
E�ective Durable Community Search in Large Temporal Graph
Yingli Zhou∗

yinglizhou@link.cuhk.edu.cn
The Chinese University of
Hong Kong, Shenzhen

Yige Jiang∗
yigejiang@link.cuhk.edu.cn
The Chinese University of
Hong Kong, Shenzhen

Yixiang Fang†
fangyixiang@cuhk.edu.cn
The Chinese University of
Hong Kong, Shenzhen

Wensheng Luo
luowensheng@hnu.edu.cn

Hunan University

Yongmin Hu
huyongmin@bytedance.com

ByteDance Inc

Yingqian Hu
huyingqian@bytedance.com

ByteDance Inc

Cheng Chen
chencheng.sg@bytedance.com

ByteDance Inc

ABSTRACT
A temporal graph is an undirected graph where each edge is associ-
ated with a timestamp indicating when it occurs. As a fundamental
topic in graph analysis, community search (CS) in temporal graphs
has received much attention. Existing CS works on temporal graphs
typically identify sets of vertices that form a :-core within a speci�c
time window (temporal :-core). However, they overlook the dura-
tion of a temporal community, which is the continues time period
that its members remain unchanged. Intuitively, the longer the dura-
tion of a temporal community, the higher its stability. Long-duration
communities are useful in many areas, such as event detection and
network analysis. In this paper, we introduce a novel community
model, called temporal durable community (TDC), which is the
temporal :-core with the longest duration in the temporal graph,
and aim to e�ciently �nd the TDC containing a query vertex. To
solve this problem, we �rst propose a novel online algorithm based
on binary search. We further develop two index structures that
can quickly determine the duration of a given temporal :-core, fol-
lowed by query algorithms. Experiments on ten real large temporal
graphs show that our TDC model is e�ective for �nding stable
communities, and our index-based query algorithms are up to �ve
orders of magnitude faster than the online algorithm.

PVLDB Reference Format:
Yingli Zhou, Yige Jiang, Yixiang Fang, Wensheng Luo, Yongmin Hu,
Yingqian Hu, and Cheng Chen. E�ective Durable Community Search in
Large Temporal Graph. PVLDB, 19(2): 127 - 140, 2025.
doi:10.14778/3773749.3773753

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/kiwiHM/Temporal-Stable-Community-Search.git.

1 INTRODUCTION
In many real-world applications, the relationships between enti-
ties can be modeled as temporal graphs, where each edge has a
timestamp representing the interaction time. For example, in a

∗The �rst two authors contributed equally to this research.
†Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773753

1
3

4
1

2

2

7 7

1

6

(b) a TDC with duration 2(a) an example of temporal graph

!!

!"

!#
!$

!% !&

!"
!!

!&
6 4 5

Query	interval:	 1, 7 , * = {-!}

[3, 5]: remain	unchanged
[2, 3]: form	a	community:	{(!, (", (#}

Figure 1: Illustrating the TDC in a temporal graph.

transaction network, the transactions between accounts are times-
tamped; in social networks, users’ posting and sharing messages
have timestamps; and in email networks, the sending and receiving
of emails include time information. Figure 1 gives a toy example,
where the numbers on the edges are the interaction timestamps.

In this paper, we aim to �nd communities in temporal graphs
containing a query vertex, which play a vital role in many real-
world applications and have garnered much research interest [27,
29, 31, 47, 49, 82, 85, 89]. For example, in the bibliographic network,
by revealing the temporal communities of a researcher in di�erent
time periods, we can keep track of the evolution of her communities
and analyze the changes in her collaborators and research interests.

Prior works. Earlier community search (CS) studies mainly
focus on static graphs [21, 22, 36, 68, 94], often neglecting tempo-
ral interactions. To �ll this gap, a few recent temporal CS models
have emerged [27, 29, 31, 47, 49, 82, 84, 85, 89], and most of them
are based on the well-known :-core model, which can be further
classi�ed into two groups. The �rst group [27, 29, 47] imposes a
strong constraint on temporal cohesiveness, i.e., the community
should form a :-core for every individual timestamp, which makes
the problems NP-hard. To relax the constraint above, the second
group [31, 49, 82, 85, 89] models a community by a set of vertices
that form a :-core in the static graph projected from the temporal
graph over a timewindow. For example, the temporal:-core [85, 89]
identi�es :-cores within graph snapshots within a given time win-
dow for a speci�ed: ; QTC [49] also models the community by using
the temporal :-core but considers the proximity between the query
vertex and other vertices. Although the models above are e�ective
in revealing meaningful temporal communities, they overlook the
duration of a temporal community, which is the continuous period
in which its members remain unchanged.

Intuitively, the longer the duration of a temporal community, the
higher its stability. We observe that in many real-world applications,
the stability of a community plays a vital role, since it indicates the
duration of common interests of community members. Motivated

127

https://doi.org/10.14778/3773749.3773753
https://github.com/kiwiHM/Temporal-Stable-Community-Search.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773753
https://www.acm.org/publications/policies/artifact-review-and-badging-current

!! = 1 !" =	2 !# =	3 4 5 6

Query	interval:	[!! , !"]=[1, 7]

!$ =	7 Time

∆= 5 − 3 = 2

3 4 5 6

2 -#, -$, -% -#, -$, -% -#, -$, -% -#, -$, -%,
.&, .'

!(
!)

Figure 2: Illustrating the duration of TDC.

by these, in this paper, we introduce a novel community model,
called temporal durable community (TDC), which is the temporal
:-core with the longest community duration in the temporal graph.
Speci�cally, given a query time window [CB , C4], if a set of vertices
forms a community in the time window [C; , CA] and its members
remain unchanged in [CA , CA + �] where � � 0 and CA , CA + �  C4 ,
then we say that its community duration is �. In Figure 1, let
the query interval be [CB , C4] = [1, 7], the query vertex @ = E1,
and : = 2. We see that {E1, E2, E3} forms a community in the time
interval [C; , CA]=[2, 3], and remains unchanged in [3, 5], resulting
in a duration of � = 5 � 3 = 2. Figure 2 illustrates this process:
across the time windows [2, 3], [2, 4], and [2, 5], the community
remains the same. In particular, during the time interval [3, 5], no
new members join the community. Note that at the timestamp 6, E4
and E6 join the community, leading to the community change. This
community is the TDC, as it achieves the longest duration among
all communities that can be formed within [CB , C4].

Applications. TDCs have found various applications in many
real-world scenarios, to name a few:

(1) Dynamic network analysis. TDCs provide a quantitative lens
to track the evolution of research teams in co-authorship networks.
We consider a co-authorship network where two researchers are
connected if they have co-authored at least two papers [96], and
the timestamp of each edge corresponds to the publication time.
Stable research teams emerge as TDCs with long durations, while
shifts in research focus disrupt this continuity. For instance, when
a researcher transitions to a new domain (e.g., Jim Gray’s shift from
databases to astronomy), the duration of their existing community
drops sharply due to an in�ux of short-term collaborations. As
the researchers establish themselves in the new �eld, the duration
rebounds, re�ecting the formation of a new stable collaboration
community. Our TDC model captures these dynamics e�ectively.
In Figure 3, we analyze Jim Gray’s co-authorship community from
1957 to 1997 using TDC queries with :=5 over �ve-year time win-
dows. We observe that: (1) during his transition from databases
to astronomy (e.g., 1977–1987), his community duration dropped
signi�cantly due to collaborations with many new co-authors, and
(2) after establishing himself in astronomy (e.g., 1992–1997), the
duration increased again, indicating the formation of a new stable
research group. In contrast, the duration values of the other tempo-
ral communities remain largely unchanged throughout this period,
failing to capture these important structural changes. We report
his two corresponding research communities in Figure 4.

(2) Event tracking. On social media platforms like Reddit, user in-
teractions (e.g., comments on posts) create temporal graphs where
activity patterns mirror real-world events. TDCs with long dura-
tions often correspond to major events [63], particularly long-term

1957 1962 1967 1972 1977 1982 1987 1992 19970
5
10
15
20

Time (year)

D
ur

at
io
n
(y
ea
r)

TDC Distinct :-core Temporal :-core QTC

Figure 3: Duration of community for Jim Gray.

(a) Jim Gray’s Database Community (b) Jim Gray’s Astronomy Community

Jim Gray

Mark H. Hansen
James

Raymond
Gianfranco

Donald Slutz

Paolo

Surajit

Hamid

Mike

BradfordDonlad D. C.
Morton

Frank

Eric Howard

David W. Hogg

Huan Lin

Xiaohui Fan
James Annis

Jim Gray

Figure 4: The community of Jim Gary.

topics like the Russia-Ukraine War. Besides, by keeping track of
TDCs, we may identify some bursting events (e.g., FIFA World Cup
or the Olympic Games) and monitor the trends of users’ opinions or
interests. We demonstrate these applications through a case study
using Reddit data in Section 6.

(3) Filter bubbles detection. On platforms like X (formerly known
as Twitter) or Facebook, if a group of users consistently interacts
only with each other and shares similar content without any new
users joining over a long period, it indicates a �lter bubble [42],
where the absence of new members shows the group’s isolation,
keeping interactions and information within the existing members.
By searching TDCs, we may identify the hidden �lter bubbles,
and break �lter bubbles by recommending some new community
members to join the community, reducing the echo chamber e�ect.

Challenges.Given a query time window [CB , C4], to �nd the TDC
containing a query vertex, a naive algorithm needs to enumerate all
the possible sub-windows in [CB , C4] to identify the temporal :-core
with the longest duration, which consists of two major steps: (1)
compute temporal:-core, and (2) identify the duration of this temporal
core. For step (1), we can directly use the core decompositionmethod
[3] to compute it, while step (2) is more challenging because for
a temporal :-core over [C; , CA] ✓ [CB , C4], we have to examine all
the sub-windows in [CA , C4] to �nd the longest duration when the
temporal :-core remains unchanged, which is impractical since it
takes$ (C3<0G · (=+<)) time in the worst case, where C<0G represents
the number of distinct timestamps in the graph.

Our technical contributions. We tackle the issues above by
proposing both e�cient online and index-based solutions.

(1) Online solution. We propose a non-trivial online algorithm
based on the binary search. Speci�cally, we observe that given
a start time C; and an integer : , the temporal :-core will never
be split and can only be merged as the end time of the window
increases. Based on this observation, for a time window [C; , CA], the
community duration of the temporal :-core can be computed by
performing a binary search to �nd the largest end time at which
this core changes, with the start time anchored at C; .

128

(2) Index-based solutions.To enable e�cient frequent TDC queries
with various parameters, we propose time- and space-e�cient
index-based solutions that can quickly determine the community
duration of a given temporal :-core. For each start time C; and inte-
ger : , we store the active time LC; (4): for edge 4 , which represents
the smallest end time CA that 4 can be included in the temporal
:-core over [C; , CA], and the active times form a minimum spanning
forest (MSF). The MSF of these active times forms the Active Span-
ning Forest index (ASF-index). The ASF-index can be constructed
using the Kruskal algorithm [15] for each : and start time CB , but
it is time-consuming and memory-intensive. We further observe
that the MSF at end time C; is obtained by inserting the edges with
timestamps C; and those with decreased active times into the MSF
at C; + 1. As a result, we only need to store the di�erent parts of
MSFs, allowing the representation of Cmax distinct MSFs as a single
graph, termed the Active Time Graph index, or ATG-index.

Given a time window [C; , CA], based on the ATG-index, we de-
velop a TDC search algorithm, which computes the temporal :-core
by considering edges with active times that are at least the start
time C; . The algorithm then identi�es the shortest active time among
all edges that connect a vertex in the :-core to one outside the core.
We call this algorithm Basic Index-based TDC search algorithm
(BIT). While BIT is faster than our online algorithm, it still needs to
recompute the temporal core and its duration for each time window,
leading to redundant computations. To reduce redundant compu-
tation, we further propose an Advanced Index-based TDC search
algorithm (AIT), which uses the temporal core from the previous
time window to compute the core and its duration for the current
window, achieving higher e�ciency.

In addition, we have conducted extensive experiments on ten
real-world large temporal graphs, and the reuslts show that our
solutions are e�ective in �nding TDCs. Besides, AIT is up to �ve and
three orders of magnitude faster than the online and BIT algorithms
respectively, and the ATG-index consumes much less space cost
than the directly calculated MSFs, and its construction is also much
faster. In summary, our main contributions are as follows.

• We introduce the problem of searching TDCs on temporal
graphs, which have not been studied in the literature yet.

• We propose both e�cient online and index-based solutions
to search TDCs in large temporal graphs.

• We conduct experiments on 10 real-world large temporal
graphs to demonstrate the e�ciency and e�ectiveness of
our algorithm.

Outline.We formally present the TDC search problem in Sec-
tion 2. Section 3 proposes the online-based TDC search algorithm.
In Section 4 and 5, we present our index-based TDC search algo-
rithms. We report the experimental results in Section 6. We review
the related works in Section 7 and conclude in Section 8. For lack of
space, all proofs in this paper are included in our technical report
[97].

2 PROBLEM FORMULATION
We consider an unweighted and undirected temporal graph ⌧ =
(+ , ⇢), where+ and ⇢ denote the sets of vertices and edges, respec-
tively. Let |+ | = = and |⇢ | =<. Each edge 4 2 ⇢ is a triplet (D, E, C)
withD 2 + , E 2 + and C 2 N representing the interaction timestamp
between D and E , denoted by F (4). W.l.o.g., we assume that the

Table 1: Notations and meanings.

Notation Meaning
⌧ = (+ ,⇢) A temporal graph with vertex set+ , and edge set ⇢

=,< The number of vertices and edges of⌧ respectively
C<0G The maximum timestamp in⌧
F (4) The interaction timestamp of edge 4 .

LCB (4): The active time of edge 4 over start time CB and : .
(: [CB , C4] The temporal :-core over time window [CB , C4].
F[CB ,:] The ASF-index of⌧ over start time CB and : .
M[:] [4] The set of active windows of 4 over : .
G[:] The ATG-index of⌧ over : .
T The stale community of⌧ .

timestamps of edges are consecutive integer values in the range
[1, C<0G]. Note that if timestamps are represented in other formats,
we can �rst apply string hashing to map each edge’s timestamp to
a value in the range [1, Cmax].

De�nition 2.1 (Projected graph [9, 82, 85, 89]). Given a temporal
graph⌧ = (+ , ⇢) and a time window [C; , CA], the projected graph of
⌧ over [C; , CA] is denoted as⌧ [C; , CA]=(+ , ⇢ [C; , CA]), where ⇢ [C; , CA] =
{(D, E) | (D, E, C) 2 ⇢ ^ C 2 [C; , CA]}

De�nition 2.2 (Temporal :-core [85, 89]). Given a temporal graph
⌧ = (+ , ⇢), a time window [C; , CA], and an integer : , the temporal
:-core is a maximal vertex set (: [C; , CA] ✓ + , such that each vertex
in the induced subgraph of ⌧ [C; , CA] has a degree of at least : .

De�nition 2.3 (Temporal connectivity [76]). Given a temporal
graph ⌧ = (+ , ⇢), a time window [C; , CA], and two vertices D and
E , we say D is temporally connected to E in [C; , CA], if there exists a
path between D to E in ⌧ [C; , CA].

Following the previous works [47, 85, 89], we model a temporal
community by a temporal :-core (: [C; , CA] satisfying the temporal
connectivity property, i.e., 8D, E 2 (: [C; , CA], they are temporally
connected in [C; , CA]. For simplicity, throughout this paper, we focus
on temporal :-cores that satisfy the temporal connectivity property.

De�nition 2.4 (Community duration). Given a temporal graph
⌧ , the community duration of a temporal :-core (: [C; , CA] is a value
5 ((: [C; , CA]), such that for any time window [C; , CA + �] with � <
5 ((: [C; , CA]), (: [C; , CA] remains unchanged.

In other words, for a community that is generated in a time
interval [C; , CA], we characterize its community duration by how
long it will remain unchanged after the timestamp CA . For an empty
set, its duration is de�ned as 0, i.e., 5 (;) = 0. In Figure 1, for example,
the three users {E1, E2, E3}, form a temporal 2-core during [2, 3], i.e.,
C;=2, and CA=3. They are still a temporal 2-core during [2, 4] and
[2, 5], but they are in a larger temporal 2-core during [2, 6], so they
are unchanged during [3, 5] and the community duration is 2.

De�nition 2.5 (Temporal durable community (TDC)]). Given
a temporal graph⌧ , a positive integer : , and a time window [CB , C4],
the temporal durable community (TDC) is a vertex set T satisfying:

• Cohesiveness. Vertices of T form a temporal :-core over
[C; , CA] where [C; , CA] ✓ [CB , C4];

• Durability. There is no other temporal :-core T 0 with
community duration 5 (T 0) > 5 (T).

129

!!

!"
!#

3

4

2

2 !!

!"

!$
!%

!&

!#
4

5

3

4

2

2

6

!!

!"

!$
!%

!&

!#
6 4 5

3

4

2

2

7 7
6

!!

!"

!$
!%

!&

!#
4 56

!!

!"

!$!&

!# !!

!"

!$
!%

!&

!#

"' = 2, "(= 5 "' = 2, "(= 6 "' = 2, "(= 7

(a)	Projected Graph over each time	interval	with	"' = 2

(b)	Temporal	2-core	over each time	interval	with	"' = 2	

"' = 2, "(= 5 "' = 2, "(= 6 "' = 2, "(= 7

Figure 5: Illustrating the temporal :-core.

Clearly, a TDC is the temporal :-core that has the longest com-
munity duration within [CB , C4], after they are generated in [C; , CA].
Note that although [C; , CA] is in [CB , C4], it is unknown in advance.

P������ 1 (TDC ������). Given a temporal graph ⌧=(+ , ⇢), an
integer : , a query time window [CB , C4], and a query vertex @, �nd the
TDC containing @.

For example, in Figure 1, let : = 2, [CB , C4] = [1, 7], and @ = E2.
The TDC should be {E1, E2, E3} since they form a temporal 2-core
having the longest duration among all the temporal 2-cores.

In practice, temporal graphs are often modeled with edges as-
sociated with time intervals (lifespans) [99, 100]. Since a single
timestamp can be considered a time interval whose start and end
timestamps are the same, the interval-based temporal graph can be
regarded as an extension of the timestamp-based temporal graph,
implying that the timestamp-based temporal graph is more fun-
damental. Actually, our proposed solutions on timestamp-based
temporal graph can also be easily extended to interval-based tem-
poral graph. Details are provided in our technical report [97].

3 ONLINE TDC SEARCH ALGORITHM
In this section, we introduce an online TDC search (ONCE) algorithm
based on binary search. Given a time window [CB , C4], an integer
: , and a query vertex @, ONCE needs to enumerate all possible sub-
windows in [CB , C4] to compute TDC. An interesting fact is that for
an anchored start time CB , the temporal:-core would only bemerged
but never split, when C4 increases from CB to C<0G . We illustrate this
via the Example 1.

E������ 1. Consider the temporal graph shown in Figure 1. We
present a chain of projected graphs and their corresponding temporal
:-cores for CB = 2 and C4 varying from 5 to 7 in Figure 5. It can be
observed that as C4 increases, new edges are incrementally added into
the projected graph, and thus the corresponding temporal :-core either
remains the same or grows larger by merging new vertices or edges
(marked in blue color). No edges or vertices are ever deleted from
the core during this process. This behavior directly follows from the
de�nition of the temporal :-core on the projected graph.

This observation motivates us to use binary search to �nd the
longest end time to enlarge this core, when start time �xed.

Algorithm 1: ONCE
input :A graph⌧ , two integers : , @, and a time window [CB , C4]
output :a TDC T containing @

1 T ; ; // store the TDC containing @
2 foreach C; CB , · · · , C4 do
3 foreach CA C; , · · · , C4 do
4 (: [C; , CA] compute a temporal :-core containing @;
5 5 ((: [C; , CA]) 0; �; 0; �A C4 � CA ;

// binary search for computing 5 ((: [C; , CA])
6 while ; < A do
7 �<83 (�; + �A + 1)/2;
8 if (: [C; , CA]) is same as (: [C; , CA + �] for any

� < �<83 then
9 5 ((: [C; , CA]) �<83 ; �; �<83 ;

10 else �A �<83 � 1 ;

11 if 5 ((: [C; , CA]) > 5 (T) then T (: [C; , CA];

12 return T ;

Algorithm 1 presents the details. Speci�cally, for each time win-
dow [C; , CA], ONCE �rst computes (: [C; , CA] containing the query
vertex @ using the classical :-core algorithm [3], and then deter-
mines its community duration via binary search (lines 4–10). If the
community duration of (: [C; , CA] is larger than 5 (T), we update
(: [C; , CA] as TDC (line 11). After traversing all time windows, T is
returned as TDC (line 12).

L���� 3.1. The total time cost of ONCE is$ (C2<0G ·(=+<)·log C<0G),
where =,< and C<0G denotes the number of vertices, edges and the
number of distinct time slots in a temporal graph ⌧ , respectively.

There are two major drawbacks of ONCE: (1) it must enumerate
C2max time windows in the worst case, and (2) compute the com-
munity duration of temporal core for each window takes $ ((= +
<) · log Cmax) time. Thus, ONCE is ine�cient and un-scalable for
large temporal graphs. For example, on the CM dataset which has
1,899 vertices and 59,835 edges, the above algorithm takes more
than 20 minutes to answer a single TDC search. To address this,
we introduce index-based solutions in the following sections. We
�rst develop the ASF-index, which o�ers a straightforward de-
sign but incurs high construction overhead and substantial space
consumption. To overcome these drawbacks, we propose the ad-
vanced ATG-index, which achieves signi�cant improvements over
the ASF-index by reducing both construction time and index size
(see Table 2).

4 THE INDEX STRUCTURES FOR TDC
SEARCH

A straightforward method to design index-based solutions is to
pre-compute and store the community durations of all the possible
temporal :-cores o�ine. This, however, is impractical for large
temporal graphs, especially when C<0G is very large. In this section,
we �rst introduce a novel de�nition, called active time, which serves
as the cornerstone for building our indices. Building on this, we
design a basic index, ASF-index, by precomputing active times.
We further introduce optimization techniques to re�ne the size of
ASF-index, leading to our advanced index, ATG-index.

130

!!

!" !# !$
1

4

4

2

22

2

4

3
A	temporal	graph	!

Stage	1:	Compute	core	time

Stage	2: Compute	active	time

Stage	3:	Compute	MSF

Vertex !! !" !# !$!%
"& = $ 2 2 2 4 2
"& = ' 2 2 2 4 3
"& =) 4 - 4 4 4
"& = * - - - - -

!!

!#

!%

!"

2 22

4

!!

!# !"
2 2

!%!$
43

∅

"& 	=	4"& 	=	3"& 	=	2"& 	=	1

!% !!

!" !# !$
2

4

4

2

22

2

4

3

!% !!

!" !# !$

4

4

3

22

2

4

3

!% !!

!" !$

4

4 4

4
∅

!!

!# !$!"

2 22
!!

!% !$
4 4

!"
4

"& 	=	4"& 	=	3"& 	=	2"& 	=	1

!%

Figure 6: An example for ASF-index of ⌧ with : = 2.

4.1 Overview of ASF-index
In this subsection, we present the overview of ASF-index.

In the temporal graph, once we have identi�ed the temporal
:-core (: [CB , C4], computing its duration involves tracking its ex-
pansion as C4 increases (i.e., as new vertices join). Speci�cally, we
monitor the temporal edges that connect (: [CB , C4] to vertices that
are not in it. The �rst such temporal edge appearing in the core
signals a community change, allowing us to determine the duration.
As a result, given a speci�c CB and a �xed : , by treating the edges’
appearance time in the graph as their weights, the above comput-
ing process is identical to the Kruskal algorithm [15], since both of
them incrementally select the smallest-weight edge to connect new
vertices and expand the component. Fortunately, as edge weights
encode their temporal :-core appearance time, the corresponding
temporal :-core can be directly obtained from this MSF. The above
key insight motivates to develop the ASF-index.

To achieve this, we �rst introduce the following de�nitions:
De�nition 4.1 (Core time [89]). Given a temporal graph ⌧ , and

a vertex D, the core time of D for an integer : and a start time CB ,
denoted as CT CB (D): , is the smallest time C4 such that D is in a
temporal :-core of the projected graph ⌧ [CB , C4].

Based on the de�nition of core time, we propose the following
novel de�nitions for designing our index.

De�nition 4.2 (Active time). Given a temporal graph ⌧ , and an
edge 4 = (D, E), the active time of 4 for an integer : and a start time
CB , denoted as LCB (4): , is the smallest time C4 such that 4 is in a
temporal :-core of the projected graph ⌧ [CB , C4], where LCB (4): is
calculated by the below equation:

LCB (4): =max{CT CB (D): , CT CB (E): ,F (4)} (1)
E������ 2. In the temporal graph ⌧ shown in Figure 6 Stage 1,

let : = 2 and CB = 1. The active time of the edge 4 = (E1, E2) equals

to 2, since for all time windows [1, 2] ✓ [1, 3] ✓ [1, 4], 4 is always
included in the corresponding temporal 2-cores.

De�nition 4.3 (Key edge). Given a temporal :-core (: [C; , CA], the
key edge 4⇤ of (: [C; , CA] is the edge with the smallest active time
such that (: [C; , CA] ⇢ (: [C; ,LC; (4⇤):].

E������ 3. As shown in the Figure 6, consider the temporal 2-core
(2 [1, 2] = {E1, E2, E3, E5} of temporal graph ⌧ in Stage 1 of Figure 6,
which is highlighted as shaded . The edge (E3, E4) serves as its key
edge, with its active time L1 ((E3, E4))2 = 4, this is because, (2 [1, 2] =
(2 [1, 3] = {E1, E2, E3, E5} ⇢ (2 [1, 4] = {E1, E2, E3, E4, E5}.

L���� 4.4. The community duration of the temporal:-core (: [C; , CA]
can be calculated by using the active time of its key edge subtraction
(CA + 1).

In light of this, when : and CB are �xed, we can pre-compute
the active time for each edge to build an index. Speci�cally, we
construct MSFs using the active time of each edge as its weight.
The key edge can be e�ciently identi�ed in the MSF, as the Kruskal
algorithm incrementally adds such edges to connect new vertices
and expand the component.

Here, we can build a naive index, called the active spanning
forest (ASF) index, or ASF-index.

De�nition 4.5 (ASF-index). Given a temporal graph ⌧ , a start
time CB , and an integer : , the ASF-index is a spanning forest over
CB and : , where each tree is a minimum spanning tree (MST), and
the active time of each edge is used as its weight.

E������ 4. Figure 6 shows a temporal graph and its ASF-index
construction process for : = 2. We �rst compute the core time for each
vertex in ⌧ , de�ned as the earliest end time C4 such that D is included
in the temporal :-core of the projected graph ⌧ [CB , CG] for all CG � C4 .
The core time is then used to determine the active time for each edge,
as illustrated in the accompanying table and Stage 2 of Figure 6. Stage
2 presents four graphs, where each corresponds to a di�erent start
time, with edge weights indicating active time. For each graph, we
compute the MSF, and the resulting MSFs are shown in Stage 3. These
four MSFs constitute the ASF-index of ⌧ for : = 2.

We denote F [CB ,:] as the MSF over CB , and : . The neighbors
of D in the MSF denoted by # (D, F [CB ,:]). The ASF-index takes
$ (:<0G · C<0G · =) space, since for each : , and start time CB , it needs
$ (=) space to store the MSF.

L���� 4.6. During the ASF-index construction process, the MSF
is not necessarily unique. However, if an edge cannot be included in
any MSF, it is also impossible to serve as a key edge.

To illustrate this, we assume that there exists a key edge 4⇤

= (D, E) of (: [C; , CA], but it is not included in any F [C; ,:], where
D 2 (: [C; , CA] and E 8 (: [C; , CA]. We denote 40 as the edge with the
longest active time among the edges on the path from D to E in
F [C; ,:] such that LC; (40): < LC; (4⇤): . Hence, E 2 (: [C; ,LC; (40):],
which contradicts the de�nition of key edge.

Index construction algorithm.The ASF-index is constructed
by �rst computing the active times of all edges for each : and start
time CB , and then using these active times as weights to compute the
MST via the Kruskal algorithm [15]. We denote this algorithm as
ASFIC and present its details in Algorithm 2. The time complexity
of ASFIC is $ (:max · Cmax ·< log=).

131

Algorithm 2: ASFIC
input :A graph temporal graph⌧
output :The ASF-index F

1 foreach : 1, · · · ,:<0G do
2 foreach CB 1, · · · , C<0G do
3 foreach 4 2 ⌧ [CB , C<0G] do compute LCB (4): ;
4 F[CB ,:] build MST based on the active times;

5 return F ;

How to utilize the index. Given a query window [CB , C4], the
temporal :-core (: [CB , C4] containing vertex @ can be obtained by
performing breadth-�rst search (BFS) [15] from @ and limiting edge
traversal to those with active times not exceeding C4 . By doing this,
we can identify a connected :-core containing @ in the time window
[CB , C4]. Subsequently, we determine its duration by computing the
key edge of (: [CB , C4]. That is, ASF-index addresses the two key
challenges underlying index design for the TDC search problem.

Limitations of ASF-index. A major limitation of ASF-index is
that given a �xed : , it has to rebuild and store the MSF for each
start time in [1, C<0G], which is very costly in terms of building and
storing. Actually, for two consecutive start times, the MSFs are very
similar. This inspires us to construct the index incrementally rather
than rebuilding it entirely.

4.2 Our advanced index ATG-index

In this subsection, we introduce our advanced index, ATG-index
from two perspectives: (1) index size, and (2) construction time to
optimize the ASF-index. Particularly, our advanced index is based
on the following two key observations:

Two key observations. For a �xed start time CB and : : (1) as the
start time decreases, the active times of all edges decrease or stay the
same, and (2) when updating the graph by adding edges or decreasing
active times, the ASF-index of this new graph is equivalent to directly
inserting these edges into the original graph’s ASF-index.

L���� 4.7. Given a temporal graph ⌧ , an integer : , an edge
4=(D, E) and two start times CB , C 0B , if CB < C 0B , then LCB (4):  LC 0B (4): .

The �rst observation is based on the lemma above, and the second
observation is based on the relationship of F [C,:] and F [C + 1,:],
as shown in theorem 4.8.

T������ 4.8. Given a temporal graph ⌧ , an integer : , and two
start times C , C + 1, the F [C,:] can be constructed by inserting the
edges from g [C] into F [C + 1,:], where g [C] denotes the union of the
edges whose active times have changed from C + 1 to C and the edges
with timestamps equal to C .

Note that inserting an edge into F [C,:] is not always successful,
as this edge may not contribute to any MST in F [C,:]. There are
two cases when an edge 4 = (D, E) can be successfully inserted into
F [C,:]: (1) D cannot reach E . In this case, we directly connect D and
E , and (2) D can reach E . We need to �rst identify the edge with the
longest active time in the path from D to E and replace it with 4 .
Here, we can introduce two lemmas about our second observation,
based on the properties of MST.

L���� 4.9. Given a temporal graph ⌧ , a start time CB , and an
integer : , the ASF-index of the updated graph ⌧ 0, by adding some
edges not exiting in ⌧ is equivalent to directly inserting these edges
into the ASF-index of ⌧ .

!! !"

!# !$!%

1

4

4

2

22

2

(a) A temporal graph !

4

3

Edge ℳ ' [)]
(!", !$) {[1,2]}
(!", !#) {[1,2]}
(!", !!) {[3,3]}
(!", !%) { 1,1 , 3,3 }
(!$, !%) {[2,2]}
(!#, !!) {[1,3]}

(b) the edge labels of ATG-index(a) the ATG-index

"2 "3

"4 "5 "6

Figure 7: Illustrating of the ATG-index with : = 2.

1 32

1

2

3

（!!, !"） （!#, !$）

#% = 1
#% = 2

!

"
（!!, !&）（!", !&）

（!!, !#）

（!!, !$） Edge ℳ , [.]
(!!, !#) {[1,2]}
(!!, !") {[1,2]}
(!!, !&) {[3,3]}
(!!, !$) { 1,1 , 3,3 }
(!#, !$) {[2,2]}
(!", !&) {[1,3]}

(b) the edge labels of ATG-index(a) the ATG-index

!4 !5

!6 !7 !8

（!!, !$）

Figure 8: Illustrating of 2D listing problem.

This lemma is directly derived from the criteria of MST [33, 66].

L���� 4.10. Given a temporal graph ⌧ , a start time CB , and an
integer : , the ASF-index of the updated graph ⌧ 0, by decreasing
the active times of some existing edges in ⌧ , is equivalent to directly
inserting these edges into the ASF-index of ⌧ .

Here, we are ready to present the proof for Theorem 4.8.

P����. From the start time C + 1 to C , for the graph ⌧ [C, C<0G],
there are two types of change compared to ⌧ [C + 1, C<0G]: ⇢1: all
edges with timestamps equal C , and ⇢2: all edges that their active
times are decreased. Based on the lemmas 4.9 and 4.10, we can
conclude that the ASF-index of ⌧ [C, C<0G] is equals to insert all
edges in ⇢1[⇢2 (i.e., g [C]) into the ASF-index of⌧ [C +1, C<0G]. É

Key idea of ATG-index.According to the above discussions, we
can use an incremental paradigm to construct our index, which
not only reduces the building time but also enables a more space-
friendly index structure. Speci�cally, for a �xed start time CB (CB > 1),
and an integer : , we can build F [CB � 1,:] from F [CB ,:], instead of
rebuilding it entirely. For each anchored : , we build the index for
all start times from C<0G to 1. The C<0G MSFs can be represented by
a labeled graph, where each edge 4 in the graph is labeled with a set
of active windows (M[:] [4]), which is used to determine whether,
given a start time CB , the edge 4 appears in F [CB ,:]. This index is
denoted by the active graph time index (ATG-index).

Formally, the active window is de�ned as:

De�nition 4.11 (Active window). Given an ASF-index F , an in-
teger : , and an edge 4 , we call a time window [CG , C~] an active
window of 4 if all the following conditions are satis�ed:

132

• 8C 2 [CG , C~], 4 2 F [C,:];
• 4 8 F [CG � 1,:] if CG > 1;
• 4 8 F [C~ + 1,:] if C~ < C<0G

Given an integer : and an edge 4 , let M[:] [4] denote the set
of active windows for 4 . Based on this, we can easily determine
whether edge 4 is included in the ASF-index F [C,:] by checking
whether C falls within any active window in M[:] [4]. Formally,
we have 4 2 F [C,:], i� 9[CG , C~] 2M[:] [4], such that C 2 [CG , C~].

We denote G[:] as the ATG-index of : . Intuitively, ATG-index
can be considered as a “compact” version of ASF-index, by merging
all forests into a graph and only keeping the necessary edges to
recover the TDCs. Based on the ATG-index, given an integer : and
a start time CB , we can quickly identify all edges in the F [CB ,:], by
transferring it into a 2D axis rectangular range reporting problem.

Problem Transformation. In ATG-index, each edge in G[:]
is associated with a timestamp pair (;, A), where ; represents the
starting time of the edge and A represents the ending time. By
mapping each edge to a 2D point (;, A) in a two-dimensional space,
the original indexing problem is transformed into a 2D axis-parallel
rectangular range reporting problem.

Given a query time CB , our task is to �nd all edges that satisfy
the condition: G  CB and ~ � CB . In the 2D space, this is equiv-
alent to listing all points (;, A) that fall within the query range:
(�1, CB] ⇥ [CB ,+1). To e�ciently retrieve these points, we employ
a Priority Search Tree (PST), a data structure that supports orthogo-
nal range queries e�ciently. A PST is constructed as a binary search
tree on the G-coordinates, while each subtree maintains a min-heap
structure on the ~-coordinates. This allows us to e�ciently enumer-
ate all qualifying points with average time complexity$ (log= +:),
where : is the number of matching edges.

E������ 5. Figure 7 shows the ATG-index (: = 2) for the temporal
graph in Figure 6 Stage 1. Within this ATG-index G[2], each edge is
associated with a label, as shown in Figure 7(b). We also present an
example to illustrate how to derive the MSF from ATG-index based
on the 2D listing in Figure 8. For instance, given a start time CB = 1
and : = 2, all points shaded in the green region satisfy G  1 and
~ � 1. The corresponding edges, including (E1, E2), (E1, E3), (E1, E5),
and (E3, E4), would be included in F [1, 2]. In addition, for a start time
CB = 2 and : = 2, all points shaded in the red region are valid, so
(E1, E2), (E1, E3), (E2, E5), and (E3, E4) are included in F [4, 2].

Based on this novel transformation, we can use an incremental-
based algorithm to build the ATG-index, instead of rebuilding it for
each time window. The key idea is that for each : , it �rst computes
F [C<0G ,:], then iteratively uses F [C,:] to construct F [C � 1,:],
and �nally only stores the di�ering parts. We denote this algorithm
as ATGIC, the details are shown in Algorithm 3.

For each : , we �rst initialize the ⌧ [:] andM[:] as empty sets
(line 2). Then, for each start time CB from C<0G � 1 to 1, we �rst
identify the edge set g [CB]), where each edge needs to be inserted
into the index⌧ [:] at CB timestamp (line 7). Next, for each edge 4 =
(D, E) 2 g [CB], we try to insert it into G[:]. Speci�cally, when 4 is
successfully inserted into the index at CB (lines 8-9), and if a path
from D to E already exists, another edge 40 will be removed from
G[:] (lines 10-11). When we identify this edge 40, we append this
timestamp pair {(� [40], CB)} intoM[:] [40] (lines 12). Finally, the
ATG-index G is returned, where for each : and edge 4 , M[:] [4]
stores the set of active windows assigned to 4 .

Algorithm 3: ATGIC
input :A graph temporal graph⌧
output :The ATG-index G

1 foreach : 1, · · · ,:<0G do
2 M[:] ;; G[:] ;;
3 foreach CB C<0G � 1, · · · , 1 do
4 � ;;
5 g [CB] {4 | LCB+1 (4): > LCB (4): [F (4) = CB } ;
6 foreach 4 = (D, E) 2 g [CB] do
7 insert {4 } into the index G[:];
8 if {4 } can be inserted into G[:] then
9 � [4] CB ;

10 if there exists a path from D to E then
11 40 the edge needs to remove from G[:];
12 M[:] [40] M[:] [40] [{ (� [40], CB) };

13 return G ;

Table 2: Summary of two indices for TDC search.

Index space Building time
ASF-index $ (:max · Cmax · =) ($ (:max · Cmax ·< log=)
ATG-index $ (:max ·<) $ (:max · 2 ·< log=)

¢ Note: = and< denote the number of vertices and edges in⌧ .
¢ Note: Typically, 2̄ ⌧ C<0G , and< ⌧ C<0G · =.
L���� 4.12. The total time cost of ATGIC is $ (:max · 2 ·< log=),

where 2 denotes the average number of changes for the active time of
an edge. Typically, 2 ⌧ C<0G .

L���� 4.13. The ATG-index requires $ (:max ·<) space, where
< represents the number of all edges in the index, which be calculated
by multiplying the number of edges by the number of times each edge
appears in the index. Note that< is bounded by< ·2 and< ⌧ = ·C<0G ,
as shown in our experimental results.

R����� 1. We summarize the index size and building time of
ASF-index and ATG-index in Table 2. We can see that our advanced
ATG-index can be constructed very e�ciently. Note that 2 is even
smaller than 10, as shown in our latter experiments, indicating that our
algorithms can e�ectively handle large real-world temporal graphs.

5 INDEX-BASED TDC SEARCH ALGORITHMS
In this section, we propose two index-based TDC search algo-
rithms, which employ ATG-index to quickly compute temporal
:-core and its community duration. We would like to highlight
that both the ASF-index and ATG-index are identical for the TDC
search when : and CB are speci�ed, as both represent the same
ASF. Since ATG-index is more space-e�cient and faster to con-
struct than ASF-index, we primarily investigate the TDC search
algorithm based on ATG-index.

5.1 A basic index-based TDC search algorithm
Recall that for a �xed : , and a start time CB , we need to enumerate all
possible end times to identify the durable community. In our index,
there are at most min{=, C<0G } end times for a given : and CB . Here,
we �rst introduce our basic index-based TDC search algorithm,
BIT.

133

Algorithm 4: BIT
input :A graph⌧ , two integers : , @, a time window [CB , C4], and

the ATG-index G of⌧
output :a TDC T containing @

1 T ;;
2 foreach C; CB , · · · , C4 do
3 F[C; ,:] derive the MSF from G[:];
4 foreach CA 2 the timestamps of the edges in F[C; ,:] do
5 (: [C; , CA] computeCore(@, F[C; ,:], CA) ;
6 4⇤ calculate the key edge of (: [C; , CA];

// compute the community duration time

7 if LC; (4⇤): � C; � 1 > 5 (T) then T (: [C; , CA];

8 return T ;

9 Function computeCore(@, F[C; ,:], CA):
10 (;;& ;; E8B ;;
11 & .add(@); E8B [@] True;
12 while& < ; do
13 D & .poll(); (.add(q);
14 foreach E 2 # (D, F[C; ,:]) and E8B [E] is not True do
15 if LC; (D, E):  CA then
16 & .add(E); E8B [E] True;

17 return (;

As shown in Algorithm 4, BIT works as follows: Given a �xed
start time C; , it �rst derives the MSF F [C; ,:] from G[:] (line 3), and
for each time window [C; , CA] ✓ [CB , C4], BIT utilizes computeCore to
obtain (: [C; , CA] containing @ by only visiting the edges in F [C; ,:]
that have active times not larger than CA (lines 9-17). The key edge
of (: [C; , CA] can be calculated based on its de�nition (line 6). When
a temporal :-core with a longer community duration is obtained,
it is updated as the TDC T (line 7). After all time windows have
been enumerated, T is returned as the TDC.

L���� 5.1. The total time cost of BIT is$ (C<0G ·min{=, C<0G } ·=),
where = denotes the number of vertices in a temporal graph ⌧ .

5.2 An advanced index-based TDC search
algorithm

In BIT, it recomputes the temporal :-core and its community du-
ration for each time window, which is ine�cient and unnecessary.
To improve the e�ciency, we propose an advanced index-based
TDC search algorithm (AIT) based on the nested relationship of
temporal :-core.

L���� 5.2 ([89]). Given a temporal graph ⌧ , a �xed start time C; ,
and an integer : , there exists a chain of temporal :-core such that

(: [C; , C;] ✓ (: [C; , C; + 1] ✓ · · · ✓ (: [C; , C<0G] . (2)

The above lemma is also illustrated in Example 1. Hence, we can
leverage (: [C; , CA] to compute (: [C; , CA + 1] without recomputation.
However, there are two key challenges for designing AIT: (1) how
to identify which vertices need to be added into (: [C; , CA] to construct
(: [C; , CA + 1]. (2) once (: [C; , CA + 1] is determined, how to quickly
calculate its community duration.

To solve these two challenges, we �rst introduce the following
novel de�nitions.

De�nition 5.3 (Outer set). Given a temporal :-core (: [C; , CA], and
MSF F [C; ,:], the outer set E((: [C; , CA]) of (: [C; , CA] is de�ned as
the edge set such that E((: [C; , CA]) = {4 = (D, E) | 4 2 F [C; ,:] ^D 2
(: [C; , CA] ^ E 8 (: [C; , CA] ^ LC; (4): > CA }.

Clearly, for a temporal :-core (: [C; , CA], the edge in its outer
set with the shortest active time is referred to as the key edge
of (: [C; , CA]. Here, we classify the relationship among a temporal
:-core, its key edge, outer set, and duration. Speci�cally, given a
temporal :-core (: [C; , CA], we �rst identify its outer set. Among
these edges, the one with the shortest active time is de�ned as the
key edge of (: [C; , CA]. The timestamp of this key edge corresponds
exactly to the duration of (: [C; , CA], denoted as 5 ((: [C; , CA]).

L���� 5.4. Given a temporal :-core (: [C; , CA], and its key edge 4⇤
= (D, E), assuming D 2 (: [C; , CA] and E 8 (: [C; , CA], E must be included
in (: [C; , C 0A], if C 0A � LC; (4⇤): .

The lemmas above inspire us to employ an iterative strategy to
search TDC. Speci�cally, to compute (: [C; , CA +1] and its community
duration, we repeatedly add vertices to (: [C; , CA] by selecting the
key edge from its outer set. The outer set is also updated as new
vertices join (: [C; , CA]. This process stops until the selected key
edge’s active time exceeds CA + 1.

Algorithm 5: AIT
input :A graph⌧ , two integers : , @, a time window [CB , C4], and

the ATG-index G of⌧
output :a TDC T containing @

1 foreach C; CB , · · · , C4 do
2 E((:) ;; F[C; ,:] derive the MSF from G[:];
3 foreach CA 2 the active times of the edges in F[C; ,:] do
4 if (: = ; then
5 (: computeCore(@, F[C; ,:], CA) ;
6 4⇤ = (D, E) argmin4 {LC; (4): | 4 2 E((:) };
7 foreach 4 = (D, E) 2 F[C; ,:] do
8 if D 2 (: [C; , CA] and E 8 (: then
9 E((:) E((:) [{4 };

10 else
11 repeat
12 (: (: [{E}, assuming E 8 (: ^D 2 (: ;
13 4⇤ = (D, E) argmin4 {LC; (4): | 4 2 E((:) };
14 remove 4⇤ from E((:) ;
15 E((:) E((:)[{ (E,G) 2 F[C; ,:] ^ G 8 (: } ;
16 until LC; (4⇤) > CA ;

// 4⇤ is the key edge

17 if LC; (4⇤): � CA � 1 > 5 (T) then T (: ;

18 return T ;

Algorithm 5 presents the details of AIT. Given a �xed : , for an
anchored start time C; , the E((:) is set ;, and F [C; ,:] is derived
from G[:] (line 2). Then, for each time window [C; , CA], the temporal
:-core (: and its community duration can be calculated (lines 5 - 17).
Speci�cally, if (: = ;, we need to use computeCore to compute this
temporal :-core, and the E((:) (lines 4 - 9). Otherwise, (: denotes
(: [C; , CA � 1], and then we iteratively selects the key edge 4⇤ from
E((:). If LC; (4⇤):  CA andD 2 (: ^E 8 (: , E is added to (: without
additional computations. Next, 4⇤ is removed from E((:), and all
edges starting from E to vertices not in (: are added to E((:). This
process continues until the active time of the key edge selected

134

from E((:) exceeds CA (lines 12 - 17) Then, the (: [C; , CA] and its key
edge can be correctly calculated.

T������ 5.5. The algorithm 5 can correctly return the TDC.

E������ 6. We continue to consider the temporal graph ⌧ in
Stage 1 of Figure 6. Given a time window [1, 4], : = 2, and a query
vertex E1, taking start time C; = 1 as an example: First, AIT computes
(2 [1, 2] = {E1, E2, E3, E5} and its outer set E((2 [1, 2]) = {E4}, selecting
edge 4⇤ = (E3, E4) as the key edge of (2 [1, 2]. Then 5 ((2 [1, 2]) = 1 due
to L1 (4⇤)2 = 4. For other start times, AIT employs a similar process
to search for TDC, however, it does not �nd any community with a
community duration greater than 1. Thus, (2 [1, 2] is the TDC.

L���� 5.6. The time cost of AIT is$ (C<0G ·=+C<0G ·min{C<0G ,=}·
log=), where all variables are de�ned as in Lemma 3.1.

Here, we summarize the online and two index-based TDC search
algorithms. As we can see, the AIT algorithm achieves signi�cantly
improved performance compared to ONCE and BIT. In addition, AIT
is more e�cient than BIT.

6 EXPERIMENTS
We now present the experimental results. Section 6.1 discusses the
setup. We discuss the experimental results in Sections 6.2 and 6.3.

6.1 Setup
Datasets. We use 13 real-world temporal graphs from di�erent
domains, which are downloaded from the Stanford Network Anal-
ysis Platform [1] and Konect [40]. Table 3 provides the statistics of
each graph, where = and< are the numbers of vertices and edges,
respectively, and C<0G is the maximum timestamp (counting from
1). Their detailed descriptions can also be found on these websites.
All algorithms are implemented in C++, compiled with the g++
compiler at -Ofast optimization level, and run on a Linux machine
with an Intel Xeon 2.40GHz CPU and 384GB RAM. If an algorithm
cannot �nish in 72 hours, we mark its running time as INF. If the
index construction does not complete within three days, we record
its index size as “TLE”.

TDC queries. To measure the query e�ciency, for each dataset,
we generate 1,000 queries with di�erent time window sizes (i.e.,
C4 � CB) and : , where : ranges from 5 to 13, the size of time window
varies from 0.2 · C<0G to C<0G , and CB is selected randomly. Then
we execute the 1000 queries sequentially and compute the average
time cost of the queries. Besides, the index construction time and
the memory usage for each dataset are also measured, respectively.

Competitors. We test the following algorithms:
• ONCE: Our online TDC search algorithm.
• TECE: Integrate the algorithm from [89] into ONCE, replacing its
original temporal :-core computation component.
• DICE: Enumerate all distinct :-cores containing @ using the algo-
rithm in [85], and select the one with the longest duration.
• BIT: A basic index-based TDC search algorithm.
• AIT: An advanced index-based TDC search algorithm.
• ASFIC:the ASF-index construction algorithm (Algorithm 2).
• ATGIC: the ATG-index construction algorithm (Algorithm 3).

6.2 E�ciency evaluation
In this section, we evaluate the e�ciency of our proposed methods.

1. E�ect of : . Figures 9 and 11(a)-(c) compare the average run-
ning time of these three algorithms on all datasets by varying the
: from 5 to 13. Clearly, AIT is up to three orders and �ve orders
of magnitude faster than BIT and ONCE, respectively, since it does
not require recomputing the temporal :-core and its duration in
each time window. For example, on the AU dataset with :=5, AIT
only takes 10s to compute the TDS, while ONCE and BIT cannot
�nish in three days. In addition, our index-based algorithms are
signi�cantly faster than the online method. The online method
ONCE cannot �nish in three days for all datasets, this is because
the online method takes $ (C2max · (= +<) · log Cmax) time to �nd
the TCD, while our index-based solutions, BIT and AIT, require
$ (Cmax ·min{=, Cmax} ·=) and$ (Cmax ·= + Cmax ·min{Cmax,=} · log=)
time, respectively. In addition, our index-based algorithms are sig-
ni�cantly faster than the TECE and DECE algorithms, as both are
based on ONCE and inherit its key disadvantages.

2. E�ect of the size of time windows. In this experiment, we
compare the average running time of our three algorithms on �ve
datasets, by varying the size of time windows (we �xed : as 5), for
each graph, we �x the start time of the query window as CB = 1 and
consider �ve query time window sizes, i.e., 20%, 40%, 60%, 80% and
100% of C<0G respectively, as shown in Figures 10 and and 11(d)-(f).
We can obtain the following observations: (1) the running time of all
algorithms increases with the growth of the size of time windows,
and (2) when the time window is larger, the BIT algorithm takes
more time, while the time costs of AIT do not change much. (3) for
the DP dataset, we observe that two index-based search algorithms
achieve comparable performance. Since Cmax is quite small for DP,
the C2max term is also negligible, making the total running time of
both algorithms theoretically comparable on this dataset.

3. Index space cost.We report the space cost of each index on all
graphs in Table 4. We can see that: (1) The space cost of ATG-index
is much less than that of ASF-index. This is because their space
costs are bounded by$ (:<0G ·= ·C<0G) and$ (:<0G ·<), respectively,
where< ⌧ = · C<0G . Besides, on the EN dataset, ASF-index needs
more than 5 GB, while ATG-index only takes 291.3 MB. Meanwhile,
on the SL dataset, ASF-index needs 422.3 MB, while ATG-index only
takes 21.8 MB. (2) Our ATG-index typically consumes around 10
times thememory required to store the original graph. This suggests
that ATG-index is capable of scaling to extremely large graphs on
modern servers (e.g., with 512 GB of memory).

4. Index construction time. As shown in Figure 12, ATGIC is
up to two orders of magnitude faster than ASFIC. For the larger
datasets, ASFIC cannot �nish the index construction process in
three days, since it needs to calculate the MSFs for all di�erent :
values and start time. We also report the actual values of 2 on all
datasets in table 3, which are very small, and often less than 10.

5. Scalability test.We test the scalability of our two indexes on
the �rst 10 graphs. Speci�cally, for each graph, we �rst randomly
select 25%, 50%, 75%, and 100% of its edges and then obtain four
sub-temporal graphs induced by these edges, respectively. Table 5
reports the time and space costs of our two index-based solutions
for di�erent graphs. We can observe that the ATGIC and ATG-index
scales better than ASFIC and ASF-index respectively because of
their optimized time and space complexities. If the index exceeds
the memory limit, we denote memory usage as OOM and run-
ning time as N/A, respectively. For large datasets, ASF-index ex-
ceeds memory limits when handling only 25% of the graph’s edges,

135

Table 3: Dataset Statistics.

Dataset Type = < C<0G 2 < = · C<0G :<0G

CollegeMsg (CM) Communication 1,899 59,835 6,856 6.060 31,870 13,019,544 20
Slashdot (SL) Communication 51,083 140,778 620 3.819 51,082 31,671,460 14
Topology (TO) Computer 34,761 171,403 733 1.437 10,262 25,479,813 63
Email (ET) Communication 986 332,334 3,702 2.892 71,769 3,650,172 34
AskUbuntu (AU) Online Contact 159,316 964,437 6,997 3.414 147,518 1,114,734,052 48
Enron (EN) Communication 87,273 1,148,072 38,568 3.651 247,523 3,365,945,064 53
SuperUser (SU) Online Contact 194,085 1,143,339 1,149 3.510 162,510 223,003,665 61
YouTube (YT) Online Social 3,223,589 9,375,374 203 1.168 485,468 654,388,567 88
DBLP (DP) Collaboration 1,824,701 29,487,744 77 0.055 71,769 140,501,977 286
Flickr (FL) Online Social 2,302,926 33,140,017 103 1.340 428,499 308,591,950 600
Patent (PT) Communication 12,214 41,916 891 3.098 8,774 10,882,674 26
S-DBLP (SD) Collaboration 28,085 236,894 27 0.401 10,301 758,295 36
School (SC) Communication 327 188,508 7,375 2.936 54,720 2,411,625 24

ONCE TECE DICE BIT AIT

5 7 9 11 13

102

104

INF

:

ti
m
e
(m

s)

(a) CM

5 7 9 11 13

102

104

INF

:

(b) SL

5 7 9 11 13

102

104

INF

:

(c) TO

5 7 9 11 13
102

104

INF

:

(d) ET

5 7 9 11 13103
104
106

INF

:

(e) AU

5 7 9 11 13
104

106

INF

:

ti
m
e
(m

s)

(f) EN

5 7 9 11 13
103
104
106

INF

:

(g) SU

5 7 9 11 13

104
106

INF

:

(h) YT

7 9 11 13103
104
106

INF

:

(i) DP

5 7 9 11 13
104
106

INF

:

(j) FL

Figure 9: E�ect of : on the e�ciency of TDC search algorithms.

ONCE TECE DICE BIT AIT

20% 40% 60% 80% 100%
102

104
105

INF

percentage

ti
m
e
(m

s)

(a) CM

20% 40% 60% 80% 100%
102

104
105

INF

percentage

(b) SL

20% 40% 60% 80% 100%

102

104
105

INF

percentage

(c) TO

20% 40% 60% 80% 100%
102

104
105

INF

percentage

(d) ET

20% 40% 60% 80% 100%

104
105

INF

percentage

(e) AU

20% 40% 60% 80% 100%
104
105

INF

percentage

ti
m
e
(m

s)

(f) EN

20% 40% 60% 80% 100%

104
105

INF

percentage

(g) SU

20% 40% 60% 80% 100%
104
105

INF

percentage

(h) YT

20% 40% 60% 80% 100%
100
102
104
105
INF

percentage

(i) DP

20% 40% 60% 80% 100%
104
105

INF

percentage

(j) FL

Figure 10: E�ect of the size of time windows on the e�ciency of TDC search algorithms.

136

ONCE TECE DICE BIT AIT

5 7 9 11 13

102

104

INF

:

ti
m
e
(m

s)

(a) PT

5 7 9 11 13
100

102

104

:

(b) SD

5 7 9 11 13

102

104

INF

:

(c) SC

20% 40% 60% 80% 100%

102

104
105

INF

percentage

(d) PT

20% 40% 60% 80% 100%

102

104
105

percentage

(e) SD

20% 40% 60% 80% 100%

102

104
105

INF

percentage

(f) SC

Figure 11: E�ciency results of TDC search algorithms on PT, SD, and SC graphs.

Table 4: Dataset and index sizes (MB).

Dataset graph size ASF-index ATG-index

CM 1.1 374.9 17.8
SL 1.6 416.1 16.9
TO 2.0 95.8 19.2
ET 5.3 502.2 69.0
AU 22.8 TLE 134.4
EN 24.7 TLE 380.1
SU 34.2 5534.1 291.3
YT 245.2 TLE 1276.9
DP 749.2 TLE 624.5
FL 859.8 TLE 7177.0
PT 0.6 389.1 5.1
SD 3.2 45.0 6.8
SC 2.2 350.1 31.3

CM SL TO ET AU EN SU YT DP FL PT SD SC100
101
102
103
104
105

N
/A

N
/A

N
/A

N
/A

N
/ATi

m
e
(s
)

ASFIC ATGIC

Figure 12: Index building time across all datasets.

while ATG-index consumes signi�cantly less memory. Moreover,
ASF-index encounters out-of-memory (OOM) issues in approx-
imately 50% of the cases, limiting its applicability to real-world
temporal graphs. In contrast, the largest ATG-index instance re-
quires only 7.1GB of memory, which is considerably smaller. This
demonstrates that our advanced ATG-index is highly scalable and
can be applied to even larger temporal graphs in the future.

6.3 E�ectiveness evaluation
Weanalyze the e�ectiveness of TDCs on real-world temporal graphs.

1. Community duration.We compare the community duration
of the communities found by our TDC search solution and distinct
:-core search solution [85], which is the most relevant work and
�nds the communities by identifying all distinct temporal :-core,
but does not consider the community’s duration. Speci�cally, we
consider �ve datasets, and for each of them, we randomly generate
200 queries and then run TDC queries and distinct :-core queries.
Next, we compute the average community duration value of com-
munities obtained by them. We report the results in Table 6. Clearly,

communities of TDC queries always have higher community dura-
tion values than communities of distinct :-core queries, indicating
that our TDC search solution is able to �nd communities with high
community duration.

2. Event detection.We consider the Reddit temporal graph [35]
from 2006, a well-known online social media platform. Each vertex
represents a user, and each interaction corresponds to a reply from
one user to another. We run 100 queries for temporal :-core [89],
distinct :-core [85], and the state-of-the-art method QTC [49], and
TDC with : = 12, varying the time windows from Feb 24 to Nov 16,
each of length 600 hours. The average community durations for the
four methods are shown in Figure 13. In addition, we collect the “ma-
jor” events from the Wikipedia website [79] and summarize them
into Table 7. We observe that among all models, only TDC clearly
re�ects the impact of major events: we observe signi�cant drops
in TDC community duration that align closely with these events,
indicating periods of rapid community change and increased new
user engagement. In contrast, the durations produced by the other
three models remain largely unchanged, failing to capture both
these important structural �uctuations and their strong correlation
with real-world events.

02-24 04-12 05-27 07-10 08-22 10-04 11-160
5
10
15
20
25
30
35

Time (2006 year)

D
ur

at
io
n
(h
ou

r)

TDC Distinct :-core Temporal :-core QTC

Figure 13: Duration of TDCs on Reddit dataset.

3. Community quality. In this experiment, we evaluate the
quality of communities obtained by di�erent temporal community
search methods. Speci�cally, we compare temporal :-core [89], dis-
tinct :-core [85], and the state-of-the-art method QTC [49] on three
real-world temporal graphs: Patent, S-DBLP, and School, all with
ground-truth communities [51]. Those statistics are also shown in
Table 3. Our TDC model typically produces higher-quality commu-
nities, as indicated by higher F1-scores compared to the competitors.
This is mainly because TDC explicitly captures the temporal du-
ration of communities. Additionally, on the School dataset, QTC
achieves slightly higher community quality. However, it incurs sig-
ni�cantly higher computational costs than the other three methods.
In contrast, TDC o�ers a strong trade-o� between e�ciency and
accuracy, making it a suitable choice when real-time response is
required. Due to the space limitation, the results are shown in our
technical report [97].

137

Table 5: Scalability test of indexing time and size.
Metrics Construction time (<B) Index space cost (bytes)
Indices ASFIC ATGIC ASF-index ATG-index

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
CM 26K 84K 153K 236K 1.1K 3.6K 6.2K 9K 148M 256M 325M 379M 5.2M 11M 16M 19M
SL 4.5K 15K 30K 56K 0.5K 2.5K 6.6K 11K 116M 225M 325M 422M 2.9M 8.4M 14M 21M
TO 7K 19K 32K 46K 1.8K 5.9K 11K 18K 27M 53M 75M 95M 4M 9.4M 14M 19M
ET 333K 887K 1.5M 2.4M 12K 30K 51K 72K 285M 397M 465M 502M 25M 44M 58M 69M
AU 1M N/A N/A N/A 15K 79K 171K 306K 7.2G OOM OOM OOM 34M 91M 151M 209M
EN N/A N/A N/A N/A 52K 167K 304K 614K OOM OOM OOM OOM 93M 188M 271M 380M
SU 310K 982K 1.9M 4.6M 37K 168K 332K 578K 1.8G 3.2G 4.5G 5.5G 54M 135M 215M 291M
YT 470K N/A N/A N/A 154K 680K 1.7M 3.1M 2.6G OOM OOM OOM 157M 458M 839M 1.2G
DP 2.5M N/A N/A N/A 383K 783K 1.1M 1.4M 3.7G OOM OOM OOM 292M 483M 587M 624M
FL N/A N/A N/A N/A 5M 24M 47M 63M OOM OOM OOM OOM 1.6G 3.6G 5.5G 7.1G

Table 6: Duration values of communities.
CM SL TO ET AU

Distinct :-core 16.66 1.29 2.44 4.53 1.12
TDC 171.86 7.16 19.40 91.62 10.49

Table 7: Major global events of 2006.

Month Date Description
March March 10 Mars Orbiter achieves Mars orbit
March March 10 Michelle Bachelet elected in Chile
March March 15 UN creates Human Rights Council
March March 21 Twitter (later rebranded to X) was launched
April April 4 Faddoul Brothers tragedy in Venezuela
April April 11 Venus Express enters Venus orbit
April April 11 Iran starts uranium enrichment
April April 20 Iran-Russia uranium deal fails
May May 17 Genome Project publishes �nal sequence
May May 18-20 Lordi wins Eurovision Song Contest
May May 27 Yogyakarta earthquake kills thousands
June June 3 Montenegro and Serbia declare independence
June June 9 2006 FIFA World Cup

7 RELATEDWORKS
In this section, we �rst review the existing works of community
search (CS), including CS over static and temporal graphs, and then
brie�y review the related works of community detection.

CS over static graphs. CS aims to query densely connected
subgraphs containing a speci�c vertex or a set of vertices [17, 22,
23, 68, 86]. To measure the structure cohesiveness of a community,
people often use the cohesive subgraph models [22], like :-core
[3, 5], :-truss [14, 92], :-clique [16, 90] and :-edge connected com-
ponent [7, 34]. A representative group of CS works is based on the
:-core model. For example, in [17, 68], the metric of minimum de-
gree used in :-core is used for CS. Another group of CS works uses
the:-truss [14, 92]. For example, in [36, 38], the:-truss-basedmodel
is used for CS. Besides, many CS works have considered vertices’ at-
tributes (e.g., [10, 22, 37]). In addition, some works have considered
vertices’ importance values and studied the problem of in�uential
CS [4, 11, 37, 43–46, 53, 81]. Some works have studied CS over het-
erogeneous information networks [19, 23, 30, 39, 58, 75, 86, 93]. For
example, Fang et al and Zhou et al studied CS over heterogeneous
information networks by using the (: , P)-core model [23, 95]; Jian
et al. [39] searched communities with vertices of multiple types by
using relational constraints.

CS over temporal graphs. Recently, many works have studied
CS over temporal graphs. For example, Galimberti et al. [29] intro-
duced temporal core decomposition with span-cores and proposed
algorithms for maximal span-cores. Yu et al. [89] studied histor-
ical :-cores queries, while Yang et al. [85] identi�ed all distinct

:-cores within sub-windows. Historically connected component
[67, 82] and structural diversity [9] queries were explored. Wu et
al. [80] introduced the (:,⌘)-core, with Bai et al. [2] focusing on
its maintenance. Li et al. [47] proposed the (\ , g)-persistent :-core,
and Li et al. [48] discussed continual cohesive subgraphs. Chu et
al. [12] examined subgraphs with bursting density, while Qin et al.
[59] introduced maximal bursting cores. Qin et al. [60] studied pe-
riodic :-cores. The temporal :-truss-based communities also have
been studied [52, 84]. Ma et al. [54] worked on �nding temporal
community on weighted temporal graphs.

Community detection. In the literature, various community
detection methods have been proposed [24, 26, 57], such as spectral
clustering [18, 78, 87], consensus clustering [32, 73], modularity-
based approaches [13, 20, 56, 57], statistical inference-based ap-
proaches [41, 61], and structural similarity-based approaches [6,
8, 50, 62, 74, 77, 83, 91]. In addition, the link-based analysis meth-
ods [25, 55] are proposed for detecting network communities. Some
recent works [64, 65, 69–72, 98] have studied community detection
in heterogeneous information networks. Besides, detecting commu-
nity in temporal graphs has also been mainly studied [28, 51, 88].
8 CONCLUSIONS
In this paper, we investigate the problem of temporal durable com-
munity (TDC) search in large temporal graphs, aiming to identify
communities with the longest duration. To tackle this problem,
we �rst introduce a novel online algorithm that utilizes binary
search. We then propose a novel index, called ASF-index, to sup-
port frequent TDC queries with various parameters. Furthermore,
we propose some optimization techniques to improve the e�ciency
of index construction and reduce its space cost, thus obtaining our
advanced index, ATG-index. Based on ATG-index, we develop two
query algorithms that reduce redundant computation. Extensive
experiments validate the e�ciency and e�ectiveness of our pro-
posed solutions. In the future, we will explore how to �nd the TDC
on the interval-based (lifespan) temporal graph.

9 ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (No. U25B2047), the 1+1+1 CUHK-CUHK(SZ)-
GDSTC Joint Collaboration Fund under Grant 2025A0505000045,
Guangdong Provincial Key Laboratory of Mathematical Founda-
tions for Arti�cial Intelligence (2023B1212010001), Shenzhen Re-
search Institute of BigData under Grant SIF20240002, and ByteDance
Collaboration Fund under Grant 20240529123301.

138

REFERENCES
[1] 2006. Stanford Network Analysis. https://networkrepository.com/network-

data.php.
[2] Wen Bai, Yadi Chen, and Di Wu. 2020. E�cient temporal core maintenance of

massive graphs. Information Sciences 513 (2020), 324–340.
[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An o (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[4] Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. 2018. An Optimal and

Progressive Approach to Online Search of Top-K In�uential Communities. Proc.
VLDB Endow. 11, 9 (2018), 1056–1068.

[5] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized
core decomposition. In proceedings of the 2019 international conference on man-
agement of data. 1006–1023.

[6] Lijun Chang, Wei Li, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. pSCAN:
Fast and Exact Structural Graph Clustering. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE). IEEE, Helsinki, Finland, 253–264. https:
//doi.org/10.1109/ICDE.2016.7498245

[7] Lijun Chang, Xuemin Lin, Lu Qin, Je�rey Xu Yu, andWenjie Zhang. 2015. Index-
based optimal algorithms for computing steiner components with maximum
connectivity. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 459–474.

[8] Yulin Che, Shixuan Sun, and Qiong Luo. 2018. Parallelizing Pruning-based
Graph Structural Clustering. In Proceedings of the 47th International Conference
on Parallel Processing (ICPP ’18). Association for Computing Machinery, New
York, NY, USA, 1–10. https://doi.org/10.1145/3225058.3225063

[9] Kaiyu Chen, Dong Wen, Wenjie Zhang, Ying Zhang, Xiaoyang Wang, and
Xuemin Lin. 2024. Querying Structural Diversity in Streaming Graphs. Pro-
ceedings of the VLDB Endowment 17, 5 (2024), 1034–1046.

[10] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang.
2018. Maximum co-located community search in large scale social networks.
Proceedings of the VLDB Endowment 11, 10 (2018), 1233–1246.

[11] Shu Chen, RanWei, Diana Popova, and Alex Thomo. 2016. E�cient computation
of importance based communities in web-scale networks using a single machine.
In CIKM. 1553–1562.

[12] Lingyang Chu, Yanyan Zhang, Yu Yang, LanjunWang, and Jian Pei. 2019. Online
density bursting subgraph detection from temporal graphs. Proceedings of the
VLDB Endowment 12, 13 (2019), 2353–2365.

[13] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. 2004. Finding Com-
munity Structure in Very Large Networks. Physical Review E 70, 6 (Dec. 2004),
066111. https://doi.org/10.1103/PhysRevE.70.066111 arXiv:cond-mat/0408187

[14] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report 16, 3.1 (2008), 1–29.

[15] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein.
2022. Introduction to algorithms. MIT press.

[16] Wanyun Cui, Yanghua Xiao, HaixunWang, Yiqi Lu, andWeiWang. 2013. Online
search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. 277–288.

[17] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search
of communities in large graphs. In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data. 991–1002.

[18] W. E. Donath and A. J. Ho�man. 1973. Lower Bounds for the Partitioning of
Graphs. IBM Journal of Research and Development 17, 5 (Sept. 1973), 420–425.
https://doi.org/10.1147/rd.175.0420

[19] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.
Butter�y-core community search over labeled graphs. Proceedings of the VLDB
Endowment (2021).

[20] J. Duch and A. Arenas. 2005. Community Detection in Complex Networks
Using Extremal Optimization. Physical Review E 72, 2 (Aug. 2005), 027104.
https://doi.org/10.1103/PhysRevE.72.027104 arXiv:cond-mat/0501368

[21] Yixiang Fang, CK Cheng, Siqiang Luo, and Jiafeng Hu. 2016. E�ective commu-
nity search for large attributed graphs. Proceedings of the VLDB Endowment
(2016).

[22] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29 (2020), 353–392.

[23] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.
E�ective and e�cient community search over large heterogeneous information
networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867.

[24] Santo Fortunato. 2010. Community Detection in Graphs. Physics Reports 486, 3
(Feb. 2010), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002

[25] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[26] Santo Fortunato and Darko Hric. 2016. Community Detection in Networks: A
User Guide. Physics Reports 659 (Nov. 2016), 1–44. https://doi.org/10.1016/j.
physrep.2016.09.002

[27] Dongqi Fu, Dawei Zhou, and Jingrui He. 2020. Local motif clustering on time-
evolving graphs. In Proceedings of the 26th ACM SIGKDD International conference
on knowledge discovery & data mining. 390–400.

[28] Dongqi Fu, Dawei Zhou, Ross Maciejewski, Arie Croitoru, Marcus Boyd, and Jin-
grui He. 2023. Fairness-aware clique-preserving spectral clustering of temporal

graphs. In Proceedings of the ACM Web Conference 2023. 3755–3765.
[29] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and

Francesco Gullo. 2018. Mining (maximal) span-cores from temporal networks.
In Proceedings of the 27th ACM international Conference on Information and
Knowledge Management. 107–116.

[30] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core decom-
position and densest subgraph in multilayer networks. In CIKM. 1807–1816.

[31] Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro
Cattuto, and Francesco Gullo. 2020. Span-core decomposition for temporal net-
works: Algorithms and applications. ACM Transactions on Knowledge Discovery
from Data (TKDD) 15, 1 (2020), 1–44.

[32] Andrey Goder and Vladimir Filkov. 2008. Consensus Clustering Algorithms:
Comparison and Re�nement. In 2008 Proceedings of the Workshop on Algorithm
Engineering and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 109–117. https://doi.org/10.1137/1.9781611972887.11

[33] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[34] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2017.
On minimal steiner maximum-connected subgraph queries. IEEE Transactions
on Knowledge and Data Engineering 29, 11 (2017), 2455–2469.

[35] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua
Hu, Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau,
and Reihaneh Rabbany. 2024. Temporal graph benchmark for machine learning
on temporal graphs. Advances in Neural Information Processing Systems 36
(2024).

[36] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Je�rey Xu Yu. 2014. Query-
ing k-truss community in large and dynamic graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 1311–1322.

[37] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.
Proceedings of the VLDB Endowment 10, 9 (2017), 949–960.

[38] Xin Huang, Laks VS Lakshmanan, Je�rey Xu Yu, and Hong Cheng. 2015. Ap-
proximate Closest Community Search in Networks. Proceedings of the VLDB
Endowment 9, 4 (2015).

[39] Xun Jian, Yue Wang, and Lei Chen. 2020. E�ective and e�cient relational
community detection and search in large dynamic heterogeneous information
networks. Proceedings of the VLDB Endowment 13, 10 (2020), 1723–1736.

[40] Konect. 2006. Konect. http://konect.cc/networks/.
[41] Johan H. Koskinen and TomA.B. Snijders. 2007. Bayesian Inference for Dynamic

Social Network Data. Journal of Statistical Planning and Inference 137, 12 (Dec.
2007), 3930–3938. https://doi.org/10.1016/j.jspi.2007.04.011

[42] Laks VS Lakshmanan. 2022. On a Quest for Combating Filter Bubbles and
Misinformation. In SIGMOD. 2–2.

[43] Rong-Hua Li, Lu Qin, Fanghua Ye, Je�rey Xu Yu, Xiaokui Xiao, Nong Xiao, and
Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks. In
SIGMOD. ACM, 457–472.

[44] Rong-Hua Li, Lu Qin, Je�rey Xu Yu, and Rui Mao. 2015. In�uential Community
Search in Large Networks. Proc. VLDB Endow. 8, 5 (2015), 509–520.

[45] Rong-Hua Li, Lu Qin, Fanghua Ye, Guoren Wang, Je�rey Xu Yu, Xiaokui Xiao,
Nong Xiao, and Zibin Zheng. 2020. Finding skyline communities in multi-valued
networks. The VLDB Journal 29, 6 (2020), 1407–1432.

[46] Rong-Hua Li, Lu Qin, Je�rey Xu Yu, and Rui Mao. 2017. Finding in�uential
communities in massive networks. The VLDB Journal 26, 6 (2017), 751–776.

[47] Rong-Hua Li, Jiao Su, Lu Qin, Je�rey Xu Yu, and Qiangqiang Dai. 2018. Persis-
tent community search in temporal networks. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 797–808.

[48] Yuan Li, Jinsheng Liu, Huiqun Zhao, Jing Sun, Yuhai Zhao, and Guoren Wang.
2021. E�cient continual cohesive subgraph search in large temporal graphs.
World Wide Web 24 (2021), 1483–1509.

[49] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Chunxue Zhu, Hongchao Qin, Hai
Jin, and Tao Jia. 2024. QTCS: E�cient Query-Centered Temporal Community
Search. Proceedings of the VLDB Endowment 17, 6 (2024), 1187–1199.

[50] Kaixin Liu, Sibo Wang, Yong Zhang, and Chunxiao Xing. 2023. An e�cient
algorithm for distance-based structural graph clustering. Proceedings of the
ACM on Management of Data 1, 1 (2023), 1–25.

[51] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xin-
wang Liu. 2023. Deep temporal graph clustering. arXiv preprint arXiv:2305.10738
(2023).

[52] Quintino Francesco Lotito and Alberto Montresor. 2020. E�cient algo-
rithms to mine maximal span-trusses from temporal graphs. arXiv preprint
arXiv:2009.01928 (2020).

[53] Wensheng Luo, Xu Zhou, Jianye Yang, Peng Peng, Guoqing Xiao, and Yunjun
Gao. 2020. E�cient approaches to top-r in�uential community search. IEEE
Internet of Things Journal 8, 16 (2020), 12650–12657.

[54] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2019. An
e�cient approach to �nding dense temporal subgraphs. IEEE Transactions on
Knowledge and Data Engineering 32, 4 (2019), 645–658.

[55] Mark EJ Newman andMichelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

139

https://networkrepository.com/network-data.php
https://networkrepository.com/network-data.php
https://doi.org/10.1109/ICDE.2016.7498245
https://doi.org/10.1109/ICDE.2016.7498245
https://doi.org/10.1145/3225058.3225063
https://doi.org/10.1103/PhysRevE.70.066111
https://arxiv.org/abs/cond-mat/0408187
https://doi.org/10.1147/rd.175.0420
https://doi.org/10.1103/PhysRevE.72.027104
https://arxiv.org/abs/cond-mat/0501368
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1137/1.9781611972887.11
http://konect.cc/networks/
https://doi.org/10.1016/j.jspi.2007.04.011

[56] M. E. J. Newman. 2004. Fast Algorithm for Detecting Community Structure in
Networks. Physical Review E 69, 6 (June 2004), 066133. https://doi.org/10.1103/
PhysRevE.69.066133 arXiv:cond-mat/0309508

[57] M. E. J. Newman and M. Girvan. 2004. Finding and Evaluating Community
Structure in Networks. Physical Review E 69, 2 (Feb. 2004), 026113. https:
//doi.org/10.1103/PhysRevE.69.026113

[58] Lianpeng Qiao, Zhiwei Zhang, Ye Yuan, Chen Chen, and Guoren Wang. 2021.
Keyword-centric community search over large heterogeneous information
networks. In Database Systems for Advanced Applications: 26th International
Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part I.
Springer, 158–173.

[59] Hongchao Qin, Rong-Hua Li, Ye Yuan, GuorenWang, Lu Qin, and Zhiwei Zhang.
2022. Mining Bursting Core in Large Temporal Graphs. Proceedings of the VLDB
Endowment 15, 13 (2022), 3911–3923.

[60] Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Weihua Yang, and Lu
Qin. 2020. Periodic communities mining in temporal networks: Concepts and
algorithms. IEEE Transactions on Knowledge and Data Engineering 34, 8 (2020),
3927–3945.

[61] Joerg Reichardt and Stefan Bornholdt. 2006. Statistical Mechanics of Community
Detection. Physical Review E 74, 1 (July 2006), 016110. https://doi.org/10.1103/
PhysRevE.74.016110 arXiv:cond-mat/0603718

[62] Boyu Ruan, JunhaoGan, HaoWu, andAnthonyWirth. 2021. Dynamic Structural
Clustering on Graphs. In Proceedings of the 2021 International Conference on
Management of Data. ACM, Virtual Event China, 1491–1503. https://doi.org/
10.1145/3448016.3452828

[63] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes
twitter users: real-time event detection by social sensors. In Proceedings of the
19th international conference on World wide web. 851–860.

[64] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A
survey of heterogeneous information network analysis. IEEE Transactions on
Knowledge and Data Engineering 29, 1 (2016), 17–37.

[65] Chuan Shi, Ran Wang, Yitong Li, Philip S Yu, and Bin Wu. 2014. Ranking-
based clustering on general heterogeneous information networks by network
projection. In CIKM. 699–708.

[66] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting binary
search trees. Journal of the ACM (JACM) 32, 3 (1985), 652–686.

[67] Jingyi Song, Dong Wen, Lantian Xu, Lu Qin, Wenjie Zhang, and Xuemin Lin.
2024. On Querying Historical Connectivity in Temporal Graphs. Proceedings of
the ACM on Management of Data 2, 3 (2024), 1–25.

[68] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and
how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 939–948.

[69] Yizhou Sun, Charu C Aggarwal, and Jiawei Han. 2012. Relation strength-aware
clustering of heterogeneous information networks with incomplete attributes.
arXiv preprint arXiv:1201.6563 (2012).

[70] Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, and Tianyi
Wu. 2009. Rankclus: integrating clustering with ranking for heterogeneous
information network analysis. In EDBT. 565–576.

[71] Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S Yu, and Xiao
Yu. 2013. Pathselclus: Integrating meta-path selection with user-guided ob-
ject clustering in heterogeneous information networks. ACM Transactions on
Knowledge Discovery from Data (TKDD) 7, 3 (2013), 1–23.

[72] Yizhou Sun, Yintao Yu, and Jiawei Han. 2009. Ranking-based clustering of
heterogeneous information networks with star network schema. In KDD. 797–
806.

[73] A. Topchy, A.K. Jain, and W. Punch. 2005. Clustering Ensembles: Models of
Consensus and Weak Partitions. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27, 12 (Dec. 2005), 1866–1881. https://doi.org/10.1109/
TPAMI.2005.237

[74] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel Index-Based
Structural Graph Clustering and Its Approximation. In Proceedings of the 2021
International Conference on Management of Data. 1851–1864. https://doi.org/10.
1145/3448016.3457278 arXiv:2012.11188 [cs]

[75] Ruby W Wang and Y Ye Fred. 2019. Simplifying Weighted Heterogeneous
networks by extracting h-Structure via s-Degree. Scienti�c reports 9, 1 (2019),
1–8.

[76] Dong Wen, Yilun Huang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.
2020. spanning span-reachability queries in large temporal graphs. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 1153–1164.

[77] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019. E�cient
Structural Graph Clustering: An Index-Based Approach. The VLDB Journal 28,
3 (June 2019), 377–399. https://doi.org/10.1007/s00778-019-00541-4

[78] Scott White and Padhraic Smyth. 2005. A Spectral Clustering Approach To
Finding Communities in Graphs. In Proceedings of the 2005 SIAM International

Conference on Data Mining. Society for Industrial and Applied Mathematics,
274–285. https://doi.org/10.1137/1.9781611972757.25

[79] Wikipedia. 2006. Wikipedia event. https://en.wikipedia.org/wiki/2006.
[80] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 649–658.

[81] Yanping Wu, Jun Zhao, Renjie Sun, Chen Chen, and Xiaoyang Wang. 2021.
E�cient personalized in�uential community search in large networks. Data
Science and Engineering 6, 3 (2021), 310–322.

[82] Haoxuan Xie, Yixiang Fang, Yuyang Xia, Wensheng Luo, and Chenhao Ma. 2023.
On querying connected components in large temporal graphs. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–27.

[83] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. 2007.
SCAN: A Structural Clustering Algorithm for Networks. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, San Jose California USA, 824–833. https://doi.org/10.1145/
1281192.1281280

[84] Huihui Yang, Chunxue Zhu, Longlong Lin, and Pingpeng Yuan. 2024. Towards
Truss-Based Temporal Community Search. arXiv preprint arXiv:2410.15046
(2024).

[85] Junyong Yang, Ming Zhong, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu, and
Je�rey Xu Yu. 2023. Scalable time-range k-core query on temporal graphs.
Proceedings of the VLDB Endowment 16, 5 (2023), 1168–1180.

[86] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. E�ective and
e�cient truss computation over large heterogeneous information networks. In
ICDE. IEEE, 901–912.

[87] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local
Higher-Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD ’17).
Association for Computing Machinery, New York, NY, USA, 555–564. https:
//doi.org/10.1145/3097983.3098069

[88] Jingyi You, Chenlong Hu, Hidetaka Kamigaito, Kotaro Funakoshi, and Manabu
Okumura. 2021. Robust dynamic clustering for temporal networks. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2424–2433.

[89] Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin.
2021. On querying historical k-cores. Proceedings of the VLDB Endowment
(2021).

[90] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-
based densest clique percolation community search in networks. IEEE Transac-
tions on Knowledge and Data Engineering 30, 5 (2017), 922–935.

[91] Fangyuan Zhang and Sibo Wang. 2022. E�ective Indexing for Dynamic Struc-
tural Graph Clustering. Proceedings of the VLDB Endowment 15, 11 (July 2022),
2908–2920. https://doi.org/10.14778/3551793.3551840

[92] Yikai Zhang and Je�rey Xu Yu. 2019. Unboundedness and e�ciency of truss
maintenance in evolving graphs. In SIGMOD. 1024–1041.

[93] Alexander Zhou, Yue Wang, and Lei Chen. 2020. Finding large diverse com-
munities on networks: the edge maximum k*-partite clique. Proceedings of the
VLDB Endowment 13, 12 (2020), 2576–2589.

[94] Yang Zhou, Hong Cheng, and Je�rey Xu Yu. 2009. Graph clustering based on
structural/attribute similarities. Proceedings of the VLDB Endowment 2, 1 (2009),
718–729.

[95] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. In�uential
community search over large heterogeneous information networks. Proceedings
of the VLDB Endowment 16, 8 (2023), 2047–2060.

[96] Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma. 2024. A Counting-
based Approach for E�cient k-Clique Densest Subgraph Discovery. Proceedings
of the ACM on Management of Data 2, 3 (2024), 1–27.

[97] Yingli Zhou and etc. Jiang, Yige. 2025. E�ective Durable Com-
munity Search in Large Temporal Graph (technical report). https:
//github.com/kiwiHM/VLDB2025_Durable_Temporal_CS_Appendix/blob/
main/VLDB2025_Durable_Temporal_CS_Appendix.pdf.

[98] Yang Zhou and Ling Liu. 2013. Social in�uence based clustering of heteroge-
neous information networks. In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 338–346.

[99] Kaijie Zhu, George Fletcher, and Nikolay Yakovets. 2021. Leveraging temporal
and topological selectivities in temporal-clique subgraph query processing.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
672–683.

[100] Kaijie Zhu, George Fletcher, Nikolay Yakovets, Odysseas Papapetrou, and
Yuqing Wu. 2019. Scalable temporal clique enumeration. In Proceedings of
the 16th International Symposium on Spatial and Temporal Databases. 120–129.

,

140

https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.066133
https://arxiv.org/abs/cond-mat/0309508
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://arxiv.org/abs/cond-mat/0603718
https://doi.org/10.1145/3448016.3452828
https://doi.org/10.1145/3448016.3452828
https://doi.org/10.1109/TPAMI.2005.237
https://doi.org/10.1109/TPAMI.2005.237
https://doi.org/10.1145/3448016.3457278
https://doi.org/10.1145/3448016.3457278
https://arxiv.org/abs/2012.11188
https://doi.org/10.1007/s00778-019-00541-4
https://doi.org/10.1137/1.9781611972757.25
https://en.wikipedia.org/wiki/2006
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.14778/3551793.3551840
https://github.com/kiwiHM/VLDB2025_Durable_Temporal_CS_Appendix/blob/main/VLDB2025_Durable_Temporal_CS_Appendix.pdf
https://github.com/kiwiHM/VLDB2025_Durable_Temporal_CS_Appendix/blob/main/VLDB2025_Durable_Temporal_CS_Appendix.pdf
https://github.com/kiwiHM/VLDB2025_Durable_Temporal_CS_Appendix/blob/main/VLDB2025_Durable_Temporal_CS_Appendix.pdf

	Abstract
	1 Introduction
	2 Problem formulation
	3 Online TDC Search algorithm
	4 The index structures for TDC search
	4.1 Overview of ASF-index
	4.2 Our advanced index ATG-index

	5 Index-based TDC search algorithms
	5.1 A basic index-based TDC search algorithm
	5.2 An advanced index-based TDC search algorithm

	6 Experiments
	6.1 Setup
	6.2 Efficiency evaluation
	6.3 Effectiveness evaluation

	7 Related works
	8 Conclusions
	9 Acknowledgments
	References

