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dependencies. Specifically, MH-GIN first extracts multi-scale tem-
poral features for each attribute while preserving their intrinsic
heterogeneous characteristics. Then, it constructs a multi-scale
heterogeneous graph to explicitly model dependencies between
heterogeneous attributes to enable more accurate imputation of
missing values through graph propagation. Experimental results on
two real-world datasets find that MH-GIN is capable of an average
57% reduction in imputation errors compared to state-of-the-art
methods, while maintaining computational efficiency.
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1 INTRODUCTION

The Automatic Identification System (AIS) is an automated tracking
system that enhances navigational safety by enabling vessels to
share their position, identification, and other essential information
with nearby ships and coastal authorities [3]. AIS data is crucial for
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Figure 1: An example of AIS records from a vessel.

maritime stakeholders to operate applications spanning different
domains, including vessel tracking, safety monitoring, logistics op-
timization, and trade forecasting. However, AIS data often suffer
from quality issues, among which missing values represent a sig-
nificant challenge. Missing values may be caused by a variety of
various factors, such as equipment malfunctions, vessels switching
off their transponders, or vessels being out of range of terrestrial
receivers [25]. Notably, statistics of data from the Danish Maritime
Authority [10] reveal that missing rates in attributes range from 8%
to 83%, which underscores the substantial need for data imputation
in real-world scenarios. When AIS fails, downstream applications
(such as vessel tracking [51], safety monitoring [46], and navigation
planning [38]) often rely on traditional tools (such as radar and
VHF radio [42, 43]) or alternative systems (such as Long-Range
Identification and Tracking (LRIT) and Vessel Monitoring Systems
(VMS) [15]) typically at the cost of accuracy and efficiency.
Example 1.Consider a vessel’s AIS records during a port visit as
illustrated in Figure 1. The vessel follows a typical maritime pattern:
entering the port (records 1-2), berthing at the terminal (records 3-5),
and departing from the port (records 6—8). During this process, the
vessel’s Longitude, Latitude, COG, and SOG are updated at high fre-
quency and exhibit random missing patterns. The vessel’s Navigation
Status and Draught are updated at low frequency and show block
missing patterns. The vessel’s Length, Width, and Vessel Type remain
constant throughout, with Length and Width being entirely missing.
As shown in Example 1, AIS data exhibit three characteris-
tics [39]: 1) There are heterogeneous attributes in AIS data, i.e.,
spatio-temporal attributes (Longtitude, Latitude), discrete attributes
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Table 1: Summary of existing imputation methods

Methodology Heterogeneous Diverse Update Multi-scale
Class Attributes Rates Dependencies
Heuristic &
Statistical Yes No No
Imputation

Multi-variable
Time Series
Imputation

No (Assumes
Uniform Update
Rates)

No (Assumes
Homogeneity)

No (Single-scale
Dependency)

Partial (Focus on

Partial (Assumes | Partial (Single-scale

Spatio—temporal Sp ati4a1 and Uniform Rates Dependency
Imputation Continuous for Non-spatial) for Non-spatial)
Attributes) P P
Trajectory | No (Spatio-temporal | No (Assumes Similar | No (Single-scale
Imputation Attributes Only) Update Rates) Dependency)

(Navigation Status), and continuous attributes (Draught). 2) Dif-
ferent attributes exhibit diverse update rates, leading to diverse
missing patterns. As the update rate decreases, the missing pattern
transitions from random to block to entirely missing. 3) There are
multi-scale dependencies between attributes. Attributes at high
time scales constrain the high-level features of attributes at low
time scales without affecting their low-level features. Conversely,
only the high-level features of attributes at low time scales influence
attributes at higher time scales. For instance, as shown in Figure 1,
Navigation Status (Anchored) constrains a vessel’s movement to a
limited region around a fixed point (high-level feature: movement
pattern of Longitude and Latitude) without specifying precise coor-
dinates. Similarly, Vessel Type (Tanker) constrains the value range
of Draught (high-level feature of Draught) without specifying the
exact value. Conversely, the value range of Draught also constrains
the value range of the vessel’s Length and Width.

However, existing imputation methods cannot effectively handle
these characteristics. As shown in Table 1, existing imputation meth-
ods can be categorized into four categories, each with distinct limi-
tations: 1) Traditional and statistical methods [1, 2, 5, 17, 27, 36, 49]
fall short due to their assumptions of linear relationships and
their inability to handle diverse update rates and model multi-
scale dependencies. 2) Multi-variable time series imputation meth-
ods [7, 8, 11, 40] assume uniform update rates and treat attributes
homogeneously. 3) Spatio-temporal imputation methods [24, 26, 31]
assume static spatial relationships and uniform update rates for
non-spatial attributes. 4) Trajectory imputation methods [30, 35, 55]
focus exclusively on reconstructing vessel positions and rarely con-
sider other heterogeneous attributes critical for comprehensive
AIS analysis. Effectively handling the characteristics of AIS data is
challenging and presents significant obstacles.

C1: How to effectively represent and simultaneously impute
heterogeneous attributes? AlS data consist of four attribute types:
spatio-temporal, cyclical, continuous, and discrete, and each has dis-
tinct intrinsic characteristics. The heterogeneous attributes require
unified yet type-specific representation and imputation strategies,
capable of preserving their individual properties. Such strategies are
an essential precondition for capturing multi-scale dependencies
and accurately imputing missing data. Existing imputation meth-
ods [8, 26, 31, 40, 55] exhibit significant limitations in addressing
this heterogeneity. They either focus exclusively on the spatio-
temporal data or treat all attributes homogeneously, neglecting the
unique properties of different attribute types.

C2: How to effectively extract multi-scale temporal features
from each attribute? As discussed earlier, AIS attributes operate
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at different time scales and influence each other indirectly. To cap-
ture the direct interactions among attributes at a particular scale
accurately, it is essential to model temporal features individually at
their own and higher scales. However, existing imputation meth-
ods [6, 8, 11, 40] typically assume similar update rates across all
attributes, thus extracting temporal features indiscriminately at all
scales into a single, uninterpretable feature vector.

C3: How to effectively model multi-scale dependencies between
attributes? Multi-scale dependencies are complex, involving both
dependencies between attributes at the same time scale and depen-
dencies between attributes across different time scales. Effectively
modeling and leveraging these dependencies for accurate imputa-
tion is challenging. Current methods [4, 7, 11, 53] do not differenti-
ate direct and indirect attribute interactions at varying scales due
to their similar update rate assumption, resulting in oversimplified
attribute relationships and reduced imputation performance.

To address these challenges, we propose MH-GIN, a Multi-scale
Heterogeneous Graph-based Imputation Network for AIS data.
Addressing C1: MH-GIN utilize type-specific encoding and de-
coding strategies for four distinct attribute types: spatio-temporal,
cyclical, continous, and discrete attributes, while preserving their
intrinsic characteristics, such as spatial constraints, smooth wrap-
around at boundaries.

Addressing C2: MH-GIN adopts a hierarchical temporal feature
extractor based on Deep Echo State Networks, enabling the cap-
ture of hierarchical temporal features for each attribute through
progressive abstraction and leaky integration.

Addressing C3: MH-GIN constructs a multi-scale heterogeneous
graph to explicitly model two types of multi-scale dependencies.
Specifically, the graph contains two kinds of subgraphs: time-scale
subgraphs and attribute subgraphs. The former model dependencies
between features of different attributes at the same scale, whereas
the latter model dependencies across different scales within each at-
tribute. Subsequently, MH-GIN imputes missing features through a
two-stage graph propagation process, first aligning features within
time-scale subgraphs, and then impute missing features through
propagation within attribute subgraphs.

Our main contributions are summarized as follows:

o We propose MH-GIN, a Multi-scale Heterogeneous Graph-based
Imputation Network for AIS data, which captures multi-scale
dependencies among heterogeneous attributes to enhance impu-
tation performance.

o We design complementary modules, including type-specific en-
coders and decoders and a hierarchical temporal feature extrac-
tor, to collaboratively extract hierarchical temporal features for
each attribute type while preserving intrinsic characteristics of
each attribute type.

e We introduce a multi-scale dependency mining module, which
constructs a multi-scale heterogeneous graph to model depen-
dencies between attributes explicitly and performs imputation
via two-stage graph propagation.

e We evaluate MH-GIN extensively on two real-world AIS datasets,
finding that MH-GIN is able to outperform state-of-the-art ap-
proaches, achieving an average 57% reduction in imputation
error while maintaining computational efficiency.



The remainder of the paper is structured as follows: Section 2
reviews related work. Section 3 presents preliminaries and formu-
lates the problem. Section 4 details the proposed MH-GIN. Section 5
reports experimental results. Section 6 concludes the paper and
outlines directions for future work.

2 RELATED WORK

Existing imputation methods can be categorized into four cate-
gories, as shown in Table 1, each with distinct limitations:
Traditional and Statistical Imputation Methods. Traditional
approaches for handling missing data include deletion methods,
neighbor-based methods, constraint-based methods, and statisti-
cal imputation. Deletion methods, such as listwise deletion [49]
and pairwise deletion [27], directly remove data instances con-
taining missing values, often resulting in significant information
loss. Neighbor-based methods like KNN [5] impute missing values
using local patterns derived from similar data points. Constraint-
based methods [36] leverage domain-specific rules, performing well
when data adheres to particular constraints or patterns. Common
statistical approaches include mean/median imputation [1], Last Ob-
servation Carried Forward (LOCF)[2], and linear interpolation[17].
Despite being computationally efficient and straightforward, these
traditional methods are inadequate for AIS data due to their im-
plicit assumptions of linear relationships. AIS data inherently ex-
hibits complex, non-linear patterns. Additionally, deletion-based
approaches are particularly problematic for AIS, given its often ex-
tended periods of missingness. Thus, traditional methods struggle
to represent the inherent multi-scale dependencies and heteroge-
neous attributes within AIS datasets.

Multi-variable Time Series Imputation. Deep learning methods
for multi-variable time series imputation have attracted consid-
erable attention in recent years. Early RNN-based methods, such
as GRU-D [7], leverage gating mechanisms and decay factors to
handle irregularly sampled data. More recently, transformer-based
architectures, including SAITS [11] and DeepMVI [4], utilize self-
attention mechanisms to effectively capture long-range dependen-
cies. Diffusion-based methods, such as CSDI [40], employ condi-
tional score-based diffusion models to produce high-quality impu-
tations through iterative data denoising. Additionally, graph-based
methods like GRIN [8] represent each variable as a graph node, en-
abling message passing to capture cross-dimensional correlations.
However, existing general-purpose imputation methods typically
assume uniform update rates across all variables and treat attributes
homogeneously. These assumptions conflict with the inherent char-
acteristics of AIS data, which contains heterogeneous attributes
operating at multiple time scales.

Spatio-temporal Imputation. Spatio-temporal imputation ex-
tends conventional time series methods by explicitly modeling spa-
tial dependencies (e.g., sensor grids or geographic adjacency). Re-
cent approaches incorporate graph neural networks (GNNs) [50] or
attention mechanisms to jointly learn spatio-temporal patterns. Rep-
resentative methods include PriSTI [24], which enhance diffusion-
based models by capturing spatio-temporal dependencies and geo-
graphic relationships. ImputeFormer [31] utilizes a low-rank Trans-
former architecture to achieve a balance between inductive bias
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and model expressivity. SPIN [26] proposes a spatio-temporal prop-
agation framework with sparse attention, specifically designed to
handle highly sparse observations by conditioning reconstruction
exclusively on available data, thus preventing error propagation
common in autoregressive GNNs. Although effective in sensor
networks with relatively fixed spatial structures, these methods
generally assume stationary spatial relationships or static graph
topologies. However, AIS data involves vessels continuously mov-
ing across large maritime regions, leading to dynamic and evolving
spatial relationships rather than static sensor locations. Therefore,
existing spatio-temporal imputation methods face challenges in
effectively modeling these dynamic spatial relationships. Further-
more, similar to multi-variable time series imputation methods, they
typically assume uniform update rates for non-spatial attributes,
rendering them ineffective in capturing diverse update frequencies
inherent to AIS attributes.

Trajectory Imputation. Trajectory imputation methods recon-
struct missing segments in the trajectories of moving objects (e.g.,
vehicles, pedestrians, and ships), typically leveraging motion conti-
nuity and spatio-temporal context. Transformer-based approaches,
such as TrajBERT [35], embed geographic coordinates as tokens and
reconstruct missing positions using bidirectional attention mech-
anisms. KAMEL [28] maps trajectory imputation to the missing
word problem in natural language processing, adapting BERT with
spatial-awareness and multi-point imputation capabilities for scal-
able trajectory reconstruction. Recurrent and graph-based sequence
models [22, 52, 53, 56] exploit temporal dependencies and spatial
constraints, capturing complex motion patterns and environmental
context to impute missing trajectory segments. Meanwhile, gener-
ative models like GANs [34] and VAEs [33] produce plausible tra-
jectories consistent with known movement behaviors. Specifically
tailored maritime approaches include Multi-task AIS [30], which
integrates recurrent neural networks with latent-variable modeling
to simultaneously address trajectory reconstruction, anomaly de-
tection, and vessel-type identification. PG-DPM [55] introduces a
physics-guided diffusion probabilistic model specifically designed
for long-term vessel trajectory imputation by incorporating mar-
itime domain knowledge into the generative process. Complemen-
tary studies on trajectory compression and clustering [18-20, 37]
share similar goals of preserving motion patterns and data util-
ity. However, these methods generally focus exclusively on recon-
structing vessel positions and rarely consider other heterogeneous
attributes, which are critical for comprehensive AIS data analysis.

3 PRELIMINARIES

3.1 Data and Notation

Definition 1 (AIS Record). An AIS Record X with N attributes can
be characterized from two perspectives (see Table 2): (i) attribute
type: including spatio-temporal set X = {A, ¢, t}, cyclical set X, =
{¢, 8}, continuous setX,, = {s, d, ¢, f}, and discrete set X4 = {n, x,x};
(ii) time scale (update rate): attributes are grouped according to
decreasing update rates into five time scales: X' = {A, ¢, 7}, X? =
{¢: 9’5}’ X3 = {'7}: X4 = {X: d}’ andxs = {[> ﬁs K}'

An attribute can be denoted by its attribute type and time scale.
For instance, Speed Over Ground (SOG) is a continuous attribute



Table 2: Summary of AIS attributes categorized by type and time scale.

Attribute Type

Time Scale

Attribute (Symbol)

Spatio-temporal (Xs)[Cyclical (X.)[Continuous (X,,)[Discrete (X4)[S1 (X!)[S2 (X?)[S3 (X°)[S4 (X*)[S5 (X°)

Longitude (1) v

v

Latitude (¢) v

v

Timestamp (7) v

v

True heading angle (/) v

Course Over Ground (0) v

Speed Over Ground (s)

SNENEN

Navigation status (7)

Hazardous cargo type (y)

draught (d)

Length (¢)

Width (5)

NENEN

Vessel type (k)

NENEN

Si represents time scale i, where i € {1,2,3,4,5}

¥ Attribute types and time scales are organized according to Definitions 3 and 4.

x2 at time scale 2, denoted by s. It indicates the vessel’s speed, and
simultaneously belongs to X2, X, and Xi.

Definition 2 (Vessel-specific AIS Record Sequence). A vessel-
specific AIS record sequence is a heterogeneous multi-variable time
series denoted by X = (X1, Xy, -+ ,X1) € RT™*N_ Each record X, at
time step t can be decomposed into two complementary views: by
time scale (update rate), Xy = {X!, X2, X?, X4, X?}; by attribute type,
Xi = {Xt,5, Xt,es Xens Xt}

For example, SOG s; at time step t is a continuous attribute xfl’t
at time scale 2, belonging to X? , X; ,, and X?.

AIS data attributes can generally be categorized into three types
based on their intrinsic characteristics: spatio-temporal, continuous,
and discrete. To achieve a finer granularity and better applicability,
we introduce a fourth category by extracting COG 6 and THA ¢
from the continuous attributes into cyclical attributes due to their
periodic nature. The final categorization is as follows:

Definition 3 (Intrinsic Characteristics of AIS Attributes). AIS
attributes can be categorized into four types based on their intrinsic
characteristics, as summarized in Table 2:

o Spatio-temporal attributes exhibit spatial constraints (e.g., latitude-
dependent distortion and spherical continuity) and nested periodic-
ities (e.g., daily, weekly cycles).

o Cyclical attributes recur periodically and exhibit smooth wrap-
around at boundaries.

e Continuous attributes exhibit wide variations in scale, requiring
appropriate normalization.

o Discrete attributes belong to finite categorical sets without inherent
numerical ordering.

Spatio-temporal attributes exhibit spatial and temporal char-
acteristics. For instance, spatial scaling varies with latitude: at the
equator (¢ = 0°), a longitudinal change of 1° corresponds to ap-
proximately 111 km, while at a latitude of ¢ = 79° North, the same
1° shift corresponds to roughly 20 km. Moreover, longitude values
of A = 180° and A = —180° represent the same geographic meridian,
due to spherical continuity. Temporally, timestamps demonstrate
nested periodicities — both daily (24 x 3600 seconds) and weekly
(168 x 3600 seconds) cycles return to the starting point (7 = 0).

Cyclical attributes, such as heading angle (i), measured from
0° to 359°, demonstrates circular continuity, where angles exceeding
359° wrap around to 0° without causing discontinuity.

Continuous attributes, such as draught (d) and speed over
ground (s), differ substantially in their numerical ranges. Draught
typically ranges from 0 to 20 meters, while speed ranges from 0
to 30 knots or higher. Due to the distinct scales, a unit change in
draught and a unit change in speed are not directly comparable,
thus requiring normalization prior to unified analyses.

Discrete attributes represent categorical values without inher-
ent numerical order. For example, the navigation status attribute (1)
includes distinct categories such as 0 (under way), 1 (anchored), and
2 (not under command). These values function purely as categorical
labels rather than as numerical measurements.

3.2 Multi-scale Heterogeneous Graph

AIS data attributes exhibit distinct update patterns that naturally
lead to five time scales. According to the update mechanism [25],
attributes can initially be categorized into three groups: (i) Au-
tonomous sensor updates for the first six attributes in Table 2; (ii)
Periodic crew updates for the seventh and eighth attributes; (iii)
One-time vessel registration updates for the last four attributes.
To capture finer temporal granularities, we further subdivide
these groups: autonomous sensor attributes are split based on
whether they require measurement intervals, while crew-updated
attributes are divided based on whether they only change between
voyages. This results in five distinct time scales that reflect the
natural update frequencies of AIS attributes.
Definition 4 (Multiple Time Scales). We categorize AIS data at-
tributes into five distinct time scales based on their update rates, as
summarized in Table 2. Specifically:

1 ¢ X! have instantaneous values

o Time scale 1: Attributes x
without requiring measurement intervals; thus, their theoretical
update interval lower bound is zero.

o Time scale 2: Attributes x> € X? change rapidly and require
short measurement intervals, resulting in a theoretical lower bound
slightly above zero.

o Time scale 3: Attributes x> € X3 change discretely at a moderate
frequency during a voyage; hence, their update intervals have a
theoretical lower bound above that of time scale 2.

o Time scale 4: Attributes x* € X* remain constant within indi-
vidual voyages but may change between voyages, setting their
theoretical lower bound to the duration of the shortest voyage.
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Figure 2: An example of missing attribute imputation based on a multi-scale heterogeneous graph.

Figure 3: An example of multi-scale heterogeneous graph.

e Time scale 5: Attributes x> € X° change rarely during a vessel’s
operational lifespan, resulting in a very large theoretical lower
bound for their update interval.

For example, SOG is classified as time scale 2, as it requires short
intervals to accurately measure its rapidly changing value.
Definition 5 (Multi-scale Temporal Features). AIS data attributes
generate hierarchical features across different time scales. Specifically,
for an attribute x) € X/ at its original time scale j, features Uij € VK
can be derived at time scales k, where k > j. Thus, each attribute
x/ generates 5 + 1 — j multi-scale features that capture its temporal
features at different time scales.

Example 2. Consider three attributes x!, x%, and x> at time scales 1,
2, and 3, respectively (red nodes in Figure 3). Each attribute generates
temporal features at its own and higher time scales: x! generates fea-
tures (vil, vil, vil), x? generates features (viz, viz), and x> generates
the feature 0,3(3 (green nodes in Figure 3).

Definition 6 (Multi-scale Heterogeneous Graph). A multi-scale
heterogeneous graph G = (V, &) represents temporal features de-
rived from all attributes across multiple time scales. Specifically, the
node set V comprises the temporal features, while the edge set &
captures dependencies between them. The graph structure integrates
two types of relationships: (i) Time scale subgraphs {G* 2:1: each
subgraph G* = (V*, EF) is fully connected, consisting of nodes ‘V*
denoting features at the same time scale k as edges EF, capturing
intra-scale dependencies; edges E* are informed by higher-scale sub-
graphs GX*1,. .., G°, ensuring that relationships at lower time scales
are contextually modulated by high-scale features; (ii) Attribute
subgraphs {Gy}xex: each subgraph Gy = (Vy, Ex) is fully con-
nected, containing nodes denoting features of a specific attribute x
across multiple time scales. These attribute subgraphs are mutually
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independent, and edges Ex capture cross-scale dependencies within

the same attribute.

2
x1
scale connections with viz through subgraph G* (shown in the green

Example 3. Continuing Example 2, feature v*, establishes intra-

box labeled G?), and the edge between vil and viz is modulated
by higher-scale subgraphs G* (shown in purple lines from G* to
G?). Simultaneously, U)ZC1 connects across scales within its attribute
subgraph Gx' (shown as the red box labeled Gx'), linking featuresv’,,
)ZCI, and vil . However, Uil does not connect to vf{z due to differences

in both attribute type and time scale.

0

3.3 Problem Formulation

Definition 7 (Observation Mask). Observation availability is rep-
resented by a binary mask M € {0, 1}TXN, where my, =1 indicates
that attribute x is observed at time step t, and my, = 0 indicates
that the attribute is missing. For training and evaluation purposes,
we select imputation targets X € RT*N manually from the observed
data and mark these selected positions using mask M € RT<N

The masking pattern of M varies across the attributes at differ-
ent time scales in a record sequence: attributes X° at time scale 5
generally exhibit either complete availability or are missing exten-
sively; attributes X* at time scale 4 present inter-voyage missing
patterns, changing values mainly between voyages; attributes X>
at time scale 3 experience missing data related specifically to voy-
age phases; attributes X? and X! at time scales 1 and 2 frequently
suffer from irregular and intermittent missing values due to signal
interference or communication issues. The details of the masking
pattern are discussed in Section 5.1.4.
Definition 8 (Multi-scale Heterogeneous Graph-based Miss-
ing Attribute Imputation). The imputation process is formulated
as a function ¥ that maps a record sequence X * M with missing
attributes to a complete record sequence X:

X =F(X*M), 1

where X is the imputed record sequence. Specifically, ¥ (-) can be

divided into four phases:

o Feature Extraction Phase (H < 71 (X = M)): Extract temporal
representations H of all attributes at distinct scales from record
sequence X * M with missing attributes.

o Intra-scale Propagation Phase H — FH(H)): Propagate rep-
resentations H within time scale subgraphs {G* ,i:l to ensure

temporal consistency within each scale. In this process, the edges
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Figure 4: Overview of the multi-scale heterogeneous graph imputation network for AIS data.
(&F /5c:1 within each time scale subgraph is modulated by the temporal representations using the Heterogeneous Attribute En-

higher-scale subgraphs, ensuring that the relationships at lower
time scales are contextually modulated by high-scale features.

e Cross-scale Propagation Phase (H «— F3(H)): Propagate repre-
sentations H across different time scales within attribute subgraphs
{Gx}xex to impute missing features.

e Missing Attribute Imputation Phase (X — ¥;(H, H H)): Re-
cover missing attributes X based on H* that combines the original
representations H and propagated representations H and H from
intra-scale and cross-scale propagation.

Example 4. Continuing Example 2, as seen in Figure 2, the imputation
for the missing attribute x* begins with multi-scale representation
extraction. Attributes at different scales produce representations: at-
tribute x' generates representations h)lcl, hil, hil (scales 1-3), attribute
x3 produces hiS (scale 3), while attribute x* yields incomplete repre-
sentations hiz, hiz (scales 2-3). Temporal consistency is maintained
through intra-scale propagation on subgraphs G, G2, and G* (see
the green box). The intra-scale propagation employs dynamic relation-
ship modeling where edge weights in lower-scale subgraphs (e.g., G?)
are dynamically modulated by features from higher-scale subgraphs
(e.g., G*), enabling contextual adaptation of attribute relationships
across different temporal scales. This results in refined representations
{ﬁil }13<=1’ {E)’i3 }2:3, and partially recovered representations {Eﬁz 222.
Subsequent cross-scale propagation within attribute subgraphs G,
G2, and G, (see the red box) synthesizes missing representations fliz
and hiz through hierarchical representation fusion. The final imputa-
tion integrates original, intra-scale, and cross-scale representations
as h;zk = [hﬁz,ﬁiz, fliz] fork € {1, 2}, ultimately reconstructing the
attribute £* via a nonlinear transformation T(h:‘f’zl, ho2).

X2

4 MULTI-SCALE HETEROGENEOUS
GRAPH-BASED IMPUTATION NETWORK
Based on the four-phase imputation process (see Definition 8), MH-

GIN adopts an architecture comprising four core components, as
illustrated in Figure 4. Initially, the framework extracts multi-scale
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coder and the Hierarchical Temporal Feature Extractor. These two
components collaboratively capture hierarchical temporal features
from each attribute while preserving their intrinsic attribute type
characteristics. Next, the Multi-scale Dependency Mining Mod-
ule constructs a multi-scale heterogeneous graph and performs
missing feature imputation via a two-stage graph propagation pro-
cess. Lastly, the Heterogeneous Attribute Imputation Module re-
constructs missing attributes using specialized decoders tailored
to each attribute type. For clarity and architectural consistency,
we denote the dimensionality of hidden layers by d, noting that
the actual dimensionality may vary based on the requirements of
individual components.

4.1 Heterogeneous Attribute Encoder

As illustrated to the left in Figure 4, this module aims to provide rep-
resentations for different attribute types (as defined in Definition 3)
while preserving their intrinsic characteristics.

Spatio-temporal Attribute Encoder. Spherical coordinates (lon-
gitude 4, latitude ¢, as defined in Definition 1 and Table 2) exhibit
non-Euclidean geometry, as standard numeric encodings fails to
capture spherical continuity and latitude-dependent distortion [9].
We address this by extending 3D Cartesian projections [47] with
additional harmonic terms to enhance directional sensitivity. We
then apply learnable affine transformations with hyperbolic tangent
activations to produce embeddings e, and ey.

Timestamp 7 has nested periodicities (daily, weekly, monthly,
yearly cycles). To preserve these temporal patterns for neural pro-
cessing, we employ multi-frequency sinusoidal encoding that cap-
tures key temporal cycles [12]. The sinusoidal outputs then pass
through a linear layer with the tanh activation function, producing
a d-dimensional representation e, € R
Cyclical Attribute Encoder. Cyclical attributes x. € X, = {i, 6}
exhibit boundary continuity requirements. To preserve rotational
equivalence, we implement trigonometric encoding using sine and
cosine transformations, followed by learnable linear layers with
tanh activation. This approach maintains angular continuity in



the embedding space while ensuring smooth transitions between
neighboring angular values.
Continuous Attribute Encoder. Continuous attributes x,, € X, =
{s,d, ¢, p} range widely in scale, which can skew training dynamics.
We address this via adaptive normalization using running statistics
from the training set, with learnable scaling parameters for each
attribute. A linear layer with ReLU activation then produces the
final embeddings e, helping preserve original distributions while
stabilizing gradients.
Discrete Attribute Encoder. Discrete attributes x; € Xy = {1, y, k}
represent categorical semantics without intrinsic ordering. We con-
vert them to one-hot vectors and project through learnable trans-
formations with tanh activation to obtain embeddings e,.

Finally, all type-specific representations are concatenated into a
unified embedding matrix E; € RV*?, preserving each attribute’s
intrinsic properties within a shared embedding space.

4.2 Hierarchical Temporal Feature Extractor

As illustrated in the middle-left part of Figure 4, this module cap-
tures multiple time-scale features via three complementary mecha-
nisms: 1) Progressive temporal abstraction through increasing layer
depth for finer time scales; 2) High-frequency smoothing via leaky
integration in upper layers; 3) Fixed reservoir weights for com-
putational efficiency. Concretely, we implement Deep Echo State
Networks (DeepESN) [13] with leaky integrator neurons [16] as
our core architecture. Compared with other sequence models (such
as LSTM [14], Transformer [44], etc.), their hierarchical reservoir
structure naturally produces multi-scale representations through
layer-wise abstraction, while fixed random weights enable efficient
processing of AIS data. Moreover, the leaky integration mechanism
provides explicit control over temporal memory retention, aligning
with our time-scale hierarchy in Definition 4.

For an attribute x¥ at time scale k € {1,...,5},weuse5+1—k
recurrent layers, so that higher time-scale attributes require fewer
layers. The state update is governed by:

k-1 k
hy €

Bt = tanh (W, b7+ Wi bl + b)), @)

bl =(1-y)hl_ +yh,

where y; € (0, 1] is the leak rate controlling temporal retention at
layer I. Random weight matrices \ V_Vﬁl € R9*4 and bias bil e R4
preserve the echo state property while inducing layer-specific dy-
namics. Attributes at time scale k are processed exclusively by
layers I € {k,...,5}, since lower-scale features (I < k) do not
originate from higher-scale attributes (see Example 2). Equation 2
represents the forward-only version of DeepESN that enables se-
quential processing of streaming AIS data for real-time imputa-
tion. This formulation allows the model to impute missing values
based solely on past and current information, making it suitable for
safety-critical maritime applications requiring immediate response.
In offline scenarios where complete trajectory data is available,
we can replace the forward-only DeepESN with a bidirectional
version to achieve enhanced performance. The default setting of
MH-GIN is the bidirectional version.
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Finally, we denote the consolidated multi-scale temporal repre-
sentation at time step ¢ by:

H, = [H}, ..., H}], (3

where H: = [hi,v . hi,Nl] aggregates temporal features at scale [,
with Nj denoting both the feature count at scale / and the number

of attributes from higher or equal scales (k > I).

4.3 Multi-scale Dependency Mining Module

As illustrated in the middle-right part of Figure 4, the Multi-scale
Dependency Mining Module performs three main functions: 1)
aligning features within same time scale for temporal consistency, 2)
learning dependencies between features in partially observed data,
and 3) recovering missing features from incomplete attribute sets.
Conventional GNNs (e.g. GAT [45]) struggle under these conditions,
as missing attributes contaminate adjacency estimation (through
corrupted node similarity measures) and cause cascading errors
in feature updates. Specifically, we uses a two-stage propagation
mechanism to capture time-varying dependencies between features
at different time scales.

Stage 1: Intra-scale Propagation. This phase aligns features that
occur at the same time scale to ensure their temporal patterns are
synchronized.

To capture time-varying dependencies between different fea-
tures at the same time scale, we model the edges within each time-
scale subgraph G* = (‘V¥, ) as dynamic rather than static. The
weight of an edge is computed dynamically at each time step, explic-
itly modulated by corresponding features from higher time scales.
Specifically, for each time scale subgraph with representations H¥,
we construct a dynamic adjacency matrix A]; that captures time-
varying dependencies between features at time scale k:

AR = fR (HY S H)) + A, ()
where elfi is a learnable function that computes edge weights
ge

based on both current scale features H and higher-scale contextual
features H**! and A is a bias matrix. This allows edge weights at
lower scales to be adjusted based on contextual features from higher
scales, enabling the model to capture time-varying dependencies.
The intra-scale propagation is then performed as:

I:Ik — (Dk)—l/Z . Ak . (Dk)—l/z . Hk, (5)

where D = diag(Y, i Afj) is the diagonal degree matrix that nor-
malizes node degrees to prevent over-smoothing.

Stage 2: Cross-scale Propagation. Building on temporally aligned
features, this phase integrates multi-scale features through attribute
subgraphs. We keep the edges within attribute subgraphs (Gy) static
since higher-scale features already provide hierarchical context.
Dynamic cross-scale pathways would create recursive dependen-
cies that introduce information redundancy and hinder conver-
gence [41]. Specifically, for each attribute x with multi-scale repre-
sentations I:Ix, we learn cross-scale interactions via:

I:Ix = (Dx)_l/z 'Ax . (Dx)_l/z : ﬁx: (6)

where the learnable matrix A, models hierarchical temporal de-
pendencies. The final representation combines both stages through



residual connection:

ik = (b bk RE)

XX

™)
Theoretical Analysis. The multi-scale propagation mechanism
ensures both numerical stability and robustness to input pertur-
bations through its symmetric normalization design. We establish
these properties through two key theoretical results.

Lemma 1 (Stability of Multi-scale Propagation). The multi-scale
propagation mechanism is numerically stable if the spectral radius of
each propagation matrix satisfies p(P) = D"V2AD1/2 < 1.

This lemma guarantees that feature representations remain boun-
ded throughout the propagation process, preventing numerical in-
stability such as gradient explosion or vanishing. The symmetric
normalization in both intra-scale and cross-scale propagation en-
sures that each stage acts as a non-expansive mapping, making the
complete two-stage mechanism numerically stable.

Lemma 2 (Robustness of Multi-scale Propagation). The multi-scale
propagation operator G is Lipschitz continuous with bounded Lips-
chitz constant.

This property ensures that small perturbations to the input fea-
tures (e.g., from missing data or noise) result in predictably bounded
changes in the final output. The Lipschitz continuity arises from
the composition of linear operators with bounded spectral norms,
making the model robust to input uncertainties commonly encoun-
tered in real-world AIS data. The proofs of these two lemmas are
provided in Appendix B [23].

4.4 Heterogeneous Attribute Imputation

As illustrated in the right part of Figure 4, this module completes
the imputation cycle by reconstructing missing attributes through
specialized decoders for each attribute type.

Gated Fusion. The imputation process begins with a gated fusion
mechanism that adaptively integrates information across multiple
time scales, enabling the model to prioritize the most relevant
temporal features for each missing attribute before applying type-
specific reconstruction. Given the cross-scale representations h;k,
we apply gated fusion across time scales:

g:a(wg.[h:,i;...;h;,fhbg), ®)
5

€k = Zgl ©] (Wle : hi;i), ©)
k=1

where g € [0,1]° are learnable gating weights, © denotes element-
wise multiplication, W, € R*% aligns dimensions for scale inte-
gration, and h:k is set to zero vector when [ is lower than k.

Spatio-temporal Decoder. For coordinate attributes, we leverage
the inherent spatial continuity of vessel trajectories by using lo-
cal averages as base estimates, enabling the network to focus on
learning incremental adjustments rather than absolute positions.
Given missing coordinate attributes A; and ¢; at time step i, we
first compute the mean coordinates from nearby valid observations
within a window A;. The model then computes spatial adjustments
) and 4 using the gated fusion embeddings €,,, €y, from Eq. 9.
The final imputed coordinates are obtained as A= Abase + 0 and

<l§ = ¢base + 5¢
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For timestamp attribute 7, we predict time intervals between
consecutive records rather than absolute timestamps, modeling
temporal occurrences as a temporal point process [21, 32]. We im-
plement a conditional intensity function 7 (7) using neural networks

with Softplus activation to ensure non-negativity. The predicted
log(u)
n(r) >
Cyclical Decoder. To preserve cyclical continuity, the cyclical

decoder reconstructs angular values using trigonometric projec-
tion. The decoder first transforms the gated fusion embedding
€. through a two-layer neural network to generate intermedi-
ate representation h, € RZ. This intermediate representation is

timestamp is derived as 7; = 7;_1 — where u ~ Uniform(0, 1).

then normalized to unit length &, = ”}:'W to ensure trigonomet-
ric identity é2, + é2, = 1. The final angular value is decoded as
Xe = LZO arctany (€1, €c2)-

Continuous Decoder. For continuous attributes, we transform
the gated fusion embedding €, through a ReLU-activated linear
layer to generate normalized representation h,,, then apply inverse
normalization using the encoder’s parameters a, 5 (see Section 4.1)
and training statistics g, o to restore the original scale as %;,.
Discrete Decoder. For discrete attributes, we apply a linear layer
followed by softmax to predict class probabilities § from the gated
fusion embedding €., where the output dimension corresponds to
the number of discrete classes |C|.

4.5 Training

To optimize MH-GIN, we design a comprehensive loss function that
combines specialized reconstruction losses for each heterogeneous
attribute type:

Ltotal = Acoo‘gcoo + A’T L’[ +)~period-£periad + Acont‘gcont + /1disc-£disca (10)

where Acoo, Az, Aperiod> Acont> and Agisc are balancing hyperparameters.
The training employs specialized loss functions tailored to each
attribute type: Haversine distance L, [48] for spatio-temporal co-
ordinates to capture spherical distance, mean squared error £, for
timestamp intervals, trigonometric encoding loss .Lerioq for cycli-
cal attributes to preserve periodicity, mean squared error Lo, for
continuous attributes, and cross-entropy loss L4 for discrete clas-
sification. This multi-objective design ensures that each attribute
type is reconstructed according to its inherent characteristics and
constraints. The more details about MH-GIN are provided in Ap-
pendix A [23].

5 EXPERIMENTS

5.1 Overall Settings

5.1.1 Datasets. We use two AIS datasets: AIS-DK from the Danish
Maritime Authority [10] and AIS-US from NOAA [29] AIS-DK
covers Danish waters from March to December 2024, including
major shipping routes in the Baltic and North Seas. It contains
18,481 vessel sequences and 10,518,249 AIS records, with an average
sequence duration of 9 days. AIS-US spans March to May 2024,
focusing on US coastal waters with dense traffic near major ports.
It includes 19,091 vessel sequences and 10,546,297 AlS records, with
an average sequence duration of 4 days.

Both datasets feature diverse vessel types and often capture mul-
tiple voyages per sequence, especially for short-distance operations.



Table 3: Overall effectiveness comparison on AIS-DK.

‘Coord. A @) { Time ¢ { Head. ¢/ { Course 0 { Speed s { Draft d { Length ¢ { Width g ‘Type K
Method | Dist. | MAE SMAPE| MAE SMAPE| MAE SMAPE|MAE SMAPE|MAE SMAPE| MAE SMAPE| MAE SMAPE| ACC
MEAN 1313e-2  [371.970 0934 | 0.861 0375 | 0.916 0.392 2318 0.400 |1.883 0812 | - - - - -
KNN 8.432e-4 | 34.880 0404 | 0953 0392 | 0509 0465 |0.875 0453 [1310 0722 | - - - - -
Lin-ITP 5.294e-4 | 33243 0396 | 2.895 0429 | 8.950 1478 |0.792 0.486 |1.460 0.821 | - - - - -
MF 3314e-1 |57.133 0728 |147.172 1420 |148.621 1421 [6.955 0963 |4.399 0957 |189.646 1.628 |29.426 1.734 | -
TRMF 1341e-1 | 37.604 0479 |51378 0.869 |55.934 0.3972 [1.580 0381 |1.968 0.839 |62.843 0333 |9.308 0325 | -
CSDI 1.583e+0 [100.375 1588 | 0388 0390 | 0.432 0246 [0.745 0397 |7.786 0.625 |141.077 1514 |18.240 1120 | -
PriSTI 1.310e+0 | 71486 0857 | 0289 0364 | 0.286 0.172 [0.716 0373 |6.186 0399 145274 1273 |8.456 0273 | -
ImputeFormer | 1.83%-1 | 48375 0.689 | 0.486 0434 | 0.776 0386 |1.344 0492 8713 0782 |46.055 0.194 |7.687 0259 | -
Multi-task AIS| ~ 3.863e-4 - - - - - - - - - - - - - - | 0322
PG-DPM 1.777e-4 - - - - - - - - - - - - - -
MH-GIN | 1.112e-4 [21.413 0.127 | 0.049 0.036 | 0.141 0.071 [0.198 0.252 [1.017 0.126 |34.192 0.178 [4.896 0.175 | 0.669

Their high temporal resolution and broad coverage provide a robust
basis for evaluating our methods.

5.1.2  Evaluation Metrics. Our evaluation metrics are tailored to
the distinct characteristics of AIS data attributes. For continuous
numerical values, we employ Mean Absolute Error (MAE) and Sym-
metric Mean Absolute Percentage Error (SMAPE). For categorical
attributes, we utilize Accuracy (ACC).

5.1.3 Baseline Methods. To evaluate the performance of our pro-
posed method, we compare with classic models and state-of-the-art
methods for multi-variable time-series imputation, spatio-temporal
imputation, and trajectory imputation. The baselines include: statis-
tical methods (MEAN, KNN, Lin-ITP), classic models (MF, TRMF [54]),
multi-variable time-series imputation (CSDI [40]), spatiotemporal
imputation (ImputeFormer, PriSTI [24]), and trajectory imputation
(Multi-task AIS [30], PG-DPM [55]).

5.1.4 Masking Strategies. AIS data presents distinctive missing
patterns across various time scales (as discussed in Section 3.3). To
accurately simulate these real-world scenarios, we implement three
targeted masking strategies with mask ratio r:

e Point Masking (Scales 1 and 2): Randomly masks individual
values throughout the sequence with probability r, simulating
sporadic missingness characteristic of high-frequency attributes.

e Block Masking (Scales 3 and 4): Masks continuous segments
within individual voyages throughout the sequence with proba-
bility r, capturing voyage-phase-related missing patterns com-
mon to these attributes.

o Entire Masking (Scale 5): Masks entire attribute sequences for
a proportion r of vessels, replicating the systematic absence of
vessel-specific data frequently observed in AIS records.

5.1.5  Noise Injection Strategies. To evaluate the robustness of our
proposed method, we inject noise into the AIS data to simulate
real-world data corruption scenarios. We design a unified noise
injection strategy controlled by parameter y that provides com-
parable corruption levels across all heterogeneous attribute types.
For continuous attributes, we add Gaussian noise scaled by the
attribute’s own value x], = x,, + N (0, (yx,)?). For spatio-temporal
coordinates, noise is scaled by movement dynamics to simulate
GPS drift A’ = A + N (0, (yoap)?) and ¢’ = ¢ + N (0, ()/GA¢)2). For
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timestamps, we corrupt time intervals rather than absolute values
At] = Ar; + max (0, N(0, (y - oar)?)). For cyclical attributes like
headings, we add angular noise with proper wrap-around handling
xl = (xc + N(0,(y - 0ax.)?)) (mod 360). For discrete categories,
we implement label flipping with probability y. This unified ap-
proach ensures that y serves as an interpretable control parameter
for systematic noise injection across the heterogeneous dataset.

5.1.6  Experimental Settings. All experiments are conducted on a
server with Intel Xeon Processor (Icelake) CPUs, 100GB RAM, and
two NVIDIA A10 GPUs (each with 23GB memory). For training
our model, we use the Adam optimizer with a learning rate of 1e73
and weight decay of 1e™. The batch size is set to 64, and we train
for 100 epochs. Early stopping with a patience of 10 epochs was
applied to prevent overfitting.

For data processing, we use an 80%-10%-10% split for training,
validation, and testing, respectively. For the masked value gen-
eration, we create synthetic missing data according to the three
strategies described earlier, with mask ratios of 10%, 20%, 30%, 40%
and 50% to evaluate the robustness of different imputation methods.
For the noise injection, we conduct experiments by varying the
noise intensity y progressively from 0.0 to 0.5. The default mask
ratio is set to 30% for all experiments unless otherwise specified.

For methods, MEAN, Lin-ITP, and MF, no hyperparameters need
to be set. We set k of KNN to 20. For TRMF, CSDI, PriSTI, Impute-
Former, and Multi-task AIS, we use the default settings provided by
the authors. The more details about the experiments are provided
in Appendix C [23].

5.2 Performance Evaluation

5.2.1 Effectiveness Analysis. Tables 3 and 4 present the perfor-
mance comparison between MH-GIN and baseline methods. Nav-
igation status n and hazardous cargo type y are excluded from
Tables 3 and 4 due to the lack of suitable baseline methods capa-
ble of imputing these specific categorical attributes. However, we
emphasize that both categorical attributes are fully included in all
subsequent experiments, including ablation studies, missing ratio
analysis, and robustness evaluation.

MH-GIN consistently outperforms all baseline methods across
both datasets and all attribute types, demonstrating its strong capa-
bility to leverage multi-scale dependencies between attributes for



Table 4: Overall effectiveness comparison on AIS-US.

‘Coord. A @) ‘ Time 7 ‘ Head. ¢ ‘ Course 6 ‘ Speed s ‘ Draft d ‘ Length ¢ ‘ Width g ‘Type K
Method | Dist. | MAE SMAPE| MAE SMAPE| MAE SMAPE|MAE SMAPE|MAE SMAPE| MAE SMAPE| MAE SMAPE| ACC
MEAN 1.604e-2  [260.317 0.491 | 0.908 0370 | 1.203 0.449 |2.433 1344 [3.164 0.476 - - - - -
KNN 7.818e-4 | 44.358 0.516 | 0.452 0.391 | 0.846 0.640 |0.702 1.020 |2.134 0.322 - - - - -
Lin-ITP 4.896e-4 | 31.013 0486 | 7.617 0.365 |28.444 0.487 |0.687 0.968 |2.429 0.394 - - - - -
MF 6.830e-1 |160.671 0.702 |128.235 1.115 [131.286 1.008 |3.701 1303 |5.499 1.123 [181.249 1.763 (29.730 1.842 | -
TRMF 3.536e-1 |232.299 0.945 | 68.246 0.491 |82.993 0.580 |1.489 1279 |2.617 0.462 |58.320 0.366 |8.326 0.307 | -
CSDI 1.552e+0 [373.14 1993 | 0437 0245 | 0.689 0.364 |0.663 0.857 |8.096 1.745 |154.77 1.887 [18.047 1.025 | -
PriSTI 1.663e+0 [329.957 1.608 | 0.348 0.233 | 0.595 0.329 |0.591 0.787 |4.997 0.510 |134.655 1.202 [10.038 0.397 | -
ImputeFormer | 2.104e-1  [110.320 0.536 | 1.138  0.570 | 1.216 0.505 |1.865 0.976 |4.360 0.943 |45.337 0.318 |6.820 0.268 | -
Multi-task AIS|  3.627e-4 - - - - - - - - - - - - - - 10355
PG-DPM 1.512e-4 - - - - - - - - - - - - - - -
MH-GIN | 828le-5 [15.146 0.016 | 0.104 0.072 | 0461 0.184 [0.368 1.182 |1.899 0.314 |38.263 0.273 |5.382 0.213 | 0.446

accurate AIS data imputation. Specifically, we observe the following:
1) Spatio-temporal attributes — Coordinate (A, ¢) and Timestamp
7: Lin-ITP achieves the best timestamp imputation performance
by ensuring interpolated values fall within the temporal range
of consecutive records. Similarly, PG-DPM performs well in co-
ordinate imputation by incorporating physics-guided constraints
on vessel movement. Although these methods are specifically de-
signed for spatio-temporal attributes, MH-GIN still surpasses both
with 35.59%-96.71% performance gains, which strongly demon-
strates the effectiveness of modeling multi-scale dependencies. It
also confirms that MH-GIN’s spatio-temporal encoder-decoder is
not only effective in its own right, but also sufficiently expressive
to support subsequent multi-scale dependency mining. 2) Cyclical
attributes — Heading ¢ and Course 0: Among baselines, PriSTI
achieves the best results for cyclical attribute imputation. However,
due to the dynamic nature of spatial information in AIS data, PriSTI
and ImputeFormer fail to fully utilize spatial context, resulting in
comparable performance to CSDI. While these methods outper-
form classic baselines, they struggle with boundary continuity in
cyclical attributes. In contrast, MH-GIN achieves 22.52%-98.93%
improvements over PriSTI, demonstrating the strength of its cycli-
cal encoder-decoder in modeling cycical patterns while preserving
boundary continuity. 3) Continuous attributes — Speed s, Draft d,
Length ¢, and Width f: MH-GIN yields 2.48%-72.35% improvements
over PriSTI and ImputeFormer, primarily due to its ability to handle
scale variation through a dedicated continuous encoder-decoder
architecture. Notably, CSDI, PriSTI and ImputeFormer generally as-
sume that all variables are continuous attributes, which gives them
a natural advantage when dealing with this attribute type. Despite
this, MH-GIN still surpasses their performance, highlighting the
importance and effectiveness of mining multi-scale dependencies
across heterogeneous attributes for more accurate imputation. 4)
For discrete attribute imputation (Type k), MH-GIN reduces error
rates by 14.11%-51.18% compared to Multi-task AIS. This supe-
rior performance stems from MH-GIN’s comprehensive modeling
approach that incorporates all 12 attributes across different time
scales, whereas Multi-task AIS only utilizes limited information
(spatio-temporal attributes and vessel type). By effectively captur-
ing cross-scale dependencies among the heterogeneous attributes,
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Table 5: Overall time cost and memory cost comparison.

\ AIS-DK \ AIS-US

Method ‘ Time (s) ‘ Memory (MB) ‘ Time (s) ‘ Memory (MB)
MEAN 1.24 - 1.28 -
KNN 5.39 - 7.50 -
Lin-ITP 1.26 - 1.29 -
MF 27.24 - 28.29 -
TRMF 34.02 - 35.86 -
CSDI 60.48 1.72 60.74 1.92
PriSTI 94.92 2.89 100.80 3.19
ImputeFormer 14.10 5.13 15.42 5.52
Multi-task AIS 38.30 1.66 40.59 1.84
PG-DPM 120.46 1.79 128.32 1.99
MH-GIN 10.9 1.43 11.2 1.83

MH-GIN establishes more robust correlations that significantly
enhance vessel type imputation accuracy.

5.2.2  Efficiency Analysis. Table 5 presents a comparison of com-
putational efficiency in terms of inference time on the test dataset
and memory consumption (model size) for each method. Key ob-
servations include: 1) Statistical methods (MEAN, KNN, Lin-ITP)
achieve significantly lower computational times than parametric
approaches. 2) MH-GIN demonstrates superior efficiency among
neural methods, with inference times of 10.9s and 11.2s (22.7% and
27.4% faster than ImputeFormer) on AIS-DK and AIS-US datasets.
3) MH-GIN maintains minimal memory costs at 1.47MB and 1.92
MB. These efficiency gains come from the Multi-scale Dependency
Mining Module’s efficient and simple architecture that eliminates
complex operations required by complex neural networks.

5.3 Ablation Study

To evaluate the contribution of each component of MH-GIN, we
conducted a comprehensive ablation study by removing or replac-
ing key components and analyzing the impact of different attribute
types. Table 6 presents the results on model components.



Table 6: Effectiveness analysis of model components.

Model {Coord. (A,(]ﬁ)‘ Time 7 ‘ Head. ¢ ‘ Course 0 ‘ Speed s ‘Nav. rﬂCargo )d Draft d ‘ Length ¢ ‘ Width g {Typek
Variant | Dist. | MAE SMAPE|MAE SMAPE|MAE SMAPE|MAE SMAPE| ACC | ACC |MAE SMAPE| MAE SMAPE|MAE SMAPE| ACC
w/o Spa 1.364e-3 |45326 0.465 [0.072 0.046 [0.171 0.085 |0.242 0.283 |0.802| 0.718 |1.323 0.174 |42.329 0.223 |6.258 0.216 | 0.584
w/o Cyc 1.316e-4 [25.769 0.158 [0.062 0.041 [0.176 0.269 |0.216 0.261 |0.881 | 0.769 |1.134 0.143 |35.106 0.188 [4.994 0.184 | 0.651
w/oCon | 1.15le-4 |[22312 0.138 [0.059 0.041 |0.147 0.079 |0.211 0.261 |0.882| 0.771 [1.126 0.139 |35364 0.216 |5.124 0.196 | 0.659
¥ wloDis 1.24%-4 [22.631 0.141 |0.059 0.042 |0.156 0.088 |0.238 0.269 | - - |1.159 0.152 (35399 0.189 |5.043 0.199 | -
& WioM2-B | 1.446e-4 |28.643 0.179 [0.069 0.053 [0.192 0.106 |0.246 0.286 |0.813 | 0.625 [1.249 0.171 [38.352 0.204 |5.984 0.215 | 0.532
<| w/oM3-S1 | 1530e-4 |31.825 0.372 |0.872 0.456 |0.185 0.102 |0.758 0.410 |0.322 | 0.380 [1.385 0.765 | - - - - -
w/o M3-S1-D| 1.117e-4 |21.652 0.129 [0.050 0.037 [0.143 0.074 [0.203 0.256 |0.898 | 0.792 |1.019 0.127 |34.388 0.180 |4.901 0.178 | 0.665
w/oM3-S2 | 1.256e-4 |23.125 0.142 |0.051 0.038 |0.145 0.076 |0.206 0.257 |0.890 | 0.780 [1.095 0.135 |34.825 0.183 |4.950 0.180 | 0.658
MH-GIN | 1.112e-4 [21.413 0.127 |0.049 0.036 |0.141 0.071 |0.198 0.252 [0.904| 0.798 [1.017 0.126 |34.192 0.178 [4.896 0.175 | 0.669
w/o Spa 1.465e-4 | 2859 0.082 [0.132 0.125 [0.493 0.239 |0.469 1326 |0.592 | 0.524 [2.258 0.349 |41.536 0.329 |5.869 0.373 | 0.394
w/o Cyc 9.242e-5 |17.511 0.038 [0.127 0.093 |0.513 0.243 {0379 1.196 |0.631| 0.542 [1.931 0.324 [38.996 0.281 [5.412 0.219 | 0.426
w/oCon | 8.624e-5 |[15.866 0.018 |0.119 0.085 |0.479 0.189 [0.382 1.191 |0.633 | 0.545 [1.965 0.347 | 39.26 0.284 |5.762 0.373 | 0.419
@ wlo Dis 8.963e-5 |15.976 0.021 |0.127 0.082 |0.483 0.189 |0.386 1.196 | - - [1.953 0367 [39.104 0292 |5536 0227 | -
A w/oM2-B | 1.265e-4 |17.937 0.025 [0.134 0.092 [0.579 0.231 [0.439 1.368 |0.582 | 0.446 |2.218 0.374 |41.726 0.314 |5.936 0.252 | 0.364
< w/oM3-S1 | 1372e-4 26325 0.061 |1.142 0412 {1590 0.538 [1.252 1.178 |0.175| 0.128 [2.240 0375 | - - - - -
w/o M3-S1-D| 8.364e-5 [15.259 0.017 [0.108 0.075 [0.467 0.186 [0.370 1.184 |0.644 | 0.555 |1.910 0.319 |38.681 0.279 |5.388 0.215 | 0.433
w/o M3-S2 | 8.731e-5 |15.553 0.018 |0.109 0.076 |0.468 0.187 |0.372 1.186 |0.641| 0.552 [1.918 0.320 [38.811 0.231 |5.391 0.224 | 0.431
MH-GIN | 8.281e-5 [15.146 0.016 |0.104 0.072 |0.461 0.184 |0.368 1.182 |0.651| 0.559 [1.899 0.314 |38.263 0.273 |5.382 0.213 | 0.446
Table 7: Robustness evaluation under different missing ratios.
Missing‘coord' (/1,¢)‘ Time 7 ‘ Head. ¢ ‘ Course 6 ‘ Speed s ‘Nav‘r]‘CargO)(‘ Draft d ‘ Length ¢ ‘ Width g ‘TprK
Rate | Dist. | MAE SMAPE|MAE SMAPE|MAE SMAPE|MAE SMAPE| ACC | ACC |MAE SMAPE| MAE SMAPE|MAE SMAPE| ACC
10% | 0.97%-5 [19.319 0.114 |0.045 0.033 [0.136 0.070 [0.197 0.247 | 0.917 | 0.814 [0.883 0.121 [32.951 0.173 |4.536 0.165 | 0.689
%) 20% | 10434 [20475 0.121 |0.046 0.034 [0.139 0071 |0.198 0249 |0.908 | 0.805 |0.901 0.124 [33.674 0.176 |4.717 0.170 | 0.682
S| 30% | 1112e-4 (21413 0.127 |0.049 0.036 [0.141 0.071 [0.198 0.252 | 0.904 | 0.798 [1.017 0.126 [34.192 0.178 |4.896 0.175 | 0.669
<| 40% | 3.229e-4 [23.121 0.133 |0.051 0.037 |0.146 0.075 |0.206 0.261 | 0.887 | 0.717 [1.196 0.141 [35.462 0.184 [5.096 0.183 | 0.652
50% | 1.383e-3 |24.868 0.147 [0.055 0.041 [0.151 0.078 [0.213 0.267 | 0.868 | 0.639 |1.453 0.152 |36.842 0.191 [5.319 0.191 | 0.628
10% | 7.119e-5 [14313 0.014 |0.101 0.069 [0.451 0.177 |0.356 1.164 | 0.664 | 0.573 |1.838 0.306 [37.536 0.271 |5.239 0.206 | 0.456
®| 20% | 7.776e-5 14822 0.015 |0.103 0072 (0456 0.181 [0.362 1.174 | 0.659 | 0563 |1.875 0.313 |38.109 0.273 |5.304 0210 | 0.449
Al 30% | 8.28le-5 15146 0.016 |0.104 0.072 |0.461 0.184 [0.368 1.182 | 0.651 | 0.559 |1.899 0.314 [38.263 0.273 |5.382 0.213 | 0.446
<| 40% | 4.113e-4 [15.861 0.017 |0.110 0.077 |0.473 0.189 [0.372 1.192 | 0.634 | 0.546 [1.962 0.324 |39.246 0.283 |5.469 0.219 | 0.424
50% | 9.019e-4 [16.533 0.018 |0.115 0.081 [0.484 0.194 [0.385 1.206 | 0.621 | 0.529 [2.023 0.333 |40.115 0.291 |5.579 0.225 | 0.411

We have following observations: 1) w/o Spa, w/o Cyc, w/o Con,
w/o Dis: Removing type-specific encoders and decoders for spatio-
temporal, cyclical, continuous, and discrete attributes leads to sig-
nificant performance degradation in their corresponding attribute
types. Performance also drops for other attribute types due to miss-
ing well-encoded representations, demonstrating the interdepen-
dencies between heterogeneous attributes. 2) w/o M2-B: Replacing
bidirectional DeepESN with forward-only variant reduces perfor-
mance across all attributes. Nevertheless, M2-B still outperforms the
baseline methods (as shown in Table 3 and Table 4), demonstrating
the effectiveness of MH-GIN in real-time scenarios. 3) w/o M3-S1:
Removing intra-scale propagation severely impacts performance
across all attributes, demonstrating that MH-GIN cannot effectively
capture inter-attribute dependencies without this component. This
highlights the critical importance of modeling complementary rela-
tionships between heterogeneous attributes within each time scale.
4) w/o M3-S1-D: Removing dynamic edges within time-scale sub-
graphs while keeping static graph structure shows performance

degradation compared to the full model, demonstrating that dy-
namic relationship modeling is essential for capturing the evolving
dependencies between attributes at each time scale. 5) w/o M3-S2:
Eliminating cross-scale propagation results in performance degra-
dation, particularly for attributes with dependencies across scales.
This demonstrates that cross-scale relationships are essential for
effectively leveraging complementary information across different
temporal dynamics.

5.4 Robustness of MH-GIN

Performance under Different Missing Ratios. We analyze MH-
GIN’s robustness under varying missing ratios (10%-50%) in Table 7.
The results yield the following observations: 1) Performance de-
grades gradually with increasing missing ratios across all attributes,
indicating model stability under data sparsity. 2) Non-coordinate
attributes exhibit near-linear degradation without catastrophic col-
lapse. The hierarchical structure enables lower-scale attributes to
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Table 8: Robustness evaluation under noisy conditions.

Noisy ‘Coord. (A,(]ﬁ)‘ Time 7 ‘ Head. ¢ ‘ Course 6 ‘ Speed s ‘Nav.ry‘Cargo )(‘ Draft d ‘ Length ¢ ‘ Width g ‘Type;c
Intensity| ~ Dist. | MAE SMAPE|MAE SMAPE|MAE SMAPE|MAE SMAPE| ACC | ACC |MAE SMAPE| MAE SMAPE|MAE SMAPE| ACC
0.00 | 1.112e-4 |[21.413 0.127 [0.049 0.036 |0.141 0.071 [0.198 0.252 | 0.904| 0.798 [1.017 0.126 [34.192 0.178 |4.896 0.175 | 0.669
¥ 001 | 1123e4 |22.017 0.129 [0.049 0.038 (0.143 0.073 |0.203 0.253 | 0.902 | 0.798 |1.056 1.129 34384 0.180 |4912 0.178 | 0.667
S| 0015 | 1366e-4 (22656 0.130 {0.051 0.039 [0.144 0.076 [0.205 0.256 | 0.899 | 0.796 [1.213 1.132 |34.681 0.181 |[4.947 0.179 | 0.665
<| 002 | 1.647e-4 [22.931 0.132 [0.053 0.041 |0.146 0.078 [0.208 0.258 | 0.898 | 0.795 [1.239 1136 (35152 0.183 [4.973 0.182 | 0.662
0.025 | 2148e-4 |23.172 0.133 [0.054 0.043 |0.149 0.081 |0.210 0.261 |0.897 | 0.792 [1.305 1.142 |35.503 0.186 |5.062 0.185 | 0.658
0.00 | 828le-5 [15.146 0.016 [0.104 0.072 |0.461 0.184 0368 1.182 | 0.651| 0.559 |1.899 0314 |38.263 0.273 [5.382 0.213 | 0.446
@l 001 | 8316e-5 15265 0.016 (0.106 0.074 [0.463 0.188 (0.369 1.184 | 0.648 | 0557 |1912 0.316 |38.426 0.275 (5.399 0214 | 0.445
S| 0015 | 899%-5 [15382 0.016 [0.107 0.076 [0.466 0.190 [0.372 1.188 | 0.645 | 0.554 |1.946 0319 [38.873 0.278 |5.402 0.217 | 0.443
<| 002 | 9.642e-5 [15.503 0.017 [0.109 0.079 |0.468 0.192 [0.375 1.191 | 0.643 | 0.552 |1.980 0.321 [39.143 0.281 (5436 0.219 | 0.441
0.025 | 1.017e-4 |15.621 0.017 [0.112 0.081 |0.472 0.195 |0.379 1.195 |0.640 | 0.549 |2.014 0.325 |39.479 0.284 |5.475 0.222 | 0.438
Table 9: Effectiveness of MH-GIN in scenario where multiple attributes are missing at the same time.
Missing‘coord' (/1,¢)‘ Time 7 Head. ¢/ ‘ Course 6 Speed s ‘Naviry‘Cargo )(‘ Draft d ‘ Length ¢ ‘ Width ‘Typelc
Number| Dist. | MAE SMAPE|MAE SMAPE|MAE SMAPE|MAE SMAPE| ACC | ACC |MAE SMAPE| MAE SMAPE|MAE SMAPE| ACC
1-2 | 1.038e-4 [21316 0.113 [0.045 0.031 0132 0.061 [0.193 0.241 | 0.916 | 0.807 [0.987 0.119 [33.992 0.162 |4.632 0.168 | 0.681
3-4 | 1108e-4 |21.388 0.125 [0.047 0.034 [0.139 0.067 [0.196 0.246 | 0.911 | 0.802 |1.004 0.123 |34.014 0.167 (4784 0.171 | 0.673
56 | 1.726e-4 |22.632 0139 [0.056 0.044 |0.146 0.078 [0.207 0.259 | 0.892 | 0.784 [1.126 0.141 |34.369 0.183 |4.996 0.185 | 0.661
®f 12 | 8103e-5 [14.936 0013 [0.091 0.065 [0.448 0.178 [0356 1.169 | 0.661 | 0.569 |1.821 0298 [38.184 0253 [5324 0.199 | 0.454
& 3-4 | 8226e-5 (15012 0.015 [0.096 0.070 [0.452 0.181 {0.359 1.173 |0.657 | 0.562 |1.832 0.302 [38.226 0.261 [5.371 0.208 | 0.449
<| 5-6 | 8394e-5 |[15.233 0019 |0.116 0.078 [0.477 0.189 |0.371 1.189 |0.648 | 0554 |1.904 0.323 [38.284 0276 |5394 0.226 | 0.441

generate higher-scale features, allowing the model to leverage abun-
dant high-scale features for reasonable imputation performance. 3)
Coordinate attributes (lowest time scale) show significant perfor-
mance drops at high missing ratios due to insufficient low-scale
features and limited constraints from coarse high-scale features.
However, such extreme sparsity is rare in practice, where coordi-
nates typically remain densely observed while non-spatio-temporal
attributes exhibit higher missing ratios. MH-GIN maintains strong
performance under high missing ratios, demonstrating robustness
in practical settings.

Performance under Different Noise Intensities. To evaluate
the robustness of MH-GIN under noisy conditions, we inject noise
into the data with progressively varying noise intensity y to simu-
late realistic corruption scenarios. As shown in Table 8, MH-GIN
exhibits remarkable resilience across noise intensities ranging from
0 to 0.025. The model exhibits graceful performance degradation
in a near-linear fashion without catastrophic failure, which can be
attributed to the multi-scale architecture’s capability to leverage
contextual information from less corrupted attributes and scales,
thereby effectively mitigating the impact of local perturbations.
Performance under Multiple Attributes Missing Scenarios. To
evaluate MH-GIN’s robustness under simultaneous multi-attribute
missing scenarios, we assess the model’s performance as the num-
ber of missing attributes increases. As shown in Table 9, while MH-
GIN’s performance degrades as the number of missing attributes
increases, the degradation remains moderate and controlled. Specif-
ically, even with up to six missing attributes, MH-GIN maintains
stable accuracy across both numerical and categorical features. This
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shows that MH-GIN effectively exploits remaining correlations to
stay stable under severe missing conditions.

6 CONCLUSION AND FUTURE WORK

Our study highlights the importance of modeling multi-scale de-
pendencies between heterogeneous attributes for missing attribute
imputation in AIS data. We introduce MH-GIN, a Multi-scale Het-
erogeneous Graph-based Imputation Network for AIS data. MH-
GIN is the first method that can effectively model multi-scale de-
pendencies between heterogeneous attributes for missing attribute
imputation in AIS data. MH-GIN first captures the multi-scale tem-
poral features of each attribute while preserving their intrinsic
properties. It then constructs a multi-scale heterogeneous graph
to model the complex dependencies between attributes, enabling
effective missing attribute imputation through two-stage graph
propagation. Experiments on two real-world AIS datasets demon-
strate MH-GIN’s superior performance over state-of-the-art meth-
ods across all attribute types, achieving an average 57% reduction
in imputation error, while maintaining computational efficiency.

In future work, we plan to extend MH-GIN to other domains
with heterogeneous attributes across different time scales.
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