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ABSTRACT
Large Language Models (LLMs) promise to automate data engi-
neering on tabular data, offering enterprises a valuable opportunity
to cut the high costs of manual data handling. But the enterprise
domain comes with unique challenges that existing LLM-based
approaches for data engineering often overlook, such as large table
sizes, more complex tasks, and the need for internal knowledge. To
bridge these gaps, we identify key enterprise-specific challenges
related to data, tasks, and background knowledge and extensively
evaluate how they affect data engineering with LLMs. Our anal-
ysis reveals that LLMs face substantial limitations in real-world
enterprise scenarios, with accuracy declining sharply. Our findings
contribute to a systematic understanding of LLMs for enterprise
data engineering to support their adoption in industry.
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1 INTRODUCTION
Large enterprises generate vast amounts of tabular data that drives
applications like machine learning and analytical query processing.
Data engineering is crucial for understanding this raw data and
preparing it for its downstream usage. It encompasses a range of
tasks, from data exploration and integration to data transformation
and cleaning. Since these tasks often impose significant manual
overhead to apply existing tools to the specific data at hand, the
automation of individual data engineering tasks like entity match-
ing [28, 40] and column type annotation [21, 69] with the help
of machine learning has long drawn attention from researchers.
Nevertheless, adapting such machine learning approaches to new
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Figure 1: LLMs perform well on public benchmarks but
poorly in real-world enterprise settings. The plot compares
support-weighted F1 scores for column type annotation on
the public SportsTables benchmark with customer data from
SAP.We further raise the difficulty (+ Task Challenges) by in-
creasing the number of semantic types from 200 (comparable
to public benchmarks) to the full 5,089 from the enterprise
setting and observe an additional performance drop. When
also requiring internal knowledge about company-specific
schema extensions in the form of customer-defined columns
(+ Knowledge Challenges), the performance is close to zero.

datasets and tasks often requires computer science expertise, ren-
dering them inaccessible to many practitioners.

Recent work has shown that Large Language Models (LLMs)
can be directly applied to data engineering tasks on tabular data,
indicating that they achieve state-of-the-art results on various table-
based tasks without requiring task-specific architectures and train-
ing [3, 22, 25, 41]. Their out-of-the-box nature provides a significant
advantage over other machine learning approaches that require
supervised training for each dataset and task. One example is the
task of column type annotation, where the goal is to annotate the
columns of a relational table with semantic types from a given
ontology. Whereas machine learning-based approaches like Sher-
lock [21] and Sato [69] require re-training for each new set of
semantic types, LLMs can easily support different sets of semantic
types by including them in the prompt [29]. Therefore, they provide
a promising avenue to automate data engineering tasks.
Enterprise challenges. Some first papers have nowmade the point
that while LLMs achieve strong results on existing benchmarks,
they fall short when applied to real-world enterprise data [6, 26]. A
central observation here is that the data in public benchmarks often
comes from web resources like Wikipedia [4] and GitHub [20]. In
contrast, the data from companies running their business processes
with software systems like those from SAP differs fundamentally
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from these datasets in many aspects, including table sizes, sparsity,
and data types [26, 54, 61]. Since LLMs are typically trained on
public data scraped from the web [7, 39], they have not seen much
of this enterprise data during their training.

In this paper, we set out to systematically study the performance
of LLMs for enterprise data engineering on representative customer
data and case studies reflecting real enterprise scenarios. As a sneak
peak into our results, Figure 1 presents a first experiment comparing
the performance of LLMs for column type annotation on a pub-
lic benchmark to a dataset of real-world customer data from SAP.
As shown by the left bar group, LLMs of different types and sizes
achieve high F1 scores when evaluated on a public benchmark like
the SportsTables dataset [31]. The same models, however, show sub-
stantial performance decreases when applied to the representative
customer data from SAP for column type annotation with a compa-
rable number of semantic types, as shown in Figure 1 (SAPCTA).
Aside from these data challenges, data engineering in enterprises
comes with additional difficulties:
(1) Task complexity: Enterprise tasks are often more complex than
their academic formulations [54]. One example is the task of entity
matching, where existing literature often assumes that each entity
is one row in a single table [28, 49]. In enterprises, however, entities
are often business objects that span across multiple tables, making
matching difficult. Moreover, the tasks themselves are often more
complex. For example, increasing the complexity of column type
annotation by scaling to the true number of semantic types (5,089
instead of 200) in the SAP system leads to a further decrease in F1
scores, as shown in Figure 1 (+ Task Challenges).
(2) Internal knowledge: Data engineering in enterprises also often
requires internal knowledge that is absent from public sources,
limiting LLMs’ abilities to understand the data without additional
context. This is especially true for schema customizations that
involve customer-defined semantic types. On SAP’s column type
annotation dataset, when adding those columns to the task, F1
scores for such customer-defined columns are near zero, as shown
in Figure 1 (+ Knowledge Challenges).

We want to highlight how such enterprise-specific challenges
affect LLMs. Our findings go beyond observations already known
to the community and help unmask the jagged out-of-the-box capa-
bilities of LLMs. For example, the impact of the complex enterprise
schemas and symbolic values in the enterprise data is particularly
striking. Moreover, we were surprised by how strongly the models
resisted overwriting their parametric knowledge despite explicit
guidance from documentation and examples. We believe this to
be the first attempt to examine LLMs for data engineering on real
enterprise data at this breadth. We see it as an important first step
(of many) to make LLMs viable for enterprise data engineering.
Contributions. Our main contributions are:1 (1) We systemati-
cally analyze the challenges involved in enterprise data engineering
and structure them along the dimensions of enterprise data, en-
terprise tasks, and enterprise knowledge. (2) We experiment on
representative enterprise data to show how it differs from existing
public benchmarks and understand how it affects LLMs. (3) We

1This paper extends our previously published work [5, 6] on this topic.

Table 1: Model characteristics. We evaluate five LLMs from
three model providers covering multiple types and sizes.

Context
Window

Reason-
ing

USD Per 1M

Input Output

GPT-4o-Mini (2024-07-18)1 128K no 0.15 0.60
GPT-4o (2024-08-06)1 128K no 2.50 10.00
o1 (2024-12-17)1 200K yes 15.00 60.00
Claude 3.5 Sonnet (v1/v2)2 200K no 3.00 15.00
Llama 3.1 Instruct (70B)3 128K no 0.72 0.72

Pricing by OpenAI,1 Anthropic,2 and AWS Bedrock3 in February 2025.

conduct multiple case studies that reflect real-world enterprise
scenarios, allowing us to evaluate how different challenges affect
LLMs in isolation. (4) We discuss directions for addressing these
challenges, as well as the costs of using LLMs at enterprise scale.
(5) Our experiments are performed with five recent LLMs from
OpenAI, Anthropic, and Meta. To enable follow-up research, we
make the code—including the full evaluation setup, all prompts,
and where legally possible also the data—of this paper available to
the broader research community.

2 SETTING OF OUR STUDY
Using LLMs to solve table-based tasks is a promising research direc-
tion that has been actively studied in recent years [29, 41, 49, 70, 71].
This section introduces the models we evaluate and briefly summa-
rizes existing research on data engineering with LLMs.
Choosing LLMs for the study. LLMs are text foundation models
trained on large corpora to complete natural language inputs [7]
and follow user instructions [36, 63]. Recent LLMs like GPT-4 [45]
and Llama 3 [16] build on a range of further ideas, from mixture-
of-experts architectures [55] to more efficient implementations [9],
leading to improvements in abilities like applying background
knowledge and handling long inputs. With the release of reasoning
LLMs like OpenAI’s o1 [43] and Deepseek’s R1 [10], they perform
even better on tasks requiring several intermediate steps.

While many LLMs would be relevant candidates to include in
our evaluation, our selection is necessarily limited. To ensure gen-
eralizable results, we evaluate five recent LLMs from three model
providers covering multiple types and sizes and including open and
closed models. As shown in Table 1, we use GPT-4o [42] as the state-
of-the-art and GPT-4o-Mini as the cheapest model from OpenAI in
February 2025, and o1 [44] as a reasoning model. We further include
Claude 3.5 Sonnet [1] from Anthropic and Llama 3.1 Instruct [39]
fromMeta. In general, LLMs bear the challenge of output variability.
In all our experiments, we reduce randomness to a minimum by
setting the sampling temperature to 0. We also repeat several of our
experiments multiple times, witnessing only small standard errors
and no change in the overall characteristics of the results.
Positioning the study. Although several papers have already
observed the differences between enterprise and web data [24, 54,
61, 72], existing research on data engineering with LLMs primar-
ily uses evaluation datasets based on tables from public web re-
sources, calling the applicability of LLMs on real-world enterprise
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Figure 2: Enterprise-specific challenges in data engineering tasks. We use five well-established tasks serving as examples to
highlight the breadth of challenges in enterprise settings and show their effect on LLMs for data engineering. The challenges
shown here (e.g., high data sparsity) are highly general and extend to many other tasks beyond the ones shown here.

data into question. More recently, some enterprise-specific bench-
marks have been released for tabular prediction tasks [27] and
Text-to-SQL [8, 47]. Related to our work, Kayali et al. [26] quantify
performance gaps between private and public data for the task of
column type annotation and find that benchmarks based on public
data overestimate the performance of LLMs. However, these studies
focus only on individual tasks and consider the data as the only
challenge in enterprise scenarios. In contrast, we perform case stud-
ies on various tasks to systematically analyze the challenges along
several dimensions of working in enterprise scenarios.
Working with real enterprise data. Attempts like ours often fail
because enterprise data is usually highly confidential and, therefore,
hard to use in evaluations. For this paper, we were able to experi-
ment with actual customer data from the enterprise systems of SAP.
While one could argue that this study is still limited because we
only use data from SAP, and there are clearly many alternative en-
terprise systems, SAP stands out as a dominant player in enterprise
software systems across multiple industries worldwide. As such, we
believe that our insights based on SAP data are highly valuable on
their own and hope that our paper inspires other researchers with
access to similar enterprise datasets to repeat our evaluations on
their data. Importantly, the core characteristics of SAP data reflect
the findings from other papers observing the differences between
enterprise and web data [24, 54, 61, 72], highlighting the generality
of our results beyond SAP data.

3 DESIGN OF OUR STUDY
We aim to take a holistic view of data engineering in enterprises by
systematically analyzing the out-of-the-box performance of LLMs,
covering enterprise-specific challenges along the dimensions of
data, tasks, and knowledge. Figure 2 provides an overview of the
tasks we have chosen to analyze the performance along each dimen-
sion. Below, we explain the rationale for selecting these tasks as
examples to examine challenges that arise broadly across different
enterprise tasks and scenarios. Sections 4 to 6 then describe our
experimental evaluation for each of these challenges.

The data challenge. Enterprise data differs from public evaluation
datasets in various aspects. First, the tables in enterprise databases
are substantially larger in their number of columns and rows, and
the schema and data are often more complex with column names
and values that lack intuitive meaning. Moreover, enterprise data
exhibits a much higher sparsity than public data, leaving many cells
empty. Together, these factors make data engineering on enterprise
data much more challenging. To explore these challenges, we focus
on the task of column type annotation (Figure 2 left) [21, 69]. We
have chosen this task because it is well-studied in the literature
and thus enables the comparison of accuracies with public datasets.
Moreover, the task can be formulated in various ways, stressing
different data factors (e.g., with and without schema information)
and allowing us to study the effects of different challenges like table
size, sparsity, and descriptiveness of the data and schema.
The task challenge. Beyond the complexities of enterprise data,
the enterprise tasks themselves are also more complex. First, while
academia typically studies data engineering tasks in isolation, en-
terprise tasks in practice are often compounds of multiple simpler
data engineering steps. As such, we argue that the evaluation pro-
cedures themselves must change and we need to study accuracy
end-to-end to analyze effects such as how errors propagate. In this
paper, we examine the compound nature of enterprise tasks using
the example of integrating two customer databases, as illustrated in
Figure 2 (middle). This process involves the steps of schema match-
ing, entity matching, and data integration. A second challenge for
enterprise tasks (not shown in Figure 2) is that even the individual
steps are often more complex. For example, while entity matching
in academia assumes 1:1 matches across rows of two tables [40, 50],
matching in enterprise scenarios covers more complex cases like
mapping several bank transfers to one invoice, and the required
data is often scattered across multiple tables.
The knowledge challenge. As a last challenge, data engineering
in enterprises often requires enterprise-specific knowledge. This
is particularly challenging because LLMs will likely not have seen
the required information during training, as it is covered only in
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Table 2: Data characteristics of publicly available benchmark datasets compared to representative customer data from SAP.
Enterprise tables have substantially more rows and columns and display a higher sparsity compared to public data. Although
most attributes are of type NVARCHAR, the data is highly symbolic, and table names, column names, and cell values are often not
human readable because of abbreviations and enterprise-specific encodings.

Tables Columns Rows Sparsity1 Data Types2 Column Type Annotation

Med 95th Med 95th abc 123 Column Types Labeled Columns

WikiTables-TURL 397,098 1 3 8 43 0.12 1.00 0.00 255 628,254
SOTAB 59,548 7 17 33 721 0.08 0.85 0.15 91 162,351
GitTablesCTA 1,100 12 33 25 263 0.12 0.33 0.67 122 | 593 2,517 | 1,3743
SportsTables 1,183 21 31 32 924 0.07 0.16 0.84 452 24,821

SAPCTA 1004 46 343 473,038 50,836,964 0.43 0.55 0.455 5,089 8,106
1 Sparsity is the fraction of empty cells. 2 Non-numerical (abc) and numerical (123) columns determined by pandas. 3 Using semantic types from DBPedia | Schema.org.
4 We experiment on a representative sample from the thousands of tables in the customer system. 5 Only 14% of columns have numerical SQL types like INT and DECIMAL.

internal documentation or even just certain implementation details
in the code of enterprise systems. To analyze these challenges, we
have selected a task related to data exploration that requires trans-
lating natural language queries about business processes into the
enterprise-specific query language SIGNAL, which differs slightly
from SQL (Figure 2 right) [23]. The task is interesting because LLMs
should, judging by its similarity to Text-to-SQL, in principle be able
to solve it. However, they lack particular information about how
exactly SIGNAL differs from SQL. At the core, the question we want
to answer here is to what extent the lack of enterprise knowledge
affects the accuracy of LLMs, and whether it can be increased by
providing enterprise-specific knowledge as context.
An orthogonal challenge: cost. Since enterprise tables can con-
tain millions of rows, using LLMs on such data can cause high costs,
rendering some of the larger, more complex LLMs economically
unviable. We discuss this aspect in Section 7.

4 THE DATA CHALLENGE
In this section, we quantify the anatomy of enterprise data by
comparing real-world customer data from SAP to publicly available
table corpora. We point out four challenges specific to enterprise
data and perform experiments to evaluate how they affect LLMs,
using column type annotation as an example task (Figure 2 left).

4.1 Data Challenges
For our study, we constructed a new corpus called SAPCTA . Table 2
compares the data characteristics of the real-world customer data in
SAPCTA to several publicly available column type annotation bench-
marks: WikiTables-TURL [11], SOTAB [30], GitTablesCTA [19], and
SportsTables [31]. We observe the following differences:
C1: Table size. A first important observation is that enterprise
tables often have substantially more rows and columns than the
tables in public corpora. As shown in Table 2, some tables have
hundreds of columns and millions of rows. While the large scale is a
well-established data management problem [72], it poses challenges
for LLMs, which have limited context windows. Although recent
models have extended context windows, feeding large tables into
LLMs still has downsides since latency and cost depend on the input
size, and recent studies have shown that long contexts can lead to
degraded performance for data residing in the “middle” [35].

C2: Descriptiveness. Another important insight is that schema
properties like table and column names are often not descriptive but
rather abbreviations that can only be understood with background
knowledge or additional metadata [24]. This additional metadata
is often unavailable or may not fit into the context window of
the LLM. Moreover, the background knowledge is often specific
to the particular enterprise, causing challenges for LLMs trained
exclusively on publicly available data, as we discuss in Section 6.
C3: Sparsity. A third insight is that enterprise data is highly
sparse. Table 2 shows that on average, 43% of the cells in enterprise
tables are empty, compared to only 7-12% in existing datasets. The
high sparsity results in a significant lack of information, posing a
challenge for LLMs which rely on contextual cues to make accurate
predictions. Moreover, we find that in addition to empty values,
the cells in enterprise tables often contain dummy values such as
00000 that also denote the absence of an actual value.
C4: Data types. Interestingly, we find that only 45% of the columns
in SAPCTA are classified as numerical by pandas, suggesting that
enterprise datasets can be more text-heavy than found in previous
studies [31]. Moreover, only 14% of the columns in the database
schema have numerical data types like INT and DECIMAL. A closer
inspection of the actual data reveals that the non-numerical data
type NVARCHAR is often used to store symbolic values and codes
such as invoice and material numbers, which is in line with previ-
ous findings [61]. Since these values are not self-expressive, LLMs
cannot make use of them without additional context.

4.2 Experiments & Results
To study how the challenges C1-C4 affect LLMs for data engineering,
we compare the models’ performance on our real-world enterprise
dataset SAPCTA to their performance on existing evaluation datasets.

Task. We evaluate on column type annotation, a well-established
data engineering task where the goal is to annotate the columns
of a relational table with semantic types from a pre-defined ontol-
ogy [21, 69]. We see it as an interesting example task to uncover
the challenges of understanding enterprise tables with LLMs, since
it requires a semantic understanding of the content of each column
as well as the values of other columns and the table schema, all of
which provide important signals to derive a semantic type.
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Table 3: Enterprise vs. public tables. The table shows support-
weighted F1 scores for column type annotation with and
without column names. The results on enterprise data are
substantially worse than on existing benchmarks.

GitTablesCTA SportsTables SAPCTA

Column Names w/out with w/out with w/out with

GPT-4o-Mini 0.52 0.96 0.27 0.55 0.02 0.07
GPT-4o 0.56 0.99 0.57 0.91 0.04 0.24
Claude 3.5 Sonnet 0.67 0.96 0.66 0.93 0.05 0.34
Llama 3.1 Instruct 0.49 0.95 0.38 0.73 0.02 0.10

Setup. Our SAPCTA corpus spans diverse business domains such as
Finance, Sales and Distribution, Material Management, and Produc-
tion Planning. For our experiments, we select 100 representative
tables from the larger corpus, which contains multiple thousands
of tables. The selection is based on discussions with SAP experts
to identify the most widely used tables in the system. In total, the
dataset includes 5,089 semantic types, such as Amount Difference in
Local Currency or Product Cost Collector, which are generally more
fine-granular than those used in other datasets [19, 30].

Our prompting strategy builds on best practices from existing
literature, where the model annotates the columns of a given ta-
ble based on a list of semantic types and one randomly-selected
example included in the prompt [29, 69].2 Based on ablations (see
Appendix A.1 in our extended technical report), we limit each table
to three randomly-selected rows as a reasonable trade-off between
performance and cost. For similar reasons, we serialize the tables in
CSV format, which requires fewer formatting tokens than other se-
rialization schemes like Markdown and JSON [56, 57]. We instruct
the model to generate the column types as a JSON-formatted list.
Exp. 1: Enterprise vs. public tables. In our first experiment,
we compare the performance for column type annotation on our
SAPCTA corpus with the performance on GitTablesCTA [19] and
SportsTables [31]. We perform each experiment twice, with and
without including the table and column names (i.e., the table schema)
in the prompt. Existing evaluations typically leave out the column
names, since the semantic types are directly derived from them and
the task would thus become trivial. For SAPCTA , however, the task
is much harder. Therefore, we want to investigate how much the
additional information helps.

Table 3 shows the results of this experiment. We make the follow-
ing observations: First, LLMs have severe issues with column type
annotation on enterprise data, leading to substantially worse results
compared to the public benchmarks GitTablesCTA and SportsTables.
The results are particularly poor in the experiments without table
and column names, indicating that enterprise data on its own con-
tains few helpful signals. Adding table and column names to the
prompt improves the results, but they still remain much lower than
for web tables. The remaining performance gap could potentially
be attributed to the non-descriptive schema, the extremely wide
and sparse tables, and the complex data types.

2To focus solely on the data challenges, we include only a subset of the semantic types
in every prompt similar to the setup from Figure 1 (SAPCTA).

Table 4: Non-numerical (abc) vs. numerical (123) data. The
table shows support-weighted F1 scores for column type an-
notation with column names. The results on numerical en-
terprise data are consistently worse.

GitTablesCTA SportsTables SAPCTA

Data Types abc 123 abc 123 abc 123

GPT-4o-Mini 0.97 0.95 0.68 0.53 0.11 0.03
GPT-4o 0.99 0.98 0.87 0.91 0.31 0.16
Claude 3.5 Sonnet 0.97 0.95 0.81 0.96 0.41 0.27
Llama 3.1 Instruct 0.94 0.96 0.85 0.72 0.15 0.05

Exp. 2: Textual vs. numerical data. LLMs are known to often
perform better on textual data than on numerical data [13, 31]. To
study this effect on enterprise data, we compare the performance
for non-numerical and numerical columns in our SAPCTA corpus.

Table 4 shows that, as expected, we see a higher performance
on non-numerical enterprise data. By contrast, the results on the
public benchmarks GitTablesCTA and SportsTables remain incon-
clusive, with only small performance gaps between non-numerical
and numerical columns that also differ between models. The low
performance on the SAPCTA dataset indicates that numerical data
in enterprise systems is even harder to understand than in pub-
lic benchmarks. Furthermore, the low scores for non-numerical
columns may stem from the fact that enterprise tables often store
identifiers like INV0014056 as type NVARCHAR.
Exp. 3: Table width and sparsity. To further investigate the per-
formance gap between public benchmarks and enterprise data, we
incrementally adapt the enterprise tables to resemble the character-
istics of web tables more closely. Since two of the main differences
are table width and sparsity, we vary the number of columns per
table by randomly sampling subsets of columns and vary the spar-
sity by initially selecting only non-sparse columns and randomly
removing individual cell values.

Figure 3 shows that increasing table widths lead to substantially
worse results, indicating that the large table widths in enterprise
data are indeed a major problem for LLMs. Figure 4 shows that
increased sparsity leads to worse results only if no table and col-
umn names are provided, whereas with table and column names,
increased sparsity does not change the results much. This indicates
that on enterprise data, LLMs rely primarily on the column names
to predict the semantic types, maintaining almost constant accuracy
even if no cell values are provided (Figure 4 left, sparsity of 1.0).
Exp. 4: Improvement strategies. Figure 3 shows that column
type annotation accuracy decrases as the table width increases.
To mitigate this effect, we explore three strategies for handling
wide tables: All columns (full table) is our baseline setup, where the
model predicts all semantic types of the full table in a single call.
Chunks of𝑁 columns divides the table into chunks of𝑁 ∈ {50, 10, 1}
columns and prompts the model for each chunk separately without
the full table as context.One column at a time (with full table context)
predicts each column type in a separate LLM call, but provides the
full table in the prompt. We state the column to be predicted either
by name or by index to analyze which variant works better.
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Figure 3: Effect of the table widths. The plots show support-
weighted F1 scores for column type annotation with and
without column names (zoomed in on the right). Increased
table widths lead to worse results.

Table 5 shows that on public benchmarks, the differences be-
tween strategies are small, although smaller chunk sizes reduce
performance if no column names are provided. This indicates that
the data in public benchmarks provides strong contextual signals
for column type annotation. For SAPCTA , however, chunking with-
out column names does not further degrade the already low per-
formance. With column names, chunking even improves results.
Notably, for SAPCTA , the one-column-at-a-time strategy using the
full table as context yields the best results. Since enterprise data
without headers provides little signal, we suspect that the models
rely primarily on the column names, largely ignoring the actual
data. This method is also the most expensive, requiring one LLM
call per column with the full table as context. Inference over the full
SAPCTA dataset with GPT-4o costs USD 53.85, compared to USD 4.37
for the baseline—an order of magnitude more. Yet even with this
setup, performance remains far below that on public benchmarks.

4.3 Discussion
Learnings. Our analysis of the customer data from SAP shows that
enterprise data differs fundamentally from public benchmarks, and
our experiments demonstrate that these differences lead to substan-
tial performance decreases. The performance declines with higher
sparsities and larger table widths, indicating that LLMs are unre-
liable at scale and sometimes fail to uphold even the basic table
structure by generating an incorrect number of labels. Moreover,
the non-descriptive schemas and complex data types pose signifi-
cant challenges for LLMs. While we have shown this for the task
of column type annotation, these data challenges will appear again
throughout the following sections for other data engineering tasks,
highlighting that they are general and affect a broad range of tasks.

Outlook. We believe that overcoming these challenges requires bet-
ter representations for enterprise data. A first promising direction
is the development of foundation models for relational data [60, 65].
While there is already a large body of research on foundationmodels
for tabular data [11, 12, 17, 18, 33, 51, 66, 67], computing representa-
tions for complex enterprise data is still an open research problem.
Some LLM weaknesses like their low reliability at scale require
rethinking how they are applied to enterprise data, for example
by using chunking to handle large tables. One way to alleviate
the low self-expressiveness of the enterprise data could be to bet-
ter contextualize the raw data by incorporating metadata such as
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Figure 4: Effect of the sparsity. The plots show support-
weighted F1 scores for column type annotation with and
without column names (zoomed in on the right). Increased
sparsity leads to worse results if no column names are given.

Table 5: Strategies for handling wide tables, including our
baseline setup predicting all columns in one call, chunking,
and predicting just one column with full table context per
call. The table shows support-weighted F1 scores for column
type annotation with and without column names.

GitTablesCTA SportsTables SAPCTA

Column Names w/out with w/out with w/out with
G
PT

-4
o-
M
in
i

All columns (full table) 0.52 0.96 0.27 0.55 0.02 0.07

Chunks of 50 columns 0.52 0.96 0.29 0.51 0.01 0.09
Chunks of 10 columns 0.48 0.97 0.20 0.62 0.01 0.22
Chunks of 1 columns 0.22 0.92 0.06 0.61 0.01 0.20

1 column by index (full table) 0.30 0.66 0.07 0.11 0.03 0.11
1 column by name (full table) - 0.89 - 0.50 - 0.32

G
PT

-4
o

All columns (full table) 0.56 0.99 0.57 0.91 0.03 0.27

Chunks of 50 columns 0.54 0.99 0.58 0.89 0.03 0.44
Chunks of 10 columns 0.51 0.99 0.45 0.91 0.03 0.46
Chunks of 1 columns 0.29 0.90 0.11 0.83 0.02 0.44

1 column by index (full table) 0.37 0.85 0.23 0.36 0.05 0.26
1 column by name (full table) - 0.86 - 0.89 - 0.52

data dictionaries, which contain textual descriptions for table and
column names and for symbolic values.

5 THE TASK CHALLENGE
A second dimension where data engineering in enterprise settings
stands out is the complexity of the tasks. The academic definition
of a data engineering task often makes simplifying assumptions
that do not hold in real-world scenarios. For example, literature on
entity matching often assumes that we compare the similarity of
individual rows of two tables [28, 49]. By contrast, business entities
in enterprises often span across multiple tables, forming graphs
of tuples. At the same time, enterprises approach data engineer-
ing with broad business objectives in mind. Therefore, enterprise
tasks are often composed of multiple steps (e.g., combining schema
matching and entity matching). In this section, we discuss how
enterprise tasks differ in their nature from the tasks evaluated in
academia and examine how these differences affect LLMs.

5.1 Task Challenges
We base our analysis of the task-related challenges in enterprise
data engineering on the following two case studies:
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KUNNR NAME1 LAND1 …
ZA345 Azul Technologies NZ …
XX023 Silver Systems SA …
SB431 Greeny Inc. US …

… … … …

VBELN KUNNR BZUEI ZTERM WRBTR ZFBDT …
3023928912 HE004 Z02 F000 499.00 20231201 …
3002395010 XX023 Z00 F000  43.63 20200605 …
7039230507 XX023 Z01 F011 145.22 20200317 …
2360187300 ZA345 Z01 F001 347.00 20240902 …

… … … … … … …

SAP system with open invoices

Bank Statement A

Account: XA34129882 

Business partner: Mint 

Amount: 499.96 EUR 

Posting date: 01.01.2024 

…

Bank Statement B

Account: PQ34510234 

Business partner: 
Silver Sys 

Amount: 188.85 EUR 

Posting date: 01.07.2020 

…

bank statements about incoming payments?

1:N match (one payment 
pays multiple invoices)

1:1

Figure 5: Enterprise entity matching: Bank statements of
incoming payments must be matched to open invoices. Chal-
lenges include the invoices being represented by multiple
tables, multi-match cases where a single payment pays multi-
ple invoices, and discrepancies in amounts and descriptions.

Case Study 1: Enterprise entity matching. Entity matching is a data
engineering task that often occurs in enterprise scenarios. We study
the scenario shown in Figure 5, in which the bank statements of
incoming payments must be matched to a company’s open invoices.
The scenario showcases many challenges of entity matching in
enterprises, including problems like complex table structures and
the fact that matching requires finding 1:N or even N:M matches.

Case Study 2: Enterprise database integration. For our second case
study, we look into another enterprise scenario where two customer
databases from different companies must be merged. To ensure a
unified and consistent customer database, this process involves the
individual steps of schema matching, customer record matching,
and data integration, as illustrated in Figure 2 (center).
In the following, we highlight the general challenges that arise in
enterprise tasks and provide examples based on the two scenarios.
C5: Entities span multiple tables. Entities in enterprise systems
are often business objects represented by multiple rows stored in
different connected tables. In SAP systems, data pertaining to a par-
ticular material is scattered across the MARA (material type and basic
statistics), MARC (manufacturing-related details), MBEW (valuation
data), and other tables. The same holds true for the entities in our
first case study (entity matching). For many data engineering tasks,
one must therefore either manually construct views that extract the
relevant fields into a single table, or approaches must work directly
with the complex table structures that form a business entity.
C6: Compound tasks. Whereas data engineering in research is
often addressed as isolated problems, such as deduplication [46]
and missing value imputation [38], tasks in enterprise contexts are
typically approached on a more holistic level concerning broader
business objectives. Instead of focusing on individual tasks, enter-
prises aim to solve end-to-end workflows, as highlighted by our
second case study (database integration). While the steps of such
compound tasks could be executed sequentially, errors often propa-
gate and amplify in later steps. Analyzing each step in isolation does
not reveal the overall quality of the task in enterprise scenarios.
C7: Task complexity. Even individual workflow steps can be more
complex than their counterparts studied in academia. For example,
the entities to bematched in public entity matching datasets are usu-
ally of the same type, such as e-commerce products, restaurants, and

scholarly articles [28, 50]. By contrast, enterprise scenarios often re-
quire matching between different types of entities, like products to
commodity codes or payments to invoices, which have overlapping
but different sets of attributes. An additional challenge in enterprise
scenarios is that the matches are often not 1:1 matches as in the
literature, but can also be 1:N, N:1, or even N:M matches, making
the problem much harder. In our payment-to-invoice matching
scenario, it is common for a customer to pay multiple invoices with
only one payment (1:N), or for one invoice to be paid by multiple
payments (N:1), such as in the case of down payments.
C8: Data complexity on top. Along with these task complexities,
the complexity of the data makes the tasks themselves also harder.
For example, when matching payments to invoices, the memo lines
of incoming bank statements are not standardized, but rather free-
form text entered by customers. Therefore, complex errors occur
regularly, making automated matching difficult. Compared to such
data errors in enterprise scenarios, the errors in academic entity
matching datasets are often much simpler.

5.2 Experiments & Results (Case Study 1)
To demonstrate how these challenges affect data engineering with
LLMs, we first conduct experiments for our first case study (en-
tity matching). Experiments for our second case study (database
integration) follow in the next subsection.

Setup. For our first case study, we use a dataset of payments and
invoices following the characteristics of the actual data from an
enterprise system and reflecting the challenges described above (see
Appendix A.2 in our extended technical report). The dataset con-
tains 15,521 invoices and 12,332 payments. Following existing liter-
ature [41, 49], we formulate the entity matching task as a binary
classification where the LLM decides if two entities (one payment
and one invoice) match; i.e., if the payment pays for the invoice.
Note that some of these combinations are part of multi-match cases
where one payment pays for multiple invoices or vice versa. To
keep the costs tractable, we use a subset of the dataset consisting
of 790 payment-invoice combinations where the payment does pay
for the invoice and 1,210 combinations where it does not.

For each combination, we prompt the LLM to predict if it is a
match or a non-match. Furthermore, we experimentwith presenting
the invoices in two formats to the LLM: one format where each
invoice is represented by multiple separate tables, and another
format where each invoice is represented as one row in a flat view
that combines all relevant columns from these tables, mimicking the
traditional entity matching setting.We use a few-shot approach that
includes one positive and one negative example in the prompt, as
zero-shot performance was low on enterprise data. More examples
did not improve the accuracy much. Starting from this simple setup,
we make the task incrementally more complex.
Exp. 5: Increasing task complexity. In the following, we explain
the different scenarios with results provided in Table 6:
1. (Clean) First, we evaluate on clean 1:1 matches using the flat table
views described above, which is closest to the academic setting. In
this setting, the payment’s memo line includes the correct reference
numbers, the payment amount is exactly as stated in the invoice,
and the customer name is also identical. As shown in Table 6 (Clean),
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all models reach very high F1 scores in this setup. Next, we incre-
mentally increase the difficulty based on the challenges we observe
in the enterprise scenario.
2. (+ Errors) As described in C8, data errors in enterprises can differ
from those in academic benchmarks, making the matching harder.
To demonstrate this, we add representative errors and discrepancies
that typically occur in real-world customer data to the payments
and invoices, such as missing or additional digits in the reference
numbers or minor discrepancies in the paid amount. As shown in
Table 6 (+ Errors), these seemingly small inconsistencies already
cause a noticeable drop in accuracy, highlighting the sensitivity of
the models to such errors. We further study this effect in Exp. 6,
showcasing that LLMs have substantial problems understanding
the semantics of enterprise data.
3. (+ Multi-Matches) Next, we make the matching even harder by
focusing on the multi-match cases described in C7, where one pay-
ment pays for multiple invoices or multiple payments together pay
for one invoice, a setting that is already closer to the real-world sce-
narios found in enterprises. As shown in Table 6 (+ Multi-Matches),
this vastly increases the task’s difficulty, since amounts are split
between multiple payments and payments might include multiple
reference numbers for different invoices. To understand the root
cause of the performance decrease and the high deviation between
the models, we further investigate the precision and recall (see Ap-
pendix A.2 in our extended technical report). We find that while all
models achieve a very high precision close to 1.00, the differences in
F1 scores are primarily driven by variations in recall. This indicates
that all models take a rather cautious approach, predicting matches
only when they are highly certain. As a result, they prioritize high
precision in matching and therefore miss many correct matches.
While this high precision is sometimes preferred over high recall but
low precision, the high rate of missed matches causes substantial
manual efforts for enterprises to find the missing matches.
4. (+ Multiple Tables) Lastly, to show the impact of business entities
spanning across multiple tables as described in C5, we represent in-
voices using multiple separate tables (as in the original SAP schema)
instead of a single flat table view.While metadata about each invoice
is stored in one table, specific information like the amount and due
date is stored in a second table, and information about customers is
stored in another separate customer table. In this scenario, which
now closely resembles the actual enterprise task in its full complex-
ity, all models see large performance decreases compared to the
previous experiments, indicating that the models have difficulties
working with the complex data structures used in enterprises.
Exp. 6: Data errors and task complexity. Our second experiment
analyzes the impact of different error types on enterprise tasks like
payment-to-invoice matching, highlighting typical data challenges
that appear in enterprise scenarios. We insert individual types of
data errors into the clean data from Exp. 5 to study their effects
in isolation. We focus on four typical cases: (1) we deduct up to
USD 0.1 from the paid amount, (2) we remove or change digits in the
assignment or (3) in the billing number, and (4) we slightly vary the
partner name, for example with abbreviations like KL Technologies
instead of Kim & Lee Technologies. The results shown in Figure 6
indicate that even minor discrepancies can lead to performance

Table 6: Increased task complexity whenmatching payments
to invoices causes a steady decrease in F1 scores. The first
column (Clean) resembles simple entity matching on data
from public sources, while the last column (+ Multiple Tables)
represents the enterprise scenario with all its complexities.

Clean + Errors + Multi-
Matches + Multiple

Tables

GPT-4o-Mini 0.98 0.58 0.53 0.45
GPT-4o 0.97 0.80 0.64 0.58
Claude 3.5 Sonnet 0.97 0.89 0.86 0.58
Llama 3.1 Instruct 0.99 0.95 0.81 0.72

Clean Deduction
≤ $0.1

Assignment
Number

Billing
Number

Partner
Name

0

0.5

1.0

F1
 S

co
re

0.96 0.93 0.89 0.91

0.14

0.97 0.97 0.93 0.91

0.57

1.00 0.99 0.98 0.97

0.80
0.96 0.96 0.91 0.88 0.83

Failures caused mainly by errors in textual attributes

GPT-4o-Mini GPT-4o Claude 3.5 Sonnet Llama 3.1 Instruct

Figure 6: Impact of different error categories when matching
payments to invoices. Discrepancies in the partner name
attribute cause a substantially larger drop than numerical
attributes, indicating a strong reliance on textual fields.

degradations. Interestingly, errors in the numerical fields cause
only modest performance declines, whereas discrepancies in the
business partner names result in much more severe performance
drops. This suggests that LLMs rely heavily on the availability of
non-erroneous textual fields for entity matching, highlighting their
inability to understand the complex numerical and symbolic values
prominent in enterprise data.

5.3 Experiments & Results (Case Study 2)
To study the compound tasks described in C6, we now conduct
experiments based on our second case study (database integration).

Setup. We use a dataset for the integration of two companies’ cus-
tomer databases that is based on real-world data (see Appendix A.3
in our extended technical report). Company A’s database consists of
a single table with 15 columns, selected as a subset of the SAP cus-
tomer master data table KNA1 with columns such as KUNNR, NAME1,
and ERDAT. Company B’s database consists of two tables connected
by a foreign key relationship, with descriptive column names such
as Organization Name, Address, and Tax Number. We experiment
with datasets of different sizes, from 50 to 300 customers, to analyze
the effects of the data scale. The customers in the two databases
have an overlap of 60%, so 40% of the customers exist only in one
of the databases. To evaluate the predicted result table, we compare
it with the ground truth result table of integrated customers and
compute the cell-level accuracy (i.e. the fraction of correct cells).
Exp. 7: Error propagation in compound tasks. In our first
experiment, we analyze the effect of error propagation in compound
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tasks with multiple steps. We formulate the database integration
task as a sequence of three steps, as visualized in Figure 2 (center):
1. (SchemaMatching) To integrate the data, we first perform schema
matching to map the columns of Company B’s schema to the
columns of Company A’s schema. Following existing research, we
formulate the task as a binary classification between columns [41,
48]. Challenges arise because, for example, the address is repre-
sented by a single column at Company B, but split into multiple
columns at Company A.Wemeasure the accuracy of this step as the
fraction of correctly found matches for the columns in Company A,
since the output of the schema matching step is used to transform
Company B’s database into Company A’s schema.
2. (Entity Matching) Next, we perform entity matching to determine
which customers have entries in both companies’ databases. Similar
to existing literature [41, 49], we formulate entity matching as a
binary classification task: Given a pair of rows, one from Company
A’s table and one from Company B’s transformed table, the LLM
determines whether they refer to the same customer.
3. (Data Integration) To produce the integrated customer table, we
use the LLM to merge the duplicate customer records found in
both databases into a single row and to transform Company B’s
remaining customer records into the format of Company A.

To measure the impact of error propagation when chaining the
tasks, we run each step twice: once in a pipeline using the output
of the previously executed step as input, and once in a standalone
setting using the ground-truth output of the previous step as input.
Figure 7 shows the results of this experiment. For the second (entity
matching) and third (data integration) step of the pipeline, we
observe that executing them in a pipeline leads to a decrease in
accuracy compared to running them as standalone tasks. However,
the decrease depends on themodel, with GPT-4o-Mini seeing amore
severe decrease than Claude 3.5 Sonnet and Llama 3.1 Instruct.

Interestingly, the accuracy between the entity matching and
data integration steps in the pipeline does not decline and even
slightly improves for some models. This shows a surprising effect
for LLMs: While the models can make mistakes that propagate
through the pipeline, they can, in some cases, also correct earlier
mistakes. For example, some models fail to correctly associate the
LAND1 field with the address during schema matching. However,
when presented with three sample rows from Company A during
data integration, they correctly populate the LAND1 field with the
country mentioned in the address stored in Company B’s data.

Overall, these results suggest that error propagation can lead
to a decrease in accuracy for compound tasks, but the significance
depends on the LLM. In some cases, the effects are negligible.
Exp. 8: End-to-end task execution. A substantial overhead in
enterprise scenarios stems from the fact that complex tasks must be
manually decomposed into smaller steps. Recent LLMs, however,
can use reasoning to solve multi-step problems on their own. One
might now ask the question if the manual decomposition of the task
is even needed, or if reasoning LLMs can break down the task on
their own. To answer this question, we use the LLMs to directly inte-
grate the two customer databases in a single LLM call and compare
the results of this end-to-end execution to the pipelined execution
from Exp. 7. We experiment with two prompting strategies: w/o
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Figure 7: Error propagation in our database integration case
studywith 100 customers. Colored bars represent the pipeline
setting, where errors carry over from previous steps, whereas
stacked colorless bars show the standalone setting with cor-
rect inputs. The accuracy drop in the pipeline setting high-
lights the propagation of errors from earlier stages.

Pipeline End2End (w/out Steps) End2End (with Steps)
0

0.5

1.0

Ac
cu

ra
cy

0.34
0.48 0.51

0.70

0.23

0.47
0.63

0.43

0.84 0.79 0.730.72

GPT-4o-Mini GPT-4o o1 Claude 3.5 Sonnet Llama 3.1 Instruct

Figure 8: Pipelined vs. end-to-end execution in our database
integration case study with 100 customers. Even at this small
scale, end-to-end execution does not outperform pipeline
execution.3
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Figure 9: Scaling up the number of customers for end-to-end
database integration with OpenAI’s o1 drastically decreases
the performance. For 300 customers, the model responded
Sorry, but I can’t fulfill that.

steps provides a textual description with instructions on how to
perform the integration but does not mention how to break down
the task, whereas with steps explicitly mentions the necessary steps
(schema matching, entity matching, and data integration) in the
prompt to provide a hint towards how to execute them.

Figure 8 shows the results of this experiment, including o1 from
OpenAI as an additional LLM with reasoning capabilities. Most
models perform better in the pipelined task execution, with only
GPT-4o-Mini performing better in the end-to-end execution. When
comparing the end-to-end execution w/o steps and with steps, we

3Three bars are missing from this plot: We did not execute the pipeline with o1 due
to cost reasons, and Llama 3.1 Instruct did not produce responses for the end-to-end
execution because of timeouts.
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see mixed results. Whereas some LLMs benefit from describing the
steps in the prompts, others do not.
Exp. 9: End-to-end scaling. While the end-to-end execution of
compound tasks is attractive because it does not require manual
task decomposition, it requires the full tables to be provided as
input to the LLM because some steps like entity matching might
need access to all tuples. This poses a problem, as larger tables lead
to longer prompts that quickly exceed the LLM’s context window.
As a last experiment in our database integration case study, we
study the effects of scaling the number of customers in the company
databases. Among themodels evaluated in this work, only OpenAI’s
o1 provides a sufficiently large output token limit (100K tokens) to
integrate more than 100 customers in an end-to-end manner.

Figure 9 shows the results of scaling the total number of cus-
tomers from 50 up to 300. We observe a drastic decline in perfor-
mance as the number of customers increases, suggesting that the
model struggles with long-range dependencies and finding matches
in large datasets. When using 300 customers, the model even re-
sponds with "Sorry, but I can’t fulfill that". Overall, LLMs remain
limited in their ability to execute tasks at enterprise-scale in an
end-to-end manner. In contrast, breaking up compound tasks into
individual steps can, in principle, scale to larger tables, as tuples are
processed one by one (e.g., by comparing all customers of databases
A and B individually for entity matching).

5.4 Discussion
Learnings. Through our two case studies, we have demonstrated
that automating enterprise tasks with LLMs remains extremely
hard. First, we still need to rely on human effort since end-to-
end execution with LLMs is brittle and does not scale well. This is
consistent with Ashury-Tahan et al. [2], who found that even strong
models often fail to perform robustly on complex table tasks. We
also encountered problems in the output of some task formulations.
For example, during end-to-end execution, where the output is a
table with multiple rows, LLMs often generate varying numbers of
columns for different rows.

Second, much of the complexity of enterprise tasks is inherent to
business needs and cannot be avoided, such as having to deal with
multi-match cases in entity matching. While reducing complexity
by working with database views did improve results, constructing
such views causes additional manual overheads since business ob-
jects in enterprises can be composed of tens or even hundreds of
tables. Finally, some challenges like error propagation are not as
severe as initially thought. Nevertheless, given their current abili-
ties, LLMs are still not sufficient to achieve the level of performance
required for enterprise-scale data engineering.

Outlook. We believe that LLMs out-of-the-box will not be sufficient
to address the complexity of enterprise tasks becausemuch of it is in-
herent to enterprise needs. Instead, complex tasks call for carefully-
designed systems that use LLMs as reasoning or tool-calling agents
while effectively incorporating human-LLM interactions. Wornow
et al. [64] propose demonstrating workflows to foundation mod-
els, which is promising for automating frequently occurring tasks
but still requires manual overheads. Another promising approach
uses LLMs to create structured plans for compound tasks similar to
recent advancements in LLMs for query planning [34, 59] before

executing these plans step-by-step using existing approaches (e.g.,
heuristics for schema matching) or even the LLM itself. This direc-
tion is reinforced by our findings: our experiments show that the
stepwise execution of compound tasks improves performance over
end-to-end execution while also enabling the LLM to correct earlier
mistakes, for example by using information from subsequent steps.

6 THE KNOWLEDGE CHALLENGE
Since LLMs are primarily trained on public data, they lack informa-
tion about a company’s internal business processes and policies, as
well as about its proprietary tools and systems [26]. In this section,
we analyze how the lack of company-specific knowledge in LLMs
affects their accuracy on data engineering tasks.

6.1 Knowledge Challenges
We identify two main categories of challenges: the lack of knowl-
edge that is not available to LLMs but does exist in documentation
and other company-internal sources, and company-specific exten-
sions of databases that are typically not documented at all.
C9: Proprietary but available knowledge. Enterprises often
use proprietary tools and systems to solve data engineering chal-
lenges. In contrast to well-established technologies like SQL, there
is typically much less documentation about them available on the
web. Therefore, it is reasonable to assume that LLMs trained on
public data have little parametric knowledge about these tools and
systems. One example is the domain-specific query language SIG-
NAL [23], which SAP provides to its customers for exploring data
about business processes. SIGNAL resembles SQL in many aspects
but also includes domain-specific features and syntax differences
tailored towards process mining. While the language itself is well-
specified on its public documentation page, it has a much smaller
user base than SQL and, therefore, a smaller online footprint in
terms of help pages, Q&A threads, and blog posts. Nevertheless,
SIGNAL is frequently used by data engineers and must thus be
well-supported by LLMs, for example, to translate natural language
requests into SIGNAL queries.
C10: Proprietary and unavailable knowledge. Enterprise sys-
tems like those from SAP support company-specific changes and
extensions to customize the system for individual customers. For
example, customers can use hooks to add custom business logic.
On the data level, customization means extending the database
schema by adding customer-specific columns to existing tables or
even additional tables to the customer namespace. In our analy-
sis of real-world systems at SAP, we have come across thousands
of such customer-defined tables. Since these changes are highly
company-specific, they are typically not documented publicly—if
they are documented at all. Moreover, customers sometimes “mis-
use” existing attributes of the standard SAP schema for different
purposes. Such digressions from the public documentation pose
significant challenges for data engineering with LLMs as well.

6.2 Experiments & Results
To analyze how challenge C9 affects data engineering with LLMs,
we use LLMs to translate natural language requests into the domain-
specific query language SIGNAL. The specifics of SIGNAL provide
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Figure 10: Text-to-SIGNAL execution accuracy. The accuracy
remains low even when including hand-picked examples and
the SIGNAL documentation in the prompt. By contrast, LLMs
achieve high accuracies on Text-to-SQL benchmarks [14, 15].

a good example for the proprietary knowledge primarily available
in company-internal documentation. For challenge C10, we refer
to Figure 1 as well as an additional experiment in Appendix A.5 of
our extended technical report.
Exp. 10: Text-to-SIGNAL. In this experiment, we use LLMs to
translate natural language requests into the proprietary query lan-
guage SIGNAL, as shown in Figure 2 (right).

Setup. We experiment on a set of 200 randomly-sampled pairs of
natural language requests and SIGNAL queries from a larger dataset
in use at SAP. Given a request like Retrieve the number of unique
invoices from ’defaultview-255’, we prompt the LLM to generate a
corresponding SIGNAL query. We compare three approaches: First,
we provide the LLM only with a short instruction explaining the
task (Zero-shot). Next, we add three fixed example queries that were
hand-picked from the SIGNAL documentation (+ Examples). Finally,
we include both the examples as well as the documentation of the
SIGNAL language in the prompt (+ Documentation). We manually
tune our prompts in all scenarios to alleviate obvious mistakes and
hint at the differences between SIGNAL and SQL. To evaluate the
generated queries, we compute the execution accuracy by executing
the ground truth and predicted query and comparing their results.

Results. Figure 10 (left) shows the results of this experiment. Only a
small fraction of the generated SIGNAL queries are correct. Adding
example queries to the prompt brings the biggest improvements
in accuracy. By contrast, additionally including the documenta-
tion of the SIGNAL language in the prompt improves the accuracy
only for some models, indicating that simply providing the re-
quired documentation during inference is not a viable solution.
Finally, a comparison with the results on popular Text-to-SQL
benchmarks [32, 68] (Figure 10 right) shows that the out-of-the-box
accuracy for Text-to-SIGNAL is substantially lower.
Why are examples and documentation not helping? To bet-
ter understand why exactly the models fail, we conduct an error
analysis that categorizes the queries into those that execute with
correct or incorrect results, and those that fail to execute because of
syntactic or semantic errors. We focus on GPT-4o, the only model
that correctly translated a non-negligible number of requests in
all three configurations. Figure 11 (left) shows that most of the
generated queries fail to execute because of syntactic or semantic
errors, with the largest number of failures caused by syntax errors.
Adding example queries and documentation to the prompt causes
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Figure 11: Text-to-SIGNAL errors for GPT-4o. Most queries
fail to execute because of syntactic or semantic errors. Exam-
ples and documentation in the prompt reduce syntax errors
but cause semantic errors, as the model confuses parts of the
documentation with the input question. Most syntax errors
are caused by small differences between SIGNAL and SQL.

the number of syntax errors to decrease. However, the number of
queries that contain semantic errors or return incorrect results in-
creases as we add examples and documentation. A closer inspection
of the generated queries reveals that the models often confuse parts
of the documentation, like the column names used in explanations,
with the request they have to translate. As a result, the number of
fully correct queries is far from satisfactory even when including
hand-picked examples and the documentation in the prompt.
A bias towards SQL. Another interesting effect is that the models
tend to generate SQL-specific syntax and ignore the specifics of
SIGNAL. To further dive into the root causes, we manually analyze
the 75 syntax errors generated by GPT-4o in the (+ Documentation)
setting and group them into three categories: the incorrect use of
GROUP BY and ORDER BY, which in SIGNAL requires numerical
indices instead of column names, the use of invalid characters, like
an asterisk (*) in a count statement which exists in SQL but not
in SIGNAL, and the incorrect structure of the overall statement.
As shown in Figure 11 (right), we find that even when explicitly
including rules in the prompt to avoid such SQL-related syntax
errors, the models still generate erroneous SIGNAL queries. This
behavior indicates a strong bias of LLMs towards SQL, whichmay be
caused by its much higher prominence in their training data. Similar
problems could also exist in other scenarios where enterprise data
and tasks differ only slightly from public knowledge, like currency
conversion or company-specific data types.

6.3 Discussion
Learnings. Our experiments show that the lack of enterprise-specific
knowledge affects the performance of LLMs. Even when including
hand-picked examples and the full documentation in the prompt,
LLMs are unable to actualize this information to solve enterprise
tasks like Text-to-SIGNAL. An interesting finding here is that bi-
ases in the models’ knowledge towards public sources, like their
understanding of SQL, are hard to overcome even with explicit
instructions, making LLMs difficult to adapt without more heavy-
weight solutions like fine-tuning that cause additional overheads.

Outlook. Our results demonstrate that simple out-of-the-box ap-
proaches like few-shot prompting and including relevant documen-
tation in the prompt are insufficient. While we believe that more
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involved approaches, like fine-tuning LLMs for specific enterprise
use cases, could help them acquire the necessary domain knowl-
edge, these approaches require extensive work, for example to label
the necessary data for fine-tuning for each individual task. More-
over, even self-supervised (task-agnostic) pre-training on enterprise
corpora comes with important challenges: enterprise data often con-
tains valuable and sensitive information, which raises significant
privacy and copyright concerns. Therefore, we believe that future
research should explore controlled alternatives, such as working
with synthetic or anonymized corpora that reflect enterprise data
characteristics [53]. Despite all these challenges, we believe that
LLMs tuned to enterprise settings are a promising direction and
ideas in that direction have recently gained traction in industry to
adapt foundation models for enterprise environments.4

7 COSTS AT ENTERPRISE SCALE
The cost of using LLMs at enterprise scale is an important orthogo-
nal dimension to the challenges discussed before. In this section,
we want to briefly highlight three main cost drivers: the large scale
of the data, the algorithmic complexity of the tasks, and the high
tokenizer fertility [52], which is a general problem on tabular data.
Data scale. As described in Section 4, enterprise databases are sub-
stantially larger than typical data engineering benchmark datasets,
with SAP databases often reachingmultiple terabytes in size. Table 7
shows how this large size translates into high LLM costs. Processing
one gigabyte of tabular data from our SAPCTA corpus with GPT-4o-
Mini (OpenAI’s cheapest model) already costs about USD 71. Note
that this cost does not include generating any output tokens, which
are substantially more expensive than input tokens, as shown in
Table 1. Nevertheless, the input token costs already provide a rough
estimate of the expected high costs. For example, processing the
entire customer database with GPT-4o-Mini would cost USD 463T,
and using the o1 reasoning model would cost USD 46M. These
high costs clearly prohibit using LLMs on large fractions of the
enterprise data. This is especially problematic as our experiments
in Sections 4-6 have shown that cheaper models like GPT-4o-Mini
often underperform more expensive models.
Algorithmic complexity. As a second cost driver, we want to
highlight the algorithmic complexity of the ways in which many
data engineering tasks are currently approached with LLMs. One
example is the task of entity matching, which current approaches
address by using LLMs to compare pairs of entities [33, 49]. This ap-
proach has an algorithmic complexity of 𝑂 (𝑁 ×𝑀), where 𝑁 and
𝑀 are the numbers of entities in each table, making it intractable
even for medium-sized tables. For example, matching just 1,000
payments to 1,000 invoices already costs USD 1,462, and matching
10,000 payments to 10,000 invoices would cost USD 146,165. Future
work should therefore focus on reducing the cost of LLM-based
approaches by rethinking task formulations and combining LLMs
with smaller fine-tuned models [37, 71] and other techniques. For
example, for entity matching, Wang et al. [62] propose a task for-
mulation where, given a row from one table, the LLM is asked to
identify all matching rows from the other table in one step. This re-
duces the complexity to𝑂 (𝑁 ) if the second table fits in context, and
4https://www.databricks.com/company/newsroom/press-releases/databricks-and-
anthropic-sign-landmark-deal-bring-claude-models (last accessed November 4, 2025)

Table 7: Tokens per byte and cost per GB for textual and en-
terprise data. Enterprise data requires twice as many tokens
per byte, leading to twice the cost per GB. Encoding the entire
SAP customer database causes high costs for all models.

Tokens
per Byte

USD per GB

GPT-4o-Mini GPT-4o o1

Wikipedia 0.23 34 574 3,442
SAPCTA (CSV) 0.47 71 1,181 7,085

USD for entire database: 462,923 7,715,380 46,292,282

Pricing by OpenAI in February 2025.

to𝑂 (𝑁 ×𝑀/𝐵) when batching is used with batch size 𝐵, offering a
substantial reduction in cost without compromising accuracy.
Tokenizer fertility. A final important cost driver is the high fer-
tility of existing tokenizers on tabular data. The tokenizer fertility
measures the number of tokens required to represent a single piece
of text [52]. Since tokenizers are trained to represent natural lan-
guage text, their vocabulary contains tokens even for long words.
By contrast, tabular enterprise data contains lots of symbols and
numerical values. As shown in Table 7, this results in twice the
number of tokens required to represent each byte of enterprise data
compared to natural language text fromWikipedia, leading to twice
the cost per gigabyte. Even if the cost of new models continues
to decrease, the costs for processing tabular data will thus remain
twice as high. Therefore, future work should focus on creating new
tokenizers specifically designed for enterprise data, as well as on
creating more efficient textual representations for such data [58].

8 CONCLUSION
In this paper, we systematically analyzed the challenges involved
in applying LLMs to real-world data engineering scenarios in en-
terprises. Through experiments with multiple LLMs on a diverse
set of tasks, we have shown that the effectiveness of these models
is substantially affected by enterprise-specific complexities along
the dimensions of data, tasks, and knowledge. While the absolute
numbers of the observed effects may change with more experi-
ments and newer models, the large gap between enterprise and
public scenarios shows the clear need for future research. On the
same note, we see a strong need for enterprise-specific LLMs, with
many recent activities emerging from research and industry. We
hope that our insights and learnings provide a helpful guide and
inspiration for future efforts to make LLMs viable for enterprise
data engineering and support their adoption in industry.
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