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ABSTRACT

Location-tracking data from the Automatic Identi�cation System,

much of which is publicly available, plays a key role in a range of

maritime safety and monitoring applications. However, the data

su�ers from missing values that hamper downstream applications.

Imputing the missing values is challenging because the values of

di�erent heterogeneous attributes are updated at diverse rates,

resulting in the occurrence of multi-scale dependencies among at-

tributes. Existing imputation methods that assume similar update

rates across attributes are unable to capture and exploit such depen-

dencies, limiting their imputation accuracy. We proposeMH-GIN,

a Multi-scale Heterogeneous Graph-based Imputation Network

that aims improve imputation accuracy by capturing multi-scale

dependencies. Speci�cally,MH-GIN �rst extracts multi-scale tem-

poral features for each attribute while preserving their intrinsic

heterogeneous characteristics. Then, it constructs a multi-scale

heterogeneous graph to explicitly model dependencies between

heterogeneous attributes to enable more accurate imputation of

missing values through graph propagation. Experimental results on

two real-world datasets �nd that MH-GIN is capable of an average

57% reduction in imputation errors compared to state-of-the-art

methods, while maintaining computational e�ciency.
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1 INTRODUCTION

The Automatic Identi�cation System (AIS) is an automated tracking

system that enhances navigational safety by enabling vessels to

share their position, identi�cation, and other essential information

with nearby ships and coastal authorities [3]. AIS data is crucial for
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Index Longtitude Latitude COG SOG Navi. Draught Length Width Vessel
Type MMSI

1 57.694620° 10.619458° 186 ?
Underway
using
engine

15 ? ? Tanker 20187312

2 ? ? 185 15
Underway
using
engine

15 ? ? Tanker 20187312

3 57.454070° 10.563542° 0 ? Anchor 15 ? ? Tanker 20187312

4 57.454071° 10.5635421° 0 0 Anchor 15 ? ? Tanker 20187312

5 57.454069° 10.563542° ? 0 Anchor 15 ? ? Tanker 20187312

6 ? ? 175 3 ? 18 ? ? Tanker 20187312

7 57.449921° 10.566126° 175 10 ? 18 ? ? Tanker 20187312

8 57.449921° 10.566113° ? 10 ? 18 ? ? Tanker 20187312

Update rates

High Low
? Missing Attribute

Value Range:
Draught  15

Observed Attribute

Movement Pattern:
A Fixed Position Mutual Influence Mutual Influence

Figure 1: An example of AIS records from a vessel.

maritime stakeholders to operate applications spanning di�erent

domains, including vessel tracking, safety monitoring, logistics op-

timization, and trade forecasting. However, AIS data often su�er

from quality issues, among which missing values represent a sig-

ni�cant challenge. Missing values may be caused by a variety of

various factors, such as equipment malfunctions, vessels switching

o� their transponders, or vessels being out of range of terrestrial

receivers [25]. Notably, statistics of data from the Danish Maritime

Authority [10] reveal that missing rates in attributes range from 8%

to 83%, which underscores the substantial need for data imputation

in real-world scenarios. When AIS fails, downstream applications

(such as vessel tracking [51], safety monitoring [46], and navigation

planning [38]) often rely on traditional tools (such as radar and

VHF radio [42, 43]) or alternative systems (such as Long-Range

Identi�cation and Tracking (LRIT) and Vessel Monitoring Systems

(VMS) [15]) typically at the cost of accuracy and e�ciency.

Example 1.Consider a vessel’s AIS records during a port visit as

illustrated in Figure 1. The vessel follows a typical maritime pattern:

entering the port (records 1–2), berthing at the terminal (records 3–5),

and departing from the port (records 6–8). During this process, the

vessel’s Longitude, Latitude, COG, and SOG are updated at high fre-

quency and exhibit random missing patterns. The vessel’s Navigation

Status and Draught are updated at low frequency and show block

missing patterns. The vessel’s Length, Width, and Vessel Type remain

constant throughout, with Length and Width being entirely missing.

As shown in Example 1, AIS data exhibit three characteris-

tics [39]: 1) There are heterogeneous attributes in AIS data, i.e.,

spatio-temporal attributes (Longtitude, Latitude), discrete attributes
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Table 1: Summary of existing imputation methods

Methodology
Class

Heterogeneous
Attributes

Diverse Update
Rates

Multi-scale
Dependencies

Heuristic &
Statistical
Imputation

Yes No No

Multi-variable
Time Series
Imputation

No (Assumes
Homogeneity)

No (Assumes
Uniform Update

Rates)

No (Single-scale
Dependency)

Spatio-temporal
Imputation

Partial (Focus on
Spatial and
Continuous
Attributes)

Partial (Assumes
Uniform Rates
for Non-spatial)

Partial (Single-scale
Dependency

for Non-spatial)

Trajectory
Imputation

No (Spatio-temporal
Attributes Only)

No (Assumes Similar
Update Rates)

No (Single-scale
Dependency)

(Navigation Status), and continuous attributes (Draught). 2) Dif-

ferent attributes exhibit diverse update rates, leading to diverse

missing patterns. As the update rate decreases, the missing pattern

transitions from random to block to entirely missing. 3) There are

multi-scale dependencies between attributes. Attributes at high

time scales constrain the high-level features of attributes at low

time scales without a�ecting their low-level features. Conversely,

only the high-level features of attributes at low time scales in�uence

attributes at higher time scales. For instance, as shown in Figure 1,

Navigation Status (Anchored) constrains a vessel’s movement to a

limited region around a �xed point (high-level feature: movement

pattern of Longitude and Latitude) without specifying precise coor-

dinates. Similarly, Vessel Type (Tanker) constrains the value range

of Draught (high-level feature of Draught) without specifying the

exact value. Conversely, the value range of Draught also constrains

the value range of the vessel’s Length and Width.

However, existing imputation methods cannot e�ectively handle

these characteristics. As shown in Table 1, existing imputationmeth-

ods can be categorized into four categories, each with distinct limi-

tations: 1) Traditional and statistical methods [1, 2, 5, 17, 27, 36, 49]

fall short due to their assumptions of linear relationships and

their inability to handle diverse update rates and model multi-

scale dependencies. 2) Multi-variable time series imputation meth-

ods [7, 8, 11, 40] assume uniform update rates and treat attributes

homogeneously. 3) Spatio-temporal imputation methods [24, 26, 31]

assume static spatial relationships and uniform update rates for

non-spatial attributes. 4) Trajectory imputation methods [30, 35, 55]

focus exclusively on reconstructing vessel positions and rarely con-

sider other heterogeneous attributes critical for comprehensive

AIS analysis. E�ectively handling the characteristics of AIS data is

challenging and presents signi�cant obstacles.

C1: How to e�ectively represent and simultaneously impute

heterogeneous a�ributes? AIS data consist of four attribute types:

spatio-temporal, cyclical, continuous, and discrete, and each has dis-

tinct intrinsic characteristics. The heterogeneous attributes require

uni�ed yet type-speci�c representation and imputation strategies,

capable of preserving their individual properties. Such strategies are

an essential precondition for capturing multi-scale dependencies

and accurately imputing missing data. Existing imputation meth-

ods [8, 26, 31, 40, 55] exhibit signi�cant limitations in addressing

this heterogeneity. They either focus exclusively on the spatio-

temporal data or treat all attributes homogeneously, neglecting the

unique properties of di�erent attribute types.

C2: How to e�ectively extract multi-scale temporal features

from each a�ribute? As discussed earlier, AIS attributes operate

at di�erent time scales and in�uence each other indirectly. To cap-

ture the direct interactions among attributes at a particular scale

accurately, it is essential to model temporal features individually at

their own and higher scales. However, existing imputation meth-

ods [6, 8, 11, 40] typically assume similar update rates across all

attributes, thus extracting temporal features indiscriminately at all

scales into a single, uninterpretable feature vector.

C3: How to e�ectively model multi-scale dependencies between

a�ributes? Multi-scale dependencies are complex, involving both

dependencies between attributes at the same time scale and depen-

dencies between attributes across di�erent time scales. E�ectively

modeling and leveraging these dependencies for accurate imputa-

tion is challenging. Current methods [4, 7, 11, 53] do not di�erenti-

ate direct and indirect attribute interactions at varying scales due

to their similar update rate assumption, resulting in oversimpli�ed

attribute relationships and reduced imputation performance.

To address these challenges, we propose MH-GIN, a Multi-scale

Heterogeneous Graph-based Imputation Network for AIS data.

Addressing C1: MH-GIN utilize type-speci�c encoding and de-

coding strategies for four distinct attribute types: spatio-temporal,

cyclical, continous, and discrete attributes, while preserving their

intrinsic characteristics, such as spatial constraints, smooth wrap-

around at boundaries.

Addressing C2: MH-GIN adopts a hierarchical temporal feature

extractor based on Deep Echo State Networks, enabling the cap-

ture of hierarchical temporal features for each attribute through

progressive abstraction and leaky integration.

Addressing C3: MH-GIN constructs a multi-scale heterogeneous

graph to explicitly model two types of multi-scale dependencies.

Speci�cally, the graph contains two kinds of subgraphs: time-scale

subgraphs and attribute subgraphs. The former model dependencies

between features of di�erent attributes at the same scale, whereas

the latter model dependencies across di�erent scales within each at-

tribute. Subsequently,MH-GIN imputes missing features through a

two-stage graph propagation process, �rst aligning features within

time-scale subgraphs, and then impute missing features through

propagation within attribute subgraphs.

Our main contributions are summarized as follows:

• We proposeMH-GIN, a Multi-scale Heterogeneous Graph-based

Imputation Network for AIS data, which captures multi-scale

dependencies among heterogeneous attributes to enhance impu-

tation performance.

• We design complementary modules, including type-speci�c en-

coders and decoders and a hierarchical temporal feature extrac-

tor, to collaboratively extract hierarchical temporal features for

each attribute type while preserving intrinsic characteristics of

each attribute type.

• We introduce a multi-scale dependency mining module, which

constructs a multi-scale heterogeneous graph to model depen-

dencies between attributes explicitly and performs imputation

via two-stage graph propagation.

• We evaluateMH-GIN extensively on two real-world AIS datasets,

�nding thatMH-GIN is able to outperform state-of-the-art ap-

proaches, achieving an average 57% reduction in imputation

error while maintaining computational e�ciency.
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The remainder of the paper is structured as follows: Section 2

reviews related work. Section 3 presents preliminaries and formu-

lates the problem. Section 4 details the proposedMH-GIN. Section 5

reports experimental results. Section 6 concludes the paper and

outlines directions for future work.

2 RELATED WORK

Existing imputation methods can be categorized into four cate-

gories, as shown in Table 1, each with distinct limitations:

Traditional and Statistical Imputation Methods. Traditional

approaches for handling missing data include deletion methods,

neighbor-based methods, constraint-based methods, and statisti-

cal imputation. Deletion methods, such as listwise deletion [49]

and pairwise deletion [27], directly remove data instances con-

taining missing values, often resulting in signi�cant information

loss. Neighbor-based methods like KNN [5] impute missing values

using local patterns derived from similar data points. Constraint-

based methods [36] leverage domain-speci�c rules, performing well

when data adheres to particular constraints or patterns. Common

statistical approaches includemean/median imputation [1], Last Ob-

servation Carried Forward (LOCF)[2], and linear interpolation[17].

Despite being computationally e�cient and straightforward, these

traditional methods are inadequate for AIS data due to their im-

plicit assumptions of linear relationships. AIS data inherently ex-

hibits complex, non-linear patterns. Additionally, deletion-based

approaches are particularly problematic for AIS, given its often ex-

tended periods of missingness. Thus, traditional methods struggle

to represent the inherent multi-scale dependencies and heteroge-

neous attributes within AIS datasets.

Multi-variable Time Series Imputation. Deep learning methods

for multi-variable time series imputation have attracted consid-

erable attention in recent years. Early RNN-based methods, such

as GRU-D [7], leverage gating mechanisms and decay factors to

handle irregularly sampled data. More recently, transformer-based

architectures, including SAITS [11] and DeepMVI [4], utilize self-

attention mechanisms to e�ectively capture long-range dependen-

cies. Di�usion-based methods, such as CSDI [40], employ condi-

tional score-based di�usion models to produce high-quality impu-

tations through iterative data denoising. Additionally, graph-based

methods like GRIN [8] represent each variable as a graph node, en-

abling message passing to capture cross-dimensional correlations.

However, existing general-purpose imputation methods typically

assume uniform update rates across all variables and treat attributes

homogeneously. These assumptions con�ict with the inherent char-

acteristics of AIS data, which contains heterogeneous attributes

operating at multiple time scales.

Spatio-temporal Imputation. Spatio-temporal imputation ex-

tends conventional time series methods by explicitly modeling spa-

tial dependencies (e.g., sensor grids or geographic adjacency). Re-

cent approaches incorporate graph neural networks (GNNs) [50] or

attentionmechanisms to jointly learn spatio-temporal patterns. Rep-

resentative methods include PriSTI [24], which enhance di�usion-

based models by capturing spatio-temporal dependencies and geo-

graphic relationships. ImputeFormer [31] utilizes a low-rank Trans-

former architecture to achieve a balance between inductive bias

and model expressivity. SPIN [26] proposes a spatio-temporal prop-

agation framework with sparse attention, speci�cally designed to

handle highly sparse observations by conditioning reconstruction

exclusively on available data, thus preventing error propagation

common in autoregressive GNNs. Although e�ective in sensor

networks with relatively �xed spatial structures, these methods

generally assume stationary spatial relationships or static graph

topologies. However, AIS data involves vessels continuously mov-

ing across large maritime regions, leading to dynamic and evolving

spatial relationships rather than static sensor locations. Therefore,

existing spatio-temporal imputation methods face challenges in

e�ectively modeling these dynamic spatial relationships. Further-

more, similar to multi-variable time series imputationmethods, they

typically assume uniform update rates for non-spatial attributes,

rendering them ine�ective in capturing diverse update frequencies

inherent to AIS attributes.

Trajectory Imputation. Trajectory imputation methods recon-

struct missing segments in the trajectories of moving objects (e.g.,

vehicles, pedestrians, and ships), typically leveraging motion conti-

nuity and spatio-temporal context. Transformer-based approaches,

such as TrajBERT [35], embed geographic coordinates as tokens and

reconstruct missing positions using bidirectional attention mech-

anisms. KAMEL [28] maps trajectory imputation to the missing

word problem in natural language processing, adapting BERT with

spatial-awareness and multi-point imputation capabilities for scal-

able trajectory reconstruction. Recurrent and graph-based sequence

models [22, 52, 53, 56] exploit temporal dependencies and spatial

constraints, capturing complex motion patterns and environmental

context to impute missing trajectory segments. Meanwhile, gener-

ative models like GANs [34] and VAEs [33] produce plausible tra-

jectories consistent with known movement behaviors. Speci�cally

tailored maritime approaches include Multi-task AIS [30], which

integrates recurrent neural networks with latent-variable modeling

to simultaneously address trajectory reconstruction, anomaly de-

tection, and vessel-type identi�cation. PG-DPM [55] introduces a

physics-guided di�usion probabilistic model speci�cally designed

for long-term vessel trajectory imputation by incorporating mar-

itime domain knowledge into the generative process. Complemen-

tary studies on trajectory compression and clustering [18–20, 37]

share similar goals of preserving motion patterns and data util-

ity. However, these methods generally focus exclusively on recon-

structing vessel positions and rarely consider other heterogeneous

attributes, which are critical for comprehensive AIS data analysis.

3 PRELIMINARIES

3.1 Data and Notation

De�nition 1 (AIS Record). An AIS Record X with # attributes can

be characterized from two perspectives (see Table 2): (i) a�ribute

type: including spatio-temporal set XB = {_, q, g}, cyclical set X2 =

{k, \ }, continuous setX= = {B, 3, ℓ, V}, and discrete setX3 = {[, j, ^};

(ii) time scale (update rate): attributes are grouped according to

decreasing update rates into �ve time scales: X1
= {_, q, g}, X2

=

{k, \, B}, X3
= {[}, X4

= {j, 3}, and X5
= {ℓ, V, ^}.

An attribute can be denoted by its attribute type and time scale.

For instance, Speed Over Ground (SOG) is a continuous attribute
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Table 2: Summary of AIS attributes categorized by type and time scale.

Attribute (Symbol)
Attribute Type Time Scale

Spatio-temporal (XB ) Cyclical (X2 ) Continuous (X= ) Discrete (X3 ) S1 (X1) S2 (X2) S3 (X3) S4 (X4) S5 (X5)

Longitude (_) ✓ ✓

Latitude (q) ✓ ✓

Timestamp (g ) ✓ ✓

True heading angle (k ) ✓ ✓

Course Over Ground (\ ) ✓ ✓

Speed Over Ground (B) ✓ ✓

Navigation status ([) ✓ ✓

Hazardous cargo type (j ) ✓ ✓

draught (3) ✓ ✓

Length (ℓ) ✓ ✓

Width (V) ✓ ✓

Vessel type (̂ ) ✓ ✓

†Si represents time scale 8 , where 8 ∈ {1, 2, 3, 4, 5}
‡ Attribute types and time scales are organized according to De�nitions 3 and 4.

G2= at time scale 2, denoted by B . It indicates the vessel’s speed, and

simultaneously belongs to X2, X= , and X2
= .

De�nition 2 (Vessel-speci�c AIS Record Sequence). A vessel-

speci�c AIS record sequence is a heterogeneous multi-variable time

series denoted by X = ⟨X1,X2, · · · ,X) ⟩ ∈ R
)×# . Each record XC at

time step C can be decomposed into two complementary views: by

time scale (update rate), XC = {X
1
C ,X

2
C ,X

3
C ,X

4
C ,X

5
C }; by attribute type,

XC = {XC,B ,XC,2 ,XC,=,XC,3 }.

For example, SOG BC at time step C is a continuous attribute G2=,C
at time scale 2, belonging to X2

C,= , XC,= , and X2
C .

AIS data attributes can generally be categorized into three types

based on their intrinsic characteristics: spatio-temporal, continuous,

and discrete. To achieve a �ner granularity and better applicability,

we introduce a fourth category by extracting COG \ and THA k

from the continuous attributes into cyclical attributes due to their

periodic nature. The �nal categorization is as follows:

De�nition 3 (Intrinsic Characteristics of AIS Attributes). AIS

attributes can be categorized into four types based on their intrinsic

characteristics, as summarized in Table 2:

• Spatio-temporal attributes exhibit spatial constraints (e.g., latitude-

dependent distortion and spherical continuity) and nested periodic-

ities (e.g., daily, weekly cycles).

• Cyclical attributes recur periodically and exhibit smooth wrap-

around at boundaries.

• Continuous attributes exhibit wide variations in scale, requiring

appropriate normalization.

• Discrete attributes belong to �nite categorical sets without inherent

numerical ordering.

Spatio-temporal attributes exhibit spatial and temporal char-

acteristics. For instance, spatial scaling varies with latitude: at the

equator (q = 0◦), a longitudinal change of 1◦ corresponds to ap-

proximately 111 km, while at a latitude of q = 79◦ North, the same

1◦ shift corresponds to roughly 20 km. Moreover, longitude values

of _ = 180◦ and _ = −180◦ represent the same geographic meridian,

due to spherical continuity. Temporally, timestamps demonstrate

nested periodicities — both daily (24 × 3600 seconds) and weekly

(168 × 3600 seconds) cycles return to the starting point (g = 0).

Cyclical attributes, such as heading angle (k ), measured from

0◦ to 359◦, demonstrates circular continuity, where angles exceeding

359◦ wrap around to 0◦ without causing discontinuity.

Continuous attributes, such as draught (3) and speed over

ground (B), di�er substantially in their numerical ranges. Draught

typically ranges from 0 to 20 meters, while speed ranges from 0

to 30 knots or higher. Due to the distinct scales, a unit change in

draught and a unit change in speed are not directly comparable,

thus requiring normalization prior to uni�ed analyses.

Discrete attributes represent categorical values without inher-

ent numerical order. For example, the navigation status attribute ([)

includes distinct categories such as 0 (under way), 1 (anchored), and

2 (not under command). These values function purely as categorical

labels rather than as numerical measurements.

3.2 Multi-scale Heterogeneous Graph

AIS data attributes exhibit distinct update patterns that naturally

lead to �ve time scales. According to the update mechanism [25],

attributes can initially be categorized into three groups: (i) Au-

tonomous sensor updates for the �rst six attributes in Table 2; (ii)

Periodic crew updates for the seventh and eighth attributes; (iii)

One-time vessel registration updates for the last four attributes.

To capture �ner temporal granularities, we further subdivide

these groups: autonomous sensor attributes are split based on

whether they require measurement intervals, while crew-updated

attributes are divided based on whether they only change between

voyages. This results in �ve distinct time scales that re�ect the

natural update frequencies of AIS attributes.

De�nition 4 (Multiple Time Scales). We categorize AIS data at-

tributes into �ve distinct time scales based on their update rates, as

summarized in Table 2. Speci�cally:

• Time scale 1: Attributes G1 ∈ X1 have instantaneous values

without requiring measurement intervals; thus, their theoretical

update interval lower bound is zero.

• Time scale 2: Attributes G2 ∈ X2 change rapidly and require

short measurement intervals, resulting in a theoretical lower bound

slightly above zero.

• Time scale 3: Attributes G3 ∈ X3 change discretely at a moderate

frequency during a voyage; hence, their update intervals have a

theoretical lower bound above that of time scale 2.

• Time scale 4: Attributes G4 ∈ X4 remain constant within indi-

vidual voyages but may change between voyages, setting their

theoretical lower bound to the duration of the shortest voyage.
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Step 2: Intra-scale
Propagation Phase

Step 3: Cross-scale
Propagation Phase

Step 1: Feature Extraction
Phase

Step 4: Miss Attribute 
Imputation Phase

···

···

···

···

···

···

Figure 2: An example of missing attribute imputation based on a multi-scale heterogeneous graph.

Figure 3: An example of multi-scale heterogeneous graph.

• Time scale 5: Attributes G5 ∈ X5 change rarely during a vessel’s

operational lifespan, resulting in a very large theoretical lower

bound for their update interval.

For example, SOG is classi�ed as time scale 2, as it requires short

intervals to accurately measure its rapidly changing value.

De�nition 5 (Multi-scale Temporal Features). AIS data attributes

generate hierarchical features across di�erent time scales. Speci�cally,

for an attribute G 9 ∈ X9 at its original time scale 9 , features E:
G 9 ∈ V

:

can be derived at time scales : , where : ≥ 9 . Thus, each attribute

G 9 generates 5 + 1 − 9 multi-scale features that capture its temporal

features at di�erent time scales.

Example 2.Consider three attributes G1, G2, and G3 at time scales 1,

2, and 3, respectively (red nodes in Figure 3). Each attribute generates

temporal features at its own and higher time scales: G1 generates fea-

tures (E1
G1
, E2

G1
, E3

G1
), G2 generates features (E2

G2
, E3

G2
), and G3 generates

the feature E3
G3

(green nodes in Figure 3).

De�nition 6 (Multi-scale Heterogeneous Graph). A multi-scale

heterogeneous graph G = (V, E) represents temporal features de-

rived from all attributes across multiple time scales. Speci�cally, the

node set V comprises the temporal features, while the edge set E

captures dependencies between them. The graph structure integrates

two types of relationships: (i) Time scale subgraphs {G: }5
:=1

: each

subgraph G:
= (V: , E: ) is fully connected, consisting of nodesV:

denoting features at the same time scale : as edges E: , capturing

intra-scale dependencies; edges E: are informed by higher-scale sub-

graphs G:+1, . . . ,G5, ensuring that relationships at lower time scales

are contextually modulated by high-scale features; (ii) A�ribute

subgraphs {GG }G∈x: each subgraph GG = (VG , EG ) is fully con-

nected, containing nodes denoting features of a speci�c attribute G

across multiple time scales. These attribute subgraphs are mutually

independent, and edges EG capture cross-scale dependencies within

the same attribute.

Example 3.Continuing Example 2, feature E2
G1

establishes intra-

scale connections with E2
G2

through subgraph G2 (shown in the green

box labeled G2), and the edge between E2
G1

and E2
G2

is modulated

by higher-scale subgraphs G3 (shown in purple lines from G3 to

G2). Simultaneously, E2
G1

connects across scales within its attribute

subgraphGG1 (shown as the red box labeledGG1), linking features E1
G1
,

E2
G1
, and E3

G1
. However, E2

G1
does not connect to E3

G2
due to di�erences

in both attribute type and time scale.

3.3 Problem Formulation

De�nition 7 (Observation Mask). Observation availability is rep-

resented by a binary mask S ∈ {0, 1})×# , where<GC = 1 indicates

that attribute G is observed at time step C , and <GC = 0 indicates

that the attribute is missing. For training and evaluation purposes,

we select imputation targets ˜̂ ∈ R)×# manually from the observed

data and mark these selected positions using mask S̃ ∈ R)×# .

The masking pattern of S̃ varies across the attributes at di�er-

ent time scales in a record sequence: attributes X5 at time scale 5

generally exhibit either complete availability or are missing exten-

sively; attributes X4 at time scale 4 present inter-voyage missing

patterns, changing values mainly between voyages; attributes X3

at time scale 3 experience missing data related speci�cally to voy-

age phases; attributes X2 and X1 at time scales 1 and 2 frequently

su�er from irregular and intermittent missing values due to signal

interference or communication issues. The details of the masking

pattern are discussed in Section 5.1.4.

De�nition 8 (Multi-scale Heterogeneous Graph-based Miss-

ing Attribute Imputation). The imputation process is formulated

as a function F that maps a record sequence X ∗ M with missing

attributes to a complete record sequence X̃:

X̃ = F (X ∗M), (1)

where X̃ is the imputed record sequence. Speci�cally, F (·) can be

divided into four phases:

• Feature Extraction Phase (H← F1 (X ∗M)): Extract temporal

representations H of all attributes at distinct scales from record

sequence X ∗M with missing attributes.

• Intra-scale Propagation Phase (H̃← F2 (H)): Propagate rep-

resentations H̃ within time scale subgraphs {G: }5
:=1

to ensure

temporal consistency within each scale. In this process, the edges
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Figure 4: Overview of the multi-scale heterogeneous graph imputation network for AIS data.

{E: }5
:=1

within each time scale subgraph is modulated by the

higher-scale subgraphs, ensuring that the relationships at lower

time scales are contextually modulated by high-scale features.

• Cross-scale Propagation Phase (Ĥ← F3 (H̃)): Propagate repre-

sentations Ĥ across di�erent time scales within attribute subgraphs

{GG }G∈X to impute missing features.

• Missing A�ribute Imputation Phase (X̃← F4 (H, H̃, Ĥ)): Re-

cover missing attributes X̃ based on H∗ that combines the original

representations H and propagated representations H̃ and Ĥ from

intra-scale and cross-scale propagation.

Example 4.Continuing Example 2, as seen in Figure 2, the imputation

for the missing attribute G2 begins with multi-scale representation

extraction. Attributes at di�erent scales produce representations: at-

tribute G1 generates representationsℎ1
G1
, ℎ2

G1
, ℎ3

G1
(scales 1–3), attribute

G3 produces ℎ3
G3

(scale 3), while attribute G2 yields incomplete repre-

sentations ℎ2
G2
, ℎ3

G2
(scales 2–3). Temporal consistency is maintained

through intra-scale propagation on subgraphs G1, G2, and G3 (see

the green box). The intra-scale propagation employs dynamic relation-

ship modeling where edge weights in lower-scale subgraphs (e.g., G2)

are dynamically modulated by features from higher-scale subgraphs

(e.g., G3), enabling contextual adaptation of attribute relationships

across di�erent temporal scales. This results in re�ned representations

{ℎ̃:
G1
}3
:=1

, {ℎ̃:
G3
}3
:=3

, and partially recovered representations {ℎ̃:
G2
}3
:=2

.

Subsequent cross-scale propagation within attribute subgraphs GG1 ,

GG2 , and GG3 (see the red box) synthesizes missing representations ℎ̂2
G2

and ℎ̂3
G2

through hierarchical representation fusion. The �nal imputa-

tion integrates original, intra-scale, and cross-scale representations

as ℎ∗,:
G2

= [ℎ:
G2
, ℎ̃:

G2
, ℎ̂:

G2
] for : ∈ {1, 2}, ultimately reconstructing the

attribute Ĝ2 via a nonlinear transformation F (ℎ∗,1
G2
, ℎ∗,2

G2
).

4 MULTI-SCALE HETEROGENEOUS
GRAPH-BASED IMPUTATION NETWORK

Based on the four-phase imputation process (see De�nition 8),MH-

GIN adopts an architecture comprising four core components, as

illustrated in Figure 4. Initially, the framework extracts multi-scale

temporal representations using the Heterogeneous Attribute En-

coder and the Hierarchical Temporal Feature Extractor. These two

components collaboratively capture hierarchical temporal features

from each attribute while preserving their intrinsic attribute type

characteristics. Next, the Multi-scale Dependency Mining Mod-

ule constructs a multi-scale heterogeneous graph and performs

missing feature imputation via a two-stage graph propagation pro-

cess. Lastly, the Heterogeneous Attribute Imputation Module re-

constructs missing attributes using specialized decoders tailored

to each attribute type. For clarity and architectural consistency,

we denote the dimensionality of hidden layers by 3 , noting that

the actual dimensionality may vary based on the requirements of

individual components.

4.1 Heterogeneous Attribute Encoder

As illustrated to the left in Figure 4, this module aims to provide rep-

resentations for di�erent attribute types (as de�ned in De�nition 3)

while preserving their intrinsic characteristics.

Spatio-temporal Attribute Encoder. Spherical coordinates (lon-

gitude _, latitude q , as de�ned in De�nition 1 and Table 2) exhibit

non-Euclidean geometry, as standard numeric encodings fails to

capture spherical continuity and latitude-dependent distortion [9].

We address this by extending 3D Cartesian projections [47] with

additional harmonic terms to enhance directional sensitivity. We

then apply learnable a�ne transformations with hyperbolic tangent

activations to produce embeddings e_ and eq .

Timestamp g has nested periodicities (daily, weekly, monthly,

yearly cycles). To preserve these temporal patterns for neural pro-

cessing, we employ multi-frequency sinusoidal encoding that cap-

tures key temporal cycles [12]. The sinusoidal outputs then pass

through a linear layer with the tanh activation function, producing

a 3-dimensional representation eg ∈ R
3 .

Cyclical Attribute Encoder. Cyclical attributes G2 ∈ X2 = {k, \ }

exhibit boundary continuity requirements. To preserve rotational

equivalence, we implement trigonometric encoding using sine and

cosine transformations, followed by learnable linear layers with

tanh activation. This approach maintains angular continuity in
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the embedding space while ensuring smooth transitions between

neighboring angular values.

Continuous Attribute Encoder. Continuous attributes G= ∈ X= =

{B, 3, ℓ, V} range widely in scale, which can skew training dynamics.

We address this via adaptive normalization using running statistics

from the training set, with learnable scaling parameters for each

attribute. A linear layer with ReLU activation then produces the

�nal embeddings e= , helping preserve original distributions while

stabilizing gradients.

DiscreteAttribute Encoder.Discrete attributesG3 ∈ X3 = {[, j, ^}

represent categorical semantics without intrinsic ordering. We con-

vert them to one-hot vectors and project through learnable trans-

formations with tanh activation to obtain embeddings e3 .

Finally, all type-speci�c representations are concatenated into a

uni�ed embedding matrix EC ∈ R
#×3 , preserving each attribute’s

intrinsic properties within a shared embedding space.

4.2 Hierarchical Temporal Feature Extractor

As illustrated in the middle-left part of Figure 4, this module cap-

tures multiple time-scale features via three complementary mecha-

nisms: 1) Progressive temporal abstraction through increasing layer

depth for �ner time scales; 2) High-frequency smoothing via leaky

integration in upper layers; 3) Fixed reservoir weights for com-

putational e�ciency. Concretely, we implement Deep Echo State

Networks (DeepESN) [13] with leaky integrator neurons [16] as

our core architecture. Compared with other sequence models (such

as LSTM [14], Transformer [44], etc.), their hierarchical reservoir

structure naturally produces multi-scale representations through

layer-wise abstraction, while �xed random weights enable e�cient

processing of AIS data. Moreover, the leaky integration mechanism

provides explicit control over temporal memory retention, aligning

with our time-scale hierarchy in De�nition 4.

For an attribute G: at time scale : ∈ {1, . . . , 5}, we use 5 + 1 − :

recurrent layers, so that higher time-scale attributes require fewer

layers. The state update is governed by:

h:−1C = e:C ,

h̄;C = tanh
(
W;

ℎ · h
;−1
C + W̄

(; )

ℎ
· h;C−1 + b

(; )

ℎ

)
,

h;C = (1 − W; ) h
;
C−1 + W; h̄

;
C ,

(2)

where W; ∈ (0, 1] is the leak rate controlling temporal retention at

layer ; . Random weight matrices W;
ℎ
, W̄;

ℎ
∈ R3×3 and bias b;

ℎ
∈ R3

preserve the echo state property while inducing layer-speci�c dy-

namics. Attributes at time scale : are processed exclusively by

layers ; ∈ {:, . . . , 5}, since lower-scale features (; < :) do not

originate from higher-scale attributes (see Example 2). Equation 2

represents the forward-only version of DeepESN that enables se-

quential processing of streaming AIS data for real-time imputa-

tion. This formulation allows the model to impute missing values

based solely on past and current information, making it suitable for

safety-critical maritime applications requiring immediate response.

In o�ine scenarios where complete trajectory data is available,

we can replace the forward-only DeepESN with a bidirectional

version to achieve enhanced performance. The default setting of

MH-GIN is the bidirectional version.

Finally, we denote the consolidated multi-scale temporal repre-

sentation at time step C by:

HC =
[
H1
C , . . . , H

5
C

]
, (3)

where H;
C =

[
h;C,1, . . . , h

;
C,#;

]
aggregates temporal features at scale ; ,

with #; denoting both the feature count at scale ; and the number

of attributes from higher or equal scales (: ≥ ; ).

4.3 Multi-scale Dependency Mining Module

As illustrated in the middle-right part of Figure 4, the Multi-scale

Dependency Mining Module performs three main functions: 1)

aligning features within same time scale for temporal consistency, 2)

learning dependencies between features in partially observed data,

and 3) recovering missing features from incomplete attribute sets.

Conventional GNNs (e.g. GAT [45]) struggle under these conditions,

as missing attributes contaminate adjacency estimation (through

corrupted node similarity measures) and cause cascading errors

in feature updates. Speci�cally, we uses a two-stage propagation

mechanism to capture time-varying dependencies between features

at di�erent time scales.

Stage 1: Intra-scale Propagation. This phase aligns features that

occur at the same time scale to ensure their temporal patterns are

synchronized.

To capture time-varying dependencies between di�erent fea-

tures at the same time scale, we model the edges within each time-

scale subgraph G:
= (V: , E: ) as dynamic rather than static. The

weight of an edge is computed dynamically at each time step, explic-

itly modulated by corresponding features from higher time scales.

Speci�cally, for each time scale subgraph with representations H:
C ,

we construct a dynamic adjacency matrix Â:
C that captures time-

varying dependencies between features at time scale : :

Â:
= 5 :edge ( [H

:+1; ...;H5]) + A: , (4)

where 5 :
edge

is a learnable function that computes edge weights

based on both current scale featuresH: and higher-scale contextual

features H:+1 and A: is a bias matrix. This allows edge weights at

lower scales to be adjusted based on contextual features from higher

scales, enabling the model to capture time-varying dependencies.

The intra-scale propagation is then performed as:

H̃:
= (D: )−1/2 · Â: · (D: )−1/2 · H: , (5)

where D:
= diag(

∑
9 Â

:
8 9 ) is the diagonal degree matrix that nor-

malizes node degrees to prevent over-smoothing.

Stage 2: Cross-scale Propagation. Building on temporally aligned

features, this phase integrates multi-scale features through attribute

subgraphs.We keep the edges within attribute subgraphs (GG ) static

since higher-scale features already provide hierarchical context.

Dynamic cross-scale pathways would create recursive dependen-

cies that introduce information redundancy and hinder conver-

gence [41]. Speci�cally, for each attribute G with multi-scale repre-

sentations H̃G , we learn cross-scale interactions via:

ĤG = (DG )
−1/2 · ÂG · (DG )

−1/2 · H̃G , (6)

where the learnable matrix ÂG models hierarchical temporal de-

pendencies. The �nal representation combines both stages through
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residual connection:

h∗,:G = [h:G ; h̃
:
G ; ĥ

:
G ] . (7)

Theoretical Analysis. The multi-scale propagation mechanism

ensures both numerical stability and robustness to input pertur-

bations through its symmetric normalization design. We establish

these properties through two key theoretical results.

Lemma 1 (Stability of Multi-scale Propagation). The multi-scale

propagation mechanism is numerically stable if the spectral radius of

each propagation matrix satis�es d (P) = D−1/2ÂD−1/2 ≤ 1.

This lemma guarantees that feature representations remain boun-

ded throughout the propagation process, preventing numerical in-

stability such as gradient explosion or vanishing. The symmetric

normalization in both intra-scale and cross-scale propagation en-

sures that each stage acts as a non-expansive mapping, making the

complete two-stage mechanism numerically stable.

Lemma 2 (Robustness of Multi-scale Propagation). The multi-scale

propagation operator G is Lipschitz continuous with bounded Lips-

chitz constant.

This property ensures that small perturbations to the input fea-

tures (e.g., frommissing data or noise) result in predictably bounded

changes in the �nal output. The Lipschitz continuity arises from

the composition of linear operators with bounded spectral norms,

making the model robust to input uncertainties commonly encoun-

tered in real-world AIS data. The proofs of these two lemmas are

provided in Appendix B [23].

4.4 Heterogeneous Attribute Imputation

As illustrated in the right part of Figure 4, this module completes

the imputation cycle by reconstructing missing attributes through

specialized decoders for each attribute type.

Gated Fusion. The imputation process begins with a gated fusion

mechanism that adaptively integrates information across multiple

time scales, enabling the model to prioritize the most relevant

temporal features for each missing attribute before applying type-

speci�c reconstruction. Given the cross-scale representations h∗
G:
,

we apply gated fusion across time scales:

g = f
(
W6 · [h

∗,1

G:
; . . . ; h∗,5

G:
] + b6

)
, (8)

ẽG: =

5∑

:=1

6; ⊙ (W;
4 · h

∗,;

G:
), (9)

where g ∈ [0, 1]5 are learnable gating weights, ⊙ denotes element-

wise multiplication,W6 ∈ R
5×53 aligns dimensions for scale inte-

gration, and h∗,;
G:

is set to zero vector when ; is lower than : .

Spatio-temporal Decoder. For coordinate attributes, we leverage

the inherent spatial continuity of vessel trajectories by using lo-

cal averages as base estimates, enabling the network to focus on

learning incremental adjustments rather than absolute positions.

Given missing coordinate attributes _8 and q8 at time step 8 , we

�rst compute the mean coordinates from nearby valid observations

within a windowN8 . The model then computes spatial adjustments

X_ and Xq using the gated fusion embeddings ẽ_8 , ẽq8 from Eq. 9.

The �nal imputed coordinates are obtained as _̂ = _base + X_ and

q̂ = qbase + Xq .

For timestamp attribute g , we predict time intervals between

consecutive records rather than absolute timestamps, modeling

temporal occurrences as a temporal point process [21, 32]. We im-

plement a conditional intensity function[ (g) using neural networks

with Softplus activation to ensure non-negativity. The predicted

timestamp is derived as ĝ8 = g8−1 −
log(D )

[ (g )
, where D ∼ Uniform(0, 1).

Cyclical Decoder. To preserve cyclical continuity, the cyclical

decoder reconstructs angular values using trigonometric projec-

tion. The decoder �rst transforms the gated fusion embedding

ẽG2 through a two-layer neural network to generate intermedi-

ate representation h2 ∈ R
2. This intermediate representation is

then normalized to unit length ê2 =
h2
∥h2 ∥2

to ensure trigonomet-

ric identity 4̂22,1 + 4̂
2
2,2 = 1. The �nal angular value is decoded as

Ĝ2 =
180
c

arctan2 (4̂2,1, 4̂2,2).

Continuous Decoder. For continuous attributes, we transform

the gated fusion embedding ẽG= through a ReLU-activated linear

layer to generate normalized representation ℎ= , then apply inverse

normalization using the encoder’s parameters U, V (see Section 4.1)

and training statistics `, f to restore the original scale as Ĝ= .

Discrete Decoder. For discrete attributes, we apply a linear layer

followed by softmax to predict class probabilities ~̂ from the gated

fusion embedding ẽG3 , where the output dimension corresponds to

the number of discrete classes |� |.

4.5 Training

To optimizeMH-GIN, we design a comprehensive loss function that

combines specialized reconstruction losses for each heterogeneous

attribute type:

Ltotal = _cooLcoo+_gLg+_periodLperiod+_contLcont+_discLdisc, (10)

where _coo, _g , _period, _cont, and _disc are balancing hyperparameters.

The training employs specialized loss functions tailored to each

attribute type: Haversine distance Lcoo [48] for spatio-temporal co-

ordinates to capture spherical distance, mean squared error Lg for

timestamp intervals, trigonometric encoding loss Lperiod for cycli-

cal attributes to preserve periodicity, mean squared error Lcont for

continuous attributes, and cross-entropy loss Ldisc for discrete clas-

si�cation. This multi-objective design ensures that each attribute

type is reconstructed according to its inherent characteristics and

constraints. The more details about MH-GIN are provided in Ap-

pendix A [23].

5 EXPERIMENTS

5.1 Overall Settings

5.1.1 Datasets. We use two AIS datasets: AIS-DK from the Danish

Maritime Authority [10] and AIS-US from NOAA [29] AIS-DK

covers Danish waters from March to December 2024, including

major shipping routes in the Baltic and North Seas. It contains

18,481 vessel sequences and 10,518,249 AIS records, with an average

sequence duration of 9 days. AIS-US spans March to May 2024,

focusing on US coastal waters with dense tra�c near major ports.

It includes 19,091 vessel sequences and 10,546,297 AIS records, with

an average sequence duration of 4 days.

Both datasets feature diverse vessel types and often capture mul-

tiple voyages per sequence, especially for short-distance operations.
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Table 3: Overall e�ectiveness comparison on AIS-DK.

Method

Coord. (_,q ) Time g Head.k Course \ Speed B Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC

MEAN 1.313e-2 371.970 0.934 0.861 0.375 0.916 0.392 2.318 0.400 1.883 0.812 - - - - -

KNN 8.432e-4 34.880 0.404 0.953 0.392 0.509 0.465 0.875 0.453 1.310 0.722 - - - - -

Lin-ITP 5.294e-4 33.243 0.396 2.895 0.429 8.950 1.478 0.792 0.486 1.460 0.821 - - - - -

MF 3.314e-1 57.133 0.728 147.172 1.420 148.621 1.421 6.955 0.963 4.399 0.957 189.646 1.628 29.426 1.734 -

TRMF 1.341e-1 37.604 0.479 51.378 0.869 55.934 0.3972 1.580 0.381 1.968 0.839 62.843 0.333 9.308 0.325 -

CSDI 1.583e+0 100.375 1.588 0.388 0.390 0.432 0.246 0.745 0.397 7.786 0.625 141.077 1.514 18.240 1.120 -

PriSTI 1.310e+0 71.486 0.857 0.289 0.364 0.286 0.172 0.716 0.373 6.186 0.399 145.274 1.273 8.456 0.273 -

ImputeFormer 1.839e-1 48.375 0.689 0.486 0.434 0.776 0.386 1.344 0.492 8.713 0.782 46.055 0.194 7.687 0.259 -

Multi-task AIS 3.863e-4 - - - - - - - - - - - - - - 0.322

PG-DPM 1.777e-4 - - - - - - - - - - - - - - -

MH-GIN 1.112e-4 21.413 0.127 0.049 0.036 0.141 0.071 0.198 0.252 1.017 0.126 34.192 0.178 4.896 0.175 0.669

Their high temporal resolution and broad coverage provide a robust

basis for evaluating our methods.

5.1.2 Evaluation Metrics. Our evaluation metrics are tailored to

the distinct characteristics of AIS data attributes. For continuous

numerical values, we employ Mean Absolute Error (MAE) and Sym-

metric Mean Absolute Percentage Error (SMAPE). For categorical

attributes, we utilize Accuracy (ACC).

5.1.3 Baseline Methods. To evaluate the performance of our pro-

posed method, we compare with classic models and state-of-the-art

methods for multi-variable time-series imputation, spatio-temporal

imputation, and trajectory imputation. The baselines include: statis-

tical methods (MEAN, KNN, Lin-ITP), classicmodels (MF, TRMF [54]),

multi-variable time-series imputation (CSDI [40]), spatiotemporal

imputation (ImputeFormer, PriSTI [24]), and trajectory imputation

(Multi-task AIS [30], PG-DPM [55]).

5.1.4 Masking Strategies. AIS data presents distinctive missing

patterns across various time scales (as discussed in Section 3.3). To

accurately simulate these real-world scenarios, we implement three

targeted masking strategies with mask ratio A :

• Point Masking (Scales 1 and 2): Randomly masks individual

values throughout the sequence with probability A , simulating

sporadic missingness characteristic of high-frequency attributes.

• Block Masking (Scales 3 and 4): Masks continuous segments

within individual voyages throughout the sequence with proba-

bility A , capturing voyage-phase-related missing patterns com-

mon to these attributes.

• Entire Masking (Scale 5): Masks entire attribute sequences for

a proportion A of vessels, replicating the systematic absence of

vessel-speci�c data frequently observed in AIS records.

5.1.5 Noise Injection Strategies. To evaluate the robustness of our

proposed method, we inject noise into the AIS data to simulate

real-world data corruption scenarios. We design a uni�ed noise

injection strategy controlled by parameter W that provides com-

parable corruption levels across all heterogeneous attribute types.

For continuous attributes, we add Gaussian noise scaled by the

attribute’s own value G ′= = G= + N(0, (WG=)
2). For spatio-temporal

coordinates, noise is scaled by movement dynamics to simulate

GPS drift _′ = _ + N(0, (WfΔ_)
2) and q ′ = q + N(0, (WfΔq )

2). For

timestamps, we corrupt time intervals rather than absolute values

Δg ′8 = Δg8 + max
(
0,N(0, (W · fΔg )

2)
)
. For cyclical attributes like

headings, we add angular noise with proper wrap-around handling

G ′2 =

(
G2 + N(0, (W · fΔG2 )

2)
)
(mod 360). For discrete categories,

we implement label �ipping with probability W . This uni�ed ap-

proach ensures that W serves as an interpretable control parameter

for systematic noise injection across the heterogeneous dataset.

5.1.6 Experimental Se�ings. All experiments are conducted on a

server with Intel Xeon Processor (Icelake) CPUs, 100GB RAM, and

two NVIDIA A10 GPUs (each with 23GB memory). For training

our model, we use the Adam optimizer with a learning rate of 14−3

and weight decay of 14−4. The batch size is set to 64, and we train

for 100 epochs. Early stopping with a patience of 10 epochs was

applied to prevent over�tting.

For data processing, we use an 80%–10%–10% split for training,

validation, and testing, respectively. For the masked value gen-

eration, we create synthetic missing data according to the three

strategies described earlier, with mask ratios of 10%, 20%, 30%, 40%

and 50% to evaluate the robustness of di�erent imputation methods.

For the noise injection, we conduct experiments by varying the

noise intensity W progressively from 0.0 to 0.5. The default mask

ratio is set to 30% for all experiments unless otherwise speci�ed.

For methods, MEAN, Lin-ITP, and MF, no hyperparameters need

to be set. We set : of KNN to 20. For TRMF, CSDI, PriSTI, Impute-

Former, and Multi-task AIS, we use the default settings provided by

the authors. The more details about the experiments are provided

in Appendix C [23].

5.2 Performance Evaluation

5.2.1 E�ectiveness Analysis. Tables 3 and 4 present the perfor-

mance comparison betweenMH-GIN and baseline methods. Nav-

igation status [ and hazardous cargo type j are excluded from

Tables 3 and 4 due to the lack of suitable baseline methods capa-

ble of imputing these speci�c categorical attributes. However, we

emphasize that both categorical attributes are fully included in all

subsequent experiments, including ablation studies, missing ratio

analysis, and robustness evaluation.

MH-GIN consistently outperforms all baseline methods across

both datasets and all attribute types, demonstrating its strong capa-

bility to leverage multi-scale dependencies between attributes for
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Table 4: Overall e�ectiveness comparison on AIS-US.

Method

Coord. (_,q ) Time g Head.k Course \ Speed B Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC

MEAN 1.604e-2 260.317 0.491 0.908 0.370 1.203 0.449 2.433 1.344 3.164 0.476 - - - - -

KNN 7.818e-4 44.358 0.516 0.452 0.391 0.846 0.640 0.702 1.020 2.134 0.322 - - - - -

Lin-ITP 4.896e-4 31.013 0.486 7.617 0.365 28.444 0.487 0.687 0.968 2.429 0.394 - - - - -

MF 6.830e-1 160.671 0.702 128.235 1.115 131.286 1.008 3.701 1.303 5.499 1.123 181.249 1.763 29.730 1.842 -

TRMF 3.536e-1 232.299 0.945 68.246 0.491 82.993 0.580 1.489 1.279 2.617 0.462 58.320 0.366 8.326 0.307 -

CSDI 1.552e+0 373.14 1.993 0.437 0.245 0.689 0.364 0.663 0.857 8.096 1.745 154.77 1.887 18.047 1.025 -

PriSTI 1.663e+0 329.957 1.608 0.348 0.233 0.595 0.329 0.591 0.787 4.997 0.510 134.655 1.202 10.038 0.397 -

ImputeFormer 2.104e-1 110.320 0.536 1.138 0.570 1.216 0.505 1.865 0.976 4.360 0.943 45.337 0.318 6.820 0.268 -

Multi-task AIS 3.627e-4 - - - - - - - - - - - - - - 0.355

PG-DPM 1.512e-4 - - - - - - - - - - - - - - -

MH-GIN 8.281e-5 15.146 0.016 0.104 0.072 0.461 0.184 0.368 1.182 1.899 0.314 38.263 0.273 5.382 0.213 0.446

accurate AIS data imputation. Speci�cally, we observe the following:

1) Spatio-temporal attributes — Coordinate (_, q) and Timestamp

g : Lin-ITP achieves the best timestamp imputation performance

by ensuring interpolated values fall within the temporal range

of consecutive records. Similarly, PG-DPM performs well in co-

ordinate imputation by incorporating physics-guided constraints

on vessel movement. Although these methods are speci�cally de-

signed for spatio-temporal attributes, MH-GIN still surpasses both

with 35.59%–96.71% performance gains, which strongly demon-

strates the e�ectiveness of modeling multi-scale dependencies. It

also con�rms that MH-GIN’s spatio-temporal encoder-decoder is

not only e�ective in its own right, but also su�ciently expressive

to support subsequent multi-scale dependency mining. 2) Cyclical

attributes — Heading k and Course \ : Among baselines, PriSTI

achieves the best results for cyclical attribute imputation. However,

due to the dynamic nature of spatial information in AIS data, PriSTI

and ImputeFormer fail to fully utilize spatial context, resulting in

comparable performance to CSDI. While these methods outper-

form classic baselines, they struggle with boundary continuity in

cyclical attributes. In contrast, MH-GIN achieves 22.52%–98.93%

improvements over PriSTI, demonstrating the strength of its cycli-

cal encoder-decoder in modeling cycical patterns while preserving

boundary continuity. 3) Continuous attributes — Speed B , Draft 3 ,

Length ℓ , andWidth V :MH-GIN yields 2.48%–72.35% improvements

over PriSTI and ImputeFormer, primarily due to its ability to handle

scale variation through a dedicated continuous encoder-decoder

architecture. Notably, CSDI, PriSTI and ImputeFormer generally as-

sume that all variables are continuous attributes, which gives them

a natural advantage when dealing with this attribute type. Despite

this, MH-GIN still surpasses their performance, highlighting the

importance and e�ectiveness of mining multi-scale dependencies

across heterogeneous attributes for more accurate imputation. 4)

For discrete attribute imputation (Type ^),MH-GIN reduces error

rates by 14.11%–51.18% compared to Multi-task AIS. This supe-

rior performance stems fromMH-GIN’s comprehensive modeling

approach that incorporates all 12 attributes across di�erent time

scales, whereas Multi-task AIS only utilizes limited information

(spatio-temporal attributes and vessel type). By e�ectively captur-

ing cross-scale dependencies among the heterogeneous attributes,

Table 5: Overall time cost and memory cost comparison.

Method

AIS-DK AIS-US

Time (s) Memory (MB) Time (s) Memory (MB)

MEAN 1.24 - 1.28 -

KNN 5.39 - 7.50 -

Lin-ITP 1.26 - 1.29 -

MF 27.24 - 28.29 -

TRMF 34.02 - 35.86 -

CSDI 60.48 1.72 60.74 1.92

PriSTI 94.92 2.89 100.80 3.19

ImputeFormer 14.10 5.13 15.42 5.52

Multi-task AIS 38.30 1.66 40.59 1.84

PG-DPM 120.46 1.79 128.32 1.99

MH-GIN 10.9 1.43 11.2 1.83

MH-GIN establishes more robust correlations that signi�cantly

enhance vessel type imputation accuracy.

5.2.2 E�iciency Analysis. Table 5 presents a comparison of com-

putational e�ciency in terms of inference time on the test dataset

and memory consumption (model size) for each method. Key ob-

servations include: 1) Statistical methods (MEAN, KNN, Lin-ITP)

achieve signi�cantly lower computational times than parametric

approaches. 2)MH-GIN demonstrates superior e�ciency among

neural methods, with inference times of 10.9s and 11.2s (22.7% and

27.4% faster than ImputeFormer) on AIS-DK and AIS-US datasets.

3)MH-GIN maintains minimal memory costs at 1.47MB and 1.92

MB. These e�ciency gains come from the Multi-scale Dependency

Mining Module’s e�cient and simple architecture that eliminates

complex operations required by complex neural networks.

5.3 Ablation Study

To evaluate the contribution of each component of MH-GIN, we

conducted a comprehensive ablation study by removing or replac-

ing key components and analyzing the impact of di�erent attribute

types. Table 6 presents the results on model components.
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Table 6: E�ectiveness analysis of model components.

Model

Variant

Coord. (_,q ) Time g Head.k Course \ Speed B Nav. [ Cargo j Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC ACC MAE SMAPE MAE SMAPE MAE SMAPE ACC

A
IS
-D

K

w/o Spa 1.364e-3 45.326 0.465 0.072 0.046 0.171 0.085 0.242 0.283 0.802 0.718 1.323 0.174 42.329 0.223 6.258 0.216 0.584

w/o Cyc 1.316e-4 25.769 0.158 0.062 0.041 0.176 0.269 0.216 0.261 0.881 0.769 1.134 0.143 35.106 0.188 4.994 0.184 0.651

w/o Con 1.151e-4 22.312 0.138 0.059 0.041 0.147 0.079 0.211 0.261 0.882 0.771 1.126 0.139 35.364 0.216 5.124 0.196 0.659

w/o Dis 1.249e-4 22.631 0.141 0.059 0.042 0.156 0.088 0.238 0.269 - - 1.159 0.152 35.399 0.189 5.043 0.199 -

w/o M2-B 1.446e-4 28.643 0.179 0.069 0.053 0.192 0.106 0.246 0.286 0.813 0.625 1.249 0.171 38.352 0.204 5.984 0.215 0.532

w/o M3-S1 1.530e-4 31.825 0.372 0.872 0.456 0.185 0.102 0.758 0.410 0.322 0.380 1.385 0.765 - - - - -

w/o M3-S1-D 1.117e-4 21.652 0.129 0.050 0.037 0.143 0.074 0.203 0.256 0.898 0.792 1.019 0.127 34.388 0.180 4.901 0.178 0.665

w/o M3-S2 1.256e-4 23.125 0.142 0.051 0.038 0.145 0.076 0.206 0.257 0.890 0.780 1.095 0.135 34.825 0.183 4.950 0.180 0.658

MH-GIN 1.112e-4 21.413 0.127 0.049 0.036 0.141 0.071 0.198 0.252 0.904 0.798 1.017 0.126 34.192 0.178 4.896 0.175 0.669

A
IS
-U
S

w/o Spa 1.465e-4 28.59 0.082 0.132 0.125 0.493 0.239 0.469 1.326 0.592 0.524 2.258 0.349 41.536 0.329 5.869 0.373 0.394

w/o Cyc 9.242e-5 17.511 0.038 0.127 0.093 0.513 0.243 0.379 1.196 0.631 0.542 1.931 0.324 38.996 0.281 5.412 0.219 0.426

w/o Con 8.624e-5 15.866 0.018 0.119 0.085 0.479 0.189 0.382 1.191 0.633 0.545 1.965 0.347 39.26 0.284 5.762 0.373 0.419

w/o Dis 8.963e-5 15.976 0.021 0.127 0.082 0.483 0.189 0.386 1.196 - - 1.953 0.367 39.104 0.292 5.536 0.227 -

w/o M2-B 1.265e-4 17.937 0.025 0.134 0.092 0.579 0.231 0.439 1.368 0.582 0.446 2.218 0.374 41.726 0.314 5.936 0.252 0.364

w/o M3-S1 1.372e-4 26.325 0.061 1.142 0.412 1.590 0.538 1.252 1.178 0.175 0.128 2.240 0.375 - - - - -

w/o M3-S1-D 8.364e-5 15.259 0.017 0.108 0.075 0.467 0.186 0.370 1.184 0.644 0.555 1.910 0.319 38.681 0.279 5.388 0.215 0.433

w/o M3-S2 8.731e-5 15.553 0.018 0.109 0.076 0.468 0.187 0.372 1.186 0.641 0.552 1.918 0.320 38.811 0.231 5.391 0.224 0.431

MH-GIN 8.281e-5 15.146 0.016 0.104 0.072 0.461 0.184 0.368 1.182 0.651 0.559 1.899 0.314 38.263 0.273 5.382 0.213 0.446

Table 7: Robustness evaluation under di�erent missing ratios.

Missing

Rate

Coord. (_,q ) Time g Head.k Course \ Speed B Nav. [ Cargo j Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC ACC MAE SMAPE MAE SMAPE MAE SMAPE ACC

A
IS
-D

K

10% 0.979e-5 19.319 0.114 0.045 0.033 0.136 0.070 0.197 0.247 0.917 0.814 0.883 0.121 32.951 0.173 4.536 0.165 0.689

20% 1.043e-4 20.475 0.121 0.046 0.034 0.139 0.071 0.198 0.249 0.908 0.805 0.901 0.124 33.674 0.176 4.717 0.170 0.682

30% 1.112e-4 21.413 0.127 0.049 0.036 0.141 0.071 0.198 0.252 0.904 0.798 1.017 0.126 34.192 0.178 4.896 0.175 0.669

40% 3.229e-4 23.121 0.133 0.051 0.037 0.146 0.075 0.206 0.261 0.887 0.717 1.196 0.141 35.462 0.184 5.096 0.183 0.652

50% 1.383e-3 24.868 0.147 0.055 0.041 0.151 0.078 0.213 0.267 0.868 0.639 1.453 0.152 36.842 0.191 5.319 0.191 0.628

A
IS
-U
S

10% 7.119e-5 14.313 0.014 0.101 0.069 0.451 0.177 0.356 1.164 0.664 0.573 1.838 0.306 37.536 0.271 5.239 0.206 0.456

20% 7.776e-5 14.822 0.015 0.103 0.072 0.456 0.181 0.362 1.174 0.659 0.563 1.875 0.313 38.109 0.273 5.304 0.210 0.449

30% 8.281e-5 15.146 0.016 0.104 0.072 0.461 0.184 0.368 1.182 0.651 0.559 1.899 0.314 38.263 0.273 5.382 0.213 0.446

40% 4.113e-4 15.861 0.017 0.110 0.077 0.473 0.189 0.372 1.192 0.634 0.546 1.962 0.324 39.246 0.283 5.469 0.219 0.424

50% 9.019e-4 16.533 0.018 0.115 0.081 0.484 0.194 0.385 1.206 0.621 0.529 2.023 0.333 40.115 0.291 5.579 0.225 0.411

We have following observations: 1) w/o Spa, w/o Cyc, w/o Con,

w/o Dis: Removing type-speci�c encoders and decoders for spatio-

temporal, cyclical, continuous, and discrete attributes leads to sig-

ni�cant performance degradation in their corresponding attribute

types. Performance also drops for other attribute types due to miss-

ing well-encoded representations, demonstrating the interdepen-

dencies between heterogeneous attributes. 2) w/o M2-B: Replacing

bidirectional DeepESN with forward-only variant reduces perfor-

mance across all attributes. Nevertheless, M2-B still outperforms the

baseline methods (as shown in Table 3 and Table 4), demonstrating

the e�ectiveness of MH-GIN in real-time scenarios. 3) w/o M3-S1:

Removing intra-scale propagation severely impacts performance

across all attributes, demonstrating thatMH-GIN cannot e�ectively

capture inter-attribute dependencies without this component. This

highlights the critical importance of modeling complementary rela-

tionships between heterogeneous attributes within each time scale.

4) w/o M3-S1-D: Removing dynamic edges within time-scale sub-

graphs while keeping static graph structure shows performance

degradation compared to the full model, demonstrating that dy-

namic relationship modeling is essential for capturing the evolving

dependencies between attributes at each time scale. 5) w/o M3-S2:

Eliminating cross-scale propagation results in performance degra-

dation, particularly for attributes with dependencies across scales.

This demonstrates that cross-scale relationships are essential for

e�ectively leveraging complementary information across di�erent

temporal dynamics.

5.4 Robustness of MH-GIN

Performance under Di�erent Missing Ratios. We analyze MH-

GIN’s robustness under varying missing ratios (10%-50%) in Table 7.

The results yield the following observations: 1) Performance de-

grades gradually with increasing missing ratios across all attributes,

indicating model stability under data sparsity. 2) Non-coordinate

attributes exhibit near-linear degradation without catastrophic col-

lapse. The hierarchical structure enables lower-scale attributes to
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Table 8: Robustness evaluation under noisy conditions.

Noisy

Intensity

Coord. (_,q ) Time g Head.k Course \ Speed B Nav. [ Cargo j Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC ACC MAE SMAPE MAE SMAPE MAE SMAPE ACC

A
IS
-D

K

0.00 1.112e-4 21.413 0.127 0.049 0.036 0.141 0.071 0.198 0.252 0.904 0.798 1.017 0.126 34.192 0.178 4.896 0.175 0.669

0.01 1.123e-4 22.017 0.129 0.049 0.038 0.143 0.073 0.203 0.253 0.902 0.798 1.056 1.129 34.384 0.180 4.912 0.178 0.667

0.015 1.366e-4 22.656 0.130 0.051 0.039 0.144 0.076 0.205 0.256 0.899 0.796 1.213 1.132 34.681 0.181 4.947 0.179 0.665

0.02 1.647e-4 22.931 0.132 0.053 0.041 0.146 0.078 0.208 0.258 0.898 0.795 1.239 1.136 35.152 0.183 4.973 0.182 0.662

0.025 2.148e-4 23.172 0.133 0.054 0.043 0.149 0.081 0.210 0.261 0.897 0.792 1.305 1.142 35.503 0.186 5.062 0.185 0.658

A
IS
-U
S

0.00 8.281e-5 15.146 0.016 0.104 0.072 0.461 0.184 0.368 1.182 0.651 0.559 1.899 0.314 38.263 0.273 5.382 0.213 0.446

0.01 8.316e-5 15.265 0.016 0.106 0.074 0.463 0.188 0.369 1.184 0.648 0.557 1.912 0.316 38.426 0.275 5.399 0.214 0.445

0.015 8.999e-5 15.382 0.016 0.107 0.076 0.466 0.190 0.372 1.188 0.645 0.554 1.946 0.319 38.873 0.278 5.402 0.217 0.443

0.02 9.642e-5 15.503 0.017 0.109 0.079 0.468 0.192 0.375 1.191 0.643 0.552 1.980 0.321 39.143 0.281 5.436 0.219 0.441

0.025 1.017e-4 15.621 0.017 0.112 0.081 0.472 0.195 0.379 1.195 0.640 0.549 2.014 0.325 39.479 0.284 5.475 0.222 0.438

Table 9: E�ectiveness of MH-GIN in scenario where multiple attributes are missing at the same time.

Missing

Number

Coord. (_,q ) Time g Head.k Course \ Speed B Nav. [ Cargo j Draft 3 Length ℓ Width V Type ^

Dist. MAE SMAPE MAE SMAPE MAE SMAPE MAE SMAPE ACC ACC MAE SMAPE MAE SMAPE MAE SMAPE ACC

1-2 1.038e-4 21.316 0.113 0.045 0.031 0.132 0.061 0.193 0.241 0.916 0.807 0.987 0.119 33.992 0.162 4.632 0.168 0.681

3-4 1.108e-4 21.388 0.125 0.047 0.034 0.139 0.067 0.196 0.246 0.911 0.802 1.004 0.123 34.014 0.167 4.784 0.171 0.673

5-6 1.726e-4 22.632 0.139 0.056 0.044 0.146 0.078 0.207 0.259 0.892 0.784 1.126 0.141 34.369 0.183 4.996 0.185 0.661

A
IS
-U
S 1-2 8.103e-5 14.936 0.013 0.091 0.065 0.448 0.178 0.356 1.169 0.661 0.569 1.821 0.298 38.184 0.253 5.324 0.199 0.454

3-4 8.226e-5 15.012 0.015 0.096 0.070 0.452 0.181 0.359 1.173 0.657 0.562 1.832 0.302 38.226 0.261 5.371 0.208 0.449

5-6 8.394e-5 15.233 0.019 0.116 0.078 0.477 0.189 0.371 1.189 0.648 0.554 1.904 0.323 38.284 0.276 5.394 0.226 0.441

generate higher-scale features, allowing the model to leverage abun-

dant high-scale features for reasonable imputation performance. 3)

Coordinate attributes (lowest time scale) show signi�cant perfor-

mance drops at high missing ratios due to insu�cient low-scale

features and limited constraints from coarse high-scale features.

However, such extreme sparsity is rare in practice, where coordi-

nates typically remain densely observed while non-spatio-temporal

attributes exhibit higher missing ratios. MH-GIN maintains strong

performance under high missing ratios, demonstrating robustness

in practical settings.

Performance under Di�erent Noise Intensities. To evaluate

the robustness of MH-GIN under noisy conditions, we inject noise

into the data with progressively varying noise intensity W to simu-

late realistic corruption scenarios. As shown in Table 8,MH-GIN

exhibits remarkable resilience across noise intensities ranging from

0 to 0.025. The model exhibits graceful performance degradation

in a near-linear fashion without catastrophic failure, which can be

attributed to the multi-scale architecture’s capability to leverage

contextual information from less corrupted attributes and scales,

thereby e�ectively mitigating the impact of local perturbations.

Performance underMultiple AttributesMissing Scenarios. To

evaluate MH-GIN’s robustness under simultaneous multi-attribute

missing scenarios, we assess the model’s performance as the num-

ber of missing attributes increases. As shown in Table 9, while MH-

GIN’s performance degrades as the number of missing attributes

increases, the degradation remains moderate and controlled. Specif-

ically, even with up to six missing attributes,MH-GIN maintains

stable accuracy across both numerical and categorical features. This

shows that MH-GIN e�ectively exploits remaining correlations to

stay stable under severe missing conditions.

6 CONCLUSION AND FUTUREWORK

Our study highlights the importance of modeling multi-scale de-

pendencies between heterogeneous attributes for missing attribute

imputation in AIS data. We introduceMH-GIN, a Multi-scale Het-

erogeneous Graph-based Imputation Network for AIS data. MH-

GIN is the �rst method that can e�ectively model multi-scale de-

pendencies between heterogeneous attributes for missing attribute

imputation in AIS data. MH-GIN �rst captures the multi-scale tem-

poral features of each attribute while preserving their intrinsic

properties. It then constructs a multi-scale heterogeneous graph

to model the complex dependencies between attributes, enabling

e�ective missing attribute imputation through two-stage graph

propagation. Experiments on two real-world AIS datasets demon-

strate MH-GIN’s superior performance over state-of-the-art meth-

ods across all attribute types, achieving an average 57% reduction

in imputation error, while maintaining computational e�ciency.

In future work, we plan to extend MH-GIN to other domains

with heterogeneous attributes across di�erent time scales.
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