.
doi:10.14778/3773749.3773759

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://anonymous.4open.science/r/nebulastream-isqd/ and https://github.
com/nebulastream/topology-change-generator.

1 INTRODUCTION

Massively distributed applications, such as smart mobility, fleet man-
agement, predictive maintenance, video surveillance, or connected

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/
to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773759

210

cars [1, 2,4, 17, 23, 25], increasingly demand near real-time analytics
(i.e., latency < 100ms). These applications consume data streams
from thousands of geo-distributed and mobile devices that are lo-
cated outside cloud data centers [14, 46].

State-of-the-art (SOTA) approaches commonly rely on cloud-
centric stream processing pipelines. These involve transferring data
to the cloud, (generally) persisting it in queues (e.g., Apache Kafka or
blob stores), and subsequently consuming it via stream processing
engines for analytics. For example, recent studies show that user-to-
cloud (ping) latency can range from 20 to 250 ms [13]. In addition,
Apache Kafka, despite its popularity, has frequently been identified
as a performance bottleneck during data retrieval [24, 26, 32, 53],
while blob storage access latency can range from 50 to 800 ms [16].
Moreover, a recent work [9, 11, 53] has shown that cloud-centric
DSPEs do not effectively utilize the available sources. These limi-
tations result in increased end-to-end latency, network congestion,
high data transfer cost, and increased energy consumption, making
cloud-based streaming pipelines inadequate.

To mitigate these drawbacks, a new class of DSPEs [34, 36, 40, 52]
was designed to push analytical computations (filter, aggregation,
join, etc) on the edge and end devices in a single unified system.
Combining expandable cloud with existing edge resources offers ad-
vantages over traditional cloud-only processing, such as reduced pro-
cessing latency [51], efficient network and compute utilization [52],
and reduced energy consumption [47].

DSPEs utilize operator placement as a crucial step during query
optimization [6]. Operator placement maps query operators to in-
frastructure nodes [5-7, 10]. The mapped operators are subsequently
deployed in a serial and holistic manner using the deployment mech-
anism of the underlying DSPE [8]. However, in a dynamic infras-
tructure such as sensor-edge-cloud, DSPEs face challenges to ensure
valid deployments during the lifetime of query execution.

DPSEs must consider the volatility in the sensor-edge-cloud infras-
tructure [36, 52, 54] as a result of frequent connection/disconnection,
failure, or relocation of the devices, unlike robust cloud-only infras-
tructure [34]. For example, IoT/sensor devices (e.g., trains, cars) use
cellular modems to connect to the nearest edge data centers, depend-
ing on their proximity and signal strength [41]. The mobility of these
devices can also cause them to approach another edge data center,
thereby changing the optimal edge data center location to the new

https://doi.org/10.14778/3773749.3773759
https://anonymous.4open.science/r/nebulastream-isqd/
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-generator
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773759
https://www.acm.org/publications/policies/artifact-review-and-badging-current

one [12], resulting in topology changes. These topology changes
result in the interruption or failure of running queries and the in-
validation of existing operator placements and deployments [8].
To tackle this, DSPEs must identify affected queries, perform re-
placement, redeployment, and reconfiguration within a reasonable
time while preventing tuple or state loss.

Several works have addressed dynamic workload redeployment
and reconfiguration in response to sudden stream changes (e.g., tu-
ple rate, key distribution) [22, 33, 50], but they mainly target stable,
cloud-only infrastructures that support proactive planning [15].
Recent works have also proposed solutions for volatile sensor-edge-
cloud infrastructure. Falcon [34] launches new instances of affected
operators on globally accessible cloud nodes and uses special compo-
nents to route tuples from mobile devices to the old edge node (where
the data source was connected before relocation) and cloud nodes.
This results in increased CPU and network bandwidth utilization, ad-
ditional processing latency, and increased system complexity due to
special routing components. ISQP [8] proposes an efficient approach
to incrementally and concurrently re-optimize operator mappings
to keep them valid in a volatile topology, but does not address rede-
ploying these mappings. Overall, a solution is required to redeploy
queries in a volatile sensor-edge-cloud infrastructure efficiently. We
further motivate this requirement using a real-world application.

SMART MOBILITY APPLICATION. Consider a real-time public trans-
port application that computes the number of passengers on trains
and their distribution across coaches [39]. Each train has passenger
counting units that record the number of passengers, bikes, or strollers
boarding and alighting at each stop. A stream query processes this data
to display real-time occupancy information at the next train station
or joins the occupancy data from incoming and outgoing trains at a
transfer station to identify potential overcrowding situations. While the
trains can perform local computations (filter, transformation, partial
aggregation), more holistic computations (joins, global aggregation)
need to be placed on an edge or cloud node to access holistic data.

To assess the impact of topology changes on query processing latency,
we emulated a smart mobility scenario. We simulated a circular train
line, similar to Berlin’s S41/542, with 40 trains running simultaneously.
Ten continuous queries were deployed, each processing data from a
group of four trains. Under stable conditions, when trains are stationary
and no topology changes occur, the DSPE maintains an average event
time latency (excludes window size [26]) of 5.7 ms.

At the 20th second of the experiment, we introduced mobility by em-
ulating the movement of all trains for 120 seconds, ending at the 140th
second. As the trains circulate, they frequently disconnect and reconnect
between base stations. This results in 10 reconnects per second—i.e., 10
topology changes per second—each affecting all 10 running queries.

Due to these frequent topology changes, the DSPE continuously ad-
Justs operator placement and redeploys affected queries. However, this
persistent redeployment process overwhelms the system, causing it to
stop processing data beyond the 27th second. The optimizer re-triggers
operator re-placement and redeployment every second, consuming
resources that would otherwise be used for actual data processing.
Consequently, latency-sensitive downstream applications experience
significant disruptions in data delivery. Similar scenarios arise in con-
nected car applications [23], which can generate even larger volumes
of data per hour across numerous mobile vehicles [29, 42].

211

._.
o
o
Exp, Start
Exp. End

Processing Stop|

Avg. Event Time
Latency (ms)
= =
o o

I

T

25 75 100 125 150
Runtime (s)
Figure 1: Impact of topology changes on event time latency.

50

This example shows the need for an efficient deployment mecha-
nism that can handle high-frequency unplanned topology changes in
sensor-edge-cloud while maintaining continuous processing and cor-
rectness. To this end, a DSPE must address the following challenges.

C1:Resume interrupted queries while keeping deployment
latency low. To resume interrupted queries, SOTA DSPEs: (1.) un-
deploys operators of the affected queries from the topology, (2.)
performs operator re-placement, (3.) redeploys all operators on the
topology, and (4.) resumes processing from last checkpoint. However,
when the topology changes often, the affected queries continuously
invoke expensive undeploy, optimize, and redeploy phases of the
optimizer to resume execution. This adversely affects the latency of
deploying updated placements resulting in higher event latency as
little data gets processed (cf. Figure 1). Thus, a DSPE must minimize
deployment latency under frequent topology changes.

C2: Resuming stateful queries in a dynamic and hierar-
chical infrastructure. An edge infrastructure enables near-data
processing, i.e., processing closer to the sensors. This allows for sev-
eral optimization opportunities; for instance, a DSPE can compute
aggregations closer to the sensor nodes to reduce processing latency
and minimize data transfer. Generally, when migrating stateful op-
erators due to a topology change, their state must also be migrated.
This migration is typically done by DSPEs through state transfer or
state replication using specialized components [15, 22]. Furthermore,
peer-to-peer protocols are widely used for state transfer; yet, they
are not suitable for use in a hierarchical network topology. In a dy-
namic and hierarchical topology, it is difficult to predict the location
of mobile device reconnections, complicating the identification of
nodes for state replication. Therefore, another critical challenge is to
perform state migration in a dynamic and hierarchical infrastructure.

In this paper, we propose Incremental Stream Query Deployment
(ISQD) to efficiently redeploy queries affected by unplanned topol-
ogy changes. ISQD is designed for dynamic sensor-edge-cloud in-
frastructures that ensures uninterrupted operation similar to cloud
environments [18] while enabling near-data processing on volatile
sensor-edge infrastructures [34, 36]. To reduce the deployment
latency (C1), ISQD concurrently identifies the minimum set of oper-
ators to redeploy for all affected queries while continuing to process
and buffer data at the unaffected operators. This avoids unnecessary
undeployments and redeployments of unaffected operators, helping
to reduce deployment latency. To address state migration (C2), ISQD
deploys ad-hoc stream queries to perform state transfer between
topology nodes. This enables ISQD to perform state migrationina
hierarchical and dynamic infrastructure using existing data process-
ing capability of the DSPE. It further simplifies system design by
eliminating the need for additional components and protocols.

We implement ISQD in the state-of-the-art DSPE NebulaStream
[52] and show that ISQD keeps up with a high rate of topology

changes while ensuring low query deployment and event-time laten-
cies relative to baseline approaches. ISQD reduces deployment and
event-time latencies by up to 7.5X and 39X, respectively, relative to
the strongest baselines, while accommodating high-frequency topol-
ogy changes. In sum, we make the following major contributions
after discussing preliminaries in Sec. 2:

e We present ISQD, a framework that keeps deployment latency low
under continuous changes to the physical topology (Sec. 3).

e ISQD computes a minimum set of redeployments to resume the
affected query and reduce the overall deployment latency (Sec. 4).

e We introduce ad-hoc state migration queries to handle the rede-
ployment of stateful operators in a dynamic and hierarchical
infrastructure (Sec. 5).

e We present a protocol that combines deployment contexts and
ad-hoc state migration queries to allow the resumption of queries
interrupted due to topology changes (Sec. 6).

o We conduct detailed evaluation of ISQD with state-of-the-art base-
lines. We show that ISQD reduces overall deployment latency and
keeps the event time latency to a minimum (Sec. 7).

2 PRELIMINARIES

Physical Topology. We denote the underlying physical infrastruc-
ture by a directed graph T=(N,L) where N is a set of nodes (devices)
with compute and memory resources, and L is a set of network links
between pairs of nodes.

Global Query Plan. The global query plan (GQP) captures all concur-
rently running queries in the DSPE. We represent GQP as a directed
acyclic graph G=(0O,£) where O denotes the set of operators, and
& denotes the set of directed data flow edges between operators.
If queries share common sub-expressions, the optimizer may have
connected their plans in the GQP. However, queries that do not share
common operators result in disconnected components in the GQP.
Operator State. Each operator o € O is associated with a state S; (o),
which captures the tuples retained by the operator at time ¢. Formally,
the state of an operator is a function: S;(0) =W (o,H¢(0)) where:

e W isafunction that periodically prunes H; (o) based on its seman-
tics (e.g., time-based or count-based constraints).!
e H; (o) represents the processed tuples retained by o up to time ¢.

Some operators, such as windowed aggregations or joins, maintain a
non-empty state, while stateless operators (e.g., selections, projects)
have S; (0) =0 at all times.

Operator Placement. The operator placement determines how op-
erators from the global query plan (GQP) are assigned to nodes in
the physical topology. Formally, the operator placement Pg T is a
relation Pg 1 € OXN where:

o (O is the set of operators in the GQP G.
o N is the set of physical topology nodes in the system
o Eachpair (o,n) € Pg r indicates that operator o is placed on node n.

The mapping defines how the GQP is distributed across the topol-
ogy, influencing performance, resource utilization, and fault toler-
ance [10, 30]. Operators may be mapped to a single node or replicated
across multiple nodes depending on the DSPEs partitioning and repli-
cation strategies.

!In practice, S; (0) can often be derived from S,_; (0). For example, when the window
function is associative aggregate function.

212

Global Query
Plan .

Topology Deployment Topology

Deployment

ToBe
Undeployed

(b)
Figure 2: (a) Example global query plan; (b) Example topology
and deployed DQPs at fp; (c) Topology and deployed DQPs at t;.

Decomposed Query Plan. After the operator placement is per-
formed, the GQP G = (O,€) is partitioned into decomposed query
plans (DQP), each deployed on a specific topology node. A DQP is
formally defined as a tuple D=(Op,Ep,np) where:

e Op € O is a maximal connected subset of operators that are
co-located on the same node np.

o Ep={(0s,0j) €£|0i,0j € Op} represents the directed data flow
edges within the DQP.

e np is the topology node where all operators in D are placed, as
determined by Pg 1.

The global query plan G is then represented as a collection of de-
composed query plans distributed across different topology nodes
D={D1,D3,...,. Dy} where each D; corresponds to a distinct DQP run-
ning on a specific topology node.

ExampLE (Decomposed Query Plans). Figure 2(a) shows an example
GQP representing a query computing the number of passengers board-
ing and alighting trains based on a session window. Operators O1 and
02 represent the sources, operators O3 and O4 compute the partial
aggregates on passenger count, operator O5 computes the holistic ag-
gregation, and operators O6 and O7 write output to external systems.
Figure 2(b) shows the infrastructure topology at time ty and all DQPs
deployed after performing operator placement of the GQP. For example,
the operator O1 from the GQP is placed on the mobile node N7 and
forms the only deployed DQP on that node. Similarly, operators 02, O3,
04, 05, 06, and O7 form the DQPs on topology nodes N8, N4, N5, N3,
N2, and N1, respectively.

Operator Deployment and Reconfiguration in a Dynamic En-
vironment. We first formally define a valid DQP before discussing
scenarios leading to invalid DQPs and their reconfiguration.

Valid Decomposed Query Plan. Given a GQP G and a physical
topology T, after performing operator placement Pg 1, we say that
the set of decomposed query plans D is valid if and only if the fol-
lowing conditions hold:

(1) Valid Operator Placements in DQP: For each DQP D € D deployed
on a node n, every operator in D must be placed on n according
to the operator placement mapping: Vo€ Op, 3(o,n) € Pg 1.
This ensures that a DQP does not contain operators that are not
assigned to the nodes where it is deployed.

Connectivity Between Distributed Operators: Given two oper-
ators 01 € D1 and o2 € Dy deployed on nodes n; and ny, respec-
tively, if there exists an edge between them in the global query

plan ((01,02) € &), then there must be a valid communication

@

fConsumes batch of change events, 1

: updates topology, performs 1

DSPE |
OO

placement amendments. I'
_______ == D D
Queue
. Change Topology 1 —
Optimizer Event qOJOJO] - }&—Change Monitoring
Batch Event

ISQD IComputes deployment contexts‘I Computes queries for !
] ' state migration.

\ 2 - :]
Placement Change Deployment Migration Query
Computer Context Computer Computer

"""""" ‘I ! Handles processing of ‘I 4
1
i deployment.contexts and - Deployer
, reconfiguration messages ,

t |dentifies the changes in

! the placement mappings ,
of affected queries. 1

Figure 3: System overview of ISQD within a DSPE.

path P(n1,n2) between the nodes in the physical topology:
J(o1,02) €€ A{(01,n1),(02,n2)} € Pg T = 3P(n1,n2) €T

This guarantees that tuples can be correctly transmitted across
operators in different DQP instances over the infrastructure.
State Integrity for Query Processing: At any time ¢, the state
of each operator must retain tuples processed since the start of
query execution, subject to pruning by the state management
function W:Vo € O,S;(0) =W (0,Ht(0)) where H; (0) represents
the tuple history and W defines the state management function.
This condition ensures that stateful operators (e.g., aggregations,
joins) maintain complete and valid state information necessary
for correct query results.

Maintaining Valid DQPs During Reconfiguration. The above
conditions collectively ensure that each DQP deployed on node n
remains valid. Condition (1) ensures correct operator placement,
preventing an operator from being executed on an unintended node.
Condition (2) enforces connectivity constraints, ensuring tuples are
propagated correctly through the infrastructure. Condition (3) guar-
antees state correctness, preventing state loss during reconfigura-
tions. However, dynamic changes in the infrastructure can invalidate
existing DQPs. To reveal this, consider the following example.

ExampLE (Invalid Decomposed Query Plans). Consider that the DSPE
receives a topology change event as the train represented by node N8
moves and gets connected to nodeN6. The optimizer adapts the place-
ment and performs redeployment of the DQP containing operator O4
from the node N5 toN6. Figure 2(c) shows the updated topology and the
existing deployments where DQPs become invalid (all DQPs that are not
in blue color). In particular, the DQP containing operator O5 on nodeN3
violates Condition (1) as there exists no placement of operator O4 on
N5. The DQP containing O2 violates Condition (2) as it tries to connect
to the DQP containing the older instance of O4 on N5 but neither the
path between the nodes N8 and N5 exists nor the mapping of placement
mapping of O4 onN5. The newly deployed DQP containing the operator
04 violates Condition (3) as the state of the operator does not contain
tuples arrived since the start of the GQP. The DQP on the node N3 vio-
lates Condition (2) as it receives the tuples from DQP on N5 containing
operator O4 with invalid mapping.

Discussion. In this paper, we seek to incrementally un-deploy, rede-
ploy, and reconfigure DQPs when a new operator placement mapping

213

ngm%;v is computed under continuous infrastructure changes. In par-
ticular, our goal is to (1) incrementally migrate operators to ensure
that they are executed on the correct topology nodes and that the
dataflow paths are (incrementally) reconfigured to preserve operator
connectivity and (2) ensure state consistency by devising operator
state transfer mechanisms for new operator instances to continue
processing without loss of data.

3 SYSTEM OVERVIEW

This section provides an overview of our framework ISQD. ISQD sup-
ports incremental redeployment of queries impacted by infrastructure
changes in dynamic sensor-edge-cloud environments. It ensures min-
imal downtime and uninterrupted query execution, making DSPEs
resilient to infrastructure fluctuations.

3.1 System Architecture

Figure 3 illustrates the integration of ISQD within a DSPE and high-
lights its internal components within the green box. A DSPE consists
of the following primary components:

@ Monitoring Component: The monitoring component con-
tinuously tracks topology events caused by node/link additions
or removals. It registers these events in a queue for processing.
@ Optimizer: The DSPE batches topology change events to
improve processing throughput. For each batch, the optimizer
(1) identifies queries affected by the infrastructure changes, and
(2) updates their operator placement mappings accordingly.

Note that DSPEs can use various placement strategies to adapt
operator placements with respect to infrastructure changes [8]. How-
ever, ISQD operates independent of the selected placement strategy
and focuses only on the deployment and reconfiguration of affected
queries. Additionally, we designed ISQD as a central component to
reduce system complexity, number of communication and synchro-
nization points, and easy integration within SOTA DSPEs.

3.2 Components of ISQD

We now introduce the main components of ISQD. These components
enable ISQD to avoid touching operators that are not impacted by
the topology changes and perform fine-grained redeployments of
only the necessary operators.

@ Placement Change Computer: The placement change com-
puter identifies all operator placements affected by topology
changes and determines whether they require redeployment. This
design allows ISQD to work with arbitrary operator placement
algorithm. Instead of redeploying entire queries, it selectively up-
dates only the necessary operators, thus minimizing deployment
overhead and reducing latency. The placement change computer
invokes the deployment context computer for each affected query
to determine the necessary deployment actions concurrently.

@ Deployment Context Computer: The deployment context
computer determines the deployment mode for each affected op-
erator. In particular, these modes include un-deploy and redeploy
if the operator moves to a new node or update if the operator
remains on the same node but requires reconfiguration. Since
operators belong to decomposed query plans (DQP) (cf. Sec. 2),
the deployment context computer updates DQPs and represents

them within DCs. These deployment contexts (DCs) make up the
fundamental units for incremental query redeployment. Details
about DCs are discussed in Sec. 4. A critical challenge in the re-
deployment of operators is state migration for stateful operators
(e.g., aggregations, joins), as incorrect transfer or missing state
can lead to incorrect results or data loss. To this end, ISQD uses
ad-hoc state migration queries.

€ Migration Query Computer: The Migration Query Computer
issues state migration queries, which are ad-hoc queries, to trans-
fer state between nodes during redeployment. ISQD leverages
existing DSPE query infrastructure instead of introducing spe-
cialized state migration components or modifying peer-to-peer
protocols to work in a hierarchical infrastructure. This approach
has two key advantages: (i) it simplifies the system design by elim-
inating the need for a dedicated state migration service, and (ii) it
supports dynamic and hierarchical infrastructure (C2) by han-
dling arbitrary state migrations. The Migration Query Computer
determines how to partition and migrate operator state efficiently
and where to deploy auxiliary DCs to facilitate state transfer. Sec. 5
presents more details on state migration.

@ Deployer: The Deployer initiates the reconfiguration process
by sending computed DCs to the appropriate topology nodes. Since
multiple DCs and thus DQPs can be updated simultaneously at
different nodes, a critical challenge lies in synchronizing updates
to avoid any tuple loss. For example, consider that two connected
DQPs (DQP1 +— DQP2) need to be updated. If DQP2 is updated before
DQP1 sends its in-flight tuples to DQP2, these in-flight tuples may
get lost or processed incorrectly. To prevent this, ISQD introduces
a Reconfiguration Marker Mechanism that we discuss next.

Reconfiguration Marker Mechanism. The Reconfiguration Mar-
ker ensures correct synchronization between deployment actions.
Each marker contains: the affected DQP identifier and the action to
be performed (un-deploy, deploy, update, etc.). The Deployer inserts
reconfiguration markers into the dataflow pipeline to synchronize
the execution of DCs. In more detail, when the Deployer receives a
batch of DCs, it performs the following steps:(1) it transmits all DCs
to their target nodes; (2) it computes a reconfiguration marker based
on the DCs; and (3) it inserts the reconfiguration marker into the
dataflow pipeline to synchronize the processing of DCs. This ensures
that all required redeployment instructions are present before the
processing begins. Further details on reconfiguration markers and
their processing logic are discussed in Sec. 4 and Sec. 6, respectively.
End-to-end Processing. Overall, when the monitoring component
detects topology changes, ISQD reacts to the changes by invoking the
optimizer to update operator placement mappings. The Placement
Change Computer determines affected operators, while the Deploy-
ment Context Computer computes necessary deployment actions.
For stateful operators, the Migration Query Computer issues ad-hoc
state migration queries, ensuring the correct operator state while ini-
tializing the new instance of a migrating stateful operator. Finally, the
Deployer executes reconfiguration by deploying updated (DCs) while
synchronizing updates using reconfiguration markers to prevent
tuple loss. The processing of topology changes, performing operator
re-placement, and computation of DCs and RMis done centrally. In
contrast, the processing and reconfiguration of updated DQPs de-
ployed using DCs is decentralized at each worker node. Note that ISQD

214

Figure 4: Decomposed query plan state transition diagram.

gracefully handles failures caused by topology changes during rede-
ployment and reconfiguration by reverting the system to its previous
stable state. All current and new topology changes are then reconsid-
ered in the subsequent ISQD invocation. Overall, by incrementally
identifying and adapting affected queries, ISQD minimizes deploy-
ment latency and ensures continuous query execution, making it
robust for latency-sensitive applications. This efficient handling of
topology changes enables ISQD to keep up with high-throughput
topology changes despite being a centralized component.
Discussion. ISQD relies on a centralized monitoring component
to collect updated information on the infrastructure topology. As a
future direction, decentralized network protocols could be leveraged
to detect topology changes more rapidly [47, 48]. Integrating these
protocols with ISQD’s deployment and reconfiguration strategies
may further reduce redeployment and reconfiguration latency. We
leave the exploration of such optimizations to future work.

4 DEPLOYMENT CONTEXTS
AND RECONFIGURATION MARKERS

First, we explore various scenarios that arise when redeploying a
query affected by topology changes and explain how DCs capture
these scenarios in Sec. 4.1. Then, we discuss the role of reconfigu-
ration markers alongside DCs and their internals in Sec. 4.2.

4.1 Deployment Context

DQP States. Once the operator re-placement is complete for the
queries affected by topology changes, the next step is to compute and
deploy DQPs on the topology nodes to resume query execution. How-
ever, holistically deploying all DQPs can result in a high deployment
latency. ISQD mitigates this by identifying the DQPs affected due to
operator re-placement optimization and redeploys them exclusively.
In particular, ISQD focuses on the redeployment and reconfiguration
of DQPs that satisfy one of the following three scenarios: (1) adding
new DQPs on the topology nodes; (2) removing existing DQPs in case
all operators need to be removed from a topology node; or (3) updat-
ing existing DQPs when either new operators are added, or existing
operators are removed from the DQPs.

Based on these three scenarios, DQPs can be in one of three states:
ToBeDeployed, ToBeUpdated, and ToBeUndeployed (illustrated in
Figure 4 with transitions). The deployment contdetailext computer
computes a deployment context (DC) for each of the affected DQPs
to reflect these states. To this end, ISQD computes placement differ-
ences for affected queries and updates only those DQPs with changed
placements to minimize deployment time.

The example from Figure 2(c) represents all three states. In particu-
lar, the DQP on N6 is marked for ToBeDeployed to start a new instance
of operator O4, DQPs on N8 and N3 are marked for ToBeUpdated as
the DQPs need to send and receive data to and from new DQPs respec-
tively, and the DQP deployed on N5 is marked for ToBeUndeployed
as the optimizer removed the placement.

Computing Deployment Contexts. Deployment contexts (DCs)
represent the information necessary to redeploy affected DQPs, as
the changes in DQPs may require different handling during redeploy-
ment. In particular, ISQD analyzes the affected DQP as follows: (1) For
each DQP marked for ToBeDeployed, the DC contains the location and
the connected operator graph deployed on the node; (2) For each DQP
marked for ToBeUpdated, the DC contains the node location, iden-
tifier of the existing DQP, and updated connected operator graph; (3)
For each DQP marked for ToBeUndeployed, the DC contains the node
location, and the identifier of the DQP. Once all DCs are computed,
they are transmitted to the appropriate topology nodes. However,
concurrently processing these DCs is not trivial and presents several
challenges. In the subsequent section, we examine these challenges
and explain how ISQD addresses them.

4.2 Reconfiguration Marker

Reconfiguration Marker. DCs encapsulate the instructions re-
quired by the topology nodes to reconfigure existing DQPs. These DCs
can be transmitted concurrently to the topology nodes. However,
processing these instructions concurrently canresult in loss of tuples,
leading to incorrect results. In Figure 2(c), if the DQP on N3 is updated
to receive data from the newly deployed DQP on N6 without account-
ing for in-flight tuples from the DQP on N5, the in-flight tuples will be
lost resulting in incorrect results produced by the query. Therefore,
amechanism is required to synchronize the processing of DCs.

To address this issue, ISQD utilizes a reconfiguration marker to
establish a synchronization barrier, ensuring that the deployed DCs
are processed in the correct order. Marker-based reconfiguration
protocols have been proposed to enable the dynamic reconfiguration
of stream processing systems [15, 27, 33-35, 45]. A similar concept is
employed in Apache Flink [18], where asynchronous snapshots are
computed using markers to ensure fault tolerance and failure recov-
ery. ISQD builds upon these ideas and adopts reconfiguration markers
to establish synchronization barriers within a reconfigured query.

The core idea is to send the computed DCs to topology nodes,
insert a reconfiguration marker into the data flow graph, and use this
marker to trigger DC processing. As the marker flows through DQPs,
each one checks for instructions to update or terminate itself based
on the DCs deployed on the node. The marker then continues down-
stream to the next DQP, propagating the remaining DCs. Section 6 de-
tails how DCs and the reconfiguration marker enable reconfiguration.

The Deployer component analyzes DCs and generates a reconfigu-
ration marker. This marker includes a set of DQP identifiers, actions,
and metadata, specifying which DQP needs reconfiguration and how
to reconfigure it. As the marker moves through a DQP, the identifier
helps determine whether the DQP should respond. The actions and
metadata provide the necessary details for processing the marker.
Reconfiguration Actions. A reconfiguration marker can specify
one of three actions: drain, update, and update then drain The drain
action signals a DQP to flush all in-flight tuples and terminate. It is
used to safely remove DQPs that the placement optimizer no longer
needs, ensuring in-flight data is processed without loss. For example,
in Figure 2(c), the marker includes a drain action for the DQP on N5,
ensuring its in-flight tuples are correctly handled before termination.

The update action indicates that the intended DQP needs to flush
and update to a newer DQP included in the deployed DC. This action
updates the running DQPs by adding, removing, or updating operators

215

Deployment Deployment

New operator
state without
tuples that
arrived before
change

N6

state
| before
i change

(a)

(b)
Figure 5: (a) Issue with reconfiguring DQP with stateful oper-
ators. (b) Using an ad-hoc query to perform state migration.

with new information from the optimizer. For example, in Figure 2(c),
the reconfiguration marker will include update action for DQPs on
nodes N8 and N3. The operators on these nodes must be updated to
transmit and receive data from the new DQP on N6 instead of N5.

The update then drain action indicates that the target DQP must
first update to a new DQP and subsequently terminate by flushing all
in-flight tuples. This action briefly updates a DQP to a newer version
to perform necessary cleanup tasks. For instance, this action can
be used to transfer intermediate data of a DQP to another node for
persistence prior to its termination. For brevity, we defer additional
details and the application of this action to Sec. 5.

ADC representing a new DQP does not require synchronization via

areconfiguration marker during initial deployment. However, if the
new DQP includes a stateful operator previously running on another
node, synchronization is necessary. The new operator must wait for
the state transfer to complete before starting execution, ensuring
compliance with condition (3) in Def. 2.
Discussion. ISQD leverages deployment contexts and reconfigu-
ration markers to minimize redeployments, enabling faster recon-
figuration of existing decomposed query plans (C1). While ISQD
supports incremental deployment, handling query dynamism—i.e.,
continuous changes in query structure due to operator additions or
removals—remains an orthogonal challenge that depends on state-
sharing mechanisms [27, 28]. This aspect, which underpins optimiza-
tions such as multi-query compute sharing and adaptive resource
management, is an important direction for future research.

5 HANDLING STATEFUL OPERATORS

This section details the approach used by ISQD for reconfiguring
DQPs with stateful operators. We highlight why deploying new and
draining old instances of an operator is insufficient for provisioning
a stateful operator (Sec 5.1). Lastly, we present how ISQD uses ad-hoc
queries in conjunction with the update then drainaction to guarantee
that no tuple loss occurs, thereby ensuring the correctness of the
result after reconfiguration (Sec. 5.2).

5.1 Redeploying Stateful Operators

Redeploying a DQP can involve starting new instances of operators
on another node while terminating all old operator instances. Rede-
ployment of a DQP with only stateless operators is relatively simpler,
as the new instances of stateless operators can start while the older
instances terminate. On the contrary, this does not apply to the DQPs
with stateful operators, as the processing of incoming tuples may

Algorithm 1: Processing topology changes

Algorithm 2:Processing of reconfiguration marker by a DQP

Input:TﬁC
1 UpdateTopology(TﬂC)
2 Qaffected =FindAffectedQueries (GQP,TQC)
3 for allQ € Qaffected in parallel do

4 UpdatePlacement(Q)

5 AP;‘}’:ComputePlacementChanges(Q)

6 DC= ComputeDeploymentContexts(AP;‘?

7 DCmigzComputeStateMigrationQueries(AP;f}’)
8 DeployDeploymentContexts(DC+DCpig)

9 RM=ComputeReconfigurationMarker (DC+DCpig)

SendReconfigurationMarker (RM)

rely on the results of previously processed tuples (cf. Sec. 2). In par-
ticular, stateful operators retain the results of previously processed
tuples or computations as internal states. Therefore, when a stateful
operator is moved to a new node, its state must be transferred as
well in order for the processing to continue correctly.

Figure 5(a) presents an example of DQPs involving stateful oper-
ators. The state of operator O4 on the previous node N5 contains
the results of tuples processed prior to the change in the underlying
topology. However, the state of the operator O4 on the new node N6
is initially empty. Simply starting execution with this new instance
of operator O4 will result in an incorrect computation, as the output
depends on the computation performed by the operator on N5, ren-
dering the deployment invalid per Def. 2. To address this problem, the
operator state must be migrated from the old to the new deployment.

State migration has been widely studied, with existing approaches
falling into three categories: state replication, recreation, and trans-
fer [15, 33, 38, 50]. However, these methods are ineffective in sensor-
edge-cloud infrastructures because: (1) sparse connectivity makes
peer-to-peer state transfer unreliable, and (2) unpredictable mobile
device locations hinder effective state replication. ISQD addresses
these challenges by using ad-hoc queries for state migration.

5.2 Ad-hoc State Migration Queries

ISQD leverages existing infrastructure and runs ad-hoc queries to
perform state migration. Such queries, however, require additional
deployment contexts and changes to the reconfiguration marker.
The migration query computer analyzes the computed DCs to
identify stateful operators migrating to new nodes (cf. Figure 3). For
example, in Figure 5(a), it detects that operator O4 is moving from N5
to N6 and generates an ad-hoc query for state migration. This query
includes a source operator (on the terminating node) to read the state
and a sink operator (on the new node) to write it in binary format for
initialization. If intermediate nodes exist, DSPE inserts routing oper-
ators as in standard streaming queries. Figure 5(b) shows the ad-hoc
query transferring O4’s state from N5 to N6. The migration query com-
puter also generates additional DCs to deploy these ad-hoc queries.
To prevent dataloss during reconfiguration, a DQP must be updated
and its state migrated before termination. This involves: (1) updating
the DQP to include the ad-hoc query’s source operator linked to the
stateful operator, and (2) migrating the state to the new node. ISQD
achieves this using the update-then-drain action (Section 4.2), which
first updates the DQP and then migrates its state. For instance, the DQP
on node N5 in Figure 5(a) is updated with the ad-hoc query shown
in Figure 5(b); the query is terminated after migration completes.

216

Input:RM
1 if RM.contains(DQP.ID,DQP.Version) then

2 RE=RM.get (DQP.ID,DQP.Version)

3 switch (RE.action) do

4 case Drain do

5 L flushAndCloseDQP(DQP.ID,DQP.Version)
6 case Update do

7 flushAndCloseDQP(DQP.ID,DQP.Version)
8 L startDQP(RE.mData.ID,RE.mData.Version)
9 case Update then Drain do

10 flushAndCloseDQP(DQP.ID,DQP.Version)
11 startDQP(RE.mData.ID,RE.mData.Version)
12 flushAndCloseDQP(RE.mData.ID,RE.mData.Version)

13 dispatch(RM)

The current version of ISQD migrates operator states without
prioritizing which portion of the state should be transferred first.
Meces [21] and Megaphone [22] shows that prioritizing state chunks
during migration can reduce the time required to resume processing
at the new operator instance. Nonetheless, ISQD can be extended to
add such migration priorities or incorporate additional compression
techniques [19] to reduce the data transferred during migration.
Discussion. We note that the state migration technique using ad-
hoc queries relies on the availability of the node hosting the old
instance of the stateful operators. However, this cannot always be
guaranteed, making it prone to node failures. ISQD can be extended
to handle node failures using two key approaches: upstream backup
and state replication [15, 30]. The current implementation of ISQD
uses upstream backups available in the underlying DSPE (cf. Sec. 7.2).
However, extending ISQD with an inherent fault-tolerance protocol
remains an important direction for future research.

6 RECONFIGURATION PROTOCOL

This section presents how ISQD performs overall incremental deploy-
ments of queries interrupted due to topology changes. In particular,
ISQD first processes the topology changes to identify and compute
DCs using the extended optimizer. Algo. 1 describes the processing
done by ISQD at the optimizer. Afterward, ISQD performs the fine-
grained reconfigurations and provisioning of updated DQPs deployed
using DCs at the topology nodes. Algo. 2 describes the reconfigura-
tion process of DQPs. To explain how ISQD performs the processing,
we use the example global query plan, topology, and correspond-
ing deployments from Figure 2. In addition, we refer to Figure 6 to
illustrate various processing stages.

Processing Topology Changes. ISQD processes topology changes
in batch at-a-time fashion using Algo. 1. When a batch of topology
changes (T#C) arrives, ISQD first updates the topology and determines
which queries are affected (Lines 1-2). For example, Figure 6(a) shows
the topology after the train representing N8 disconnects from N5
and connects to N6 and the deployed DQPs. This disruption leads to
two immediate issues: (I) The DQP on N8 can no longer forward its
locally processed tuples due to the lost connection with downstream
N5. To ensure continued operation, it begins buffering the processed
tuples. Once the reconfiguration completes, these buffered tuples are
forwarded to the new downstream DQP, minimizing the processing la-
tency. (I) This disconnection also causes, albeit indirectly, the DQP on
N3 to stagnate. It prevents the stateful operator on N3 from receiving

Updated Topology Interrupted Query Transmit computed DCs

(1) Window
.- Progress
Interrupted

(1) Connectivity
lost and Buffering
Started ...y

(b)

Re-configuring

E () Update -~
6
(1) Update
&l

(1) Drain and
and Drain Migrating state

(1) Update

(d)

(1) Waiting for |
downstream DQP

(e)

Re-configuring

(1) Terminated
after migrating

state

(f)

Insert Reconfiguration Marker

i[2-v, - Update
' Update & Drain
' Update

Expanded

(O Operator for state
migration
Operator of DQP to
be updated
Operator of DQP to
be removed
(O Operator of DQP to
be deployed
© Operator of running
DQP
= Processed but
waiting
(x| DQP Version
© State
s Incomplete State

(1) Inse
Reconfiguration
Marker

(c)

Re-configuring Valid Deployment

(1) State available
but waiting for
downstream DQP (1) Resumes

operation

(9)

Figure 6: ISQD processing topology changes and performing reconfiguration.

updated watermarks from N8, which are necessary to trigger the win-
dow computation. This results in the disruption of the entire query.

ISQD first spawns threads to process affected queries in parallel
(Line 3). For each query, it updates operator placements and computes
the resulting configuration changes (Lines 4-5). Since re-placement
may modify existing DQPs or create new ones (cf. Sec. 4.1), ISQD
identifies the impacted DQPs and generates the necessary DCs (Line
6). It then checks whether any stateful operator has migrated (Line
7);if so, it creates an ad-hoc state-migration query, updates the corre-
sponding DQP, and computes its DQPs and DCs. Finally, all generated
DCs are deployed to their worker nodes (Line 8).

Figure 6(b) shows the newly computed and deployed DCs. The
DQPs on the N8 and N3 are updated to new versions of DQPs (shown
in orange) as they need to send and receive data from new DQPs, re-
spectively. A new DQP for the stateful operator 04 is deployed on N6
(shown in green). Since 04 is stateful, an ad-hoc query is generated
to migrate its state from the old instance on N5 to the new one on N6.
Accordingly, the DQP on N5 is updated (shown in red) to connect to
the DQPs of the ad-hoc query (shown in black). Note, all other DQPs
remain unchanged, allowing ISQD to minimize deployment time.

To synchronize the processing of newly deployed DCs, ISQD an-
alyzes all DCs and computes a reconfiguration marker, which is then
inserted at all affected leaf DQPs (Lines 9-10). Figure 6(c)(I) shows the
reconfiguration marker’s entries, listing DQP identifiers, required ac-
tions, and related metadata. For instance, DQPs at N2 and N5 (version
V1) need updates, while the DQP at N4 (version V1) must be updated
and then terminated. The marker is inserted into the leaf DQPs on
N5 and N8. Entries for new DQPs to be deployed are not created in
the reconfiguration marker, as they can be started asynchronously.
However, new DQPs containing migrating stateful operators wait for
old states to be available before starting. Figure 6(c)(II) shows that the
DQP on N6 with the migrated operator 04 waits for the state migration.
Reconfiguring DQPs. Reconfiguration of new DQPs deployed via
DCs occur in a decentralized manner. However, these reconfigura-
tions are synchronized using a reconfiguration marker that is propa-
gated through the dataflow graph. Upon receiving a reconfiguration

217

marker, a DQP checks if its id and version are listed. If so, then it per-
forms the processing based on the action defined in the reconfigura-
tion marker. Otherwise, the DQP propagates the marker downstream.

For example, Figure 6(d) illustrates how DQPs at N5 and N8 process
reconfiguration markers. In Figure 6(d)(I), the DQP at N5 detects the
action update then drain (Line 9), flushes in-flight tuples, and updates
fromversion V1to V2, which includes an ad-hoc state migration oper-
ator for transferring the state of operator 04 (Lines 10-11). After com-
pleting the state transfer, it terminates (Line 12) and passes the recon-
figuration marker downstream (Line 13). Similarly, in Figure 6(d)(II),
the DQP at N8 detects the action update, flushes in-flight tuples, ter-
minates, and updates to version V2 (Lines 6—8). It then discards the
reconfiguration marker, as the V1 instance has no downstream DQPs.

Figure 6(e) shows the updated DQPs on N5 and N8, respectively.
(I) The DQP with version V2 at N5 starts to transmit the state of the
operator 04 to the newer instance on N6. (II) The updated DQP at N8
waits for the downstream DQP on N6 to start and to connect with it.
In the meantime, the DQP at N8 continues the processing and buffers
the processed tuples for later transmission. This allows the query
to progress even when the reconfiguration is not completed.

Figure 6(f) illustrates the continued processing of the reconfigu-
ration marker and the initialization of DQPs with migrating stateful
operators. (I) The DQP on N5, which hosts the old instance of operator
04 along with ad-hoc query DQPs, terminates after completing state
transfer. The reconfiguration marker is then forwarded to the down-
stream DQP on N3. (I) The DQP on N6 initializes operator O4 using
the migrated state but waits for its downstream DQP on N3 to start.
(ITT) Meanwhile, the DQP on N3 receives the reconfiguration marker
and begins updating from version V1 to V2.

Figure 6(g) illustrates the DQP on N3 updating to version V2 and
propagating RMs to downstream DQPs on N2 and N1. Since these down-
stream DQPs have no reconfiguration entries, they discard the marker
and continue normal processing. (I) Simultaneously, the DQP on N6
connects to the updated DQP on N3 and resumes processing. (II) This,
in turn, enables the DQP on N8 to resume as well. Figure 6(h) shows the

final deployment state post-reconfiguration. This example demon-
strates how ISQD incrementally deploys only affected DQPs and uses
reconfiguration markers to coordinate their updates.

7 EVALUATION

We experimentally evaluate ISQP using an emulated edge-cloud
infrastructure and compared it against SOTA redeployment ap-
proaches for queries with both stateless and stateful operators.

7.1 Experimental Setup

We implement ISQD and multiple baselines in NebulaStream [52],
a state-of-the-art DSPE, to negate the influence of the underlying
DSPE on experiment results.

End-to-End Baselines. We implement the following two baselines
to evaluate the performance of using incremental and concurrent
deployment strategy used by ISQD: (1) Holistic Serial Query Rede-
ployment(HSQD): is the default behavior of NebulaStream and other
state-of-the-art DSPEs [52]. This baseline first updates the topol-
ogy; second identifies the affected queries; third serially performs
placement updates for affected queries; and lastly, performs holistic
redeployment of the affected queries. It uses the concept of upstream
backups and checkpoints to ensure exactly-once guarantee between
successive query restarts [30]. (2) Holistic Concurrent stream Query
Redeployment(HCQD): performs the same steps as HSQD. However, it
concurrently performs holistic placement and deployment for the
affected queries to reduce the deployment and optimization time.
State Migration Baselines. We implement the following two base-
lines for evaluating the state migration strategy: (1) State Recreation
(SR) strategy replays the previously played data streams from the
source(s) to the downstream operators. This allows any downstream
stateful operator to recreate the state without the need to do state
migration. To this end, this strategy makes use of upstream backups
and checkpoints to track the progress and replay the stream [30].
(2) State Transfer (ST) strategy transfers the snapshot of a pre-built
state from the older instance of an operator to the newer instance
of the operator. These strategies are commonly used in cloud data
centers where a state snapshot is transferred between nodes residing
in the same network area [15, 22]. However, for hierarchical infras-
tructure, two nodes can be connected via multiple hops. To handle
this hierarchical nature, we modified the ST approach to transfer the
state from a source to a destination node one hop at a time.
Topology. We base our experiment on an emulated infrastructure
represented by combining OpenCelliD database [37] and the trajec-
tory data from VBB (a public transport company) [20]. The OpenCel-
liD and trajectory dataset allows us to represent a dynamic sensor-
edge-cloud infrastructure for smart transport use cases. In this infras-
tructure, IoT devices onboard the trains dynamically change their
locations and the intermediate node to which they are connected as
the train moves. We use the open-source tool from our recent pub-
lication that combines OpenCelliD and trajectory data to generate
topology changes [8, 43] and simulate them [44]. These topology
changes, in turn, impact the query processing of the data from IoT
devices onboard the moving trains.

Evaluation Metrics. We evaluate the performance of ISQD and the
baselines using the following metrics: Event time latency: The time
from tuple creation to its eviction after processing by the DSPE [26];

218

o
o o
T s
Exp. End|

Exp. Start|
Exp. End|

Exp._Start|

“Exp. Start
_Exp.End

BoR e
o
N

o
™

Avg. Event Time
Latency (ms)

=
o
°

‘25 50 75 100 125 15025 50 75 100 125 15025 50 75 100 125 ‘1‘50
Runtime (s) Runtime (s) Runtime (s)
(a) HSQD (b) HCQD (©) 150D
Figure 7: Effect of different strategies on the event time

latency of running queries.

Aggregated deployment latency: The total time spent handling topol-
ogy changes, identifying affected queries, and redeploying them to re-
sume execution; State availability time: The time required to make the
operator’s state available at the new instance to resume processing.

7.2 Experiments

This section summarizes extensive analysis of ISQD, HSQD, and HCQD.
We vary the following parameters during our analysis: (a) number
of sources per query to increase the size of affected queries, (b) num-
ber of mobile sources per query to increase the number of affected
operators within queries, and (c) rate of topology changes to evaluate
the performance of different approaches under stress. For all experi-
ments (unless stated otherwise), we use a server with an AMD EPYC
7742 CPU and 1 TB of RAM. We set up a hierarchical infrastructure
topology based on mobility data as discussed in Sec. 7.1.

7.2.1 Analyzing Deployment and Execution Latency: In this
experiment, we analyze the deployment and event time latency
incurred when using HSQD, HCQD, and ISQD for handling topology
changes. We initialize the experiment by deploying 10 queries with
stateless operators (maps and filters) that process data from a varying
number of moving trains.

(1) Analyzing event time latency. We first perform a detailed
analysis of event time latency incurred in different approaches while
keeping all three parameters mentioned above constant.

Setup. We deploy 10 queries, each with 16 sources and 1 mobile
source, under a topology change rate of 1s. Each experiment runs
for 150s and is repeated three times. The run begins with a 20s sta-
bilization phase, followed by 120s of continuous topology changes
affecting all queries, and ends with a 10s recovery period. This setup
ensures a consistent and controlled evaluation under dynamism.
Results. Figure 7 presents the evaluation of the three approaches.
During the initial 20s, when no topology changes occur, the average
event time latency remains around 5.7ms. However, during the sub-
sequent 120s of continuous topology changes, both HSQD and HCQD
struggle to keep up. As a result, all queries stop processing after 39s
with HSQD and 58s with HCQD. Throughout this period, HSQD incurs
an average event time latency of 238 ms, while HCQD experiences a
significantly higher latency of 1306 ms. In contrast, ISQD successfully
handles all topology changes within 12s-14s, i.e., 10.9% lower than
HSQD and 2 to 7.5% lower than HCQD, and shows event time latency
of 6.1ms, i.e., 39X and 214X lower than HSQD and HCQD respectively.
Discussion. This experiment shows that both HSQD and HCQD fail
to handle all topology changes within the runtime. Their failure
stems from repeatedly triggering full placement and redeployment
between changes, leaving no time for data processing. HSQD fails
earlier due to its sequential execution, while HCQD benefits from con-
currency and lasts slightly longer. In contrast, ISQD detects that only

HCQD TSQD

. 10° EmON EEEON EEmopt I HSQD EEHCQD E=3115QD
S [EDep [@Dep [HDep - 103
£ 102128 98 ge
22 25 42 Fg10°
oL cc
© 12 12 13 14 g
g5 10t % ﬁ &5 100 %? l? &S
8
<
0
100 10
2 4 8 16 2 4 8 16

Num. of Sources per Query Num. of Sources per Query
(a) (b)

Figure 8: Impact of varying num of sources on (a) Agg.
deployment latency; (b) Event time latency.

1 of 16 sources is affected and applies incremental changes, preserv-
ing unaffected operators. This allows ISQD to reduce deployment
time and maintain continuous data processing.

(2) Varying the number of sources per query. We evaluate how
query plan size impacts performance by increasing the number of
sources per query. Large queries adversely affect deployment latency.
Setup. We maintain 1 mobile source per query and set the topology
change rate to 1s. We vary the number of sources per query, increas-
ing the size of query plans. In particular, we vary the number of
sources from 2 to 16 and observe the aggregated deployment latency,
the total topology changes, and the event time latency.

Results. Figure 8(a) and (b) show the aggregated deployment and
event-time latencies for different approaches as the number of data
sources increases. Aggregated latency is further broken down into
placement optimization (shaded) and deployment time.

HSQD reaches 128s latency with two sources and times out beyond

that. HCQD starts at 25s with two sources and rises to 98s with eight
sources, failing to complete all topology changes (72%) at 16 sources.
In contrast, ISQD maintains stable latency (12-14s) across all source
counts, processes all topology changes, and keeps the 95th percentile
of event-time latency under 10ms.
Discussion. This experiment demonstrates that ISQD outperforms
HSQD and HCQD by selectively redeploying only the operators affected
by topology changes, rather than applying a holistic approach. Since
only one source per query moves per topology change, ISQD fo-
cuses on redeploying plans only for the affected source. As a result,
it achieves the lowest deployment latency, successfully processes
all topology changes, and maintains minimal event time latency,
outperforming the other approaches.

7.2.2 Analyzing Performance Under Stress. This experiment
stresses redeployment and reconfiguration approaches by varying
topology change rates and the number of mobile sources. Alongside
stateless queries, we evaluate stateful queries with join operators,
which involve 2X more total and mobile sources compared to state-
less queries due to the binary nature of joins.

(1) Varying number of mobile sources per query. This exper-
iment examines the impact of increasing the number of operators af-
fected by topology changes across both stateless and stateful queries.

Setup. For stateless queries, we set the number of sources per query
to 8, and for stateful queries, we set the number of sources to 16. We
fix the topology change rate to 2s. To control the number of affected
operators, we vary the mobile sources from 1 to 8 for stateless and
2 to 16 for stateful queries.

Results. Figure 9 shows deployment and event-time latencies for
stateless queries (a, b) and stateful queries (c, d) as the number of
mobile sources varies. HSQD fails to handle topology changes for
both query types, regardless of source count. HCQD maintains a 37s
deployment latency for stateless queries but fails for stateful ones,

219

103 HSQD HCQD [HSQD I HCQD I3 1SQD

EEDep

Agg. Deployment
Latency (s)
Event Time
Latency (ms)

2 ‘He B

1 2 4 8
Num. of Mobile Sources per Query
(b)

Num. of Mobile Sources per Query
(a)

SQD QD SQD [HSQD EE HCQD 3 1SQD

—
o
™

= CmOpt EERIDep
5 3
EL L€ 103
EE10
2z 107 50 £>
28 ts
5 101]
g‘ 102
10°
2 a 8 16 2 a 8 16

Num. of Mobile Sources per Query Num. of Mobile Sources per Query
(@) (d)

Figure 9: Impact of varying mobile sources on (a) Agg.
deployment latency and (b) Event time latency for stateless
queries; (c) Agg. deployment latency and (d) Event time
latency for stateful queries.

similar to HSQD. For stateless queries, HCQD maintains a stable median
event-time latency (1ms), while the 75th percentile varies between
3ms to 9ms as the number of mobile sources increases

ISQD, in contrast, achieves the lowest deployment latency among
all baselines but shows an increase with the number of mobile sources.
For stateless queries, the latency advantage drops to just 10%, while
for stateful queries, ISQD times out at higher source counts.

Discussion. This experiment shows that ISQD’s deployment la-
tency is impacted by the number of operators affected by topology
changes. In the worst case, its latency approaches that of HCQD and
may even fail to complete reconfigurations. However, unlike HCQD,
the event time latency of ISQD remains unaffected by the number
of re-deployments. While HCQD replays tuples from the last check-
point, ISQD buffers tuples at source operators during interruptions
and replays them after redeployment, enabling continuous query
progress and smoother execution under topology changes.
(2) Varying rate of topology changes. In this experiment, we
evaluate the impact of topology change rates. A higher rate results
in more topology changes being added to the queue (cf. Sec. 3). For
stateless queries, we deploy 10 queries, with each query consuming
data from 8 sources and 1 mobile source. For stateful queries, we
deploy 10 queries, with each query consuming data from 16 sources
and 2 mobile sources.
Setup. We vary the rate of topology changes from 4s to 0.25s. Alower
value of the rate means more frequent topology changes, increasing
the processing load on different approaches.
Results. Figure 10 shows the aggregated deployment latency and the
event time latency for stateless ((a),(b)) and stateful ((c),(d)) queries as
topology changes rates vary. HSQD fails to process topology changes
across all rates and query types, except for the 4s stateless queries,
within the experiment runtime. In contrast, HCQD maintains an ag-
gregated deployment latency between 18s and 72s till the topology
change rate of 1s for stateless queries, after that, it also times out.
For stateful queries, it only operates reliably at a 4s rate. As topol-
ogy change rates increase, event-time latency for stateless queries
rises from 1ms to 25ms (median) and 1.09s to 52ms (75th percentile).
For stateful queries, the median and 75th percentile latencies reach
341ms and 869ms, respectively, before timeouts at higher rates.
ISQD consistently achieves 7x lower deployment latency than
HCQD for stateless and stateful queries. Unlike HSQD and HCQD, ISQD

H5QD HCQD 150D HSQD HCQD 1SQD
. 10° BRMOpt ER@MOpt EAOpt ESIHSQD E=IHCQD 150!
S = Dep T Dep Dep %103
ET gE
S £
is 58,0
S 510
o
<
i g be Be 2
4s 2s 1s .55 .25s 4s 2s 1s .5s .25s
Rate of Topology Changes Rate of Topology Changes
(a) (b)
HSQD __HCQD 150D HSOD HCQD 15QD
.10 LS [HSQD = HCQD E=311SQ)
gﬁ B8 Dep mDipls w’g
G E103
gz 10? 56 £3
ac 28 =2
28 14 S8
25 01 55
o o3
g 102
10°

1s .55
Rate of Topology Changes
()

4s 2s 1s .5s

Rate of Topology Changes
(d)

.25s

Figure 10: Impact of varying the rate of topology changes
on: (a) Deployment latency and (b) Event-time latency for
stateless queries; (c) Deployment latency and (d) Event-time
latency for stateful queries.

handles all topology changes for stateless queries without failure. For
stateful queries, it remains effective until a 0.25s change rate, after
which it times out. Event-time latency for stateless queries stays near
1ms regardless of topology rate, while for stateful queries, median
latency increases from 134ms to 202ms and the 75th percentile from
203ms to 258ms as the rate increases.

Discussion. In conclusion, ISQD effectively handles high rates of
topology changes by redeploying only the affected operators. Its
buffering mechanism allows unaffected operators to progress, re-
sulting in lower event-time latency compared to baselines. However,
ISQDincurs up to 5.5 higher deployment latency for stateful queries
due to the added overhead of state migration during reconfiguration.

7.2.3 Effect of Topological Complexities. We investigate how
infrastructure topology complexity impacts the performance of ISQD.
We conducted experiments on various topologies, including star/tree,
full graph, and circular. As we focus on infrastructure connectivity,
we throttle the network to 250 Mbps to highlight the impact of the
data transmission path on redeployment and reconfiguration.
Setup. We deployed 10 stateful queries while keeping the number
of sources, the number of mobile sources, and the rate of topology
changes constant. In each experiment, each query performs analytics
over four sources, including 2 sources moving at a rate of 2s.
Results. Our analysis confirms that the node count and network
connectivity significantly impact ISQD’s performance. Deployment
latency is highest in circular topologies (65s), followed by star/tree
(55s) and full-graph (52s). In circular topologies, persistent connec-
tivity between intermediate nodes and mobile sources requires more
system operator redeployments to reroute data, increasing deploy-
ment latency. Full-graph topologies require only single-hop deploy-
ments due to full inter-connectivity. Star/tree topologies require,
while requiring stateful operator migration due to sparse links, avoid
additional hops, resulting in slightly higher deployment latency but
lower event-time latency compared to full-graph setups.

Our analysis indicates that greater inter-connectivity often re-
duces the need for operator redeployment and migration after topol-
ogy changes. To isolate this effect, we ran experiments on star/tree
topologies with 1-16 intermediate nodes. As the number of inter-
mediates increases from 1 to 4, deployment latency rises from 55s
to 75s due to (a) more DCs being computed and (b) increased state
migration overhead. With 8 intermediates, ISQD fails to complete

220

Intermediate Nodes:2
B SR-B

Em 1SQD

B SR-A B3 SRW B3 ST

(log scale)

Avg. State Avail. Time(ms)

16MB 32MB 64MB 128MB

Data Size
Figure 11: Effect of varying the size of data on the state
availability time.

256MB 512MB 1GB

reconfiguration within the experiment time. We omit the plots and
only report numbers due to space restrictions.

7.2.4 Effect of Using Ad-hoc State Migration Queries: In this
experiment, we compare ISQD’s ad-hoc query-based state migration
with ST and SR strategies (cf. Sec. 7.1). Additionally, when using SR, a
stateful operator may perform extra work by re-triggering windows
during stream replay. To assess the impact of window triggering, we
define three SR variants: SR-B (Best): No extra work from window
triggers, only state creation time. SR-A (Average): Half of the tuple
buffers trigger windows, adding some extra work. SR-W (Worst):
Every tuple buffer triggers windows, maximizing additional work.

We migrate the state of a join operator containing tuples from
two streams and measure the total state availability time. We vary (1)
the size of the state and (2) the total number of intermediate nodes
between nodes hosting old and new instances of the join operator.
Each topology node in these experiments is a server with an Intel(R)
Xeon(R) Silver 4216 CPU and 500 GB of RAM.
(1) Varying size of data to be migrated. In this experiment, we vary
the size of the state to be migrated from 16 MB to 1 GB. For SR, the state
size corresponds to the total size of the tuple buffers that need to be
replayed to reconstruct the operator state. To evaluate performance
in a hierarchical infrastructure, we configure a NebulaStream cluster
with two intermediate worker nodes positioned between the source
and destination nodes. For ISQD and ST, these intermediate nodes are
located between the worker nodes hosting the old and new instances
of a stateful operator. However, for SR, the intermediate nodes are
positioned between the worker nodes hosting the upstream operator
(which contains the tuples to be replayed) and the stateful operator.
Additionally, we set the experiment cutoff to 100s, i.e., if the state is
not available within 100s, we mark the experiment as timeout.
Results. Figure 11 shows that both ST and ISQD achieve the fastest
average state availability times across all data sizes, with I1SQD out-
performing ST by 2.6X to 6.2X. SR-W and SR-A perform the worst,
timing out beyond 32MB. SR-B handles up to 128MB but is up to 50x
slower than ISQD. As data size increases, all methods see longer state
availability times due to higher data replay (SR-B, SR-A, and SR-W)
or transferred (ST and ISQD).
Discussion. In this experiment, we conclude that ISQD delivers
the best performance. For smaller datasets (<16 MB), SR-B slightly
outperforms baselines SR-A, SR-W, and ST as it only needs to recon-
struct the state on a new node without experiencing the overhead
of window triggers. However, as the data size grows (>16 MB), the
overhead of building state from scratch for a larger volume of data
exceeds transferring pre-built state (ST and ISQD).

The other two SR variants, SR-A and SR-W, incur overhead due to
frequent window triggers. SR-A triggered 5331 to 15662 windows,

Data Size:32MB

m

g ENISQD [EESR-B EEESR-A [EESR-W EEP2P
] 5] v
g 1w 506 st qrest o eet v ed
o

=T 104 |

Ty 10

<o

PR

1] ~ 103 4

&

S

<

2 4 8
Number Of Intermediate Nodes

16

Figure 12: Effect of varying the number of intermediate nodes
on the state availability time.

while SR-W triggered 14625 to 62122 windows while processing dif-
ferent amounts of replayed streams. This frequent triggering leads
to back-pressure, increasing replay processing time and state avail-
ability time. ST suffers from multi-hop data transfer inefficiencies,
waiting for the complete state chunk at each hop, which adds to the
delays. Additional experiments with varying intermediate nodes
and data sizes showed consistent trends across all approaches, but
we omit some results due to space constraints.

(2) Varying number of intermediate nodes. In this experiment,
we evaluate the impact of varying the number of intermediate worker
nodes while keeping the data migration size constant at 32MB. We
chose 32 MB as this is the maximum data size for which all baselines
work within 100s timeout (cf. Figure 11).

Results. Figure 12 presents the results of our evaluation. We ob-
serve that ISQD consistently achieves the fastest state availability
time as the number of intermediate worker nodes increases. ISQD
demonstrates a significant speedup of 112 to 290X compared to the
slowest approach, SR-W. In comparison to the best baseline, ST, it
shows a speedup between 2x and 5X. Interestingly, as the number of
intermediate nodes grows to 16, we see best baseline ST experiences
a slowdown of 50% compared to SR-B.

Discussion. Overall, for ISQD, ST, SR-A, and SR-W, the average state
availability time increases as the number of intermediate nodes
grows. Since the data size remains constant, the computational effort
required to reconstruct the operator state at the new instance does
not change. The increase in state availability time is primarily due
to the additional network latency introduced by data transfer across
multiple hops. However, for ST, the impact is more significant as the
state availability time increases from 397 ms to 3s. This approach
requires the entire state chunk to be fully received at each hop before
forwarding it to the next node, leading to a more pronounced in-
crease in state availability time. Overall, ISQD is the fastest approach
among all, as it transmits the state in binary chunks and reassembles
them at the destination without triggering windows (unlike SR-B,
SR-A, SR-W) or transmitting the entire state one-hop-at-a-time (ST).

8 RELATED WORK

Prior work has shown that sub-/super-aggregation and broadcast
joins can enhance processing efficiency [31, 49]. However, these ap-
proaches assume stable infrastructures and do not address frequent
reconfiguration needs in dynamic sensor-edge-cloud environments.
In contrast, ISQD enables efficient query redeployment and reconfig-
uration under continuous topology changes with minimal overhead.

221

Zhu et al. propose moving state and parallel track strategies to re-
configure states of windowed join operators on the same machine
after changing join orders [55]. Wu et al. propose ChronoStream that
enables elastic scaling of stateful stream operators by replicating
states on multiple cloud nodes to create passive backups [50]. Mai et
al. propose Chi, a system with a specialized control plane that allows
on-the-fly reconfiguration of running stream queries to scale up and
down operator parallelism [33]. Similarly, Bartnik et al.[3] propose
a checkpoint-based mechanism that stores and restores operator
state from external storage during migration. Del Monte et al. extend
the previous approach for on-the-fly re-configuring operators with
terabytes of state with their system Rhino [15]. Rhino replicates an
operator’s state to predefined nodes and migrates the operator’s
execution to them upon observing reduced operator performance.
Similarly, Rajadurai et al.[38] propose Glos, which reconfigures state-
ful/stateless dataflow graphs without downtime, though it requires
concurrent execution of old and new instances. Hoffmann et al. and
Gu et al. proposed Megaphone [22] and Meces [21], respectively, to
enable fine-grained state migration, unlike the single-shot approach
in ISQD. Megaphone performs key-by-key migration and optimizes
it by batching keys at various granularities. Meces prioritizes state
migration based on the arrival order of keys, reducing queueing
delays for incoming tuples. Both systems support dynamic scaling in
cloud-based DSPEs and rely on multiple operator instances to grad-
ually transfer state. Warnke et al. proposed using network protocols
to collect information about the underlying infrastructure topology,
and use this information to make decentralized query placement
decisions to reduce network transfer between nodes [47, 48].

In contrast to these approaches, ISQD focuses on the redeploy-
ment, reconfiguration, and migration of stateful operators within
a dynamic edge-cloud continuum. It does so within a hierarchical
infrastructure, without prior knowledge of where new instances
of operators will be deployed, and without introducing additional
components for routing tuples or migrating states.

9 CONCLUSION

We proposed ISQD, a framework that enables DSPEs to efficiently
redeploy and reconfigure running queries in response to frequent
operator placement changes due to continuously evolving infras-
tructure topology. ISQD selectively identifies only the operators that
require redeployment due to placement adjustments made by the op-
timizer. It then determines the necessary actions required to redeploy
and reconfigure the affected operators incrementally. Additionally,
ISQD identifies stateful operators that need to be redeployed and
computes ad-hoc queries to migrate their state from one node to
another. Our experimental evaluation shows that ISQD incurs up
to 7.5% less deployment latency and up to 39X less event time la-
tency compared to the strongest baseline while keeping up with
high-frequency topology changes.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry for Education
and Research as BIFOLD - Berlin Institute for the Foundations of
Learning and Data (ref. BIFOLD24B) and Software Campus Project
ESPAT (011S23068). Additionally, we want to thank Dr. Stefan Half-
pap for his valuable feedback.

REFERENCES

(1]

[2

—

=

(5

=

[9

=

[10]

[12]

[13]

[14]

[15]

[16]

[17

[18]

[19

[20]

Telia Company AB. 2023. Smart Public Transport. https://business.teliacompany.
com/internet-of-things/smart-public-transport. (Accessed on 03/22/2023).
Suliman Abdulmalek, Abdul Nasir, Waheb A Jabbar, Mukarram AM Almuhaya,
Anupam Kumar Bairagi, Md Al-Masrur Khan, and Seong-Hoon Kee. 2022.
IoT-Based Healthcare-Monitoring System towards Improving Quality of Life:
A Review. In Healthcare, Vol. 10. MDPI, 1993.

Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, and Volker Markl. 2019.
On-the-fly reconfiguration of query plans for stateful stream processing engines.
BTW 2019 (2019).

Sebastian Baunsgaard, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan,
Stefan Geifelsdder, Philipp M. Grulich, Michael Hildebrand, Kevin Innerebner,
Volker Markl, Claus Neubauer, Sarah Osterburg, Olga Ovcharenko, Sergey
Redyuk, Tobias Rieger, Alireza Rezaei Mahdiraji, Sebastian Benjamin Wrede, and
Steffen Zeuch. 2021. ExDRa: Exploratory Data Science on Federated Raw Data. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD °21). Association for Computing Machinery, New York,
NY, USA, 2450-2463. https://doi.org/10.1145/3448016.3457549

Boris Jan Bonfils and Philippe Bonnet. 2004. Adaptive and Decentralized Operator
Placement for In-Network Query Processing. Telecommun. Syst. 26, 2-4 (2004),
389-409. https://doi.org/10.1023/B:TELS.0000029048.24942.65

Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo
Russo. 2022. Runtime Adaptation of Data Stream Processing Systems: The
State of the Art. ACM Comput. Surv. 54, 11s, Article 237 (sep 2022), 36 pages.
https://doi.org/10.1145/3514496

Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Steffen Zeuch, and
Volker Markl. 2024. Efficient Placement of Decomposable Aggregation Functions
for Stream Processing over Large Geo-Distributed Topologies. Proc. VLDB Endow.
17,6 (2024),1501-1514. https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
Ankit Chaudhary, Kaustubh Beedkar, Jeyhun Karimov, Felix Lang, Steffen Zeuch,
and Volker Markl. 2025. Incremental Stream Query Placement in Massively
Distributed and Volatile Infrastructures. In 41st IEEE International Conference
on Data Engineering, ICDE 2025, Hong Kong SAR, China, May 19-23, 2025. IEEE.
Ankit Chaudhary, Jeyhun Karimov, Steffen Zeuch, and Volker Markl. 2023.
Incremental Stream Query Merging. In Proceedings of the 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March
28-31, 2023. OpenProceedings.org.

Ankit Chaudhary, Steffen Zeuch, and Volker Markl. 2020. Governor: Oper-
ator Placement for a Unified Fog-Cloud Environment. In Proceedings of the
23rd International Conference on Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020, Angela Bonifati, Yongluan
Zhou, Marcos Antonio Vaz Salles, Alexander Bohm, Dan Olteanu, George
H. L. Fletcher, Arijit Khan, and Bin Yang (Eds.). OpenProceedings.org, 631-634.
https://doi.org/10.5441/002/edbt.2020.81

Ankit Chaudhary, Ninghong Zhu, Laura Mons, Steffen Zeuch, Varun Pandey,
and Volker Markl. 2025. Incremental Stream Query Merging In Action. In
Datenbanksysteme fiir Business, Technologie und Web (BTW 2025). Gesellschaft
fiir Informatik, Bonn, 907-915. https://doi.org/10.18420/BTW2025-58

Pedro Cruz, Nadjib Achir, and Aline Carneiro Viana. 2022. On the Edge of the
Deployment: A Survey on Multi-access Edge Computing. ACM Comput. Surv.
55, 5, Article 99 (Dec. 2022), 34 pages. https://doi.org/10.1145/3529758

The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski,
Jorg Ott, and Jussi Kangasharju. 2021. Cloudy with a chance of short RTTs:
analyzing cloud connectivity in the internet. In IMC "21: ACM Internet Mea-
surement Conference, Virtual Event, USA, November 2-4, 2021. ACM, 62-79.
https://doi.org/10.1145/3487552.3487854

Andy Davis, Jay Parikh, and William E. Weihl. 2004. Edgecomputing: ex-
tending enterprise applications to the edge of the internet. In Proceedings of
the 13th international conference on World Wide Web - Alternate Track Papers
& Posters, WWW 2004, New York, NY, USA, May 17-20, 2004. ACM, 180-187.
https://doi.org/10.1145/1013367.1013397

Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: Efficient management of very large distributed state for stream processing
engines. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2471-2486.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. Proc. VLDB Endow. 16, 11 (2023),
2769-2782. https://doi.org/10.14778/3611479.3611486

Fleetio. [n.d.]. Fleet Management IoT: Benefits & Steps to Enhance Efficiency.
https://www.fleetio.com/blog/fleet-iot [Online; accessed 2025-07-29].

Apache Flink. 2023. Flink Architecture | Apache Flink. https://nightlies.apache.
org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-
resources. (Accessed on 12/01/2023).

Haralampos Gavriilidis, Kaustubh Beedkar, Matthias Boehm, and Volker Markl.
2025. Fast and Scalable Data Transfer Across Data Systems. Proc. ACM Manag.
Data 3, 3, Article 157 (June 2025), 28 pages. https://doi.org/10.1145/3725294
VBB Verkehrsverbund Berlin-Brandenburg GmbH. 2024. VBB timetable data via
GTFS | Open data Berlin. https://daten.berlin.de/datensaetze/vbb-fahrplandaten-

222

[21]

[22

[29

[30

(31

(33]

(34

@
i

[36]

[37

(38]

[39

[40

(41

gtfs. (Accessed on 04/22/2024).

Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, and Yihua Huang. 2022.
Meces: Latency-efficient Rescaling via Prioritized State Migration for Stateful
Distributed Stream Processing Systems. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 539-556.
https://www.usenix.org/conference/atc22/presentation/gu-rong

Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious state
migration for distributed streaming dataflows. Proceedings of the VLDB
Endowment 12,9 (2019), 1002—-1015.

Otonomo Inc. 2023. Use Cases for Connected Car Data Driver Services | Otonomo.
https://otonomo.io/use-cases/. (Accessed on 01/31/2023).

Redpanda Data Inc. 2025. The State of Streaming Data Report.
https://www.redpanda.com/resources/state- of-streaming-data-report. ~ (Ac-
cessed on 07/20/2025).

DELOITTE INSIGHTS. 2022. Smart cities and digital health | Deloitte Insights.
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-
city-with-smart-digital-health html. (Accessed on 03/22/2023).

Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev,
Henri Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream
Data Processing Systems. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). 1507-1518. https://doi.org/10.1109/ICDE.2018.00169
Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: ad-hoc stream
joins at scale. Proceedings of the VLDB Endowment 13, 4 (2019), 435-448.

Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AStream: Ad-
Hoc Shared Stream Processing. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD
’19). Association for Computing Machinery, New York, NY, USA, 607-622.
https://doi.org/10.1145/3299869.3319884

Fiodar Kazhamiaka, Matei Zaharia, and Peter Bailis. 2021. Challenges and
Opportunities for Autonomous Vehicle Query Systems.. In CIDR.

Anastasiia Kozar, Bonaventura Del Monte, Steffen Zeuch, and Volker Markl. 2024.
Fault Tolerance Placement in the Internet of Things. Proc. ACM Manag. Data
2,3, Article 138 (May 2024), 29 pages. https://doi.org/10.1145/3654941

Chang Liu, Jiaxing Zhang, Hucheng Zhou, Sean McDirmid, Zhenyu Guo, and
Thomas Moscibroda. 2014. Automating Distributed Partial Aggregation. In
Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SOCC ’14). Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/2670979.2670980

Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya
Ganesan. 2024. LazyLog: A New Shared Log Abstraction for Low-Latency
Applications. In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, SOSP 2024, Austin, TX, USA, November 4-6, 2024. ACM, 296-312.
https://doi.org/10.1145/3694715.3695983

Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,
Paolo Costa, Terry Kim, Saravanan Muthukrishnan, Vamsi Kuppa, et al. 2018. Chi:
A scalable and programmable control plane for distributed stream processing
systems. Proceedings of the VLDB Endowment 11, 10 (2018), 1303-1316.

Pritish Mishra, Nelson Bore, Brian Ramprasad, Myles Thiessen, Moshe
Gabel, Alexandre Da Silva Veith, Oana Balmau, and Eyale De Lara.
2024. Falcon: Live Reconfiguration for Stateful Stream Processing on the
Edge. In 2024 IEEE/ACM Symposium on Edge Computing (SEC). 234-248.
https://doi.org/10.1109/SEC62691.2024.00026

J Nogiec and K Trombly-Freytag. 2005. A dynamically reconfigurable data stream
processing system. (2005).

Dan O’Keeffe, Theodoros Salonidis, and Peter R. Pietzuch. 2018. Frontier: Resilient
Edge Processing for the Internet of Things. Proc. VLDB Endow. 11, 10 (2018),
1178-1191. https://doi.org/10.14778/3231751.3231767

OpenCellid. 2024. OpenCelliD - Largest Open Database of Cell Towers & Geolo-
cation - by Unwired Labs. https://opencellid.org/#zoom=16&lat=37.77889&lon=-
122.41942. (Accessed on 04/22/2024).

Sumanaruban Rajadurai, Jeffrey Bosboom, Weng-Fai Wong, and Saman P.
Amarasinghe. 2018. Gloss: Seamless Live Reconfiguration and Reoptimization
of Stream Programs. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng
Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 98-112.
https://doi.org/10.1145/3173162.3173170

Global Railway Review. 2023. DB introducing new display system to make
travel more convenient. https://www.globalrailwayreview.com/news/140633/db-
introducing-new-display-system-to-make-travel-more-convenient/. (Accessed
on 07/19/2024).

Zhitao Shen, Vikram Kumaran, Michael J Franklin, Sailesh Krishnamurthy, Amit
Bhat, Madhu Kumar, Robert Lerche, and Kim Macpherson. 2015. CSA: Streaming
Engine for Internet of Things. IEEE Data Eng. Bull. 38, 4 (2015), 39-50.

Suresh Singh, Mike Woo, and C. S. Raghavendra. 1998. Power-Aware Routing in
Mobile Ad Hoc Networks. In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (Dallas, Texas, USA) (MobiCom

https://business.teliacompany.com/internet-of-things/smart-public-transport
https://business.teliacompany.com/internet-of-things/smart-public-transport
https://doi.org/10.1145/3448016.3457549
https://doi.org/10.1023/B:TELS.0000029048.24942.65
https://doi.org/10.1145/3514496
https://www.vldb.org/pvldb/vol17/p1501-chatziliadis.pdf
https://doi.org/10.5441/002/edbt.2020.81
https://doi.org/10.18420/BTW2025-58
https://doi.org/10.1145/3529758
https://doi.org/10.1145/3487552.3487854
https://doi.org/10.1145/1013367.1013397
https://doi.org/10.14778/3611479.3611486
https://www.fleetio.com/blog/fleet-iot
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#task-slots-and-resources
https://doi.org/10.1145/3725294
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs
https://www.usenix.org/conference/atc22/presentation/gu-rong
https://otonomo.io/use-cases/
https://www.redpanda.com/resources/state-of-streaming-data-report
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://www2.deloitte.com/xe/en/insights/focus/smart-city/building-a-smart-city-with-smart-digital-health.html
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1145/3299869.3319884
https://doi.org/10.1145/3654941
https://doi.org/10.1145/2670979.2670980
https://doi.org/10.1145/3694715.3695983
https://doi.org/10.1109/SEC62691.2024.00026
https://doi.org/10.14778/3231751.3231767
https://opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://doi.org/10.1145/3173162.3173170
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/
https://www.globalrailwayreview.com/news/140633/db-introducing-new-display-system-to-make-travel-more-convenient/

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

’98). Association for Computing Machinery, New York, NY, USA, 181-190.
https://doi.org/10.1145/288235.288286

Felix Sterk, David Dann, and Christof Weinhardt. 2022. Monetizing Car Data:
A Literature Review on Data-Driven Business Models in the Connected Car
Domain.. In HICSS. 1-10.

NebulaStream Team. 2025. This repository contains code to produce a collection
of topology changes generated by mobile devices. https://github.com/
nebulastream/topology-change-generator [Online; accessed 2025-04-01].
NebulaStream Team. 2025. This repository contains code to simulate topology
changes. https://github.com/nebulastream/topology-change-simulator [Online;
accessed 2025-07-31].

Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting
punctuation semantics in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003), 555-568.

Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo
Wang. 2017. A Survey on Mobile Edge Networks: Convergence of Com-
puting, Caching and Communications. IEEE Access 5 (2017), 6757-6779.
https://doi.org/10.1109/ACCESS.2017.2685434

Benjamin Warnke, Stefan Fischer, and Sven Groppe. 2023. Distributed SPARQL
queries in collaboration with the routing protocol. In Proceedings of the 27th
International Database Engineered Applications Symposium (Heraklion, Crete,
Greece) (IDEAS "23). Association for Computing Machinery, New York, NY, USA,
99-106. https://doi.org/10.1145/3589462.3589497

Benjamin Warnke, Stefan Fischer, and Sven Groppe. 2023. Using machine learning
and routing protocols for optimizing distributed sparql queries in collaboration.
Computers 12, 10 (2023), 210.

Randall T. Whitman, Bryan G. Marsh, Michael B. Park, and Erik G. Hoel. 2019. Dis-
tributed Spatial and Spatio-Temporal Join on Apache Spark. ACM Trans. Spatial Al-
gorithms Syst. 5, 1, Article 6 (June 2019), 28 pages. https://doi.org/10.1145/3325135

223

[50

[51]

(53]

[54]

Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream
computation in the cloud. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, Johannes Gehrke,
Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.).
IEEE Computer Society, 723-734. https://doi.org/10.1109/ICDE.2015.7113328
Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From cloud to edge: a first look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference (Virtual Event) (IMC °21). Association for Computing Machinery, New
York, NY, USA, 37-53. https://doi.org/10.1145/3487552.3487815

Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis,
Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Bref}, Jonas Traub, and Volker
Markl. 2020. The NebulaStream Platform for Data and Application Management
in the Internet of Things. In 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Bref3, Tilmann Rabl, and Volker Markl. 2019.
Analyzing efficient stream processing on modern hardware. Proceedings of the
VLDB Endowment 12, 5 (2019), 516—530.

Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis,
Ankit Chaudhary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M.
Grulich, Ariane Ziehn, and Volker Markl. 2020. NebulaStream: Complex
Analytics Beyond the Cloud. Open J. Internet Things 6, 1 (2020), 66-81.
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html

Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. 2004. Dynamic Plan
Migration for Continuous Queries over Data Streams. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data (Paris, France)
(SIGMOD °04). Association for Computing Machinery, New York, NY, USA,
431-442. https://doi.org/10.1145/1007568.1007617

https://doi.org/10.1145/288235.288286
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-generator
https://github.com/nebulastream/topology-change-simulator
https://doi.org/10.1109/ACCESS.2017.2685434
https://doi.org/10.1145/3589462.3589497
https://doi.org/10.1145/3325135
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1145/3487552.3487815
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://www.ronpub.com/ojiot/OJIOT_2020v6i1n07_Zeuch.html
https://doi.org/10.1145/1007568.1007617

	Abstract
	1 Introduction
	2 Preliminaries
	3 System Overview
	3.1 System Architecture
	3.2 Components of ISQD

	4 Deployment Contexts and Reconfiguration Markers
	4.1 Deployment Context
	4.2 Reconfiguration Marker

	5 Handling Stateful Operators
	5.1 Redeploying Stateful Operators
	5.2 Ad-hoc State Migration Queries

	6 Reconfiguration Protocol
	7 Evaluation
	7.1 Experimental Setup
	7.2 Experiments

	8 Related Work
	9 Conclusion
	References

