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ABSTRACT

The execution of streaming analytics workflows across large-scale
IoT infrastructures poses unique challenges. Central data collection
depletes the available bandwidth and leaves IoT device resources
unutilized. Therefore, workflow execution should be performed
in-network, assigning workflow operator execution on devices
across the cloud-to-edge continuum. However, the vast scale of
devices results in an exponential number of possible combinations
of workflow operator assignments. On top of that, workflows are
executed on dynamic environments where volatile data stream
distributions and device churn may render a deployed plan inef-
ficient and, therefore, rapid adaptation decisions are crucial. To
address these challenges, we present APEROL, the first suite of
parallel optimization algorithms for timely and efficient workflow
execution in IoT environments. APEROL introduces a novel con-
ceptualization of the optimization search space, coupled with a
signature-based execution plan enumeration scheme, that enable
scalable, parallel plan exploration. The suite includes exhaustive,
heuristic, greedy, and random sampling algorithms, which are com-
plementary in algorithm speed vs. plan quality trade-offs under
different setups. The current implementation examines up to 2M
candidate plans per second on commodity hardware. Experiments
with 5 challenging workflows from 2 streaming benchmarks, over
real and simulated networks ranging from 10s to 1000s sites show
APEROL’s effectiveness and timeliness.
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1 INTRODUCTION

Applications ranging from smart cities [39] and surveillance to nat-
ural disaster forecast, have become increasingly important, as they
aim to significantly improve the living conditions, well-being, and
safety of large parts of the population. Such applications often oper-
ate in vastly geo-distributed settings, comprised of all kinds of IoT
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devices, such as sensors, single-board computers (e.g. Raspberry Pi,
NVIDIA Jetson, etc.), powerful workstations, and even data-centers
and clouds. These devices vary in their computational capacities
and may support different types of computation (e.g. GPU pro-
cessing, ability to maintain state, etc.). The traditional approach of
transferring all data in the cloud and perform the processing using
a Data Stream Processing Engine (DSPE) such as Apache Flink [11]
or Spark [6] is, however, suboptimal in such settings. This is due to
excessive network latencies for transmitting the raw data and the
fact that the available computational resources of devices across the
cloud-to-edge continuum are not exploited. The natural alternative
would be to assign some operators of an analytics workflow to be
executed on various devices in the network [13, 14, 54]. Such an ap-
proach can offload some computations in the lower layers, i.e., edge
and fog, reducing transmitted data volumes, minimizing network
latencies, and decreasing cloud dependencies. Efficiently utilizing
the computational capacity of all types of devices, results in overall
more efficient data processing across the infrastructure [13, 33, 58].

Consider a real-time environmental monitoring system deployed
at a large scale to detect wildfires [45]. To make the setting concrete,
assume a national authority with hundreds of watch-towers and
long-range drones, jointly covering a vast forest area. Each one
of the watch-towers hosts: (i) a micro-controller swarm that polls
hundreds of temperature, humidity, wind-speed, and other sensors
which can potentially execute simple filtering operators; (ii) a quad-
core ARM CPU machine that can handle relational stream operators
such as selection, projection, joins, and windowed aggregations; and
(iii) a modest accelerator (e.g., an embedded GPU or FPGA) reserved
for heavier analytics such as burst-detection or anomaly scoring.
Intra-device transfers rely on shared memory and PCle, adding less
than 0.1 ms, whereas inter-tower LoRa/5G links fluctuate between
3 ms and 180 ms. For the reasons explained above, it would be
beneficial to assign some operators for execution at the edge or fog
devices of the network to extract aggregative results early and only
transmit those more compact data figures towards the cloud. In
that, performance in terms of throughput, processing and network
latency and communication can considerably improve.

However, the conditions of the involved set up are highly volatile.
Many sensors can self-adapt their sampling frequency: under nor-
mal conditions temperature probes emit one reading every few
seconds, but when a rapid rise is detected they switch to a 10 Hz
mode to capture the evolution of a potential ignition. A sudden
blast of hot wind can therefore suddenly increase the data rate of
an entire cluster of sensors by orders of magnitude. If some early
aggregation operators, placed for execution on a specific tower, are
not re-assigned, either split to multiple neighboring towers or to
the towers’ accelerators, the overload propagates and end-to-end
alert latency can grow significantly with severe safety implications.
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In addition, network connections may deteriorate abruptly either
because normal winds bend trees obscuring line-of-sight or due to
sudden smoke bursts. Further volatility arises because drones de-
part when batteries drain or more drones may approach to inspect
the area upon an alert, instantly invalidating any static operator
placement. Hence, a preferable workflow execution plan can quickly
become obsolete and a new one should be provided immediately.
The problem of determining an efficient assignment of workflow
operators for execution on IoT devices is challenging for the follow-
ing reasons: (a) the operator placement problem is NP-hard [13, 54].
The number of possible execution plans across the IoT grows expo-
nentially with the number of devices and workflow operators. For
example, a workflow composed of 6 operators potentially placed
among a moderate network of 100 towers yields a search space of
candidate execution plans in the order of trillions (100°), (b) in a
streaming IoT setup, any candidate optimization algorithm should
make rapid decisions since volatile data distributions and device
additions or departures as those mentioned above may render a
delayed execution plan suboptimal as soon as it is output. In other
words, an efficient execution plan should be instantly distinguished
among trillions of options, (¢) workflows run for protracted periods
of time and volatile data streams, network or environmental condi-
tions necessitate adaptation of the deployed plan by migrating to a
new plan for maintaining real-time performance in the long run.
Additionally, each device may be capable of hosting multiple
execution platforms. The idea of multi-platform options on a sin-
gle network site is well established in the literature [3, 8, 37]. For
instance, a simple filter operator may be preferably executed on
a device using mere JavaStreams due to the fact that temporar-
ily low stream volumes do not worth the overheads of a job- and
task-manager [57], while stream bursts later on may render the
DataStream API of Flink the prominent option. Modern, commer-
cial platforms including AWS IoT Greengrass v2 [16, 17], Azure IoT
Edge [20, 21], and Google Anthos at the Edge [9, 10, 19] promote
multi-platform execution patterns at the edge, routinely relying on
lightweight container orchestration (e.g., Docker + K3s/Kubernetes)
Breaking up the exploration of the search space to independent,
parallel tasks can tremendously decrease the runtime of the opti-
mization algorithm itself, examining better execution plans faster.
Surprisingly, no prior approach [12-14, 27, 44, 47, 53, 54] proposes
parallel or even parallelizable optimization algorithms. Additionally,
since the need for adapting a deployed execution plan is the norm,
runtime adaptation should be embodied in the very design of an
optimization algorithm. Only DAG* [54] examines plan adaptation,
but our study showed that it cannot scale to large networks.
To overcome these limitations, we introduce APEROL (Adaptive
Parallel Edge-to-Cloud Runtime Optimization for Layered workflow
execution). Our contributions are:

o We present the first inherently parallel and scalable IoT opti-
mization algorithms to explore valid plans concurrently across
edge-to-cloud deployments of any size and workflow.

e We introduce a novel conceptualization of the search space and
a new signature-based plan enumeration scheme, enabling paral-
lelization both for APEROL and future optimization algorithms.

e We design a suite of optimization algorithms shown to comple-
ment each other in speed vs. plan quality trade-offs.
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e We present an elaborate experimental evaluation using two
streaming benchmarks [36, 49] composed of 5 challenging work-
flows, across more than 10 different network setups ranging from
10s to 1000s of devices, with both homogeneous and heteroge-
neous device capacity in both simulated IoT environments and
the real FIT IoT Lab testbed [1]. APEROL can examine up to 1M/s
possible workflow execution plans using 8 threads on a laptop
and over 2M/s on servers with higher CPU capacity.

e We compare APEROL against 3 state-of-the-art algorithms [13,
14, 54]. As we show, in terms of both workflow execution plan
quality and algorithm execution time, APEROL variants rank
higher among all competitors.

2 SETTING UP THE OPTIMIZATION SCENE

2.1 Parallelizable Plan Exploration Basics

Consider a workflow as a Directed Acyclical Graph Gy = (Vew, Eqy),
where the set Viy contains all the operators of the workflow, and
the set Eqy contains their upstream, downstream interdependen-
cies. Each operator can be placed in one of the Vy network sites
(i.e. processing devices) that, along with edges En comprise the
network graph G . Each network node v € Vj/ can support a subset
of execution platforms from a predefined set P = {Py, Py, ..., Pk}
(such as (Mi)NiFi, NebulaStream [58], Flink, Kafka Streams). Each
node v has an associated subset £ (v) C P, indicating which plat-
forms it supports. Each edge e;—; € En models the communication
between sites i and j in the network graph. The exhaustive exami-
nation of all possible plans given Gy, Gn and P yields a total of
(1P x Va) Vw1 plans, if all operators of the workflow can be placed
on all network sites and get executed on any available platform.
Placement and Plans. We define the placement function that
maps workflow operators on a site and a platform:

7(0) : Vay — Vy XV X P(v), o +— (o, s, p),

(o) places an operator o € Vqy on a site, platform pair (s, p) €
Vn X P. A complete plan 7 is a plan that can be directly deployed:

{r(0) | 0o€Vay} = {(o, s, p) | 0€Vay}

At any given time, we have a currently deployed plan 7 which we
term as the root plan.

Definition of an Action. An action is applied to exactly one opera-
tor and changes its assignment to a new site-platform pair. Formally,
the set of possible actions is:

A={(sp) | s€Vn, peP(s)}

T o=

t t
Apply Action (&): An & operation on a plan r is defined as
the application of an action, single change, to an operator. During
runtime adaptation, a change of operator o on a new (site, platform)
pair, constitutes a single action. An action a is chosen out of the set
A of possible actions. Let 7 be the root plan. The result of applying
the action a = (s, p) to operator o of the root plan, changes 7 to x’:
t
7=r & (0,a)

Consecutively, by applying actions to the root plan, we create new
candidate execution plans.

Plans that undergo a single &L are referred to as 1-hop (neigh-

bor) plans. Similarly, plans that are formed after two & from the
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Figure 1: Graph illustrating a 1-hop apply action alternatives
on a root plan p with a single operator o after each possible
action (operator o placement change).

root plan are referred to as 2-hop plans, with the pattern extending
similarly for plans involving more moved operators. For instance, let
us consider a simplified workflow consisting of only one operator,
and actions that comprise the combinations of a single platform and
five sites. Figure 1 shows how the root plan changes to producing
new candidate execution plans by applying actions. Here the actions

correspond to: {ay, az, as, as, as} = {(1,1),(2,1),(3,1), (4, 1), (5, 1) }.

For instance the pair a4 = (4, 1) corresponds to the site with an id
of 4 and a platform with an id of 1. One of the resulting plans will
be the root plan modeling the choice of no runtime adaptation.

The Search Space as a Graph of Plans (GoP) : As shown in
Figure 1, when an action is applied to an operator of plan 7, it creates
a new plan, with the placement of the operator being changed to a
new platform or site based on what the action dictates. The newly
created plan is a direct descendant of the root plan. The search space
can be modeled as a graph, with each node containing a candidate,
complete execution plan, i.e., each node contains a workflow graph
with a placement for each and every operator. Each edge in this
structure represents the action that was applied to the parent plan,
in order to generate the corresponding candidate plan, as shown
in Figure 1. To improve readability, Figure 2 and henceforth, we

omit the &< notation. Figure 2 illustrates the search space for a
workflow that consists of four operators and actions that involve the
placement of the operators to a single platform and two sites in the
network, i.e. the Graph of Plans for this setting. Note that duplicate
plans are possible with the application of a series of actions in a
different order starting from the same root plan. These plans are
omitted from the figure for clarity. The figure illustrates that, in
total, there are 2¢ = 16 unique plans. Each possible execution plan
is depicted as a node and its color indicates the number of hops
(actions) required to reach this node from the root plan. Green
nodes represent I-hop plans, which are the execution plans yielded
from applying all possible actions to the root plan, one at a time.
Each green node is a workflow that is produced upon applying a
single unique action (change of operator placement) to the root
plan. Blue nodes represent 2-hop execution plans, i.e., plans that are
1-hop plans of the connected green nodes and, thus 2-hop execution
plans (result by applying 2 consecutive actions) from the root plan.
Chains of Adaptation Decisions: Since streaming workflows are
long running, a currently deployed root plan, should be monitored
and an adaptation should happen at runtime upon performance
degradation. This creates a chain of adaptation decisions, where
APEROL begins from the currently deployed root plan at time ¢,
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Figure 2: Graph of Plans showing the optimization search

space. Each node is an execution plan 7 yielded from the root
(red) plan by applying actions. Labels are plan signatures.

2212
1121

runs some algorithm among those contained in the APEROL suite,
and picks a new execution plan to deploy, which becomes the root
plan at time t’. After some time, upon a new performance deficit,
APEROL will again explore the search space and pick a new, better
plan to deploy, which again becomes the new root plan at ¢”/, and
so on. This creates a chain of adaptation decisions, while at each
decision, APEROL may choose to keep the root plan (e.g. due to
high migration costs of other candidates). Each APEROL algorithm
we present in this work explores the search space (Figure 2) in a
different way to make an adaptation decision.

Execution Plan Cost Estimation: Each plan 7 € GoP, GoP, has
an associated cost composed of performance dimensions including
the communication, throughput, processing and network latency
and migration cost. Inspired by [29-31, 36, 44], we define four
metrics to evaluate a plan 7:

® R, (m): operator throughput, number of tuples being processed
per time unit of operator o under plan 7 (K tuples/s),

e L,(m): processing latency of operator o under plan  (ms),

e D,(r): edge network latency (ms) incurred when data is trans-
ferred over edge e € Eqy under plan 7,

e B (r): bandwidth usage on edge e under plan 7 (Mb/s),

e M°°!(r): migration cost (ms) of the 7-th action in a chain of
actions ((01, a1), ..., (or, ar)) to deploy plan = for given root.

Then, the four aggregate performance metrics are [31, 34, 54]:
Thr(m) = mingevy, R, (1)

Lat () = maXsource—ssink paths P (Zoep Lo(m) + Xeep De(1))
Comm_cost(rr) = Yeek,, Be(r)

Migr_cost(m, root) = max,=;

Overall Cost. The overall execution cost of a plan 7z, denoted
Cost(GoPy), is computed by negating metrics of negative perfor-
mance impact (Lat (), Comm_cost(r), Migr_cost(sm, root) ) and
computing a weighted combination of the four metrics [4, 34, 38]:

Cost(GoP;) =wy - Thr(x) + wy - Comm_cost ()

+ w3 - Lat () + wy - Migr_cost(r)

A cost model & is necessary to provide estimations for the involved
performance dimensions. The choice of the cost model is orthog-
onal to APEROL. In our experimental evaluation (Section 4), we
provide the details of the specific models instantiating &, which we
derive from machine learning and parametric statistics [35].

We decided to model performance by abstracting resource con-
straints (e.g., node compute budgets, link bandwidth) and network
topology away into aggregate throughput/latency/communication
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Figure 3: Base conversion and plan enumeration procedure.

terms instead of modeling them as explicit constraints. In this way,
our design is general and APEROL can be utilized unaltered across
IoT environments with thousands of devices with mixed and shift-
ing capabilities. As a trade-off, search may briefly take into account
plans otherwise rejected in the early stages of a more constraint-
aware approach. However, in practice, as our algorithms examine
up to 2M execution plans per second (see Section 4.3), this choice
has little effect. In our experimental evaluation, we compare both
with related works [13, 54] which employ similar, implicit con-
straint modeling and explicit constraint modeling [14]. We show
that APEROL swiftly provides plans of better quality in terms of the
performance measures involved. Enriching our techniques with
declarative resource/topology constraints, would be an interesting
future direction.

2.2 APEROL’s Plan Signature Scheme

Consider the set of all actions A as an ordered array of size |A|,
where each element A[i] corresponds to the i*" available action.
In an execution plan, the site and platform of each operator of the
workflow has been dictated by an action of A. We refer to the vec-
tors containing |Vqy | indices pointing to A as index vectors. When
all |Vy| actions dictated by the index vector are applied to the
root plan, a new (possibly multiple hops away from the root) plan
occurs. The table in Figure 3 shows the action indices for each oper-
ator of a workflow with four operators, with yellow color marking
the indices that comprise the index vector. Given an ordering for
the operators (e.g. sorted by name or topologically sorted) we can
construct a unique representation for each plan/placement, just
by keeping the index vector. For instance, the placement created
by the yellow cells in Figure 3 can be uniquely identified by the
vector [2,2,1,0]. This signature denotes that A [2] must be applied
to O1, A[2] to Oy, A[1] to O3 and A[0] to Oy4. This representation
allows for the systematic enumeration of all possible plans, due to
the fact that each number of the signature is an index in vector A,
and therefore a base-|A| number. Specifically, by counting from
0 to (| x Vay)!"w! — 1 and performing a base-|A| conversion to
each resulting number, all possible operator placements can be effi-
ciently generated. For instance, consider Figure 3. The exemplary
plan numbered 164, converted to base-|A| would yield a plan rep-
resentation of [2, 2, 1, 0], which results in the previously discussed
mapping. It is important to note that the enumeration procedure
does not produce duplicate plans and produces all possible plans.

3 THE APEROL ALGORITHMIC SUITE
3.1 Exhaustive Search with a Queue (ESQ)

The ESQ algorithm utilizes a shared work queue to examine the
search space in a BFS-like manner. The algorithm starts from the
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Algorithm 1: Exhaustive search with queue (ESQ)

Input: GoPyoo; : Root plan

A = P X Vy : Available actions

& : Cost model

n: Number of threads

Output: G* : Optimal plan

1 Shared (thread-safe) data structures

2 G* «— GoProor

3 ¢* « CosT(GoProor)

4 planQueue «— CONCURRENTQUEUE( GOProot )
5 visited < CONCURRENTHASHSET(Sig(GoPyoot))
6 foreach worker € SPAWNWORKERS(n) in parallel do
7
8
9

while planQueue # 0 do

GoPparent « planQueue.rorr()

Vay V(Gopparent)
10 foreach v € Vy do
11 foreach (p,s) € A do
12 GoPeandidate < COPY(GOPparent)
13 SETPLATFORM (9, p), SETSITE(9, S)
1 if Sig(GoPcandidate) ¢ visited then
15 visited.ADD(Si8(GoPcandidate))
16 UpPDATECOST(GOP gndidate €)
17 ¢ < Cost(GoPcandidate)
18 if ¢ < ¢* then
19 ¢* « CosT(GoPeandidate)
20 G* «— GoPcandidate
21 planQueue.orFER(GOPcandidate)

22 return G*

root plan and consecutively creates new plans by applying all ac-
tions to all operators. The new plans are reinserted into the queue
for further action applications. To enable parallel plan examina-
tion, worker threads share a queue, using atomic constructs and
synchronized blocks as needed.

Algorithm 1 provides the pseudocode for ESQ. Initially, the algo-
rithm initializes the necessary shared variables. The atomic refer-
ences G* and ¢* are initialized to point to the root plan GoP,,.; and
its cost respectively (Lines 2-3). Furthermore, the queue that holds
the plans during the search (planQueue) is initialized with GoPyoo;
(Line 4), and the set of visited plans (Line 5) is populated with its
signature, which serves as its unique representation (Section 2.2).

The main body of the algorithm is a while-loop executed concur-
rently by all worker threads (Lines 6-7). Each thread dequeues a
plan denoted as GoPparen: (Lines 8-9). Then, it applies every action
to each vertex of this plan (Lines 10-11). At each step of this pro-
cedure—i.e., applying a single action to an operator—a new plan,
denoted as GoPeandidates is generated (Lines 12—13). If the newly cre-
ated plan has not been previously visited based on its signature Sig
(Line 14), it is added to the visited set, its cost is calculated according
to the provided cost model & (Line 16), and the plan is inserted
into the queue (Line 21). Prior to this insertion step, the optimal
plan and its cost, i.e. G* and c¢*, are updated based on GoP,andidate
(Lines 18-20). When the planQueue empties, all worker threads
terminate their search process and G is returned.

Discussion: Since the algorithm is exhaustive, it returns the opti-
mal plan. A careful inspection of the main body of the algorithm
reveals the possibility of collisions. A collision is defined as having
two threads applying a different action on different plans creating



the same plan or a plan that has been evaluated before, and there-
fore, all its derivative plans are already present in the queue. This
motivates the use of the visited set, as a means of detecting these
collisions. If a signature is present in the visited set, the correspond-
ing plan is not inserted into the queue for further actions. Collisions
significantly impact the algorithm’s performance, as CPU cycles are
wasted generating plans that have already been evaluated. While
the visited set is highly effective in filtering out duplicate plans, it
may introduce delays when the number of visited plans reaches
hundreds of millions (due to cache misses, GC pressure, etc.). In
such cases, the cost of set containment queries is non-negligible.
To avoid such delays a Bloom Filter on the visited set can be used.

The space complexity of a single GoP plan is O(|Vay| + |Eq|).
Also, the algorithm maintains two persistent structures: i) the
visited set with O(|A|VW!) space cost and ii) the planQueue, which
may also contain O(|A|"w!) distinct plan signatures. The queue
only stores plan signatures, which means each entry takes O(1)
space. Each signature has to be materialized before being expanded
and the total space complexity is O(|visited| + |planQueue| +|G*|) =
O(|A|"W! + [Vay| + [Ew) = O(|A|"W!).

3.2 Exhaustive Search with Counting (ESC)
The ESC algorithm builds directly upon the plan signature repre-
sentation and enumeration of Section 2.2.

Algorithm 3 provides the ESC pseudocode. The algorithm starts
by initializing the necessary shared variables G* and c¢* to their
respective initial values (Lines 1-3). The loop in Line 4 contains
the core iterative process of the algorithm. It enumerates from
0 to |A|Yw! — 1 and constructs, in parallel, each candidate plan
GoP.yndidate With the use of the CONSTRUCTPLAN function, outlined
in Algorithm 2. This function: i) converts the plan number to the
calculated base and sets the actionIndexVector (Line 2, CONSTRUCT-
PLAN), ii) creates a copy of the original plan (Line 3-4, CONSTRUCT-
PLAN), iii) applies the actions dictated by the resulting indices from
the base change (Lines 6—-9, CoNsTRUCTPLAN). Upon application of
all actions, the function returns the newly constructed plan (Line
10, ConsTRUCTPLAN). Back to Algorithm 3, the cost of GoPeangidate
is calculated (Lines 6-7) and the optimal plan/cost are updated. The
optimal plan G* is returned at Line 11.

Discussion: Parallel processing is achieved by many worker threads
sharing a queue, and requesting plans to be inserted by a separate

Algorithm 2: ConsTRUCTPLAN Function

Input: GoPyyo; : Root plan
planID : Unique integer identifying a plan
A : Available actions
Output: G.gndidare : The newly constructed plan
b — |A|
actionIndexVector « CONVERTTOBASE(planID, b, |V(GoProor)|)
GoPcandidate < CoPY(GOProor)
Vay < V(GoPcandidate)
index « 0;
foreach v € Vqy do
actionlndex < actionIndexVector|index + +]
(p, s) « AlactionIndex]
SETPLATFORM (O, p); SETSITE(D, $)

e ® NN G R W N e

return GoPcandidate;

-
5
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Algorithm 3: Exhaustive Search with Counting (ESC)

Input: GoPyoo; : Root plan

A = P X Vy : Available actions

&: Cost model

Output: G* : Optimal plan
1 Shared (thread-safe) data structures
2 G* «— GOoPyoor

3 ¢* « CosT(GoProor)

4 for planID from 0 to (|A|)YW! — 1 in parallel do

5 GOoP.andidate < CONSTRUCTPLAN(GOPyoot, planID, A)
6 UprpATECOST(GOPcandidates ©)

7 ¢ < Cost(GoPcandidate)

8 if ¢ < ¢* then

9

c* —c
10 G* « GoPcandidate

11 return G*;

thread. At any given time, at most one plan per worker is material-
ized, resulting in a space complexity of @(|Vqy |+ |Eqy|). Due to the
counting scheme, no collisions can occur. Lines 5-10 are executed
in parallel by each worker thread, which requires that variables G*
and c* are protected by locks and atomic constructs to guarantee
the correctness of the algorithm. Multiple threads accessing these
two variables to update their value for a single plan may create
contention degrading performance. One remedy for this situation
is to introduce batching. Using the counting scheme, the range of
planIDs can be partitioned into blocks of fixed size (i.e. a batch).
The producing thread can create batches of plans, and have each
worker thread process a batch of plans instead of a single plan.
This allows each worker thread to first perform a local, lock-free
aggregation to find the best plan in each batch, before updating
the shared variables that require locking mechanisms. This reduces
thread contention and drastically enhances ESC’s performance
(Section 4.3).

ESQ and ESC with timeouts can be used to limit runtime in large
spaces. However, a key difference emerges: ESC begins from plan 0,
while ESQ starts from the root. This leads to different results under
time constraints due to divergent adaptation paths (Section 2.1).

3.3 Heuristic Search (HEURISTIC)

APEROL’s HEURISTIC search utilizes a Pareto set to find a good exe-
cution plan G*, heuristically pruning parts of the search space. Dur-
ing its operation, the algorithm maintains a set of Pareto-optimal
plans, across the cost estimation dimensions discussed in Section 2.1,
and systematically prunes dominated solutions to ensure efficient
search. The algorithm is based on the observation that execution
plans that are so far optimal in at least one performance dimension,
are more promising to make an even better plan with more action
applications. Already dominated plans are less likely to give good
candidates as the migration cost adds up after more actions.
Algorithm 4 provides the pseudocode for the HEURISTIC algo-
rithm. The algorithm begins by initializing: i) X* as the set of
Pareto-optimal plans, initially containing only the given root plan
GoProor (Line 2), ii) planQueue, a queue that stores plans to be
evaluated, also initialized with GoP,.o; (Line 3), iii) visited, a set
storing the signatures of already explored plans to prevent redun-
dant evaluations (Line 4) and iv) removed, an empty set that will



Algorithm 4: Pareto-Guided Heuristic Search (HEURISTIC)

Algorithm 5: GREEDY Search w/ Progressive Global Optima

Input: GoPyoot : Root plan
A =P X Vp : Available actions
& : Cost model
n : Number of threads
Output: G* : Best plan
1 Shared (thread-safe) data structures
2 X* — {GoProot } ; // current Pareto frontier
3 planQueue «— CONCURRENTQUEUE( GoProot )
4 visited < CONCURRENTSET(Sig(GoPoot))
5 removed < CONCURRENTSET( )

6 foreach worker € SPAWNWORKERS(n) in parallel do

7 while true do

8 GoPparent < planQueue.rorr() ; // returns null if empty
9 if GoPparent = null then // Search concludes
10 L break

1 Vay « V(GoPparent) ; // operators of the workflow
12 foreach v € Vi do

13 foreach (p,s) € Ado

14 if Sig(GoPparent) € removed then

15 L break

16 GoPcandidate < DEEPCOPY(GOPparent)

17 SETPLATFORM(9, p); SETSITE(9, 5)

18 if Sig(GoPcandidate) € visited then

19 L continue

20 visited.ADD(Sig(GOPeandidate))

21 UpPDATECOST(GOPeandidates &)

22 lock X*; // Thread safe updates on the Pareto
23 if 3G’ € X*: G’ < GoP.andidare then

24 unlock X*

25 L continue

dominated «— { G’ € X* | GoPcandidate < G'}
X* — X*U{GoP.andidate} \ dominated
unlock X*

26
27
28

removed.AppALL(dominated)

planQueue REmovEALL(dominated)
planQueue.oFFER(GOPcandidate)

29
30
31

32 return arg mingcx* Cost(G)

later store dominated, therefore obsolete, plans (Line 5). Multiple
worker threads are utilized so as to retrieve and process plans from
the planQueue in parallel. The main body of each thread’s plan
processing routine starts by dequeueing a plan from the queue,
namely GoPparent, and extracting its operators Vay (Lines 7-11).
The algorithm iterates over each operator v in the workflow
graph (Line 12), considering all possible actions, as device-platform
pairs (Line 13). Before proceeding any further, a check must be
made against the removed set, in order to ensure that the parent
plan GoPpgyens of which all other plans will stem, has not been ren-
dered obsolete by another thread. If GoPparens has been removed
from the Pareto set by another thread, there is no need to examine
its derivative plans further (Lines 14-15). Performing this check
inside the nested loop might seem redundant at first, but the al-
gorithm’s parallel execution means that another thread could add
GoPparen: to the removed set at any moment. Detecting this as soon
as possible, enables us to abort any further expansion of this plan,
thus saving needless computation. As long as the parent plan is not
found in the removed set, the algorithm proceeds by creating the
candidate plan GoP,andidate as a copy of GoPparen: and applies the
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Input: GoPyoot : Root plan

A = P X Vy : Available actions
& : Cost model

Output: G* : Best plan

1 Shared (thread-safe) variables : ¢*, 7*

2 GoPgate < DEEPCOPY(GOPyo0t)

3 Viem < V(G0Proot)

1 G* «— GoPyoot // progressive optimum
5 while Vi, # 0 do // until every operator is placed
6 c* — 400 // Best plan cost of the iteration
7 The— (L, 1, 1) // Best operator, platform, site triple
8 for v € Vqy [in parallel] do // Operator level par/lism
9 for (p,s) € A [in parallel] do // Action level par/lism
10 GOPyyp < DEEPCOPY(GOPgtate )

1 SETPLATFORM (0, p); SETSITE(9, $)

12 UpPDATECOST(Gimp, &)

13 ¢ < CosT(Gmp)

14 lock ¢*, 7*

15 if ¢ < c¢* then

16 cf—c

17 L * — (v, p,s)

18 | unlock c*,

19 (0", p*,s*) «1*

20 APPLYACTION (GOPstate, 0°, (p*, %))

21 UprDATECOST(GOPstate, &)

22 G* « GoPgate

23 | Viem-REMOVE(0")

24 return G*

corresponding action to the corresponding operator (Lines 16-17).
At this point, another check is made to ensure that GoP,andidare has
not been examined before. Then, the signature of GoPeandidate 1S
added to visited (Line 20) and the cost model is applied to the candi-
date plan in order to calculate its cost (Line 21). If any existing plan
in X* dominates GoP,gngidare, the plan is discarded as non-Pareto
optimal (Lines 23-25). In the case that GoP,4pgidate is not pruned,
it is inserted to X*, while the plans dominated by it are removed
(Lines 26-28). In this section of the algorithm, we explicitly show
the locking of X* (Lines 22 & 28), to highlight the concurrent nature
of its underlying data structure and underscore that this synchro-
nization is essential for the algorithm’s correctness. Continuing, the
removed set is updated with the newly dominated plans (Line 29)
and each of these plans is also removed from the planQueue to avoid
being retrieved by other threads (Line 30). Lastly, GoPeandidate 1S
inserted into planQueue to be further examined, by applying more
actions (Line 31). The search is terminated when the queue is empty,
meaning that no other plans managed to enter X*. The returned
plan, is the one with the best cost (Section 2.1), out of X* (Line 32).
Discussion: HEURISTIC’s execution time may vary depending on
runtime conditions such as the size of the Pareto set at any given
time. For deriving the space complexity, one can easily notice that
it is tightly coupled with (i) the size of the Pareto front, |X*|, at
any given time and (ii) the number of operators and edges in a
workflow |Vqy| + |Eqy| which determines the space needed to ma-
terialize these |X*| plans. Therefore, O((|Vy| + |Ew|)|X*|) space
complexity. According to Theorem 3 and Theorem 4 from Shang et
al [48], for our search space of | A|!YW/! cardinality, in the worst case
|X*| = | A", ie. no plan will dominate another and all plans



will stand in the Pareto front, irrespectively of the number of cost
dimensions (Section 2.1). For the worst case runtime complexity of
the algorithm, we consider that each of the, at most, O(|A|!"w!)
points/plans will be pairwise compared with at most O(|A|!"w!)
other points before getting added in the Pareto front. Therefore, the
worst case runtime complexity of the HEurisTic is O(|A[2IYw!).
However, these are extreme, worst case complexities. In practice,
HEURISTIC prunes not only 1-hop, but also multi-hop offsprings
of plans that do not enter the Pareto front at each iteration of the
algorithm and prunes entire subgraphs of the search space.

3.4 Greedy Search (GREEDY)

The GreEDY algorithm of APEROL explores the search space in a
BFS fashion, but at each level of the BFS, it keeps only one (best

found so far) plan for further & applications. Algorithm 5 provides
GREEDY’s pseudocode. GREEDY initializes the optimal plan reference,
copies the provided starting plan to create the state graph GoPsgre,
and creates a list of the operators of the workflow, i.e. V;¢p, (Lines
2-4). Vrem tracks which operators have been modified. When it
empties, the search concludes. GoPsq;. tracks the operator changes
made at each level of the BFS, one, best action per level.

A while loop continues until V;.,, becomes empty (Line 5). At
each iteration the variables ¢* and 7* are reset: the former stores
the best cost observed during the current iteration, the latter the
operator-platform-site triplet with that best cost. Then, for every
remaining operator in V,.,, and every action in A, the algorithm
applies the action to the operator (Lines 10-11) creating a new plan
implicitly on GoPy,,, and evaluates the cost of the said plan (Line
12-13). If this cost is better than c¢*, both ¢* and 7* are updated
(Lines 16—17). Updates to these variables are guarded by a lock
in order to guarantee correctness when one of the surrounding
loops is executed in a parallel manner (Lines 14 & 18). Once all
combinations have been examined, the triple stored in 7* is known
to be the best choice discovered during the iteration (Line 19). The
algorithm therefore applies the chosen action to the operator v*
of GoPstate, evaluates the cost of the modified plan, records the
new plan as the current progressive optimum G*, and removes v*
from Viem (Lines 20-23). Because each pass permanently fixes one
operator and removes it from the V,,, the loop is guaranteed to
finish after |V | iterations. When all operators have been placed,
Vrem is empty, G* is returned as the best found plan.

Discussion: A key aspect of this algorithm is that each opera-
tor is modified only once. This makes the search progressive and
limits the number of examined plans. The GREEDY algorithm will
examine exactly 7~ = |A| - w plans. In each iteration
of the main loop (Line 5), one operator will be placed, while all
actions will be applied on all available operators. Thus, the 1%
iteration will apply the actions to |V4y| operators, 2" iteration
will apply actions to |Vy| — 1 operators and so on. In detail: 7" =

2_
AL (vl + Y (Vg = 1)) = 1AL (jvay] + Dbl

|Al- W Thus, the GREEDY algorithm runs in time O (| A|-
[Vay|?), i.e., quadratic in the number of workflow operators. Regard-
ing the space complexity of the algorithm, one can notice that the
only persistent structures throughout GREEDY’s execution are: V,.¢p,
(O(|Vaw|)) and G*, Gsrate and Gimp which all use ©(|Vay | + |Eqy|)
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Algorithm 6: Random Sampling Search Algorithm (RSS)

Input: GoPyoo; : Root plan

A = P X Vy : Available actions

&: Cost model

n: Sample size

Output: G* : Best plan

1 Shared (thread-safe) data structures
2 G* «— GoProor

3 ¢* « CosT(GoProor)

4 Vay  V(GoProor)

5 visited < CONCURRENTSET( )

6 for0ton — 1 in parallel do

7 planID «— Raxpom(0, |A|Vwl)
8 if planID € visited then

9 L continue;

10 visited.app(planID)

1 GOoPcandidate < CONSTRUCTPLAN(GOPyoot, planID, A)
12 UprpATECOST(GOP andidates ©)

13 ¢ < Cost(GoPcandidate)

14 if ¢ < ¢* then

15 c* —c
M
16 G* « GoPcandidate

17 return G*;

space. Therefore the total space complexity is @(|Vqy |+ |Ey|). The
algorithm can be parallelized, either on the operator level or the
action level (Lines 8 & 9).

3.5 Random Sampling Search (RSS)

Both HEURIsTIC and GREEDY prune parts of the search space that
are considered unpromising. However, since they narrow down
their search based on the current Pareto optimal plans or the best
plan found so far, they may also get trapped to local optima. Mo-
tivated by the above observation, we propose RSS which explores
the search space in a randomized fashion. The RSS algorithm is
very similar in its structure with the ESC algorithm, as it also uses
the plan signature and enumeration technique in order to produce
candidate plans. The main difference is that, instead of enumer-
ating all possible plans, it visits only a subset of the search space.
The RSS algorithm is provided with a parameter termed n, which
denotes the total number of plans that the algorithm will examine.
Sample size n is usually set as a percentage of the total plans of the
search space, i.e. n = k - |[A|"W! k € (0, 1], but can alternatively
be specified as a numerical value (e.g. 5K, 10K plans). The main
body of the algorithm closely resembles the ESC algorithm and
therefore attains the same space and time complexities. Here, the
plan numbers are generated randomly, using a thread safe random
number generator. Since randomly generating plan numbers entails
the risk of duplicate numbers, a variable to hold the generated plan
numbers is necessary, i.e. the visited set. The algorithm begins by
performing the same initialization steps as previously described
for the ESC (Lines 1-5). The main loop of the algorithm (Line 6)
generates n random plan numbers (Line 7) that are evaluated in
parallel by the worker threads. For each plan, RSS checks whether it
has been evaluated before (Line 8-9). If not, it adds it to the visited
set (Line 10). Lastly, the best plan reference and cost are updated
based on the recently evaluated plan (Lines 11-16).

Discussion: The algorithm has fixed execution time for given sam-
ple size and it is less susceptible to local optima. Sampling the



search space can be performed either uniformly or via Sobol se-
quences [52] for even search space examination. Combining virtues
of HEURISTIC, GREEDY with RSS, one can come up with hybrid algo-
rithms. For instance, GREEDY can be followed up by RSS, restricted
in sampling from up to k — hop neighbors of the plan suggested by
GREEDY, to heal GREEDY’s susceptibility to local optima.

4 EXPERIMENTAL EVALUATION

In our GitHub repository, we provide a detailed guide on how to
run our experiments and our results are fully reproducible.
Experimental Objectives & Metrics: We compare the APEROL
algorithms against two performance criteria, namely Plan Cost Im-
provement and Average Algorithm Execution Time per Adaptation
Decision. Plan Cost Improvement corresponds to how much one
or more adaptation decisions are improving the root plan as each
workflow is executed, i.e., GoP; — GoProo:. The Average Algorithm
Execution Time shows how fast can each algorithm devise a new
plan upon an adaptation decision.

Workload: To evaluate APEROL we employ two well known bench-
marks, namely the Yahoo Benchmark [15, 36] and the RIoT bench-
mark [50]. The Yahoo Benchmark is a standard stream analytics
benchmark composing a workflow of selection, projection, join,
windowing and aggregation operators (8 operators in total).

RIOT [50] provides four real-world workflows from the smart

cities domain [50] - termed TRAIN, PRED, STATS, ETL - with 8, 9,
11, 11 operators, respectively. The RIoT workflows involve a ma-
chine learning training, predictive analytics, higher order statistic
extraction and extract-transform-load task, respectively.
Real Testbed: We reserve all the 194 available devices at the Greno-
ble site of the publicly available FIT IoT-LAB [1] testbed, consisting
of Raspberry Pi 3 boards and A8 devices. The A8 board is based on an
ARM Cortex-A8 micro-processor. On this Real Testbed, Raspberry
Pi 3 nodes can execute functional Python code and JavaStreams and
can even host a lightweight Apache Flink deployment with a single
Task Manager instance. The resource-constrained A8 nodes are
limited to running only functional Python or JavaStreams, due to
limited hardware capabilities. We monitor setups composed of |Vy/|
={7, 15, 31, 127, 194} sites in the Real Testbed. This Real Testbed can
only execute the Yahoo Benchmark workflow due to resource con-
straints, but it is used in our experiments for validating the trends
seen in simulated networks (see below) and, ultimately, for com-
paring the performance of APEROL against DAG* [54], NEMO [13]
and Governor [14] on an actual network, besides simulated setups.

For our simulated network setups of sizes |Vy/| = {7, 15, 31, 127,
1023, 2047} sites, we use the highly cited iFogSim tool [29, 41] to
simulate RIoT workflows’ execution over these networks.
Simulated Heterogeneous Network Setup: The devices of this
setup consist of a mix of resource-constrained edge nodes such as
ESP32-based sensors, Raspberry Pi 4, Jetson Nano boards, and high-
end edge servers. Execution engines match to device capabilities:
MiNiFi C++ runs on light-weight devices and MiNiFi Java runs on
Raspberry Pi-class devices, while Kafka Streams and Apache Flink
run on more powerful nodes like Jetson Xavier or Intel NUCs. This
setup is useful to judge the effectiveness of each APEROL algorithm
in cases when some actions can make an important (positive or
negative) difference compared to others and, therefore, algorithms
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susceptible to local optima may underperform.

Simulated Homogeneous Network Setup: In this setup, all nodes
are Raspberry Pi-class devices. A single runtime engine across all
nodes for processing and edge-to-cloud data forwarding is deployed.
Due to the homogeneous setup, algorithms (HEURISTIC, GREEDY)
that are more susceptible to local optima are less likely to under-
perform in the quality of the returned plan.

Given the number of operators per workflow cited previously,
this means that the cardinality of the search spaces we experiment
with starts from 87 and exceeds 112°%7 candidate execution plans.

Instantiating the Cost Model &. APEROL is agnostic to the cho-
sen cost model &. In our evaluation we instantiate & (Section 2.1)
both with supervised ML models and parametric statistics via large-
scale simulations and actual jobs running on our Real Testbed. For
each network setup and admissible workflow we run 100,000 place-
ments (chosen randomly) on the largest network. We augmented
these with 20,000 unseen placements from all remaining networks,
for testing the developed models. Each placement yields estima-
tions for the four performance dimensions of every plan n: Thr,
Lat, Comm_cost, Migr_cost.

For the homogeneous network setup we found that the ML mod-

els, detailed hereafter, provide more accurate estimations of the
ground truth performance, while for the heterogeneous setup and
the Real Testbed, ground truth was more accurately described by
parametric models explained afterwards.
Learning Models. For the homogeneous setup, we train XGBoost
regressors per (workflow, network setup) pair, one for each per-
formance dimension. The hyperparameters of the regressors are
included in our Github repo directory costs/models/. Feature
vectors include operator-level statistics (such as throughput, pro-
cessing latency and migration cost per operator, device etc.) and
network characteristics (such as hop counts, link latencies).

Distribution fitting. For the heterogeneous setup and the Real
Testbed, plan costs are better modeled by parametric distributions,
with the best fitting distribution among {NORMAL, RAYLEIGH, GAMMA,
LogNormAL} chosen by maximum likelihood estimation.
Runtime cost model use. Given a candidate plan 7 (and the root
plan), & (either ML-based or parametric as we describe above) re-
turns estimations per operator and network link by querying the
corresponding models. These are aggregated, as detailed in Sec-
tion 2.1, to compute Thr, Lat, Comm_cost, Migr_cost which, in
turn, are used to compute Cost(GoPy). For the total cost estima-
tion Cost(GoPy) of Section 2.1, we assign equal weight to each
performance dimension, but Section 4.4 performs a sensitivity anal-
ysis on weights on performance dimensions. All model artifacts are
released with our code (directory /costs) to ensure reproducibility.
Algorithmic Setup & Hardware: The APEROL algorithms run
with a default parallelism of 4, which is a sweet spot (see Section 4.3,
where we also vary parallelism). We run all our experiments on a
MacBook Air M2 (8 Cores/16GB RAM), but in Section 4.3, we also
report on APEROL’s performance on a server Intel(R) Xeon(R) Silver
4310 CPU @ 2.10GHz, 20 cores/ 40 threads, and 256Gb RAM. We
set a timeout for ESQ and ESC equal to the average execution time
of RSS, HEURISTIC, GREEDY. After the timeout, ESQ and ESC output
the best plan found so far. For RSS we set a default sample size of
3K execution plans and we perform Sobol sequence-based sampling.
We term this version as RSS-3. For GREEDY, the introduction of
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Figure 4: Heterogeneous Setup - PRED, TRAIN Workflows: APEROL Plan Cost Improvement (the higher
the better) across Network Sizes vs Number of Adaptation Decisions (Less to More Volatile Conditions).

thread safe data structures and synchronization mechanisms results
in overheads, which deteriorate the otherwise minimal Algorithm
Execution Time. Therefore, we set the parallelism of GREEDY to 1.
Main findings: @) The APEROL algorithms are complementary
in their utility in different settings (2) In heterogeneous setups,
for networks up to 31 or 127 devices, RSS provides the best Plan
Cost Improvement vs Algorithm Execution Time trade-offs 3) For
heterogeneous networks of more than 127 sites, the time-capped
version of ESQ is the most preferable candidate @) In homogeneous
setups, GREEDY is less affected by local optima and provides the
best Plan Cost Improvement vs Algorithm Execution Time trade-off
(® Experiments on the Real Testbed validate the trends observed
in simulated setups, upon comparing APEROL vs [13, 14, 54] 6 In
latency-based optimization vs competitors [13, 14, 54], HEURISTIC
and GREEDY clearly overtake the third GOvERNOR, with HEURISTIC
providing 3% better Plan Cost vs Algorithm Execution Time trade-
off (7) Hybrid RSS+GREEDY often remedies local optima providing
better plans compared to individual RSS, GReepY (8) ESC is the
least dependent on shared variables and by imposing batching
(Section 3.2), it can scale up to 2.1M plans per second on commodity
hardware (9) HEURISTIC is the least sensitive on cost dimension
weightings.

4.1 Evaluation on Simulated Setups

Heterogeneous Setup: The plots in Figure 4 illustrate the Plan
Cost Improvement of the plan devised by each APEROL algorithm,
across networks of various sizes, for PRED and TRAIN workflows
in the heterogeneous setup. The trends for ETL and STATS are
similar; we omit them due to space constraints. The vertical axes
in the figures represent the Plan Cost Improvement of the output
plan for each algorithm compared to the root plan (the higher the
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Figure 5: PRED & TRAIN: Aver-
age time per adaptation decision.

better). The horizontal axes represent the number of adaptation
decisions within the lifetime of the workflow. In that, we provide
results across networks and workflows which show conditions of
various volatilities. Under rarely (respectively frequently) changing
conditions, the number of adaptation decisions (i.e., the length
of the chains of adaptation decisions discussed in Section 2.1) is
low (respectively high). We couple the description of these figures
with Figure 5, which shows the Average Execution Time of each
algorithm per optimization decision. Hence, we can judge the plan
quality vs algorithm execution time trade-offs of APEROL.

For networks up to 31 sites, RSS is the best option because it
consistently provides the highest Plan Cost Improvement across
various numbers of optimization decisions (Figure 4) and simul-
taneously provides an average algorithm execution time of 30ms
(Figure 5). For networks of 127 and up to 1023 sites, HEURISTIC
progressively overtakes RSS and for 2047 sites HEURISTIC mostly
provides the best Plan Cost Improvement.

In the majority of the cited cases in Figure 4, ESC provides a cost
improvement comparable to or worse than GREEDY. Upon an adap-
tation decision, ESC starts its exploration from plan 0 (Section 3.2).
It can therefore be more detached from the current situation of the
deployed execution plan. ESQ is the second best alternative across
network sizes in Plan Cost Improvement and, combined with its
capped execution time in Figure 5, it is the best choice for networks
of thousands of sites across the number of adaptation decisions.

GREEDY exhibits important Plan Cost Improvement between net-
work sizes of 127 and 1023, but (a) it gives an improvement that
comparable RSS and (b) it is in those networks where its execu-
tion time (Figure 5) starts to match the execution time of RSS (for
network size 127) and that of ESQ, ESC afterwards.
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Figure 6: Homogeneous-ETL: Plan Cost & Execution Time.

Homogeneous Setup: In homogeneous setups, the previous pic-
ture is reverted. In Figure 6 and Figure 7, we plot pairs of graphs for
Plan Cost Improvement, Average Algorithm Execution Time in the
ETL and STATS workflows. We provide results for the middle case
of 127 network size, but our observations hold across network sizes
in the homogeneous setup case. HEURISTIC, GREEDY provide the
best Plan Costs Improvements, while ESQ is ranked third. GREEDY
simultaneously provides the lowest Average Execution Time of up
to one second, making it the best choice in these setups.

4.2 Real Testbed Validation and Comparisons

We now compare APEROL against DAG* [54], Spring Relaxation
(SPRING-RELAX) used in NEMO [13]; and GOVERNOR [14]. We com-
pare these algorithms on our MacBook Air M2, both on the Real
Testbed and on the simulation setups. DAG* and SPRING-RELAX op-
erate on optimizing latency (the lower plan cost, the better for the
experiments of this section) and they cannot be trivially extended
to host the other performance dimensions considered in APEROL.
For instance, DAG* optimality is not guaranteed for diverse perfor-
mance dimensions that are non monotonic (increasing or decreasing
the score as the algorithm proceeds). Similarly, SPRING-RELAX by de-
sign is based on physics and uses network latency values as "forces"
to drag an operator on one or the other side of the network. There-
fore, for a fair experimental comparison, we zero out the weight
of the rest of the dimensions in the formula of Section 2.1 for the
compared candidates and for APEROL. As discussed in Section 2.1,
the migration cost is a latency value which accounts for the time it
takes to transfer the state, upon runtime adaptation, without letting
the workflow ingest and process data. Since DAG™ does not account
for the migration cost upon exploring the search space, we add that
migration cost to the output, optimal plan of DAG™.

In Figure 8, Figure 9 (comparison on the simulated setup) and in
Figure 10 (comparison on the Real Testbed), we show pairs of Plan
Latency, Execution time for DAG*, SPRING-RELAX, GOVERNOR and
GREEDY, HEURISTIC and RSS. We omit ESQ and ESC to improve
readability as the trends are similar to our previous experiments.
Cross-benchmark consistency. On matched network sizes (7,
15, 31, 127) on both the Yahoo Benchmark on the Real Testbed
and RIoT on the simulated setups, the qualitative ordering of al-
gorithms and the trends are similar: HEURISTIC and GREEDY con-
sistently yield the lowest plan latencies (Heuristic: 2.52-4.14 ms
on RI0T, 1.43-4.13 ms on Yahoo; Greedy: 2.52-11.19 ms on RIoT,

Plan Cost Im
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Figure 7: Homogeneous-STATS: Plan Cost & Execution Time.

1.47-7.46 ms on Yahoo). DAG" ties this front-runner pair on small
graphs (2.52-4.14 ms on RIoT, 1.53-6.70 ms on Yahoo) but its ex-
ecution time, while tiny on Yahoo (10-181 ms), already rises on
RIoT at 127 devices (3-6,413 ms) and fails to complete beyond that
scale. GOVERNOR, GREEDY offer the fastest execution but with a
higher Plan Latency (Governor: 8—15ms on RIoT, 18-43 ms on Ya-
hoo; Greedy: 3-26 ms on RIoT, 21-53 ms on Yahoo). But GOVERNOR
has a clearly higher Plan Latency (2-7X vs. HEURIsTIC on RloT;
2.31% on Yahoo). RSS maintains a nearly constant execution time
(67.6-79.2 ms on RIoT; 82-105 ms on Yahoo), while its plan quality
degrades as the search space grows (e.g., 5.58-19.93 ms on RIoT;
2.60-15.80 ms on Yahoo). SPRING-RELAX constitutes a worse Plan
Latency—-Execution Time trade-off (9.03-28.76 ms and 42-176 ms
on RIoT; 5.17-7.77 ms and 54-134 ms on Yahoo). Thus, the trends
of the simulated setup are mirrored in the Real Testbed.

For a more explicit ranking of the algorithms we rank them by
(i) Plan Latency and (ii) Execution Time separately. We take the re-
spective performance values of each algorithm for each (workflow,
network size) point, (separately for Plan Latency and Average Exe-
cution time, respectively), averaging each algorithm’s performance
across networks and benchmarks. We then compute a combined
score via the Harmonic Mean of Plan Latency and Execution time.
Ranking on Average Plan Latency (lower is better):
HEURISTIC (4.42 ms) < DAG” (4.76 ms, when it completes) < GREEDY
(8.46 ms) < RSS (18.22 ms) < SPRING-RELAX (20.47 ms) < GOVERNOR
(21.29 ms)
Ranking on Average Execution Time (lower is better):
GOVERNOR (29.35 ms) < GREEDY (73.47 ms) < RSS (93.16 ms) <
SPRING-RELAX (2,195.24 ms) < HEURISTIC (2,640.24 ms) < DAG*
(146,379.81 ms, when it completes)
Combined Trade-off (Harmonic Mean of Plan Latency, Exe-
cution Time, lower is better):
HEuRIsTIC < GREEDY < GOVERNOR < RSS < DAG" < SPRING-RELAX
HEeurisTIC provides a 3X better harmonic mean than GOVERNOR.

4.3 Scalability — Batching — Hybrid Algorithms

Scalability & Batching: In Section 3.2, we argued about reducing
the effect of parallelization barriers by introducing batching. In
Figure 11, we study the effect of parallelism coupled with batching.
Batching reduces contention among shared variables and affects
the rate of examined plans. We present results for ESC, but the
increasing trends are similar for all APEROL algorithms. The black
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lines (prefixed with MAC) in Figure 11, plot ESC on the MacBook
Air M2 (up to 8 cores). ESC without batching increases the rate
of examined plans linearly up to a parallelism of 4, but then a
plateau appears due to barriers. This is the reason we chose a
default parallelism of 4 in our previous experiments. Batches of 10,
1K and 10K size, increase the rate of examined plans linearly with
the full range of parallelism. ESC-BATcH10 has the major effect,
almost doubling the examined plans per second for a parallelism
of 8. ESC-BaTcu1K improves ESC-BATcH10 by up to +100K plans
per second. Further increasing the batch size to ESC-BATcH10K has
little effect, which is because threads are overutilized. In Figure 11,
up to 1.2M plans/sec are examined by tuning the batch size.

We also test scalability on a server with Intel(R) Xeon(R) Silver
4310 CPU @ 2.10GHz, 20 cores/ 40 threads, and 256Gb RAM (SRV
lines in Figure 11). ESC examines more than 2M plans per second
on par with batching. Hence, upon deploying APEROL on more
powerful hardware, the rate of examined plans keeps scaling before
reaching a plateau (on 36 — 40 threads), due to contention on shared
variables. Note that for the same parallelism (e.g. 4, 8) and batch
size, MAC has higher throughput due to faster CPU clock speed.
Hybrid Variants: In Section 3.5, we discussed the ability to create
hybrid approaches combining HEURIsTIC or GREEDY with RSS to
help the former avoid local optima. The idea is that we let one of the
former algorithms run and then receive their output plan (without

deploying it yet) and use it as the root plan for RSS. In Figure 12,

we apply this concept on a hybrid GREEDY+RSS variation for all
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workflows, on a network of size 7, for the heterogeneous setup,
where GREEDY shows poor performance. GREEDY+RSS provides
plans that considerably surpass the Plan Cost Improvement of both
GrREEDY and RSS in 2/4 workflows, in one workflow it equalizes
the best (RSS), while only in the TRAIN workflow it gives a plan of
lower quality than RSS. Notice that GREEDY+RSS always improves
GREEDY, validating the claim that it helps in avoiding local optima.
We also experiment with another hybrid approach, termed "Rand-
ESC", to alleviate the fact that ESC starts from plan numbered 0 and
its time-capped version may examine plans that are away from the
current root, therefore do not capture the conditions of the currently
deployed plan. The Rand-ESC enhancement we introduce randomly
shuffles plan ID batches and assign these shuffled batches (instead
of sequential plan IDs) to threads. This is expected to improve
resilience and exploration diversity in limited-time budgets for ESC.
As Figure 12 shows, Rand-ESC does considerably improve ESC, but
mostly ties the performance of the fully randomized search of RSS.

4.4 Sensitivity to Performance Weightings

To examine APEROL’s sensitivity to different weightings on the
four cost dimensions, we varied w;—w, used in the Cost(GoP;)
(Section 2.1) over 16 settings (single-dimension dominance, paired
balances, and mixed ‘random’ weights), for GREEDY, HEURISTIC
and RSS. We perform this experiment on the Real Testbed using
the Yahoo Benchmark workflow. For each set of weights, Table 1
reports the normalized Cost(GoPj) of score of the plan suggested



Table 1: Sensitivity Analysis:  Balanced Baseline  Single

weight emphasis Pairwise trade-offs Random weights

weight Greedy Heuristic RSS
Norm. score [thrpt, lat, comm, migr] Norm. Score  Norm. Score

[0.25, 0.25, 0.25, 025] 0.692 [325.7K, 0.81, 7.81MB, 22.00] 0.798 0.629
[0.70, 0.10, 0.10, 0.10] 0.316 [325.7K, 0.81, 7.81MB, 22.00] 0.606 0.320
[0.10, 0.70, 0.10, 0.10] 0.804 [325.7K, 0.81, 7.81MB, 22.00] 0.912 0.75
[0.10, 0.10, 0.70, 0.10] 0.865 [325.7K, 0.81, 7.81MB, 22.00] 0.887 0.831
[0.10, 0.10, 0.10, 0.70] 0.862 [11.2K,, 25.75, 3.13MB, 0.00] 0.862 0.851
[0.40, 0.40, 0.10, 0.10] 0.56 [325.7K, 0.81, 7.81MB, 22.00] 0.759 0.53
[0.40, 0.10, 0.40, 0.10] 0.571 [326.6K, 0.81, 7.84MB, 22.80] 0.746 0.539
[0.40, 0.10, 0.10, 0.40] 0.561 [325.7K, 12.42, 32.00MB, 9.23] 0.715 0.551
[0.10, 0.40, 0.40, 0.10] 0.838 [325.7K, 0.81, 7.81MB 22.00] 0.900 0.795
[0.10, 0.40, 0.10, 0.40] 0.811 [326.6K, 3.90, 15.68MB, 15.97] 0.852 0.746
[0.10, 0.10, 0.40, 0.40] 0.856 [11.2K, 25.75, 3.13MB, 0.00] 0.856 0.812
[0.03, 0.43, 0.31, 0.23] 0.89 [107.8K, 0.03, 0.00MB, 21.20] 0.926 0.802
[0.07, 0.21, 0.59, 0.13] 0.882 [107.8K, 0.03, 0.00MB, 21.20] 0.912 0.837
[0.15, 0.34, 0.10, 0.41] 0.767 [326.6K, 3.90, 15.68MB, 15.97] 0.828 0.717
[0.22, 0.06, 0.51, 0.21] 0.749 [325.7K, 0.81, 7.81MB, 22.00] 0.811 0.702
[0.44, 0.11, 0.29, 0.16] 0.526 [325.7K, 0.81, 7.81MB, 22.00] 0.718 0.487

by each algorithm to ease comparisons. For HEURISTIC, we also pro-
vide the individual performance dimensions of the suggested plan.
As shown in the table, HEURIsTIC (Pareto-based) shows the small-
est variation in aggregate quality as its normalized score ranges
from 0.606 to 0.926 (A=0.320). GREEDY spans 0.316-0.890 (A=0.574)
and RSS 0.320-0.851 (A=0.531). Thus, HEURISTIC is the least sensi-
tive to weight changes, because it does not guide its search based
on weights, but only applies weights at its final iteration to pick
only one plan out of those standing on the Pareto front. In con-
trast, GREEDY immediately applies the weighting to find the locally
optimal plan and examines only the neighbors of that plan.

In Table 1, high weight on individual dimensions (weights high-
lighted in red) does not change the performance of each dimension
([325.7K/s, 0.81 ms, 7.81MB/s, 22.00 ms]) of the chosen plan, but it
does alter Cost(GoPy) due to the different weights on each dimen-
sion. But, high weight on migration cost ( row [0.10, 0.10, 0.10, 0.70])
drives to 0.00 ms migration cost, which implies HEURISTIC chooses
to keep the root plan. Across the six pairwise weight changes in
Table 1 (highlighted in green), the per dimension effects show that
HEeurisTIC consistently keeps latency low and lets the dimensions
with higher weights rise moderately. Again, setting the weight
on migration cost to 0.40 affects the rest of the dimensions of the
chosen plan, the most. Finally, in the random weight assignments
(weights highlighted in yellow), HEURISTIC reaches its maximum
score (0.926, row [0.03, 0.43, 0.31, 0.23]) with very low latency (0.03
ms) and zero communication cost. HEURISTIC in this case (and the
[0.07,0.21, 0.59, 0.13] row below) places all operators on a RPi.

5 RELATED WORK

The first distributed stream processing systems (DSPEs) emerged
with frameworks such as Flux [47] and Borealis [32]. These, as
well as modern DSPEs including Apache Flink [11], Storm [18]
and Spark [6], are well suited for large clusters and cloud environ-
ments, but their heavyweight runtimes make them unsuitable for
IoT networks, which may rely on resource constrained devices [58].
The optimizers of such systems do not consider network-related
metrics, but focus on optimizing the workflow’s performance by
sophisticated task scheduling [43] or by trying to optimally set
parallelism and balance the workflow load [33].

Several works optimize the execution of streaming workflows
using powerful Big Data platforms [2, 12, 24, 56]. In addition to
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optimizing execution, another goal is to unify data analytics. Cross-
platform optimization [4, 22, 23, 27, 28, 51] addresses workflow
optimization in cloud-based setups but neglects the unique charac-
teristics of streaming environments. Frameworks such as [4, 22, 28]
typically optimize workflows at a single cloud hosting multiple
Big Data frameworks, overlooking the placement of operators in
distant machines and the necessity for incremental re-optimization.
Frameworks, such as Medusa [7] and SQPR [34], explicitly ad-
dress network-related metrics, aiming to efficiently distribute work-
loads across networked hosts to minimize resource consumption.
SBON [44] focuses on network resource efficiency for operator
placement and it was later extended by Rizou et al. [46] to han-
dle multiple operators. These methods mainly consider network
latency metrics, neglecting the metrics mentioned in Section 2.1.
SBON and NEMO [13] on NebulaStream both employ the Spring Re-
laxation algorithm for placing operators. Recently, Tzortzi et al.[55]
introduced machine learning approaches to estimate operator and
network costs. Governor [14], relies on manually crafted heuristics
(e.g., filtering at the edge and relational processing in the cloud).
Governor is also used by COSTREAM [30] to provide an initial
placement of a workflow on a never before seen network, besides
utilizing GNNs to learn the cost of operators on devices with differ-
ent computational capacities. DAG* [54] introduces a novel A*-like
algorithm with a new admissible heuristic and plan expansion rules
that drastically prunes the explored search space, guaranteeing to
output the workflow execution plan with the optimal end-to-end
latency. In Section 4.2, we proved that DAG* cannot scale in net-
works of 100s or 1000s sites. Flouris et al. [25] study complex event
processing (CEP) operator placement across geo-distributed sites
under the push—pull paradigm. AKkili et al [5] optimize in-network
CEP operator placement utilizing CEP-specific query rewritings
over multiple queries sharing events and query sub-patterns. These
optimizations have not been incorporated yet in typical DSPEs
such as FlinkCEP [11] or NebulaStream [42]. NebulaStream [42, 58],
EdgeWise [26] and Dart [40] are IoT DSPEs tailored for the hetero-
geneity and resource constraints of IoT networks. APEROL could
complement these engines, acting as an optimization layer.

6 CONCLUSION AND FUTURE WORK

We have presented APEROL, a suite of parallel optimization algo-
rithms for rapid, layered, in-network workflow execution in IoT
settings. APEROL covers diverse heterogeneity and scale, exploring
up to 2M plans/s on commodity hardware. APEROL’s search space
modeling is a foundation for new, parallel algorithms.

Interesting future work includes evolutionary search variations
to further (besides the hybrids of Section 4.3) avoid local optima
for algorithms such as HEURISTIC. A general direction would be to:
(i) seed populations with the best e.g., HEURISTIC plans, (ii) apply
mutations/crossovers on these plans (inheritance defined by hops in
search space); (iii) run under an offspring/mutant budget, returning
the best Pareto plan; and (iv) reuse APEROL’s cost model as the
fitness function for the evolutionary search.
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