
An Experimental Evaluation of HybridQuerying on Vectors
Jiaxu Zhu

Huazhong University of Science and
Technology

Jiayu Yuan
Huazhong University of Science and

Technology

Kaiwen Yang
Huazhong University of Science and

Technology

Xiaobao Chen
Huazhong University of Science and

Technology

Shihuan Yu
Huazhong University of Science and

Technology

Hongchang Lv
Huazhong University of Science and

Technology

Yan Li∗
Wuhan University of Technology

Bolong Zheng∗
Huazhong University of Science and

Technology

ABSTRACT
Recent studies demonstrate the significant practical value of hy-
brid queries, which integrate vector search with structured filters
(e.g., attribute and range filtering) for refined retrieval. However,
current evaluations lack unified benchmark standards and system-
atic assessment methodologies. Existing studies either fail to cover
mainstream algorithms or omit systematic comparisons or in-depth
analysis on different methods. To address this issue, we design a
comprehensive evaluation framework for hybrid queries. Our study
introduces 15 hybrid query algorithms and systematically classifies
them based on multiple dimensions, such as index organization
and filtering strategy, providing a reference for the categorization
of hybrid queries. In the experiments, we construct standardized
attribute and range sets for attribute filtering and range filtering, re-
spectively, enabling a unified comparison of algorithms in terms of
index construction efficiency and query performance. Furthermore,
we evaluate the robustness of the algorithms across multiple dimen-
sions, including data distributions, platforms, and scalability on a
100-million-scale dataset. Additionally, we conduct an in-depth anal-
ysis of the experimental results based on the underlying principles
of algorithms. Extensive experimental results reveal the strengths
and weaknesses of each algorithm. Based on the findings, we de-
velop a set of practical guidelines for algorithm selection, offering
reliable references for different application scenarios. Furthermore,
we identify potential directions for improvement to address the
current limitations of these algorithms.

PVLDB Reference Format:
Jiaxu Zhu, Jiayu Yuan, Kaiwen Yang, Xiaobao Chen, Shihuan Yu,
Hongchang Lv, Yan Li, and Bolong Zheng. An Experimental Evaluation of
Hybrid Querying on Vectors. PVLDB, 19(2): 183 - 195, 2025.
doi:10.14778/3773749.3773757
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhujx001/Hybrid-ANNS-Experiment.

∗Yan Li and Bolong Zheng are the corresponding authors
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773757

1 INTRODUCTION
Nearest Neighbor (NN) search [12] aims to find the closest vector
in a given space and serves as a fundamental algorithm in vector
retrieval, with widespread applications in recommendation systems
and image retrieval [40]. However, with the exponential growth
of data volume and the increasing dimensionality of vectors [44],
traditional NN search methods struggle to meet the demands of
real-time search. To address this issue, studies turn to more efficient
approaches - Approximate NN (ANN) search [6, 10, 17, 29], which
significantly improve search efficiency by constructing effective
indexing structures, albeit at the cost of reduced accuracy.

Nevertheless, as application scenarios grow increasingly com-
plex, simple ANN search can no longer satisfy all practical needs.
For instance, Figure 1 illustrates a case where users on e-commerce
platforms search for clothing items by retrieving visually similar
products based on an image. Additionally, users may impose fur-
ther requirements such as price, color, or brand preferences. Such
scenarios necessitate a retrieval system capable of simultaneously
addressing vector similarity (e.g., product image) and attribute con-
straints (e.g., brand name) [39]. When the constraint involves a
specific attribute value, this problem refers to Attribute Filtering
Approximate Nearest Neighbor (AF-ANN) search [18, 42]. For ex-
ample, a user may seek a green piece of clothing. If the constraint
involves a range condition, the problem is known as Range Filtering
Approximate Nearest Neighbor (RF-ANN) search [46, 49]. For in-
stance, filtering clothes priced between 100 and 200. To meet these
application demands, hybrid querying techniques [25, 45] emerge.
Hybrid queries integrate vector retrieval with conditional filtering,
optimizing their interaction to significantly enhance efficiency and
flexibility in complex query scenarios.

1.1 Motivation
In recent years, hybrid query algorithms develop rapidly, giving rise
to numerous attribute filtering algorithms [38, 42] and range filter-
ing algorithms [46, 49]. In practical applications, the performance
of hybrid query algorithms is influenced not only by unstructured
data but also closely relates to structured data. For attribute filtering
algorithms, factors such as the number of attributes, attribute dis-
tribution [11], and attribute selectivity [41, 45] significantly impact
algorithm performance. As for range filtering algorithms, the width

183

https://doi.org/10.14778/3773749.3773757
https://github.com/zhujx001/Hybrid-ANNS-Experiment
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773757
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Hybrid Query Example

of the query range and the characteristics of different datasets play
an important role in determining algorithm performance.

Although existing studies [7, 43] conduct benchmark evalua-
tions of ANN methods, a systematic experimental study specifically
targeting hybrid query algorithms is still lacking. Despite BigANN
2023 [35] evaluates the performance of some hybrid query algo-
rithms, it still presents the following notable limitations: 1) The
evaluation covers a limited number of algorithms and fails to com-
prehensively include mainstream methods. 2) It only uses a single
dataset and focuses solely on single-attribute and dual-attribute
query scenarios, while not considering the impact of attribute selec-
tivity on query performance. 3) It only simply compares the query
speed and recall of different algorithms, but does not consider key
metrics such as the time and space overhead of each algorithm, and
it lacks an in-depth analysis of the specific reasons for algorithm
performance.

To fill this gap, we conduct the first comprehensive experimental
evaluation of hybrid query algorithms, systematically analyzing
their index construction costs and query efficiency across diverse
scenarios. Furthermore, we rigorously assess the robustness of each
algorithm under different experimental settings, thereby providing
valuable insights for future research and practical applications.

1.2 Our Contributions
Our study focuses on the problem of ANN search in hybrid query
scenarios and provides a comprehensive review and evaluation
of existing algorithms and systems. The main contributions are
summarized in the following 5 aspects.

(1) Systematic Classification and Overview. We systemati-
cally classify 6 representative attribute filtering algorithms along
multiple dimensions, including index organization, filtering strate-
gies, Boolean logic support, and index construction methods. In
addition, we survey 5 range filtering algorithms, and provide an
overview of one vector library and 3 vector databases. These efforts
offer a unified reference framework for future research.

(2) Strengthening Datasets and Experimental Settings for
Fair Evaluation. To address the lack of standardized benchmarks
in attribute filtering research, we enrich commonly used datasets
by generating attribute values tailored to real-world scenarios. We
design comprehensive experimental settings that reflect diverse ap-
plication requirements, including varying vector datasets, attribute
distributions, number of attributes participating in index construc-
tion, number of query attributes, and selectivity. Furthermore, to
further investigate the scalability and adaptability of the algorithms,

we also conduct experiments on a large-scale dataset and two multi-
modal datasets. These enhancements provide a unified evaluation
framework that supports fair, consistent, and reproducible com-
parisons across different algorithms, laying a solid foundation for
future research in hybrid query.

(3) Evaluation of Attribute Filtering Algorithms. We sys-
tematically evaluate 6 attribute filtering algorithms, 1 library, and
3 databases on 11 real-world datasets. By analyzing performance
under varying numbers of attributes, we reveal the strengths and
weaknesses of each method. We further examine their behavior
under different attribute selectivity to assess robustness and adapt-
ability in complex query scenarios. Evaluationmetrics include index
construction time, index size, peak memory usage, QPS, and search
accuracy.

(4) Evaluation of Range Filtering Algorithms. We bench-
mark algorithms that support range filtering on 6 real-world datasets,
using varying query range settings in the experiments. The ex-
perimental results show the performance of these algorithms in
terms of index construction efficiency, storage overhead, and query
performance. We also further analyze the factors that affect the
performance of the range filtering algorithms.

(5) Recommendations and Challenges. Based on the experi-
mental results, we provide algorithm selection recommendations
for common application scenarios and highlight key challenges in
the field of hybrid query. These challenges include limited Boolean
logic support, the lack of multi-attribute range filtering capabili-
ties, and the sensitivity of algorithms to selectivity. Currently, few
methods simultaneously support both attribute filtering and range
filtering, pointing to potential directions for future research.

2 PRELIMINARIES
2.1 Problem Definition
We first define the Nearest Neighbor (NN) search problem.

Definition 2.1 (NN Search). Let 𝐷 = {𝑣1, . . . , 𝑣𝑛} be a dataset of 𝑛
𝑑-dimensional vectors. Given a query 𝑄 = (𝑞𝑣, 𝑘), where 𝑞𝑣 is the
query vector and𝑘 is a positive integer, the NN search aims to return
a set 𝑅 ⊆ 𝐷 with |𝑅 | = 𝑘 , such that for any 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝐷 \ 𝑅,
dist(𝑞𝑣, 𝑥) ≤ dist(𝑞𝑣, 𝑦). Here, dist(·, ·) denotes the distance metric,
and we adopt Euclidean distance in this paper.

However, to address the curse of dimensionality faced by NN
search [21], existing studies focus on approximate solutions, known
as ANN search. We typically use Recall@𝑘 =

|𝑅∩𝑅̂ |
𝑘

to evaluate the

184

accuracy of ANN search algorithms, where 𝑅 denotes the true top-
𝑘 nearest neighbors of the query, and 𝑅 denotes the approximate
top-𝑘 nearest neighbors returned by the ANN search algorithm.

As the complexity of real-world application requirements in-
creases, NN search has evolved into hybrid NN search with attribute
constraints. Depending on the nature of the attribute constraints,
hybrid NN search can be divided into two categories: 1) Attribute
Filtering Nearest Neighbor (AF-NN) search. 2) Range Filtering Near-
est Neighbor (RF-NN) search.

Definition 2.2 (AF-NN Search). Let 𝐷 = {(𝑣1, 𝑠1), . . . , (𝑣𝑛, 𝑠𝑛)} be
a dataset of 𝑛 𝑑-dimensional vectors, each 𝑣𝑖 associated with an
attribute set 𝑠𝑖 . Given a query 𝑄 = (𝑞𝑣, 𝑞𝑠 , 𝑘), where 𝑞𝑠 is the query
attribute set, the AF-NN search aims to return a set 𝑅 ⊆ 𝐷𝑠 with
|𝑅 | = 𝑘 , such that for any 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝐷𝑠 \ 𝑅, dist(𝑞𝑣, 𝑥) ≤
dist(𝑞𝑣, 𝑦), where 𝐷𝑠 = {𝑣𝑖 | (𝑣𝑖 , 𝑠𝑖) ∈ 𝐷 ∧ 𝑞𝑠 ⊆ 𝑠𝑖 }.

Definition 2.3 (RF-NN Search). Let 𝐷 = {(𝑣1, 𝑎1), . . . , (𝑣𝑛, 𝑎𝑛)} be
a dataset of 𝑛 𝑑-dimensional vectors, each 𝑣𝑖 associated with an
attribute value 𝑎𝑖 . Given a query 𝑄 = (𝑞𝑣, [𝑎min, 𝑎max], 𝑘), where
𝑎min and 𝑎max denote the lower and upper bounds of the query
range, respectively, the RF-NN search aims to return a set 𝑅 ⊆ 𝐷𝑎

with |𝑅 | = 𝑘 , such that for any 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝐷𝑎 \ 𝑅, dist(𝑞𝑣, 𝑥) ≤
dist(𝑞𝑣, 𝑦), where 𝐷𝑎 = {𝑣𝑖 | (𝑣𝑖 , 𝑎𝑖) ∈ 𝐷 ∧ 𝑎min ≤ 𝑎𝑖 ≤ 𝑎max}.

Similar to the conventional ANN search, most existing studies
focus on approximate solutions for hybrid NN search, referred to
as hybrid ANN search, which includes both AF-ANN search and
RF-ANN search.

2.2 Index Organization in Hybrid Query
Current hybrid query methods mainly adopt graph-based [14, 16,
20, 22, 28] or Inverted File Index (IVF)-based [23] index organiza-
tion. Here, we briefly review the core concepts of these indexes
and outline how attribute and range constraints are embedded to
support hybrid queries functionality.
Graph. Graph structures accelerate ANN search by connecting
each data point with its nearest neighbors, as shown in Figure 2a.
During querying, algorithms start from an initial point and use a
greedy strategy to progressively move towards closer neighbors
until convergence (e.g., the path from 𝑐 to 𝑗 in the 1NN case).

Graph indexes are widely used in hybrid ANN search due to
their efficiency. To support hybrid queries, in attribute filtering, a
common practice involves attaching attribute metadata to nodes or
edges, thereby skipping parts that do not satisfy query conditions
during traversal (e.g., NHQ, Filtered-DiskANN, ACORN). In range
filtering, edges typically store valid attribute intervals, and traver-
sal proceeds only along edges that satisfy range constraints, thus
narrowing the search space (e.g., SeRF, DSG).
IVF. IVF divides data into multiple clusters through a clustering
algorithm (e.g., K-Means), with each cluster represented by a center
(Figure 2b). During querying, algorithms search only a few clusters
closest to the query point, which reduces computational load.

IVF-based indexes also offer unique advantages in hybrid ANN
search scenarios, including natural support for pre-filtering, low
memory footprint, and small index size. Efficient filtering is achieved
by excluding vectors that do not satisfy attribute constraints before
distance computation (e.g., Faiss, Milvus). Furthermore, hierarchical

Result Point Entry Point

Query(q)

(a) Graph Index

C

C

C

C
Query(q)

C
C

C

(b) IVF Index

Figure 2: Graph Index and IVF Index

partitioning by attributes can form finer-grained sub-clusters to
enhance filtering efficiency (e.g., CAPS, Puck).

3 HYBRID QUERYING ALGORITHMS
Table 1 provides a comparative overview of 6 attribute filtering and
5 representative range filtering algorithms.

3.1 Attribute Filtering Algorithms
NHQ 1 [42] Traditional attribute filtering algorithms usually per-
form attribute constraints and ANN search separately. In contrast,
NHQ is the first to implement simultaneous filtering, integrating
both aspects into a unified framework. NHQ constructs an index
based on a nearest neighbor graph and introduces a fusion dis-
tance that jointly captures vector similarity and attribute similarity.
Leveraging this fusion distance, NHQ unifies vector similarity and
attribute matching into a single comprehensive similarity measure
and builds the graph accordingly. During the query process, NHQ
efficiently prunes irrelevant edges via this composite index, en-
abling fast retrieval of results that satisfy both vector similarity and
attribute constraints.
Filtered-DiskANN 2 [18] Filtered-DiskANN also supports simulta-
neous filtering. Built upon the Vamana [38] graph-based ANN index,
it incorporates attribute information directly into the graph during
index construction. This integration ensures that the index reflects
both vector similarity and attribute constraints. Filtered-DiskANN
proposes two indexes: 1) FilteredVamana, which incrementally
builds the graph index by inserting data points and dynamically
adding edges, allowing adaptive expansion. 2) StitchedVamana,
which adopts a batch construction strategy—constructing separate
Vamana subgraphs for each attribute, followed by merging and
edge pruning.
CAPS 3[19] CAPS introduces a hierarchical sub-partitioning algo-
rithm inspired by Huffman trees, termed the Attribute Frequency
Tree (AFT), to overcome the coarse granularity of traditional IVF-
based methods. It adopts a two-level partitioning strategy: 1) The
first level clusters vectors based on similarity using K-Means or
learning-based methods such as BLISS. 2) Within each cluster, AFT
partitions data further based on attribute frequencies, enabling
finer-grained indexing and improving query efficiency.
ACORN 4 [32] ACORN adopts a predicate-agnostic indexing frame-
work. It is based on Hierarchical Navigable Small World (HNSW)
[30] and builds a denser hierarchical graph through neighborhood
1https://github.com/KGLab-HDU/TKDE-under-review-Native-Hybrid-Queries-via-
ANNS
2https://github.com/microsoft/DiskANN
3https://github.com/gaurav16gupta/constrainedANN
4https://github.com/stanford-futuredata/ACORN

185

Table 1: Overview of AF-ANN and RF-ANN Search Algorithms

Characteristics/Algorithms NHQ Filtered Stitched CAPS ACORN UNG Puck DSG iRange SeRF UNIFY Win

AF

AND Y N N Y Y Y Y
AF

Not Support
OR N Y Y N Y Y Y
Flexible Attributes N Y Y Y Y Y Y
Complex Boolean N N N N Y N N

RF N N N N Y N N Y Y Y Y Y
Filter Type C C C C B B B B B B A/B/C A
Dynamic Insert Y Y N Y Y Y Y Y N N Y N
Multi Thread N Y Y Y Y Y Y N Y Y Y Y
Disk Support N Y N N N N N N N N N N
Base Graph Graph Graph IVF Graph Graph IVF Graph Graph Graph Graph Graph

Filtered: FilteredVamana, Stitched: StitchedVamana, Win: WinFilter. AND / OR: Whether the algorithm supports the corresponding logical operations. Flexible Attributes: Allows the
number of query attributes to differ from that in index construction. Complex Boolean: Supports NOT or nested Boolean expressions. Dynamic Insert: Supports dynamic unordered
data insertion;SeRF requires ordered insertion. Multi Thread: Supports multi-threaded search. Disk Support: Supports disk-based storage. Base: Underlying ANN index structure used.
A: Post-filtering (Filter after ANN search), B: Pre-filtering (Filter before ANN search), C: Simultaneous filtering (Filter simultaneously with ANN search), Y : Support, N : Unsupport.

expansion and edge pruning. During search, it filters out nodes
violating constraints, maintaining a valid nearest neighbor graph.
ACORN includes two indexes: 1) ACORN-𝛾 , which expands neigh-
bor lists during construction, trading memory for higher perfor-
mance; 2) ACORN-1, which extends neighbor lists via second-hop
neighbors during search, reducing index size with minor perfor-
mance loss.
UNG 5 [11] UNG serves as a unified framework that integrates
various graph-based ANN indexes to support hybrid queries. It
first groups the dataset by attribute sets, ensuring that vectors in
each group share identical attributes. Then, it constructs a Label
Navigating Graph (LNG) to encode inclusion relationships among
attribute sets. Within each group, UNG builds graph-based ANN
indexes (e.g., Vamana, HNSW) and connects them via cross-group
edges to enable efficient cross-group search.
Puck 6 [9] Puck utilizes two-level quantization for indexing. It
maintains an attribute set for each cluster to track vector attributes.
During the query process, it employs pre-filtering to exclude clus-
ters without required attributes, thereby reducing the search space.

3.2 Range Filtering Algorithms
SeRF 7 [49] Building a separate neighbor graph (e.g., HNSW) for
each attribute range could ensure efficient querying but incurs
an 𝑂 (𝑛2) cost in constructing and storing 𝑛 graphs. Since many
edges are shared across these graphs, SeRF introduces a validity-
range aware design where each edge records the interval in which
it is valid, indicating in which subgraphs the edge remains valid.
This compresses 𝑛 graphs into a single unified graph, maintaining
search effectiveness while significantly reducing memory and index
construction overhead.
WinFilter 8 [15]WinFilter proposes a structural partitioning frame-
work called the 𝛽-Window Search Tree (𝛽-WST). After the dataset
is sorted by attribute values, it is partitioned into multiple intervals
and organized into a tree structure. Each node in the tree corre-
sponds to an attribute range and maintains a local ANN index (e.g.,
Vamana). For a range filtering query,WinFilter only searches within
nodes overlapping the query range and merges partial results. With

5https://github.com/YZ-Cai/Unified-Navigating-Graph
6https://github.com/baidu/puck
7https://github.com/rutgers-db/SeRF
8https://github.com/JoshEngels/RangeFilteredANN

a tree height of 𝑂 (log𝑛), each query accesses at most 𝑂 (log𝑛)
sub-indexes, resulting in significant speedups.
iRange 9 [46] iRange partitions the dataset into intervals based on
attribute values and independently constructs a local graph for each
interval, storing only edge information. During the query process,
the relevant local graphs overlapping with the query range are
merged into a temporary search graph, and a pruning strategy is
applied to enable efficient search.
DSG 10 [33] DSG introduces the first dynamic RF-ANN framework
supporting data insertion with unordered attributes while main-
taining efficient range filtering. DSG relies on two data structures:
1) A rectangle tree partitions query space into rectangular regions,
each corresponding to a group of queries sharing nearest neighbors.
2) A dynamic segment graph is a neighbor graph where each edge
is annotated with its valid attribute range. With these structures,
only few regions need updates when inserting new data. The sys-
tem considers only edges valid for current attribute range to boost
efficiency during search.
UNIFY 11 [27] UNIFY introduces the Segmented Inclusive Graph
(SIG), which partitions the dataset into segments by attribute and
constructs an independent neighbor graph for each segment. These
segment graphs are then integrated into a unified global graph.
Its hierarchical variant, HSIG, enhances SIG by incorporating the
multilayer design of HNSW, skip lists, and edge bitmaps for efficient
range localization and post-filtering pruning. UNIFY supports 3
filtering strategies—pre-filtering, post-filtering, and simultaneous
filtering—enabling robust and flexible performance.

3.3 Vector Libraries and Databases
The vector library and databases discussed in the following are not
explicitly designed for hybrid query, but they support both attribute
filtering and range filtering.
Faiss12 [24] Faiss is an efficient similarity search library. It supports
hybrid search by using an ID selector to filter data before performing
ANN search. In Faiss, we use the HQI batch optimization strategy in
the IVF index. It groups queries with the same filter conditions. Each
group only runs the filter once. It uses efficient matrix operations
to compute vector similarity in batches.

9https://github.com/YuexuanXu7/iRangeGraph
10https://github.com/rutgers-db/DynamicSegmentGraph
11https://github.com/sjtu-dbgroup/UNIFY
12https://github.com/facebookresearch/faiss

186

https://github.com/facebookresearch/faiss

PASE13 [47] PASE is a vector index plugin for PostgreSQL. It uses
a post-filtering strategy. Since the candidate set size is fixed, it may
fail to return enough top-k results.
VBASE 14 [48] VBASE is also a vector plugin for PostgreSQL. Unlike
PASE, it applies filters during the HNSW index traversal, discarding
unmatched nodes on the fly. This strategy ensures that enough
valid results are returned .
Milvus 15 [41] Milvus is a vector database designed for large-scale
similarity search. In hybrid queries, it adopts a pre-filtering strategy,
similar to the ID selector mechanism used in Faiss.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. Our experiments employ 12 real-world datasets: Au-
dio [5], Enron [37], GIST1M [3], GloVe [34], Msong [4], SIFT1M [3],
Deep1M [8], WIT-Real [36], YT-Audio-Real [1], Text2image [13],
Text2image-Mix, and Deep100M.

Table 2 summarizes the key characteristics of all datasets and
their applicable filtering scenarios. In particular, we report the
Local Intrinsic Dimensionality (LID) [26], which is a commonly
used metric to quantify dataset hardness. Following the standard
evaluation protocol [2], we randomly sample 10,000 data points
from each dataset to compute LID. A higher LID value indicates a
more complex dataset.

The first 7 datasets are widely used in existing studies, while the
remaining are common datasets with added real attributes. As they
do not inherently come with attributes, we generate attributes for
them to precisely control attribute quantity and distribution. WIT-
Real and YT-Audio-Real datasets use real attributes. For the WIT-
Real dataset, we use the CLIP model to encode the page title into
vectors, and extract the language type and the length of the context
page description as real attributes. The YT-Audio-Real dataset uses
YouTube8M data, employing the video category ID and view counts
as real attributes.

Additionally, we use theOut-of-Distribution (OOD) dataset Text2-
Image and the large-scale dataset Deep100M to evaluate the gen-
eralization capability of the algorithms. The Text2Image dataset
includes two versions. The original version contains 1 million image
embeddings as the base dataset and uses 10 thousand text embed-
dings as the query set. The Text2Image-Mix version is composed of
0.5 million image embeddings and 0.5 million text embeddings as
the base dataset, with a query set of 5 thousand image embeddings
and 5 thousand text embeddings.

Evaluation Metrics. To assess the overall performance of dif-
ferent algorithms, we adopt a multi-dimensional quantitative eval-
uation framework [43], including the following 5 core metrics:

(1) Recall@k: The proportion of overlap between the returned
approximate 𝑘 nearest neighbors and the ground truth 𝑘

nearest neighbors.
(2) QPS (Queries Per Second): The number of queries pro-

cessed per second.
(3) Index Construction Time: The total time required to

transform the raw dataset into a queryable index structure.

13https://github.com/alipay/PASE
14https://github.com/microsoft/MSVBASE
15https://github.com/milvus-io/milvus

Table 2: Datasets

Dataset Dimension Base Data Queries LID Type Used
Audio 192 53,387 200 14 Audio AF
Enron 1369 94,987 200 23 Text AF
GIST1M 960 1,000,000 1,000 45 Image AF
GloVe 100 1,183,514 10,000 47 Text AF
Msong 420 992,272 200 23 Audio AF
SIFT1M 128 1,000,000 10,000 19 Image AF
Deep1M 96 1,000,000 10,000 22 Image RF
WIT-Real 512 1,000,000 40,300 48 Image Both

YT-Audio-Real 128 1,000,000 10,000 15 Audio Both
Text2Image 200 10,000,000 10,000 59 Text,Image Both

Text2Image-Mix 200 1,000,000 10,000 21 Text,Image Both
Deep100M 96 100,000,000 10,000 22 Image Both

(4) Index Size: The storage size of the persisted index on disk.
(5) Peak Memory Usage: The maximum memory consump-

tion observed during index construction and search.
Setting. We conduct most experiments on a server running

Ubuntu 20.04, equippedwith anAMDEPYC 7K62 processor (2.6GHz)
featuring 256GB of RAM and 192 MiB of L3 cache. We test on large-
scale dataset using a server with 2×AMD 7Y43 processors and 1TB
RAM. Unless otherwise stated, we execute index construction with
32 threads to accelerate the process. The queries are all executed
on a single thread.

Regarding experimental parameter selection, we adopt the rec-
ommended settings from original paperswhen available. For datasets
without suggested parameters, we test different configurations and
select relatively optimal ones for final evaluation. Due to the large
number of datasets and algorithms involved, specific parameters
are not individually listed in the paper but are fully provided in our
code repository.

4.2 Attribute Filtering
Time and Space overhead. To investigate the time and space
overhead of different algorithms, we evaluate 4 key metrics in the
single-attribute scenario: index construction time, index size, build
peak memory and search peak memory. Notably, PASE on GIST1M
and Enron is omitted, as it supports only data with dimensionality
less than 512. Furthermore, we did not measure PASE on large-scale
datasets, as we estimated it would take over 10 days. We use 64
threads to build the index for the large-scale Deep100M dataset,
and 32 threads for the other 6 medium-scale datasets. Notably,
the VBASE and PASE algorithms only support single-threaded
construction.

A. Index construction time. On the medium-scale datasets
(Figure 3a left), among the algorithms limited to single-threaded
construction, PASE has the longest build time. This is because
its on-demand loading and caching strategies frequently trigger
disk I/O and page scheduling, which seriously affects efficiency. In
contrast, VBASE uses full-memory builds and is therefore compar-
atively faster. Among the multi-threaded algorithms, ACORN-𝛾 is
the slowest because it needs to expand the neighbor list and evalu-
ate a large number of candidates. Its build time on some datasets
even exceeds that of the single-threaded VBASE.

On the large-scale dataset Deep100M (Figure 3a right), in ad-
dition to the three methods already mentioned, we also observe
that algorithms based on Vamana (FilteredDiskANN, StitchedVa-
mana and UNG) exhibit significantly increased construction time.

187

https://github.com/alipay/PASE
https://github.com/microsoft/MSVBASE
https://github.com/milvus-io/milvus

(a) Construction Time

(b) Index Size (Including Original Dataset)

(c) Build Peak Memory

(d) Search Peak Memory

Figure 3: Time and Space Overhead (AF)

This is because Vamana adopts a two-pass graph construction and
optimization strategy (greedy search + robust pruning), resulting
in extremely high computational overhead. In contrast, the con-
struction time of IVF-based algorithms grows much more slowly
with dataset size. This is because their shard-based design and high
parallel efficiency, making them more scalable and advantageous
in large-scale scenarios.

B. Index size. As shown in Figure 3b, PASE exhibits significantly
larger index sizes across all supported datasets, mainly due to its
reliance on a large amount of metadata. For medium-scale datasets,
other methods show moderate variation. However, on large-scale
dataset, Graph-based algorithms such as ACORN, FilteredDiskANN,
and UNG tend to exhibit a sharp increase in index size, primarily
due to the large number of candidate neighbors they maintain.
Overall, IVF-based methods tend to produce more compact indexes.

C. Peak memory. We present the peak memory usage during
index construction and query processing in Figure 3c and Figure 3d, re-
spectively. We observe that peak memory usage is generally correlated
with the combined size of the index and the dataset. Methods that
produce larger indexes tend to consume more memory during both
construction and querying, and this trend holds consistently across
different datasets.

However, there are notable exceptions. During index construc-
tion, PASE adopts an on-demand loading strategy, resulting in build
peak memory usage even lower than the final index size. NHQ gen-
erates a large number of candidate neighbors during construction

but retains only a small subset per node in the final index, leading to
high peak memory usage despite a relatively compact index. During
querying, CAPS maintains a large candidate set dynamically, which
significantly increases its search peak memory consumption.

Performance Evaluation. We next evaluate the query perfor-
mance of AF-ANN search methods, focusing on 3 main scenarios.

A. Single-Attribute Index Construction and Single-Attribute
Query. In this scenario, we construct the index using an attribute
and apply filtering conditions on the same attribute.

As shown in Figure 4, as recall approaches 1, search often re-
quires traversing larger candidate sets or deeper graph paths. This
leads to increased computational cost and a sharp QPS drop for most
methods. Despite this, UNG consistently maintains high QPS due to
its LNG structure, which eliminates unnecessary online filtering of
irrelevant attributes and searches only within the subgraph formed
by points satisfying the filtering conditions, thereby improving
query efficiency.

NHQ and StitchedVamana also perform well and show similar
and stable performance across all datasets. This indicates that joint
filtering and search strategies can achieve consistent effectiveness
under high-recall requirements. StitchedVamana outperforms Fil-
teredVamana in query efficiency. This difference stems from their
pruning strategies: StitchedVamana applies pruning after merg-
ing graphs, allowing nodes to accumulate a richer candidate set;
while FilteredVamana applies early pruning, potentially eliminating
useful candidates prematurely. Additionally, Puck and CAPS also
perform relatively well. They further reduce the search space on
IVF indexes by using attribute partitioning, thereby achieving solid
search performance.

Among all methods, vector database systems (PASE, VBASE,
Milvus) show the worst performance. These systems target general-
purpose scenarios but incur communication latency from network
I/O and experience high query processing overhead due to com-
plex query parsing. Additionally, we observe that Faiss+HQI_Batch
outperforms original Faiss, indicating that batch querying via HQI
can effectively enhance query performance.

B. Multi-Attribute Index Construction and Single-Attribute
Query. In this scenario, the index is constructed using 8 attributes
but applies filtering condition on only 1 attribute during the query.

Faiss offers an ID filtering mechanism, it operates solely during
query execution and does not influence index building. ACORN is
designed for single-attribute indexing. In database systems (VBASE,
PASE, Milvus), attributes do not participate in index construction.
Hence, they are excluded from this comparison.

(1) Effect of Multi-Attribute Building on Algorithm Performance
(M vs. S). As shown in Figure 5, Puck demonstrates nearly no perfor-
mance degradation. CAPS shows a slight performance decline due
to the increased query overhead caused by excessive attribute-based
grouping. In contrast, the performance of StitchedVamana, Filtered-
Vamana, NHQ, and UNG drops significantly, with the following
reasons: 1) FilteredVamana increases the complexity introduced by
retaining attribute during index construction. 2) The complexity
of StitchedVamana increases because data points may duplicate
across multiple subgraphs. 3) The fusion distance of NHQ exhibits
sensitivity to the number of attributes, which degrades its effec-
tiveness. 4) UNG has poor performance because large number of
entry points that need to be traversed. It is difficult for a graph

188

Figure 4: Performance of Single-Attribute Index Construction and Single-Attribute Query

Figure 5: Effect of Multi-Attribute Index Construction
on Single-Attribute Query Performance (𝑆 denotes single-
attribute index construction and single-attribute query,𝑀 de-
notes multi-attribute index construction and single-attribute
query)

with multiple entries to have good connectivity, degenerating into
a situation closer to inverted retrieval, and the effect may be greatly
impaired.

(2) Performance of Algorithms under Multi-Attribute Building
(M vs. M). As shown in Figure 5, IVF-based methods (Puck and
CAPS) significantly outperform graph-based methods. The reason
for their superior performance is that they filter out irrelevant
results during the retrieval process rather than searching for more
candidates. In contrast, multi-attribute construction significantly
degrades the performance of graph-based methods, for which we
identify the primary reason. For algorithms with tightly coupled
attribute and graph structures, increasing the number of attributes
during index construction increases graph complexity. This makes
single-attribute queries more difficult and degrades performance.

C. Multi-Attribute Index Construction and Multi-Attribute
Query. Compared to single-attribute filtering, multi-attribute joint
filtering better reflects real-world scenarios. To evaluate algorithm
performance under this setting, we construct the index using 3 uni-
formly distributed attributes and apply filtering on all 3 attributes
simultaneously during queries. In this experiment, we only evaluate
algorithms that support this multi-attribute query scenario.

As shown in Figure 6, UNG still maintains the best performance
across all datasets. Since some strong competing algorithms do not
support multi-attribute querying, CAPS becomes the second-best
algorithm, but its performance on small datasets is relatively poor.
This is because CAPS performs multi-level partitioning based on
attributes on top of the IVF index, which introduces additional
overhead. While this overhead negatively impacts performance on
small datasets, on large datasets, the overhead is amortized, and the

increasing dataset scale makes the advantages of attribute-aware
partitioning evident.

NHQ performs moderately overall in multi-attribute joint filter-
ing scenarios but poorly on small datasets. Its reliance on fusion
distance computations makes it highly sensitive to the number
of attributes, impacting both efficiency and accuracy under multi-
attribute filtering. For IVF-based methods not specifically optimized
for hybrid queries (Faiss and Milvus), their QPS shows a similar and
relatively stable trend as recall varies. Among them, Milvus, as a
general-purpose system, exhibits comparatively poor performance.

Robustness. In the following, we evaluate the robustness of
these algorithms.

A. Attribute Distribution. To evaluate the impact of attribute
distribution, we generate base and query attributes on the SIFT
dataset using four representative distributions: long-tail, normal,
power-law, and uniform. As illustrated in Figure 7, the evaluated
algorithms exhibit varying degrees of sensitivity to attribute distri-
bution shifts. PASE is excluded due to poor past performance. The
proximity of the curves in the figure reflects algorithm sensitivity
to attribute distributional variations. When the curves converge
closely, it demonstrates that the algorithm maintains stable perfor-
mance when attribute distributions change.

Algorithms that are highly sensitive to attribute distribution tend
to rely passively on the statistical characteristics of the attributes
in their design. For instance, graph-based indexing methods like
FilteredVamana and NHQ are prone to degraded connectivity or
distorted structures under power-law distributions, where label fre-
quencies are highly imbalanced. Similarly, VBASE, which employs
a post-filtering strategy, shows efficiency that directly correlates
with attribute selectivity—the more selective the filter, the more
computational resources are wasted on retrieving irrelevant vec-
tors. Faiss, which searches within the nearest clusters, may need
to traverse more clusters to find sufficient results when relevant
data points are unevenly distributed across clusters due to attribute
skew, which impacts performance.

In contrast, algorithms with low sensitivity to attribute distribu-
tion incorporate smarter indexing designs or adaptive query strate-
gies to mitigate these challenges. Milvus, for example, leverages a
built-in query optimizer that dynamically determines whether to
filter by attributes or search vectors first, based on the selectivity
of the query, thus ensuring more robust performance. Other ap-
proaches enhance robustness by separating attribute and vector
indexing into distinct stages: UNG uses a logical graph to navigate
attribute relationships, while CAPS employs an attribute frequency
tree to adapt to power-law patterns. For ACORN–𝛾 , during index
construction, attributes are primarily used for pruning in the lowest-
layer graph, while the upper-layer hierarchical navigation graphs

189

Figure 6: Performance of Multi-Attribute Index Construction and Multi-Attribute Query

Figure 7: Effect of Attribute Distribution on Query Performance

remain largely unaffected. Consequently, changes in attribute dis-
tribution have minimal impact on overall performance.

B. Single-Attribute Selectivity. In hybrid queries, varying at-
tribute selectivity (AS) can significantly impact computational cost
and query efficiency. AS is defined as the proportion of data points
sharing a given attribute value. For example, AS of 1% indicates
that only 1% of the dataset meets the given attribute. To investigate
this effect, we evaluate 4 AS settings (1%, 25%, 50%, and 75%) on the
SIFT1M dataset. Based on the query performance trends of different
algorithms under varying AS, we categorize the algorithms into 3
groups:

(1) Algorithms optimized for low AS. Figure 8a shows the algo-
rithms suitable for low AS. ACORN-1, Faiss, Puck, and UNG all use
pre-filtering strategies to shrink the search space in low AS, leading
to better performance. Pre-filtering strategies significantly reduce
the number of candidate points under low AS, thereby lowering
the cost of computations. As a result, such strategies tend to per-
form better in low AS scenarios. CAPS efficiently skips irrelevant
subpartitions, reducing computational overhead. However, as AS
increases, it must process more subpartitions and handle a larger
dataset. StitchedVamana optimizes local adjacency using indepen-
dent subgraphs, enabling fast localization at low AS. However, at
higher AS, it requires broader global exploration.

(2) Algorithms optimized for high AS. Figure 8b shows the algo-
rithms suitable for high AS. At low AS, FilteredVamana performs
poorly in these scenarios. Its dynamic pruning strategy makes
it difficult to balance vector distance and attribute relevance, re-
sulting in overly restricted search paths. NHQ struggles to locate
relevant regions efficiently, leading to excessive computations on
non-matching nodes. PASE performs poorly at extremely low AS
(e.g., 1%), with recall dropping below 0.2. Its fixed candidate set may

not contain enough valid results after filtering, leading to incom-
plete top-𝑘 results and significantly reducing recall. VBASE relies
on post-filtering, which increases computational overhead at low
AS.

(3) Algorithms insensitive to AS. Figure 8c shows algorithms that
are insensitive to AS. Milvus is mainly limited by system-level
communication overhead, such as API latency. As a result, its query
performance remains largely unaffected by AS variations. ACORN-
𝛾 maintains stable performance across different AS settings by using
a higher index construction parameter 𝛾 . This ensures a relatively
stable average node degree, even after attribute pruning,minimizing
the impact of AS changes on query efficiency.

C. Multi-Modal Queries. We conduct experiments on two
multi-modal datasets Text2image-Mix and Text2image. On Text2image-
Mix dataset, as shown in Figure 9, UNG and NHQ consistently
perform best, followed by CAPS. Although the dataset contains two
modalities, due to the significant differences between the modalities,
they are actually two separate regions in the vector space. The per-
formance is similar to that of the single-modal dataset in Figure 4.
This is because mixed multi-modal queries are actually the same as
conducting experiments on two datasets of the same modality. This
is not actually a difficult query. In contrast, the Text2image dataset
shown in Figure 9 is different. The query set and the base dataset
belong to two completely different modalities. Queries are far from
the dataset points, and the ground truths are more dispersed. To
find the ground truths, algorithms typically need to examine more
points, which leads to degraded performance.

D. Large-scale Dataset. As shown in the Figure 10, on the
Deep100M dataset, UNG and NHQ still exhibit excellent perfor-
mance, demonstrating good adaptability to large-scale datasets.
However, this also comes with significant memory overhead. The

190

(a) Algorithms Optimized for Low AS

(b) Algorithms Optimized for High AS (c) Algorithms Insensitive to AS

Figure 8: Performance of Different Attribute Selectivity (AS) under the Same Algorithm

Figure 9: Multi-Modal Datasets (AF) Figure 10: Large-Scale Dataset (AF) Figure 11: Different Platforms (AF)

clustering-based algorithm Faiss+HQI_Batch shows moderate per-
formance but has very low memory overhead, which also has cer-
tain practical significance. Furthermore, we do not present the
results of StitchedVamana and CAPS, as their recall remained con-
sistently low. StitchedVamana sets the search entry point to 0 by
default, which makes it prone to getting stuck in local optima when
the entry is far from the target region, hindering effective navi-
gation. CAPS, on the other hand, cannot properly run large-scale
dataset experiments because its code implementation does not ac-
count for such scenarios.

E. Different Hardware Environments. To investigate the im-
pact of different server configurations on the performance of the
algorithms, we conduct additional experiments on an Ubuntu 20.04
server equipped with dual Intel(R) Xeon(R) Gold 6330 CPUs @
2.00GHz featuring 128GB of RAM and 84 MiB of L3 cache using
the YT-Audio-Real dataset, and the results are shown in Figure 11.
It is not difficult to see that the relative ranking of the algorithms
under the two servers essentially remains unchanged, indicating
that the performance of these methods is not significantly affected
by differences in CPU configurations. Due to the lower CPU fre-
quency, reduced RAM capacity, and smaller L3 cache, all methods
demonstrate slightly lower QPS values.

4.3 Range Filtering
Due to the limitations of existing range filtering algorithms, our
experiment uses only a single attribute, with the dataset sorted in
ascending order by value. TheWIT-Real and YT-Audio-Real datasets
use real attribute values, while the rest use randomly generated
ones.

(a) Construction Time (b) Index Size

(c) Build Peak Memory (d) Search Peak Memory

Figure 12: Time and Space Overhead (RF)

Time and Space overhead. Similarly, we also evaluate 4 key
metrics mentioned above in Range Filtering algorithms. Notably, all
algorithms use single-threaded index construction onmedium-scale
datasets, and 64-thread construction on the large-scale Deep100M
dataset, except DSG, which only supports single-threading. For
WinFilter, we use its integrated Super-Postfiltering on medium
datasets for best performance, and switch to its base algorithm
Vamana-WST on Deep100M due to construction overhead.

A. Index construction time. As shown in Figure 12a, Faiss and
Milvus, based on the IVF architecture, require less time. This in-
dexing structure enables fast construction through subset sampling
and centroid computation, thereby reducing computational cost.
Milvus performs particularly well on large-scale datasets, mainly

191

due to its cache-aware optimizations, which significantly reduce
CPU cache misses.

In addition, the two HNSW-based methods, ACORN-1 and SeRF,
also achieve short index construction time. ACORN-1 closely fol-
lows the original HNSW construction process and reduces the
number of candidate neighbors in the upper layers to lower compu-
tational overhead. SeRF attaches timestamp information to edges
during construction, making the total build time comparable to that
of a single HNSW graph.

We observe that ACORN-𝛾 , DSG and WinFilter exhibit relatively
long index construction time. Although the first two methods are
also based on HNSW, ACORN-𝛾 extends the neighbor list of each
node to provide more candidate paths, which increases both com-
putational and memory overhead. DSG, on the other hand, incor-
porates a rectangle tree structure for index management, making
the construction process more complex and costly. WinFilter also
incurs high construction cost, as it relies on a tree structure and
builds a separate nearest neighbor graph for each node, which leads
to redundant computations. However, on large-scale datasets, its
preprocessing stage is replaced by the base algorithm Vamana-WST,
effectively avoiding significant time overhead.

B. Index size. As shown in Figure 12b, Among all algorithms,
Faiss has the smallest index size. Because IVF only adds centroid
data and partition information to the vector dataset, the IVF index
is only slightly larger than the vector dataset.

Similar to attribute filtering, PASE requires the most storage.
Additionally, DSG also results in a large index size, especially on
large-scale datasets. As an enhancement over SeRF, DSG stores
additional metadata for each edge in its index structure. While this
design improves retrieval accuracy, it significantly increases the
index size on massive datasets.

C. Peakmemory. As explained in the attribute filtering analysis,
methods with larger index sizes (including the dataset) tend to
exhibit higher peak memory consumption. As shown in Figure 12c
and Figure 12d, range filtering also adheres to this pattern.

WinFilter also presents an exception: its peak memory usage is
also affected by the level of parallelism. Although the final index
size remains relatively small, the peak memory usage increases
significantly during both construction and search. During construc-
tion, this is caused by the parallel building of local indices for each
tree node, which results in substantial temporary memory usage.
Similarly, during search, WinFilter needs to load multiple local in-
dices in parallel for different tree nodes, further contributing to
high peak memory consumption.

Performance Evaluation. In this experiment, we follow the
query range definition adopted by prior work [31]. Specifically, for
a given query, the range ratio is defined as 2−𝑖 when the query
range covers 𝑛

2𝑖 data points, where 𝑛 is the total dataset size.
Based on this definition, we evaluate algorithm performance

under four query range settings: 2−2, 2−4, 2−6, and 2−8. For space
considerations, Figure 13 reports results for only the largest (2−2)
and smallest (2−8) range ratios.

As shown in Figure 13, the algorithms that performed well are
WinFilter, iRange, UNIFY, and Faiss. WinFilter maintains optimal
performance by building an index for each tree node. It then per-
forms an ANN search on the relevant nodes and post-filters the

results, ensuring high recall and QPS. In contrast, iRange dynami-
cally constructs a search graph during querying. This method has
low overhead and performs well in small-range queries, but its
performance degrades as the query range increases. UNIFY utilizes
a skip list for localization followed by a linear scan for searching
in small-range query scenarios. Its performance is generally lower
than graph-based structures like iRange in these cases. Interest-
ingly, Faiss, aided by its efficient ID selector for filtering, calculates
distances for only a small subset of points in small-range scenarios.
Consequently, it can outperform algorithms specifically designed
for range searches.

SeRF, ACORN, and vector databases performed poorly. SeRF
demonstrates relatively weak overall performance, with a pro-
nounced drop in recall under small-range query scenarios. This
is because SeRF compresses the entire HNSW graph by attach-
ing range information to its edges. However, during small-range
queries, its multi-filtering mechanism requires scanning a large
number of edge entries that are irrelevant to the current query
range, introducing fixed computational and memory access over-
head. Additionally, graph traversal may lead to the exploration
of numerous invalid neighbors, increasing the likelihood of the
search becoming trapped in local optima and further degrading
performance. The overall performance of ACORN is poor. Unlike
other algorithms specifically designed for range filtering, ACORN
does not design an index specifically for range queries. Instead, it
adopts a pre-filtering strategy, resulting in poorer performance. The
performance of vector databases is also poor in range queries, as
they are not specifically optimized for such queries. PASE performs
particularly poorly in small range queries, with a recall rate lower
than 0.1, mainly due to its post-filtering strategy.

Robustness. In the following, we evaluate the robustness of
these algorithms.

A. Multi-Modal Queries. Similar to attribute filtering, the per-
formance of range filtering queries on the Text2image-Mix dataset
(Figure 14) is similar to the single-modality query performance
(Figure 13). However, on the Text2Image dataset, these algorithms
exhibit a significant performance degradation (Figure 14). This is
because most of these range query algorithms are graph-based, and
such algorithms require more iterations to find true neighbors in
OOD datasets.

B. Large-scale Dataset. As shown in the Figure 15, On the
Deep100M dataset, the top 3 ranked algorithms (WinFilter, UNIFY,
and iRange) remain unchanged. However, their high performance
is achieved at the cost of extremely high memory consumption
(Figure 12d). In contrast, VBASE and Faiss demonstrate moderate
performance while consuming significantly less memory.

C. Different Hardware Environments. Consistent with Section
4.2.3, we conduct range filtering experiments on the YT-Audio-Real
dataset using two server configurations, with results presented in
Figure 16. Although the third-ranked algorithm differs, we consider
the ranking order remains stable since the performance of the third
and fourth algorithms is comparable. Therefore, different server
configurations only affect the performance of individual algorithms,
with minimal impact on their relative performance ranking.

192

Figure 13: Performance of RF-ANN Search

Figure 14: Multi-Modal Datasets (RF) Figure 15: Large-Scale Dataset (RF) Figure 16: Different Platforms (RF)

5 DISCUSSION
Based on the performance of algorithms across various experimen-
tal settings, we evaluate their strengths and weaknesses in different
application scenarios, as shown in Table 3. Next, we provide a com-
prehensive discussion of the advantages and disadvantages of each
algorithm.

5.1 Recommendations.
Attribute Filtering. Overall, UNG, NHQ and Filtered Disk-ANN
demonstrate strong performance. However, UNG suffers from per-
formance degradation when the attribute count differs between
indexing and querying. NHQ, due to its distance fusion design,
also experiences performance drops when there is a significant
mismatch in attribute numbers between indexing and querying,
and its performance is sensitive to attribute distribution.

The two variants of Filtered-DiskANN (FilteredVamana and
StitchedVamana) support only single-attribute queries and multi-
attribute OR queries. FilteredVamana supports dynamic insertion
and disk-based indexing, making it more suitable for extremely
large-scale datasets even in memory-constrained environments.
However, its disk-based construction significantly increases in-
dexing time, and its performance is highly sensitive to attribute
distribution. In contrast, StitchedVamana offers better search per-
formance but performs poorly on 100M-scale datasets and OOD
datasets.

CAPS, based on clustering, features low index space overhead.
It offers flexible support for varying numbers of attributes and is
optimized for low-selectivity attribute scenarios, but its overall
performance is relatively moderate. Puck is well-suited for large-
scale datasets such as those with 100 million points. It offers fast
index construction and lowmemory consumption in such scenarios.

Range Filtering. WinFilter achieves the best search perfor-
mance but requires high time and memory resources during index
construction. For large-scale datasets (e.g., with 100 million points),

parameter tuning—particularly of tree height—is needed to pre-
vent excessive index growth. When QPS and recall are not strict
requirements, its basic variant, Vamana-WST, offers a more efficient
alternative with significantly lower indexing overhead.

iRange has relatively low time and space costs for index con-
struction. However, its search performance declines significantly
with increasing query range. Despite offering threading parameters
for indexing, it does not effectively utilize multi-core parallelism
in practical scenarios. SeRF incurs low time and space overhead
but achieves only moderate overall query performance, with no-
tably weaker results in small-range query scenarios. DSG supports
unordered dynamic insertions and range queries, but its index con-
struction is limited to single-threaded execution, resulting in long
build times and poor practical applicability.

UNIFY adopts multiple filtering strategies tailored to different
query range sizes, avoiding the limitations of a single strategy in
specific scenarios. It requires only one index to support all queries,
allows dynamic insertions, and features low time and space over-
head during index construction, making it a more general-purpose
solution.

General Algorithm. All of the following methods support both
attribute filtering and range filtering.

ACORN demonstrates average overall performance. Among its
variants, ACORN-1 shows significant advantages in indexing speed
on 100M-scale datasets, but suffers from high memory consumption
and delivers only moderate performance.

Faiss, Milvus and VBASE effectively handle complex filtering
by employing versatile "pre-filtering" or "post-filtering" strategies,
granting them significant flexibility and broad applicability. This
flexibility, however, is often counterbalanced by their relatively
modest overall search performance. Relatively speaking, PASE per-
forms less well across various aspects, which indicates that its strat-
egy of loading data pages on-demand is unsuitable for performance-
demanding scenarios.

193

Table 3: Algorithm Recommendation

Application Scenarios AF RF AF / RF
UNG NHQ Filtered Stitched CAPS Puck Win iRange SeRF DSG UNIFY ACORN Faiss Milvus VBASE PASE

Performance-Critical B G M G M G G M M M M M/M M/M M/M P/P P/P
Index-Efficient M M M M M G P M G P P P/P B/B G/G P/M P/P
Memory-Constrained M P M M M G P P M P P P/P B/B G/M G/M G/G
Large-Scale B G G P P G B G M M G M/P P/M P/P M/M -
Multi-Modal B G G P M M B G M M G P/P P/M M/M P/P P/P
Rare Attribute / Low Range B M M G G G B G P G M M/M M/G P/P P/P P/P
Distribution-Robust G P P G G G - - - - - G/- P/- B/- P/- -
General-Purpose G G G P P P G P P P G P G G G P

Performance Levels: B = Best, G = Good , M = Moderate, P = Poor, - = Not Supported; Performance-Critical: Requires low latency and high recall; Index-Efficient: Emphasizes
lightweight index construction; Memory-Constrained: Operates under limited memory conditions; Large-Scale: For scenarios involving datasets at the scale of 100 million vectors;
Multi-Modal: For multi-modal dataset scenarios; Rare Attribute / Low Range: For filtering with low attribute selectivity or small ranges; Distribution-Robust: For scenarios with
variable attribute distributions; General-Purpose: Balanced performance across varied scenarios.

5.2 Challenges
Attribute Filtering. Most existing attribute filtering algorithms
are graph-based, they typically outperform other methods in terms
of query accuracy and efficiency. Filtered-DiskANN leverages disk-
based storage, making it suitable for large-scale datasets even in
memory-constrained environments. Moreover, the index construc-
tion phase of graph-based algorithms is computationally intensive.
Therefore, exploring GPU-based acceleration for graph construc-
tion and vector computation during indexing is promising. It can
significantly improve the performance of graph-based methods.

In addition, existing attribute filtering algorithms face two ma-
jor limitations: strict requirements on attribute format and limited
support for complex filtering conditions. For example, in multi-
attribute scenarios, some algorithms only support Boolean OR logic
(e.g., FilterDiskANN), while others only support Boolean AND logic
(e.g., NHQ and CAPS). Although algorithms such as ACORN, UNG,
and Puck support both AND and OR logic across multiple attributes,
they still struggle to handle complex Boolean expressions that in-
volve nested combinations of conjunctions (AND) and disjunctions
(OR). In contrast, while databases and the vector search library
Faiss support more expressive Boolean logic, their performance is
often suboptimal in queries involving only basic attribute filtering.
Therefore, designing algorithms that can support complex filtering
expressions while maintaining high query efficiency remains a key
challenge to be addressed.

Notably, we find that IVF-based methods are easily extendable
to support joint query scenarios of attribute filtering and range
filtering, and are compatible with arbitrary combinations of Boolean
logic. Our experiments also indicate that IVF-based methods (CAPS,
Puck) achieve performance comparable to graph algorithms, while
having the lowest time and space overhead, making them highly
suitable for large-scale data processing. Therefore, IVF-based hybrid
query methods represent a very promising research direction.

Besides, our research indicates that the distribution and selectiv-
ity of attributes significantly impact the performance of attribute
filtering methods. Therefore, when designing algorithms, efforts
should be made to minimize the coupling with specific attribute
value distributions, in order to enhance the robustness and general-
ization ability of the algorithms under varying data conditions.

Range Filtering. Except for DSG and UNIFY, most range fil-
tering algorithms require the dataset to be pre-sorted before build-
ing the index. Moreover, existing range filtering algorithms do
not support range queries with more than 3 attributes. Designing

algorithms that support an arbitrary number of range filterable
attributes remains an open research challenge.

In addition,our experiments show that different algorithms ex-
hibit varying strengths under different query ranges. Therefore,
designing a general range query algorithm that can adapt to di-
verse query conditions holds significant research value. For example,
UNIFY demonstrates strong generality by dynamically selecting
execution strategies based on the query range. Building on this idea,
further exploration of more adaptive and high-performance range
query algorithms is a promising direction for future research.

Moreover, in our experiments, many range filtering algorithms
perform worse than Faiss at high recall (0.95), showing that current
algorithm designs still need improvement. We suggest future future
range filtering algorithms include Faiss as a baseline.

It is also worth noting that range filtering and attribute filter-
ing are both forms of hybrid queries. However, aside from vector
databases and ACORN, few existing algorithms support both modal-
ities simultaneously. Designing unified frameworks that simultane-
ously support both is an important research frontier.

Lastly, existing algorithms suffer from significant performance
degradation on OOD datasets. Exploring how to improve these
algorithms to better adapt to more complex query conditions is a
worthwhile direction for further research.

6 CONCLUSION
In this paper, we systematically evaluate hybrid query methods
across multiple algorithms, vector databases, and libraries. We en-
rich dataset attributes, design diverse scenarios, and analyze over-
all performance. Experiments show that existing algorithms still
have significant shortcomings in scenarios such as large-scale data,
complex queries, and resource constraints. Attribute filtering lacks
flexibility and Boolean logic support, while range filtering remains
weak under high-recall or multi-attribute conditions. Some even
underperform the baseline (e.g., Faiss).

In the future, we will focus on improving the flexibility and
efficiency of filtering algorithms and exploring unified algorithms
that integrate attribute and range filtering.

ACKNOWLEDGMENTS
This work was supported in part by NSFC Grant No. 62372194 and
by 2025 Open Research Program of the MIIT Key Laboratory for
Software Integrated Application and Testing & Verification.

194

REFERENCES
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,

Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. YouTube-
8M: A Large-Scale Video Classification Benchmark. arXiv:1609.08675

[2] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E.
Houle, Ken-ichi Kawarabayashi, and Michael Nett. 2015. Estimating Local In-
trinsic Dimensionality. In KDD. 29–38.

[3] Anon. 2010. Datasets for approximate nearest neighbor search. Retrieved June 23,
2025 from http://corpus-texmex.irisa.fr/

[4] Anon. 2011. Million Song Dataset Benchmarks. Retrieved June 23, 2025 from
http://www.ifs.tuwien.ac.at/mir/msd/

[5] Anon. unknown. TIMIT Audio. Retrieved June 23, 2025 from https://www.cs.
princeton.edu/cass/demos.htm

[6] Sunil Arya, DavidM.Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.
Wu. 1998. An Optimal Algorithm for Approximate Nearest Neighbor Searching
Fixed Dimensions. J. ACM 45, 6 (1998), 891–923.

[7] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2025. Graph-based Vector
Search: An Experimental Evaluation of the State-of-the-Art. In SIGMOD Confer-
ence, Vol. 3. 31.

[8] Artem Babenko and Victor Lempitsky. 2023. Benchmarks for Billion-Scale Simi-
larity Search. Retrieved June 23, 2025 from https://research.yandex.com/blog/
benchmarks-for-billion-scale-similarity-search

[9] Baidu. 2023. Puck: A High-Performance ANN Search Framework. Retrieved June
23, 2025 from https://github.com/baidu/puck

[10] Jeffrey S. Beis and David G. Lowe. 1997. Shape Indexing Using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces. In CVPR. 1000–1006.

[11] Yuzheng Cai, Jiayang Shi, Yizhuo Chen, and Weiguo Zheng. 2024. Navigating La-
bels and Vectors: A Unified Approach to Filtered Approximate Nearest Neighbor
Search. In SIGMOD Conference, Vol. 2. 246:1–246:27.

[12] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification.
IEEE Trans. Inf. Theory 13, 1 (1967), 21–27.

[13] Artem Babenko Dmitry Baranchuk. 2021. Text-to-Image dataset for billion-scale
similarity search. Retrieved June 23, 2025 from https://research.yandex.com/
datasets/text-to-image-dataset-for-billion-scale-similarity-search

[14] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. In WWW. 577–586.

[15] Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian
Shun. 2024. Approximate nearest neighbor search with window filters. In ICML.
12469 – 12490.

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. In VLDB,
Vol. 12. 461–474.

[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. 518–529.

[18] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, NeelamMahapatro, Premku-
mar Srinivasan, Amit Singh, and Harsha Vardhan Simhadri. 2023. Filtered-
DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with
Filters. InWWW. 3406–3416.

[19] Gaurav Gupta, Jonah Yi, Benjamin Coleman, Chen Luo, Vihan Lakshman, and
Anshumali Shrivastava. 2023. CAPS: A Practical Partition Index for Filtered
Similarity Search. arXiv:2308.15014

[20] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest
Neighbour Graphs. In CVPR. 5713–5722.

[21] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. 604–613.

[22] Masajiro Iwasaki. 2016. Pruned Bi-directed K-nearest Neighbor Graph for Prox-
imity Search. In SISAP, Vol. 9939. 20–33.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2010),
117–128.

[24] Jeff Johnson, Matthijs Douze, Hervé Jégou, and Hosseini Lucas. 2017. FAISS:
Facebook AI Similarity Search. Retrieved June 13, 2025 from https://github.com/
facebookresearch/faiss

[25] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and
Yuan Chen. 2018. The Design and Implementation of a Real Time Visual Search
System on JD E-commerce Platform. In Proc. 19th Int. Middleware Conf. Industry.
9–16.

[26] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data - Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng.
32, 8 (2020), 1475–1488.

[27] Anqi Liang, Pengcheng Zhang, Bin Yao, Zhongpu Chen, Yitong Song, and
Guangxu Cheng. 2025. UNIFY: Unified Index for Range Filtered Approximate

Nearest Neighbors Search. In VLDB, Vol. 18. 1118–1130.
[28] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Inf. Syst. 45 (2014), 61–68.

[29] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[30] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[31] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F.
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023.
High-Throughput Vector Similarity Search in Knowledge Graphs. In SIGMOD
Conference, Vol. 1. 197:1–197:25.

[32] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN: Per-
formant and Predicate-Agnostic Search Over Vector Embeddings and Structured
Data. In SIGMOD Conference, Vol. 2. 120.

[33] Zhencan Peng, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2025. Dy-
namic Range-Filtering Approximate Nearest Neighbor Search. In VLDB, Vol. 18.
3256–3268.

[34] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2015. GloVe:
Global Vectors for Word Representation. Retrieved June 23, 2025 from https:
//nlp.stanford.edu/projects/glove/

[35] Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze,
George Williams, Magdalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty,
Frank Liu, Ben Landrum, Mazin Karjikar, Laxman Dhulipala, Meng Chen, Yue
Chen, Rui Ma, Kai Zhang, Yuzheng Cai, Jiayang Shi, Yizhuo Chen, Weiguo Zheng,
Zihao Wan, Jie Yin, and Ben Huang. 2024. Results of the Big ANN: NeurIPS’23
Competition. arXiv:2409.17424

[36] Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc
Najork. 2021. WIT: Wikipedia-Based Image Text Dataset for Multimodal Multi-
lingual Machine Learning. In SIGIR. 2443–2449.

[37] Russell Stewart, Christopher Manning, and Jeffrey Pennington. 2015. Enron
Email Dataset. Retrieved June 23, 2025 from https://www.cs.cmu.edu/~./enron/

[38] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Kr-
ishaswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: Fast Accurate
Billion-point Nearest Neighbor Search on a Single Node. In NeurIPS, Vol. 32.
13766 – 13776.

[39] Yao Tian, Ziyang Yue, Ruiyuan Zhang, Xi Zhao, Bolong Zheng, and Xiaofang
Zhou. 2023. Approximate Nearest Neighbor Search in High Dimensional Vector
Databases: Current Research and Future Directions. IEEE Data Eng. Bull. 46, 3
(2023), 39–54.

[40] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng
Li. 2012. Scalable k-NN graph construction for visual descriptors. In CVPR.
1106–1113.

[41] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built
Vector Data Management System. In SIGMOD Conference. 2614–2627.

[42] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2023. An Efficient and Robust Framework for Approximate Nearest
Neighbor Search with Attribute Constraint. In NeurIPS. 14.

[43] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approximate
Nearest Neighbor Search. In VLDB, Vol. 14. 1964–1978.

[44] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB. 194–205.

[45] ChuangxianWei, Bin Wu, ShengWang, Renjie Lou, Chaoqun Zhan, Feifei Li, and
Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards Query
Fusion for Structured and Unstructured Data. In VLDB, Vol. 13. 3152–3165.

[46] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. In SIGMOD Conference, Vol. 2. 239:1–239:26.

[47] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-
High-Dimensional Approximate Nearest Neighbor Search Extension. In SIGMOD
Conference. 2241–2253.

[48] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. 2023.
VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity. In OSDI. 377–395.

[49] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF:
Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. In
SIGMOD Conference, Vol. 2. 69:1–69:26.

195

https://arxiv.org/abs/1609.08675
http://corpus-texmex.irisa.fr/
http://www.ifs.tuwien.ac.at/mir/msd/
https://www.cs.princeton.edu/cass/demos.htm
https://www.cs.princeton.edu/cass/demos.htm
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://github.com/baidu/puck
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://arxiv.org/abs/2308.15014
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/2409.17424
https://www.cs.cmu.edu/~./enron/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 PRELIMINARIES
	2.1 Problem Definition
	2.2 Index Organization in Hybrid Query

	3 Hybrid querying Algorithms
	3.1 Attribute Filtering Algorithms
	3.2 Range Filtering Algorithms
	3.3 Vector Libraries and Databases

	4 Experiments
	4.1 Experimental Setup
	4.2 Attribute Filtering
	4.3 Range Filtering

	5 DISCUSSION
	5.1 Recommendations.
	5.2 Challenges

	6 CONCLUSION
	Acknowledgments
	References

