Doprprio: Communication-Efficient and Secure Multi-Party
Shuffle Differential Privacy

Wentao Dong
City University of Hong Kong
wentdong-c@my.cityu.edu.hk

Cong Wang
City University of Hong Kong
congwang@cityu.edu.hk

ABSTRACT

Modern database ecosystems increasingly process large-scale dis-
tributed user data, heightening the intrinsic tension between an-
alytical utility and individual privacy. Shuffle differential privacy
(shuffle DP) has recently emerged as a promising paradigm between
the local and central models, offering favorable privacy-utility trade-
offs by introducing a centralized, trusted shuffler. However, this ar-
chitectural shift also poses new challenges in trust assumptions, sys-
tem overhead, security risks, and workload limitations. To address
them, we propose the augmented multi-party shuffle DP (AMP-SDP)
model, which re-architects the data pipeline with a lightweight, ver-
satile secret-shared intermediary layer. AMP-SDP (1) decentralizes
trust while minimizing online communication costs; (2) provides
structural security hardening against both shuffler compromise and
user-side poisoning risks; and (3) augments shuffle DP for broader,
more flexible workloads. Atop this model, we instantiate DoppIO, a
privacy-preserving crowdsourcing and data analytics framework.
Our results show DoPpr10 outperforms the state-of-the-art decen-
tralized shuffle DP mechanism (Network Shuffling, SIGMOD’22)
across many key metrics, affirming its effectiveness and efficiency
in modern privacy-aware data management.

PVLDB Reference Format:

Wentao Dong, Yang Cao, Cong Wang, and Wei-Bin Lee. DoppI0:
Communication-Efficient and Secure Multi-Party Shuffle Differential Privacy. PVLDB,
19(2): 113 - 126, 2025.

doi:10.14778/3773749.3773752

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at https://github.

com/dongdongdoge/mpsdp.

1 INTRODUCTION

The proliferation of modern database ecosystems makes individual
privacy a critical imperative, especially when collecting and ana-
lyzing vast amounts of distributed user data. Differential privacy
(DP) [29] has emerged as a de facto standard to address this, pro-
viding rigorous, mathematically proven guarantees against privacy

*Cong Wang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773752

113

Yang Cao
Institute of Science Tokyo
cao@c.titech.ac.jp

Wei-Bin Lee
Hon Hai Research Institute; Feng Chia University
wei-bin.lee@foxconn.com

leaks. However, its two dominant paradigms—central DP and local
DP—present a stark trade-off: the central model yields high utility
but mandates user trust in a centralized curator, while the local
model eliminates this trust yet incurs substantial utility degradation
due to excessive overall noise.

Vanilla shuffle DP and its limitations. Recent shuffle DP model
has emerged as a compelling alternative, offering favorable privacy-
utility trade-offs [19, 34]. Its key idea, known as privacy amplifica-
tion by shuffling, is to let a trusted shuffler anonymize user reports
so that each user can apply weaker &-local noise while the sys-
tem collectively achieves a much stronger global ¢'-DP guarantee,
where ¢’ < g). However, despite the theoretical appeal, its practical
adoption still faces several unique challenges.

o Trust-communication dilemma: Vanilla shuffle DP relies on a cen-
tralized shuffler [10, 34], which reintroduces the very centralized
trust point that local models seek to avoid. Existing distributed
shuffle alternatives [58, 75], however, imply substantial commu-
nication costs, potentially negating shuffle model’s key benefits
and limiting its practicality at scale.

o Unique security landscape: As in local DP, the shuffle model re-
mains vulnerable to data poisoning attacks [14, 18, 78], where
adversarial users misreport to manipulate results. Critically, the
very anonymity that amplifies honest users’ privacy may also
paradoxically amplify the impact of targeted, stealthy poison-
ing—a phenomenon we term poisoning amplification—by shield-
ing malicious users. Furthermore, like the central DP curator, the
shuffler itself is a single point of trust and potential failure [58];
its compromise could threaten privacy system-wide.

o Structural model limitations: By design, shuffle DP mandates the
use of indistinguishable local randomizers [34], since any hetero-
geneity could be exploited to de-anonymize users and degrade
privacy. In addition, the vanilla one-way shuffle DP architecture
lacks native support for workloads involving interactive, adap-
tive queries [54, 70, 71]. To secure key privacy amplification in
such two-way settings, user anonymity must persist throughout
all interaction rounds, thus necessitating an extra mechanism to
anonymously route curator responses backward.

These architectural and functional limitations prevent the vanilla
shuffle model from serving as a drop-in replacement for local DP in
real-world data systems, highlighting the need for a more efficient,
resilient, and adaptable shuffle DP architecture.

Our approach: augmented multi-party shuffle DP (AMP-SDP).
To bridge this gap, we introduce the AMP-SDP model. As depicted

https://doi.org/10.14778/3773749.3773752
https://github.com/dongdongdoge/mpsdp
https://github.com/dongdongdoge/mpsdp
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3773749.3773752
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Data Owner Mailbox Non-colluding Mailbox Data
(User) (In/Out) Intermediary servers (Out/In) Collector
(Analyzer)
22 [addr Py E Offline: Silent addr}
8 shuffle DP correlation 7 7
write (read) | — [[&~ Tt addry Read
o Online: Shuffle, R
*, randomization, i
e and post-processing addr’n M
(X] [Y<R(G(s(x1)))]

[*]: Additive share; X Data; Y: Processed message; Z: Analyzed results;
S Shuffle functionality; R: Randomize functionality; G: (Optional) post-processing;

Figure 1: The architectural overview of AMP-SDP model.

in Figure 1, the model re-architects the vanilla shuffle DP pipeline
with a lightweight, versatile secret-shared intermediary layer jointly
maintained by a set of non-colluding servers.! This co-design of
multi-party computation (MPC) and distributed shuffle DP proto-
cols optimizes the trust-communication trade-off, enhances system
security, and improves model adaptability. AMP-SDP model or-
chestrates a clean, modular workflow spanning input submission,
secure processing, and result retrieval (and beyond). Cast in modern
terms by Balle et al. [6], these intermediary servers jointly spread a
distributed privacy blanket, amplifying each individual’s privacy in
a decentralized and cryptographically secure manner.

To showcase our techniques, we introduce and evaluate DoprIo,
an AMP-SDP-based privacy-preserving crowdsourcing and data an-
alytics framework. Following similar designs [1, 22, 28], DoPpIO is
envisioned to be operated by mutually distrusting yet reputable en-
tities (e.g., big techs, research institutes, nonprofits) with both incen-
tives and capabilities to securely collect and analyze distributed user
data. Its potential use cases span learning emerging trends [10, 35],
improving advertising strategies [2, 81], and advancing societal in-
sights [2, 32]. We benchmarked Dopp10 over synthetic and realistic
datasets [24, 65], showing it outperforms the state-of-the-art decen-
tralized shuffle DP mechanism [58] across many key dimensions.

1.1 Technique Overview

A naive starting point is to replace the centralized, trusted shuffler
entity with a multi-server shuffle protocol. Yet this alone falls short
in addressing the broader system-level challenges discussed above.
We next outline our key technical contributions and rationales by
an order of improving upon the above naive approach.

Security-hardened shuffle DP architecture. Multi-server de-
signs protect against single shuffler compromise concerns. However,
akin to local DP [14], the vanilla shuffle DP remains structurally
vulnerable to malicious user poisoning—with even greater risks due
to anonymity-induced side effects. To counter this, we re-architect
the conventional “local randomize-then-shuffle” pipeline, delegat-
ing the DP randomization to intermediary servers (detailed in §5).
This architectural shift is guided by a key insight [18, 56]: directly
faking the already-randomized message can be far more damaging
than poisoning raw data alone. By eliminating direct user control
over the randomization, our model confines adversarial influence

! AMP-SDP adopts a “2+1-party” (dealer) model, comprising two computing servers
and an assisting server—a configuration widely employed in MPC [36, 44, 48, 50].

114

to the less damaging level, where server-side DP mechanisms may
further neutralize manipulations.

Low-communication secret-shared shuffle DP protocols. Se-
curely performing shuffling and DP computations in a multi-party
setting often incurs significant communication overhead. Existing
MPC-based protocols mandate high inter-server communication
that scales with the number of users n, data length ¢, circuit depth h,
and protocol repetition times B [16, 39]. To overcome this trade-off,
we introduce a new cryptographic primitive termed silent shuffle
DP correlation (see §4.1 and §4.3). This correlated randomness can
be precomputed offline by the assisted server and enable a light-
weight, non-interactive online protocol, where two non-colluding
computing servers execute secure shuffling and randomization over
secret-shared data using local computation only.

Augmented multi-party shuffle DP variants. Having a secure
and communication-efficient foundation in place, we further aug-
ment our model with several useful extensions:

e Privacy-boosting shuffle: AMP-SDP integrates sampleable and
dummy-adding shuffle variants, offering stronger privacy ampli-
fication potential with minimal overhead (see §4.2).

o Reversible shuffle: AMP-SDP provides native support for efficient,
anonymous backward delivery of user-specific intermediate re-
sults—a vital capability for multi-round, adaptive query workload
that vanilla shuffle DP has largely overlooked (see §4.2).

o Fine-grained DP randomization: AMP-SDP enables the applica-
tion of non-uniform DP noise levels across records—akin to per-
sonalized DP [17], relaxing default indistinguishable randomizer
constraints without new, alternative assumptions (see §4.4).

To streamline AMP-SDP’s protocol orchestration, we introduce
a distributed virtual mailbox abstraction (elaborated on in §3.2) that
provides a stateful, secret-shared read/write interface, decoupling
data transitions from the core computation logic to facilitate diverse
database query workloads.

1.2 Comparison with Relevant DP Models

This work synthesizes concepts from two active research threads in
the DP literature—shuffle DP and multi-party/distributed DP—to es-
tablish our unique design point. We next review these foundational
areas to articulate the necessity of our new paradigm.

Shuffle DP. The idea of shuffle DP was initiated by Bittau et al. [10],
and later formalized by Cheu et al. [19] and Erlingsson et al. [34].
They showed that secure shuffling can amplify privacy, reducing
the real privacy budget from original & to ¢’ :O(%) for n users.

Subsequent research has rapidly expanded the shuffle model along
several dimensions. Tighter privacy amplification bounds were de-
rived in [6, 37, 74]; new shuffle DP protocols tailored to specific
analytical tasks were proposed [20, 40, 41, 73, 75]; and generaliza-
tions to Rényi shuffle DP [42] and more powerful multi-message
models [7, 61] were developed. More recently, a few augmented
shuffle DP techniques have been explored to strengthen robustness
against inference or poisoning attacks [62, 64].

Complementing these theoretical advances, various system-level
instantiations of the core shuffler have been proposed. Bittau et
al. [10] leverage trusted hardware (e.g., Intel SGX), while Cheu et
al. [19], Wang et al. [75], and Liew et al. [58] pursue decentralized

Table 1: Comparison of core shuffle protocols in DopPpP10 and prior shuffle DP systems.

Ref. Bittau et al. [10] Balle et al. [5] Cheu etal [19] Wang et al. [75] Liew et al. [58] Ours

Shuffle tech. oblivious sorting alternating shuffle mix-nets encrypted shuffle network shuffling silent shuffle
Shuffle type’ uniform approximate uniform uniform approximate uniform (generalized)
Trust model centralized centralized distributed distributed distributed distributed
Communication? N/A N/A O(Lnt) O(nt + nl) O(cnlognt) 0

f Uniform shuffle protocols enable known optimal privacy amplification capabilities [6, 37, 74], whereas approximate shuffle schemes offer weaker guarantees.

¥ Refers to the inter-server/inter-user communication during secure shuffling (excluding shuffler-curator communication). N/A denotes no such cost for the centralized shuffler
systems. Variables L, £, A, ¢ denote mix-net chain length, per-message size, security parameter, and network topology parameter, respectively.

Table 2: Comparison of DP sampling and randomization strategies in DoPP10 and prior multi-party/distributed DP systems.

Ref. Keller et al. [51] Roy et al. [67] Fu et al. [39] Heikkila et al. [45] Liew et al. [58] Ours
Sampling tech.”| 2-party DP 2-party DP 2-party/distributed DP distributed DP distributed DP 2+1-party DP
Mechanism* additive additive additive additive (infinitely divisible) generic generic
Cost model® O(h)+0(1) O(h)+0(1) O(h)+0(1) 0(1)+0(1) O(1)+0(1) 0(1)+0(1)

T Specifies how DP noise is generated (sampling). In our design, the noise is modeled as a form of correlated randomness, which can be precomputed offline by the trusted dealer.
¥ Specifies how DP noise is applied (randomization). To enable a general, mechanism-agnostic silent DP execution flow, we intentionally classify DP mechanisms based on their

underlying arithmetic strategy: additive (e.g., Laplace) versus non-additive (e.g., k-RR).

B We slightly abuse the asymptotic notation to represent the per-instance multi-party DP cost as a + b, where a captures the offline correlated DP randomness generation cost
(e.g., O(h) denotes the noise sampling circuit depth), and b captures the multi-party DP application cost.

alternatives using mix-nets or distributed shuffle protocols. To fur-
ther improve performance, several works investigate reducing the
uniform, oblivious shuffle to approximate variants [5, 43, 58, 77, 80],
albeit at the cost of weaker privacy amplification guarantees.

Multi-party DP and distributed DP. In parallel, a large body of
literature explores the integration of DP with distributed protocols.
Many systems emulate the central model by executing both analyt-
ics and DP pipeline in MPC frameworks, enabling end-to-end secure
and differentially private data analysis [11, 15, 21, 28, 31, 33, 67, 76].
While offering favorable trust boundaries, these approaches often
suffer from high overhead, especially for complex workloads or
when run with small privacy budgets and large user scales.

Distributed DP techniques, in contrast, typically adhere to the
local DP flow [45, 47, 66, 68, 69, 79]. In this setup, each user inde-
pendently masks their input (not necessarily satisfying &,-DP for
each individual submission), and an untrusted aggregator collects
the reports to compute an approximate ¢-DP aggregate. These
designs, however, are vulnerable to data poisoning from malicious
users [14, 18, 72, 78] and exhibit significant utility loss.

Beyond these decentralized approaches, another natural strategy
is to substitute the trusted shuffler with distributed shuffle proto-
cols [19, 58, 75, 77]. However, as summarized in Table 1 and Table 2,
all these approaches often entail high communication overhead
and fail to holistically address the unique security and functionality
challenges of the shuffle DP paradigm. These critical gaps jointly
motivate the design of our AMP-SDP model.

2 PRELIMINARIES

Differential privacy. For clarity, we use LDP, CDP (or DP), and
SDP to refer to local, central, and shuffle DP, respectively. 2

DEFINITION 2.1 ((¢, §)-DP [30]). Given non-negative parameters
¢ and 8, a randomized mechanism R : X — Y satisfies (¢, §)-DP if,

For simplicity, we use set notation for inputs in SDP, though the elements are ordered.

115

for any neighboring datasets X, X € X" differing in one element and
foranyY € Y", the following holds:

Pr[R(X) € Y] < e - Pr[R(X) € Y] + 6.

Conventionally, smaller ¢ indicate stronger privacy guarantees,
and § > 0 denotes the probability that privacy is violated. If X
contains only one element, we call R as a local randomizer:

DEFINITION 2.2 (LOCAL RANDOMIZER [30]). A mechanism R :
X — Y is (& 6)-LDP if, for all x;,x; € X, the outputs R(x;) and
R(x;) are (e, 8)-indistinguishable.

Randomization mechanisms. As Table 2 shows, we classify dif-
ferentially private mechanisms into two types—additive and non-
additive—to guide our silent multi-party DP protocol designs. This
work considers the Laplace mechanism and k-ary randomized re-
sponse (k-RR) as representatives. Other more complex mechanisms,
such as local hashing [8], can be derived similarly.

In the additive Laplace mechanism, the output y is the sum of
the raw input x; and independent noise 7;:

y=R(x;) =x; +r;, wherer; ~ Lapfo(/l =A1(f)/eo).

In the non-additive k-RR, the output y is either the raw input x;
or replaced with a uniformly sampled dummy value:

. £
w/ probability p = —%7—,

Xi

y=R(x) = : N
ri ~ Uni(k) w/ probability p=

1
e0+k-1"
Privacy amplification via shuffling. Due to DP’s post-processing
property, n independent e-LDP messages remain ¢-DP under central
aggregation. However, shuffling further enhances privacy.

DEFINITION 2.3 (SHUFFLE DP [6, 19, 34, 37]). Given a local ran-
domizer R : X — VY, the message set Y € Y™, a random permutation
S :Y" — Y", and an analytics function A : Y" — Z, the shuffle
DP functionality is defined as:

Fspp = A(S(R(x1),...,R(xn))).

Table 3: Error bounds under poisoning attacks in ¢-LDP [18].

Ref." frequency histogram degree-d Stat.
| W ol
poisoning en eZn e2n
ne _ Nd__ ne 1 ne 1

PA ol o(x-1) o(x-1)
c vd c logd c 1

OPA o) o(%- ") of%-3)

T n: number of users; n¢: number of malicious users; d: domain size.

Here, S rearranges the multi-set of randomized user messages,
anonymizing the origin of each. This model achieves privacy am-
plification over LDP, with an approximate bound below [74]:

voo (\/ﬂ(efo = Dlog(1/9))

where ¢, is R’s privacy parameter, and f e [0, 11%] with p=e®.

Malicious user poisoning attacks. Local DP mechanisms are
vulnerable to adversarial manipulation.

DEFINITION 2.4 (POISONING ATTACKS [14, 18]). Given a raw data
x and randomized message y=R(x), an adversarial user may launch:
o Input poisoning attack (IPA): misreport R(x.) where x. #x.
o Output poisoning attack (OPA): bypass R and directly fake arbi-
trary message y. R (x).

Table 3 shows that OPA typically results in more severe accuracy
degradation than the trivial IPA.

Multi-party computation and shuffle. An MPC protocol allows
m non-colluding servers to jointly compute a function f over en-
crypted user data without learning input privacy. For the common
2-party setting, we define a value x is [x]-shared if x =[x]; +[x]2.
Modern MPC frameworks usually adhere to an offline-online model,
where servers precompute some forms of input-independent corre-
lated randomness [46] for better online efficiency and simplicity.

Chase et al. [16] present a 2-party shuffle paradigm to permute a
dataset X. The protocol relies on offline-generated shuffle correlation
that embeds a private permutation 7, followed by an interactive
online phase between P; and P, that securely executes:

X' =r(x) =) 701 = Y [X].
Subsequent works extend this to 2+1-party settings for improved

efficiency [3, 36]. Another line of work models shuffling as matrix-
vector multiplication [25, 60], exploring different trade-offs.

Multi-party DP noise sampling and randomization. DP tech-
niques were originally built over continuous domains, while MPC
often works in finite fields/rings. To reconcile this gap, some re-
search introduced the notion of distributed computational DP:

DEFINITION 2.5 (DISTRIBUTED COMPUTATIONAL DP [9]). Given
security parameter x, polynomial-time distinguisher D, a protocol I1
satisfies (¢, § + negl(k))-distributed computational DP if

Pr[D(Viewh? (X)) =1] <ef -Pr[D(Viewj® (X)) =1] +5 +negl(x).

The extra negl(x) term accounts for cryptographic failure prob-
ability. A 2-party noise sampling protocol outputs [r]; such that

116

r=[r]1+[r]2 and r satisfies (¢, § + negl(x))-DP. With secret-shared
user input [x], randomization proceeds as:

x+r=3([x]+[r]),
Rand(x,r) = Rand([x], [r]),

Additive (Laplace)

—R(x) =
y=R() { Non-additive (k-RR)

Interactive and adaptive analytics. Modern database systems
increasingly feature adaptive, multi-round queries, such as person-
alized query refinement, iterative training, and exploratory OLAP
workloads [23, 54, 70, 71].

In each round t, the curator provides individualized feedback
ZW® = A® (X)), Each user then refines their next-round input by
evaluating xi(Hl) =Update; (xi(t), Z,m)- Such queries pose structural
challenges for existing one-way shuffle DP pipeline.

3 AMP-SDP MODEL

Goals and non-goals. AMP-SDP re-architects and augments the
vanilla shuffle model with three overarching objectives: (1) decen-
tralize trust while minimizing communication costs; (2) enhance
system robustness against adversaries; and (3) address structural
model limitations for broader use cases. Meanwhile, AMP-SDP does
not seek to derive tighter amplification bounds, and instead adheres
to established privacy guarantees [6, 37, 74]. Nor is AMP-SDP tied
to any specific mechanism or workload. Rather, it is designed in a
mechanism- and application-agnostic, extensible manner for better
integrating shuffle DP into diverse database applications.

3.1 Threat Model

AMP-SDP consists of four main logical roles:

e Users (C) may include malicious clients capable of misreporting
their raw inputs (e.g., poisoning attacks).

o Computing servers (P; and P,) are honest-but-curious: they follow
the protocol specification but may attempt to infer sensitive
information from users from local views.

o Assisting server (Py) functions as a semi-trusted offline dealer
only, responsible for generating and distributing correlation.

o Curator server (P3) retrieves and aggregates the processed out-
puts, having no access to raw inputs or intermediate states.

Consistent with prior MPC systems [1, 22, 28, 36, 75], we assume
that all intermediary servers (P, Py, P2) are mutually non-colluding,
and none colludes with the curator P;. These reflect a common feder-
ated deployment scenario across independent, reputably-separated
organizations (e.g., big techs, research institutes, nonprofits, and
regulators). In §4.2, we will discuss how to relax this.

3.2 Communication Model
Figure 2 illustrates the message flow among the main entities.

Distributed virtual mailbox. To streamline multi-party protocol
designs, AMP-SDP harnesses a distributed virtual mailbox T across
intermediary servers, with each P; maintaining its local holdings T-.
Upon registration, each C; is assigned a unique index i, which maps
to dedicated slots (Tio, Til, Tiz) residing at Py, Py, and Py, respectively.
This abstraction provides a stateful read/write interface, decoupling
communication flow from the core computation logic.

Message forward and (optional) response backward. For data
submission, user C; simply writes its secret-shared input into slots

Mailbox-0 (Pp)
A — D I

Mailbox-0 (Pp)

Eé& < "] 88% - [zg] e
Data Data Data "' Mailbox-1 (P, Data

collector owner [2]] [zj] collector

ailbox-2 (Ps)

J
ailbox-2 (Ps)

(a) Client data forward (b) Curator response backward

Figure 2: Overview of AMP-SDP’s distributed virtual mailbox
abstraction and its communication flow.

Ti1 and Tiz. After secure processing, the curator P; retrieves and
reconstructs the final outputs from T} and TZ, thereby completing
the message forward pipeline.

Mirroring this path, AMP-SDP enables anonymous response de-
livery through a customized reversible shuffle mechanism, where Ps
computes and writes user-specific responses back to the same phys-
ical slots read during the forward stage. Then after reversible shuf-
fling, user C; can retrieve its unique, private response shares by read-
ing from the exact slots T and T? it originally wrote to—achieving
O(1) lookup complexity. This design efficiently provides the persis-
tent two-way anonymity required for multi-round, adaptive data
analytics within the shuffle DP model.

3.3 Ideal Functionality and Design Choices

DEFINITION 3.1 (AUGMENTED MULTI-PARTY SHUFFLE DP). Let
C={C1,...,Cyn} be the user set; P ={Py, P,} the two non-colluding
computing servers; Py the assisting server; and Ps the curator. AMP-
SDP functionality proceeds as follows:

o Offline: All entities Py, Py, P2, Ps, and C together initialize the sys-
tem; C register; Py generates and distributes the data-independent
shuffle DP correlation CR.

e Online (forward): C submit input shares [X]={[x1],..., [xa]} to
P, which securely perform: (1) uniform shuffle S; (optional) post-
processing G; and (3) (relaxed) randomization R ... Ps then retrieves
output shares [Y] = {R1(G([xz1)])) - - -, Ru(G([xr(m)]))}, Te-
constructs Y, and applies analytics algorithm A, denoted as:

AR(G(SUXD)))-

o Online (backward): For interactive, adaptive queries, P anony-
mously route responses Z = z1, . . ., z,| back to users via the inverse
shuffle S~1([Z]) to facilitate the next computation round.

FAMP-SDP :=

This functionality captures the architectural blueprint of AMP-
SDP. We next examine the rationales behind our design choices.

Why multi-party setup. AMP-SDP adopts a 2+1-party architec-
ture to decentralize trust and eliminates single-shuffler failure con-
cerns—also a key goal in recent shuffle DP research [58, 75].

Why generalized shuffle variants. By composing shuffle S with
(optional) post-processing G, AMP-SDP yields generalized multi-
party shuffle variants, offering better privacy guarantees [55, 57, 64].

Why shuffle-then-randomize pipeline. Departing from the clas-
sical “local randomize-then-shuffle” paradigm [10, 37, 38, 74], AMP-
SDP opts for the “server shuffle-then-randomize” approach to struc-
turally enhance model privacy and security. This architectural shift
also facilitates augmented shuffle DP variants.

117

Why relaxed randomization. Recent personalized shuffle DP work
seeks better utility [17, 59] but typically adds side assumptions—e.g.,
negligible metadata leakage—to circumvent the indistinguishable-
local-randomizer premise [19, 34]. AMP-SDP natively relaxes this
constraint without introducing new assumptions.

Why reversible shuffle mechanism. The vanilla one-way shuffle
DP pipeline targets single-round collection and lacks an efficient
path for user-specific feedback. Yet, such anonymized, personalized
feedback is essential for both interactive, adaptive workloads and
preserving privacy amplification across rounds. AMP-SDP intro-
duces a reversible shuffle—a slot-based backchannel that enables
efficient two-way interaction under sustained anonymity.

4 DOPPIO FRAMEWORK

Building on the AMP-SDP model, we now present Dopp10, a privacy-
preserving crowdsourcing and analytics framework. As shown in
Figure 3, this section focuses on its two core technical pillars—secure
shuffle and DP computation—along with their augmented variants.
Full protocols are detailed in Figure 8 and Figure 9.

4.1 Shuffle Correlation and Silent Shuffle

A typical oblivious shuffle applies a random permutation matrix
Me{0,1}"™" to an input vector X € F", producing X’ =M-X. This
amounts to evaluating n secure inner products in MPC, each over n
pairs of elements. Typically, total communication costs scale with
user number n, message size ¢, and protocol running times [60, 63],
leading to huge bandwidth cost in large-scale and long-term data
ingestion services.

Pre-computability of random data mask shares and permu-
tation shares. Our approach adapts the common 2-party additive
sharing scheme (x =[x]; + [x].) in the preprocessing model. The
first share, [x];, is treated as input-independent randomness and
precomputed offline, while the complementary share, [x]; =x—[x];,
is computed online once the user’s true value x is available.

Concretely, upon user C;’s registration, the assisting server P,
sets up a pseudorandom function PRF and negotiates a private
pseudorandom seed s; with C;, after which they can sample the
mask share [x;]; by evaluating PRF(s;) and initialize the dedicated
distributed mailbox slots. Additionally, the random shuffle permu-
tation matrix M, inherently being input-independent, can also be
sampled offline by Py, further reducing online overhead.

Mailbox-0 Permutation matrix

M <——— Py
(Shuffle DP correlation) Offline
/Online -
Tl 519
-------------- ’
Mailbox-1/2 l\/i;ilbox—]/2

Figure 3: Overview of Dorp10’s workflow (forward pipeline),
consisting of: @ user registration; @, ® shuffle DP correlation
generation and distribution; @, ® user data submission; ®
online silent processing; and @ processed result analytics.

Classic dealer method ~—{3— DPF-based method HPCG-based method ‘

(ii) Offline communication

(i) Offline latency
\

D 100 - g 10° [T T
E S0 Lt £ 10 [goooooo-oo0d
E o Lnee et - 1073

10* 6-100 100 ° 10* 6-10* 10°

n (user set size) n (user set size)

Figure 4: Comparison of offline costs for different shuffle
correlation generation techniques.

Silent 2+1-party secure multiplication and shuffle. With pre-
computed shares, we first illustrate how silent secure multiplica-
tion can be realized in the dealer model. Let x = [x]; + [x], and
y=[y]1+[y]2 be two shared operands, their product expands as:
correlation pre-computed by Py
——
[x]i-y+c—c +[xl2-[yli+ [x]2- [yl

[xl2- [yl + ([x]i -y + o)+ [x]2-[yla—c

[z]1 locally computed at P; [z]2 locally computed at P,

where c is a pre-computed random mask term. The sum of result
shares yields x - y, requiring no other interaction among servers.
When extended to vectorized inputs, this yields a non-interactive
2+1-party shuffle protocol. Let [X]; € F" be the offline user mask
shares, [X]; the online complement shares, and M =[M];+[M],
the secret-shared random permutation matrix. The assisting server
Py precomputes @=M - [X];, shared as [@]; and [&],. To preserve
shuffle privacy against Py, computing servers can apply an extra
random permutation sy, at runtime. Each P; then computes:

[X']; = ma([M];i - [X]2 + [@]:), i€{1,2}.

The sum of these outputs reconstructs the shuffled input vector
X', while hiding the final permutation order from all parties. For
simplicity, we omit 7y, in subsequent protocol descriptions.

Offline shuffle correlation distribution. We formalize the above
preprocessing output as the silent shuffle correlation:

DEFINITION 4.1 (2-PARTY SILENT SHUFFLE CORRELATION). We let
dcF" be the offline masks and M € {0, 1}"*" a random permutation
matrix. Define @ = M - d. The silent shuffle correlation is the pair
([Ml;, [@]:), where M=[M]:+[M]>, and & =[a]1+[a]..

Distributing the above silent shuffle correlation under the naive
dealer model requires O(n?¢) bits offline communication. To opti-
mize this, Dopp1o explores two correlation compression techniques:
e Distributed point functions (DPFs): Each column of M (a one-hot

vector) can be compactly encoded using a DPF key pair [13],

reducing per-column communication to the O(log n) scale.

o Hardware-assisted pseudorandom correlation generators (HPCGs):
With extra hardware trust, one can locally expand private, short
seed into virtually unbounded shuffle correlations [26, 27], thereby
eliminating the need to transmit full correlation shares.

Figure 4 compares the offline costs of three approaches (Classic
dealer, DPF- and HPCG-based) under typical WAN settings. HPCG
solution reports minimal communication costs, while DPF-based
method provides a reasonable bandwidth-latency trade-off.

118

4.2 Generalized, Reversible, Scalable Shuffle

Sampleable and dummy-adding shuffle variants. DoppIO ex-
tends the base shuffle S with a post-processing function G, forming
a composed transformation GoS. We consider two instantiations:
sampleable shuffle and dummy-adding shuffle. The former applies
random subsampling, providing amplification proportional to the
sampling rate ¢ [4, 42, 49, 55]. The latter, aka dummy blanket [57],
injects fake records to enlarge the anonymity set, yielding amplifi-
cation that scales with \/¢_n [20, 64].

As depicted in Figure 5a and Figure 5b, optional post-processing
G can be aptly implemented in Doppio through randomly dupli-
cating or dropping rows in the shuffle correlation matrix M. For
simplicity, we reuse ¢ to denote either the sampling rate (¢ < 1) or
the dummy inflation factor (¢ > 1).

Reversible shuffle mechanism. As discussed, securing privacy
amplification in adaptive, multi-round settings requires an anony-
mous route for curator responses—a mechanism vanilla shuffle DP
lacks. A naive method, re-shuffling the response vector Z, would
double offline costs and impose an O(n) lookup per user. Dopp1O
instead employs a lightweight reversible shuffle: P; writes shared
responses [z;] to the same slots that previously held [y;], after
which P applies the inverse permutation to map responses back to
each C;’s dedicated slots. This enables O(1) anonymous retrieval
per user, as summarized in Table 4. The key technical enabler for
this pass is its offline efficiency. The permutation matrix M is or-
thogonal, allowing its inverse shares to be locally derived from its
transpose rather than regenerated:

M+ M =M =M = [MT]y + [MT],.

Furthermore, unlike the forward pass, this backward pass in-
volves only a single sender (i.e., the curator Ps) and thus requires

Mailbox-0 Sampleable perm. matrix Mailbox-0 Dummy-adding perm. matrix
” - ,
Jdod 1o M’ dodi1 o] M
ofd]1 Clela]y
1071 ko
""""" ==) vili [nl]
&\ [z1]2 / syl [[nalod 1 ! -
e '-..,[yl]l [y1T24-
[z3]>
Mailbox-1/2 Mailbox-1 Mailbox-2 Mailbox-1/2 Mailbox-1Mailbox-2

(a) Sampleable shuffle (b) Clone dummy adding shuffle
Reversable perm. matrix MailPox-O P P
M =m® [lol Fo e [lﬂzl :

1fofo n B o 2
ofifo] [&7] :88 -
______________________ i Mailbox-1 Mailbox-2 Mailbox-1/2

(c) Anonymous response backward routing via reversible shuffle

Figure 5: Generalized, reversible multi-party shuffle variants.

Table 4: Asymptotic communication complexity of AMP-SDP
for the interactive, adaptive query workloads.

Ref. Ci-P PO—P P:{Pl,Pz} P—P;;
Message forward O(1) O(nlogn) 0 O(n)
Response backward | O(1) O(n) 0 O(n)

Silent shuffle correlation !~ Maflbox™1 Mailbox-2

loq]] Purr2]] 7 [leale [1]2
'

[ag] | PPrnM22]] .. |1 | [z2]2 [z2]2
h

Figure 6: Sharded 2m+ 1-party shuffle architecture. Each sub-
server P! € P, handles a disjoint workload shard.

just one uniform mask a’ for all n responses (see Figure 8, Step
4a). Also, the entire offline costs—both forward and backward—can
then be amortized across all subsequent interaction rounds.’

Sharded (2m+1)-party shuffle architecture. Although 2+1-party
setup is considered efficient and deployment-friendly [44, 50], its
security relies on a rigid non-collusion assumption. To relax this
and enhance scalability, Dopp1o explores a sharded 2m+1-party ar-
chitecture by expanding the original computing servers into logical
computing groups, P; and P, each with m sub-servers (see Fig-
ure 6). Unlike conventional MPC-style scaling schemes that often
increase the total share size per secret, our sharded scaling strategy
partitions the workload itself, directly leveraging the computational
parallelism and non-interactive shuffle techniques. This (1) further
decentralizes trust by raising the collusion threshold from the orig-
inal 2 to m+1; (2) reduces the per-server computational cost by
splitting the workload and having each sub-server processes only a
slice of the data (concrete performance gains depend on m); and (3)
provides somewhat fault tolerance from redundancy, withstanding
the failure of up to m—1 sub-servers per group.

The communication efficiency is largely preserved, with only ad-
ditional overhead from intra-group aggregation for message recon-
struction. This design enables shard-aware tuning of the system’s
balance between security, performance, and resilience.

4.3 DP Correlation and Silent Randomization

With the shuffled data held in additive shares, the following action
is to securely and efficiently randomize them.

Correlated DP randomness. We decompose the whole DP process
into (1) offline noise generation; and (2) online noise application. As
Figure 7 shows, Py precomputes expensive yet input-independent
DP noise offline, generating what we term DP correlation—a shared
vector where each entry encodes a random DP noise sample. P; and
P, then apply them online to perturb data. We define this below:

DEFINITION 4.2 (2-PARTY SILENT DP CORRELATION). We let¥ € IF’;
be a discrete DP noise vector, where each entry r; is drawn from a
computational &y, 5-DP distribution. Then, a silent DP correlation is
defined as [F];, where F=[F];+[F]2.

This design integrates naturally into the 2+1-party (dealer) set-
ting. While the dealer can be substituted with alternatives such as
distributed noise generation (DNG) [47] or fully MPC-based DP
protocols [51], these dealer-less approaches generally suffer from
low throughput (often below 10* samples/s) and restricted mecha-
nism flexibility. They are therefore inefficient for typical shuffle DP
systems, particularly when dealing with massive user populations,
tight privacy budgets, or complex mechanisms.

3For uniform-response tasks (e.g., FedAvg), the reverse shuffle is unnecessary; the
same shared output zj can simply be broadcast to all users.

119

0/Uni(k) vector [0

DP correlation vector [olol1
/

P €¢DP ofofo|M Po Uni(k)

G 2 o[[o] <[
0 () (= [[eil2+ 02
[z5)1 +[ra)1 [zh]2+ra]2 [0]1+[ro]1 [0)2+[ra]2

P, P P, P
Mailbox-1 Mailbox-2 Mailbox-1 Mailbox-2

(a) Shared Laplace mechanism (b) Shared k-RR mechanism

Figure 7: DP correlation is sampled offline (by P) and applied
online (by P; and P,). Non-additive mechanisms slightly dif-
fer from additive ones regarding the correlation form.

Silent randomization for additive DP mechanisms. With DP
correlation prepared offline, the online noise application for addi-
tive mechanisms (e.g., discrete Laplace) reduces to a simple, non-
interactive secret-shared addition:

Riap(x)) = [xi]i+[rilr + [x{la+ [ril2

locally computed at P; locally computed at P,

Yet, summation inherently risks modular overflow and poten-
tially incorrect results because shared inputs and noise are defined
over the same field F,. For computational correctness, intermediary
servers may further perform a lightweight arithmetic-to-arithmetic
(A2A) sharing conversion [28] to lift the shares to a larger field Fy/
before noise addition. This process incurs an extra cost of 2+1-party
oblivious transfer (OT) per data item [52].

Silent randomization for non-additive DP mechanisms. Non-
additive mechanisms like k-RR present a greater challenge, as they
rely on a non-linear, probabilistic choice. To enable its silent execu-
tion, we first algebraically reformulate the mechanism as:

Rir(x') =r+b-(x' =r), wherer ~ Uni(k), b ~ Bern(p),
withp= % Different from the additive mechanism, we encode
the probabilistic choice into the precomputed correlation structures.
Specifically, Py prepares a DP correlation vector 7 where entries
are either a random category from Uni(k) or zero. To suppress a
user’s input x” (the case where b=0), we zeroize the corresponding
entry in the shuffle correlation matrix M (see Figure 7b). Therefore,
both cases reduce to a simple sum of two components, resulting in
a unified, non-interactive execution:

[x{]1 + [0]:
[0]; + [ri]1 +

—
locally computed at P;

+ (w/ p),

(w/ 1-p).

[xi]2 + [0]2 = x;,
Rirr (x /) = : l
[0]2 + [ril2 =1
————
locally computed at P,

By jointly tuning shuffle DP correlations, our framework achieves
a unified, non-interactive local-addition workflow capable of sup-
porting both additive and non-additive DP mechanisms.

4.4 Relaxed Shuffle DP Randomization

The mandatory reliance on indistinguishable local randomizers [19,
34] structurally limits vanilla shuffle DP from optimizing utility
via personalized noise strategies. Naively bypassing this restriction
is insecure, as non-uniform randomizers may introduce leakage
exploitable for de-anonymization attacks and shattering the key
privacy amplification guarantees.

'_[poppio-off: Offline Protocol]

J

To initialize the entire system, generate and distribute data-
independent correlations across assisting server Py, user
set C, and computing servers P ={P;, P}.

(1) System initialization.

(a) The intermediary servers Py, P, P, jointly instanti-
ate the distributed virtual mailbox T, with each P;
initializes its portion of the slots 7/ as empty.

(b) For each user C; €C, Py assigns a unique identifier
i € [n], defining the address of the user’s static
virtual mailbox addresses (Tio, Til, le)

(2) User registration and preparation. For C; €C:

(a) Pp negotiates with C;, generates a pseudorandom
seed s; « {0, 1}", samples a random value a; «
PRF(s;) and stores it in Tio.

(b) P, samples a unique permutation index b; € [n] and
generates the DPF key pair encoding permutation
matrix M’s non-zero entry in column i:

(ki1, kiz) < DPF.keyGen(b;).

(c) P, samples DP noise r; from an ¢;-DP distribution

and encodes it into ([r;]1, [7i]2)-
(3) Correlation construction and distribution. After

processing all n users in C:

(a) Py computes and constructs the permuted mask
vector [&] j=[M-d] j; assembles the DPF key vector
I;j and DP noise vector [F];; and distributes these
vector shares [&], I;j, and [7]; to each P; e P.

(b) Each P; locally expands k j to derive matrix share
[M] j, constructing shuffle DP correlation as:

CR; = (M1}, [@l}, [71)-
And then store CR; in slots T/.
(4) (Optional) Reverse correlation construction and

distribution. If backward delivery is enabled:

(a) Pp negotiates with Ps, generates seed s’ « {0, 1},
samples @’ < PRF(s’), and stores it to all T? slots;

(b) P, constructs mask vector @ and distributes its
share [@]’; to P; € P.

(c) Each P; locally computes [M™']; = [MT]j, con-
structing the reversible correlation as:

CR = ([M7'],[&])).

And then store CR; in slots T/ as well.

Figure 8: DopP10’s offline protocol.

Instead of the “randomize-then-shuffle” (RtS) paradigm, this work
adopts a “shuffle-then-randomize” (StR) pipeline. While prior work
proved that the shuffle-randomize order can be originally irrelevant
to final privacy guarantees [34], we show this equivalence breaks
down when DP mechanisms are non-uniform (or personalized).

PROPOSITION 4.1 (SHUFFLE-RANDOMIZE ORDER (REVISITED)). Let
X ={x1,...,xn} be ordered inputs, and S be a uniform, random

120

_[poppio-on: Online Protocol]

J

To perform the AMP-SDP pipeline across the user set C,
intermediary servers Py, P;, P,, and curator server P;

(1) User submission. Each user C; computes its online
share [x;], =x;—a; and submits it to both computing
servers. Each server P; € P then stores the received
share in the user’s designated mailbox slot Tij .

Silent processing. Once all n shares are received, each
computing server P; executes locally:

(a) Construct the shared user input vector [X], by

reading all shares from its mailbox 7.

(b) (Silent shuffle) Compute the shuffled data shares:
[X]; = [al; + [M]; - [X]2.

(c) (Silent randomization) Compute the randomized,
shuffled data shares::

[Y]; = [X]; + [F];.

Then write [Y]; to its local mailbox slots T/.
Output reconstruction. The curator P; retrieves [Y];
from T/, reconstructs Y = 2 ;[¥Y1;, and performs the
final analytical workload:

Z = f(Y).
(Optional) Anonymous response delivery. If back-
ward delivery is enabled:
(a) (Curator as sender) P; constructs [Z],, with each

[zi]2=z;—a’, writing back to slot Ti1 and Tiz.

(b) (Silent reversible shuffle) Each P; update T/ by lo-
cally computing the permuted response shares:
(2] = @] + [MT]; - [Z]2.

(c) (Users as receivers) Each Cy then retrieves [z];

@

~

®)

“

=

by reading its own slots Tlf, and reconstruct zy to
bootstrap the next interactive round.

Figure 9: DopPP10’s online protocol.

permutation. Suppose each x; is randomized via a non-uniform mecha-
nismR; € Ry, yielding a composition R+ (X) ={R1(x1), ..., Rn(xn)}.
Let L(R) denote leakage information about the family of random-
izers, and let D be any PPT adversary with access to L(R). Definen

as the ratio between the effective local privacy parameter e, (derived
from ¢;) and the amplified privacy parameter ¢'. Then we have:

D D yq
Tris = 0(S 0 R(X)) < (Re 0 S(X)) = ngig ™.

Proor skeTcH: This inequality holds because, in the RtS para-
digm, the adversary D can exploit (public) knowledge of which non-
uniform randomizer R; is applied to each shuffled output y;. This
leakage enables D to partition the n-user anonymity set into smaller
disjoint subsets {Xj, ..., X;}, confining privacy amplification to the
subgroup sizes |Xj|. As a result, the overall guarantee is comparable
to that of weaker approximate shuffle DP schemes [5, 58, 80], where
amplification is known to be less effective. In contrast, StR shuffles
before randomization, breaking the link between each output y; and

RtS (g € (0.25,0.75]) —— RtS (g; € (0.75,1.25])
StR (¢; € (0.25,0.75]) —-=-- StR (¢; € (0.75,1.25])

RIS (¢; € (1.75, 2.25)
SR (g; € (1.75, 2.25)

(i) n’ /n=0.5

[]
100 - e
50 || =gt .

6-10*

n (total set size)

10°

6-10%

n’ (indistinguishable subset size)

10*

Figure 10: Numerical privacy amplification bounds in shuffle
DP for different shuffle-randomize orders.

its origin C;. Although the adversary still observes non-uniform out-
puts, the leakage £ (R;) remains uninformative, preserving privacy
amplification over the entire n-user set. O

The numerical simulations in Figure 10 also confirm this analysis.
Specifically, we sample different ¢; from certain ranges for different
records, intentionally constructing statistically distinguishable out-
put groups. The results, obtained by varying the indistinguishable
subset size n’ and the total user set size n, show the amplification
rate generally increases with both of these factors.

5 SECURITY ANALYSIS

AMP-SDP architecturally addresses two critical security concerns
of the vanilla shuffle model: (1) the centralized shuffler risk; and (2)
the vulnerability to user-side poisoning attacks.

Shuffler-side trust and security. Compared with conventional
designs having a centralized trusted shuffler, Dopp1o distributes
trust among multiple non-colluding intermediary servers, ensuring
that no single server can learn users’ raw data. As shown in Figure 8
and Figure 9, the assisting server P, is active only during the offline,
data-independent phase, while the computing servers P; and P, can
only ever observe secret shares of user data and the corresponding
cryptographic correlated randomness.

PROPOSITION 5.1 (SEMI-HONEST SECURITY). Protocol Ilpoppio-on
is secure against semi-honest adversaries corrupting either Py or P,
assuming correctly generated correlated randomness.

PROOF SKETCH: Assume, without loss of generality, P, is corrupted.
A simulator Sim can generate a computationally indistinguishable
view for P; using only its local input shares [X], and offline corre-
lation shares (CR;). This reduction is possible because the online
protocol is non-interactive; consequently, all online computations
and message flows are entirely predetermined by the pre-sampled
correlation and its local information. The case where P, is corrupted
follows symmetrically. O

Collusion resilience and trust separation. Following MPC as-
sumptions, all servers {Py, Py, P, P3} are mutually non-colluding,
reflecting real-world deployments operated by independent stake-
holders [1, 22, 28, 36, 44, 48]. To relax this and increase collusion
threshold, Dopp1o extends a 2m+1-party variant (see §4.2): even if
the curator P; colludes with a subset of users or sub-servers, the
joint permutation remains hidden and private.

User-side poisoning and security. Another critical threat is data
poisoning. This attack, widely studied under local DP [14, 18, 56,

121

72, 78], also persists in the shuffle model, while presenting a unique
security landscape defined by a fundamental dichotomy inherent
to the model’s structural anonymity:

e Inherent robustness: On one hand, anonymity amplifies privacy,
allowing larger local parameters &) under a given, expected global
budget ¢’. This lowers the true noise magnitude and suppresses
the relative influence of individual malicious inputs—an effect
also reflected in Table 3.

o Poisoning amplification: On the other hand, the same anonymity
simultaneously nullifies accountability. Without attribution, ma-
licious users can arbitrarily inject or coordinate biased submis-
sions undetected, enabling stealthy, large-scale poisoning that
abuses the very anonymity meant to protect honest users.

To analyze this, we first define the base corruption ratio as y = %¢
and introduce an amplification factor y. Instead of directly modeling
a complex, incremental attack, we reduce this to an analogous,
analytically simpler problem: an adversary manipulating n. users
submits p malicious records per user. This simplification is made for
analytical convenience, but it effectively models the core issue—the
inflation of corrupted inputs within the total dataset—and yields
an effective corruption ratio y’ = ﬁ

As demonstrated in Figure 11, we apply targeted maximal gain
attacks (MGA) on two representative workloads with n=10* users.
For frequency estimation, we employ the k-RR mechanism (k =20)
over {1,...,20}, simulating a targeted attack where corrupted users
inject a fixed item of 5; for variance estimation, we use the Laplace
mechanism over [0, 1], simulating an MGA that maximizes the total
variance. Across both settings (also see Figures 12 and 13), shuffle
DP exhibits higher robustness in the ideal case (1 =1) than local
counterpart, but its advantage diminishes rapidly as y increases.

Structural poisoning mitigation. AMP-SDP mitigates poisoning
not by detecting malicious clients, but by structurally constraining
what any user can manipulate.

o OPA elimination. By delegating randomization to intermediary
servers, AMP-SDP structurally removes OPAs.

o [PA mitigation. Inspired by prior work, AMP-SDP further incor-
porates several complementary strategies to constrain IPAs:

— Domain enforcement [1, 28]: encoding numerical inputs in a
finite field F, to natively bound its range, preventing adver-
saries from injecting excessively large secret-shared values to
gain disproportionate influence.

- Contribution dilution [57]: utilizing dummy-adding shuffle
to create a group of well-formed, indistinguishable dummy
records that dilute the influence of potential malicious inputs.

SDP (¢/ =0.5) —O— SDP (¢ =1.0) LDP (£=0.5) LDP (¢=1.0) ‘

(i) Frequency estimation (if) Variance estimation

:l
(D=L
12345678910

4 (poisoning ampl. factor)

Target freq.
Total var.
wu

N I
123456738910

4 (poisoning ampl. factor)

e
o 2
G

Figure 11: Poisoning amplification in shuffle DP over both
frequency estimation and variance estimation tasks.

IPA (mean)
IPA (error band)

—— OPA (mean)
OPA (error band)

(ii) Local DP (¢=1.0)
T T T

Baseline (mean)

Baseline (error band)

(i) Local DP (¢=0.5)

. T T T . r
5 03 E’] 5 03]
E 0.2 E 0.2
B O0lp oo - 1 % 0.1 e j
N Bt [--77--1 & ,EE=aT=-r---=--
0 005 01 015 0.2 0 005 01 015 0.2
(iii) Shuffle DP (¢’ =0.5) (iv) Shuffle DP (¢’ =1.0)
. 0.15 T \ T . 5 T 7 T
o' o'
£ o1 }DF’D, 4 £ oa1f D,n":'/nr :
7 0.05 M 4 5 0.05 e -
s3] =
0 | | | 0 | | |
0 005 01 015 0.2 0 005 01 0.5 0.2

y (corruption rate) vy (corruption rate)

Figure 12: Comparison of poisoning robustness in local DP
and shuffle DP for the frequency estimation task.

IPA (mean)
IPA (error band)

—{1— OPA (mean)
OPA (error band)

Baseline (mean)

Baseline (error band)

(i) Local DP (£=0.5)
T T T

(ii) Local DP (¢=1.0)
T T T

10
g g
> 9 £ 25 B
7 T TeUe s rev I
=80 ! ! !] = 15 | | | T
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
(iii) Shuffle DP (¢ =0.5) (iv) Shuffle DP (¢’ =1.0)
T T T |
5041 ﬁ 5 0.4
> >
0.2 [ER0-O00=0=0000=0000 5) 9 LB 5 O=O020=0=000-0-0
Z | & |
0 | | | 0 | | |
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

y (corruption rate) y (corruption rate)

Figure 13: Comparison of poisoning robustness in local DP
and shuffle DP for the variance estimation task.

These structural defenses are mostly mechanism-agnostic, ap-
plying to a broad class of query workloads in database systems.

PROPOSITION 5.2 (ATTACK SURFACE REDUCTION). The AMP-SDP
model reduces the attack surface of malicious users compared to the
vanilla shuffle DP model.

ProoF sKeETCH: As discussed above, AMP-SDP rules out OPA
threats and restricts IPAs to bounded domains. O

These defenses bound the worst-case deviation, yielding stronger
robustness.? This structural advantage is corroborated by the em-
pirical results in Figures 12 and 13. Across poisoning simulations
with n=10? users under different ¢’ and y parameters, Dopp1o con-
sistently confines poisoning effects to the IPA regime, exhibiting a
clear robustness separation to the vanilla model.

6 PROTOTYPE AND EVALUATION

To further showcase our AMP-SDP model and Dopprio framework,
we built a prototype by adapting Microsoft’s Precio system [28] for

4We acknowledge IPAs are a common, fundamental threat to any system accepting
user input; a general-purpose IPA defense is outside the scope of this work.

122

the online MPC backend and adopting Google’s DPF library [12]
for offline correlation generation. All computations are performed
over the finite fields and optimized using AVX2 vectorization and
multi-threading. The experiments were conducted on Ubuntu 20.04
servers (Intel i7-9700K CPU, 64GB RAM), simulating a typical WAN
setting (1 Gbps bandwidth, 60-120 ms RTT).

Dataset and baseline. We utilized two classes of datasets to show-
case our designs: (1) a synthetic dataset generated under a uniform
distribution and used for microbenchmarks on performance, pri-
vacy, and robustness, featuring varying record counts n € [10% 10°]
and bit-widths £ € {64, 1024}; and (2) two real-world datasets used
to measure practical utility and query performance, both derived
from larger municipal data collections, including:

o Fire [24]: n=112,436 records filtered by the call type. It contains
33 attributes, with each record capped at approximately 400 B.

o Retirement [65]: n=530,175 records filtered by payments. It com-
prises 22 attributes, with each record capped at 250 B.

We primarily compare Dopp1o with (1) network shuffling [58]—the
state-of-the-art decentralized shuffle DP scheme, and (2) vanilla
shuffle DP paradigm with a trusted shuffler [74].

Microbenchmark: online performance. DopPP10’s core online
protocol proceeds as a masked matrix-vector multiplication over the
finite field for both its message forward [Y]; =[&] j+[M] [X]2+[7];
and response backward passes [Z’] ;= [07’]j+[MT]j-[Z] 2. As shown
in Table 5, Dopp10 achieves zero online inter-server communication
across all variants due to the silent online protocol designs. This
starkly contrasts with network shuffling [58] that incurs substantial
communication overhead, which is especially borne by the clients
with more limited bandwidth and computational resources. For
instance, at n =10 and ¢ = 1024, DoprpI1O’s online server commu-
nication is optimal 0, while network shuffling requires iterative
peer-to-peer exchanges totaling gigabytes of data.

With communication costs eliminated, online latency is domi-
nated by local computation. The entire secure shuffle DP pipeline
completes in < 4 seconds for 10* users, showing high efficiency.
However, when serving a larger user base (n = 10°), the latency
grows super-linearly due to memory constraints and quadratic
computation complexity, highlighting the importance of our archi-
tectural extensions. By adopting the sharded scaling variant (m=2),
we can effectively halve the per-server load, and therefore improve
the system throughput. Furthermore, the reversible shuffle mecha-
nism efficiently extends the system to support interactive, adaptive
analytics, adding only a symmetric computational cost per round
and minimal communication per user.

Microbenchmark: privacy amplification capability. Figure 14
highlights the amplification advantage of Dopp10 over non-uniform
network shuffling [58]. The observed privacy gain confirms the
theoretical distinction between uniform, oblivious shuffle mecha-
nisms [6, 34, 37] and their non-uniform or approximate counter-
parts [43, 53, 80]. Furthermore, AMP-SDP conditionally provides
better privacy guarantees than pure shuffle DP [74]. These gains,
determined by the factor ¢, stem from two privacy-boosting exten-
sions: sampleable shuffle and dummy-adding shuffle. These findings
are also consistent with recent analyses [55, 57, 64] and demonstrate
Doprpr10’s architectural advantages in privacy guarantees.

Table 5: Comparison of online performance between Dopp10 and [58] under varying input numbers (n) and bit-widths (?).

Ref.h5*B# n=10% ¢ = 64 n=10% ¢ = 1024 n=10%¢ = 64 n=10% ¢ = 1024
Shuffle Variant Time (s) Comm (MB) [Time (s) Comm (MB) |[Time(s) Comm (MB) |Time (s) Comm (MB)
Network shuffling [58] ~120.55 ~10.15/0.08 ~130.34 =162.50/1.28 |~159.36 =126.60/0.80 |~282.20 =2026.00/12.80
Doprio 0.42 0.00/0.16 3.68 0.00 / 2.56 13.17 0.00 / 1.60 168.24 0.00 / 25.60
Dovrrio (Sampleable) 0.38 0.00/0.14 3.31 0.00 / 2.40 11.88 0.00/1.44 151.42 0.00 / 23.04
Dorpio (Dummy adding)| 0.46 0.00/0.18 4.05 0.00 / 2.82 14.54 0.00/1.77 185.06 0.00 / 28.16
Dorrio (Sharded scaling)| 0.21 0.00/ 0.32 1.84 0.00/5.12 6.23 0.00/3.20 69.29 0.00 / 51.20
Doprrio (Reversible) +0.42 +0.00 / 1.60x107°| +3.68 +0.00/2.56x10~%4| +13.17 +0.00/ 1.60x107°| +168.24 +0.00 / 2.56x10~*

T Network shuffling is estimated to perform ¢~ !logn rounds of £-bit pairwise exchanges for approximately mixing all records [58]. As reported in the work, here we set ¢ = 100

1

and assume RTT =90. Its shuffling-related communication occurs among users (instead of servers).
¥ We set sampleable shuffle uses sampling rate ¢ =0.9; dummy-adding shuffle uses inflation ratio ¢ =1.1, the total cost grows almost linearly.
* Online communication is split into inter-server computation and reconstruction phases, denoted as ‘a / b’; the former in DoppI0 is zero across all silent shuffle DP variants.
8 The sharded scaling variant uses m =2 sub-servers per computing group .. This maintains zero online inter-server cost yet increases message reconstruction communication.
B The +* prefix indicates the additional cost incurred during the anonymous response backward phase. Importantly, reconstruction cost is measured per user in this row.

SDP [74] (£9=0.5)
SDP [74] (¢9=1.0)
NetShuffle [58] (£9=0.5)
NetShuffle [58] (9=1.0)
Ours (AMP-SDP) (£9=0.5)
Ours (AMP-SDP) (£9=1.0)

LDP-NonAmpl. (¢9=0.5)
LDP-NonAmpl. (£9=1.0)
NetShuffle [58] (¢9=0.5)
NetShuffle [58] (¢9=1.0)

Ours (AMP-SDP) & [74] (£9=0.5)

Ours (AMP-SDP) & [74] (£9=1.0)

Ampl. ¢

I I E—
0 2 4 6 8 10

¢ (sampling/dummy rate)

[[[
0.2 04 06 0.8

n (user set size)

1
-10°

Figure 14: Comparison of privacy amplification capability
among vanilla shuffle DP [74], network shuffling [58], and
our AMP-SDP models (measured by privacy budget).

— — - Base NetShuffle [58] SDP [18] Ours (AMP-SDP) ‘
(i) ¢ =0.5 (i) & =1.0
g 03[‘ T go3f ‘ I
& 0.2 — | & 02 — s
201 % 01l |
I-S Fe—= o= === === F-?-l) _(___1____1__..__
0 01 02 03 0 0.1 02 03

y (corruption rate) y (corruption rate)

(a) Attack upper bounds for the frequency estimation (k-RR mechanism).

- — - Base NetShuffle [58] SDP [18] Ours (AMP-SDP) ‘
(i) &'=0.5 (i) ¢ =1.0

o 0.6 [‘ 5 0.6 [‘ ‘
< <
> 0.4 > 0.4 -
LB I et it I 7 R | Y B SO N————
= | | = | |

0 0.1 0.2 0.3 0 0.1 0.2 0.3

y (corruption rate) y (corruption rate)

(b) Attack upper bounds for the variance estimation (Laplace mechanism).
Figure 15: Comparison of data poisoning robustness among

vanilla shuffle DP [18], network shuffling [58], and our AMP-
SDP models (measured by estimation error band).

123

Microbenchmark: security and robustness implication. We
evaluate DoPP1O’s system-level defense against malicious user poi-
soning—a critical threat in real-world data management. By dele-
gating randomization to the server side, AMP-SDP eliminates the
most damaging OPAs by construction. This contrasts with base-
lines such as pure shuffle DP [74] and network shuffling [58], which
depend on user-side coordination and thereby expose a broader
attack surface to adversarial manipulation.

To quantify this effect, we conduct a targeted MGA attack [14] on
two representative workloads using uniformly sampled synthetic
dataset: frequency estimation using the k-RR mechanism (k =20) and
variance estimation using the Laplace mechanism over [0, 1]. We fix
the number of users at n=10* and vary the actual corruption ratio
y from 0 to 0.3, representing increasing adversarial participation.
Figure 15 reports the empirical error bands, confirming DopP10’s
structural robustness advantage.

Microbenchmark: utility on realistic datasets and database
workloads. To complement the preceding synthetic-data evalua-
tions, we further examine Dopp10’s practical utility on two real-
world datasets—Retirement [65] and Fire [24]—and benchmark four
representative types of SQL query workloads:

(1) Scalar aggregation (average):
SELECT AVG(Retirement_amount) FROM Retirement;
(2) Group-by aggregation (histogram):
SELECT Job_family, COUNT(*) FROM Retirement
GROUP BY Job_family;
(3) Range query (proportion):
SELECT CAST(COUNT(%*) AS REAL) /
(SELECT COUNT(*) FROM Fire) FROM Fire
WHERE Dispatch_DtTm - Received_DtTm < 2;
(4) Multi-round data exploration (drill down):

(Round 1) SELECT Dept, COUNT(*) AS dept_cnt
FROM Retirement GROUP BY Dept
ORDER BY dept_cnt DESC LIMIT 5;

(Round 2) SELECT AVG(Salary) FROM Retirement

WHERE dept In Dept;

Our experimental evaluation on two real-world datasets demon-
strates that DopP10 consistently achieves higher data utility than
the state-of-the-art distributed network shuffling mechanism [58],

’ NetShuffle [58] —— Ours (AMP-SDP)

(ii) Histogram statistics

(i) Average statistics
: Ho—C

—

g o

.g 0.98 |- .%

2 0.96 - 2

g 094 | s

& 09p LT | \ L L& 07k I | -
03 0.7 12 1.7 2 03 0.7 1.2 1.7 2

&’ (ampl. privacy budget) &’ (ampl. privacy budget)

Figure 16: Comparison of estimation precision between net-
work shuffling [58] and our AMP-SDP model for average and
histogram statistics on the Retirement [65] dataset.

= 0345 —
= ‘ - — - Base NetShuffle [58] —O— Ours (AMP-SDP)
3 0.344 |-

-

s t = O} Tt T O O

g 0343 \ \ \ \ \ \

o -

|
0.7 1 1.2 1.5 2
& (ampl. privacy budget)

1.7

Figure 17: Comparison of estimation result between network
shuffling [58] and our AMP-SDP model for range query on
the Fire [24] dataset.

One-shot
—1— Two-step

D [J One-shot (&' =0.5) I [0} Two-step (¢/ =0.5)
[O One-shot (& =1.0) 0o Two-step (¢/ =1.0)
(ii) Perritem utility (Top-5)

(i) Overall utility

o 1.0000 [CooOoooo] 102 7

3

2 =

2 el] g v ” H H H H H H |
& 0.9998 t ——— 104 l‘ 0 I‘Dﬂ l‘ Il I‘DD l‘ Il

051 15 2 S“(se‘w“s'\‘?o\ace ,“aéesew'\ce

&’ (ampl. privacy budget)

Figure 18: Comparison of analytical utility between one-shot
estimation and two-step drill-down methods for our AMP-
SDP model on the Retirement [65] dataset.

with the advantage widening as the analytical task becomes more
complex. As shown in Figure 16, for the simple average estimation
on the Retirement dataset, DoppIo already attains a precision of
0.998 under a strict privacy budget of ¢’ =0.7, surpassing network
shuffling’s 0.938. This gap persists for more demanding histogram-
based analyses, where DopPI1O is capable of better preserving fine-
grained statistical patterns. Similarly, for time-series range queries
on the Fire dataset (as reflected in Figure 17), Dopp1o achieves sub-
stantially lower relative error—over 50% reduction at ¢’ =0.5—in
estimating valid record counts, demonstrating superior accuracy
even under tight privacy constraints.

We further evaluate Dopp1o under an interactive, adaptive work-
load using a two-round “drill-down” pipeline on the Retirement [65]
dataset, compared to a naive one-shot execution. In Round 1, users
report their Job_family via k-RR to identify the Top-5 categories;
in Round 2, Dopp1o then estimates the average Retirement amount
within these categories using the Laplace mechanism. To achieve
better utility, all users participate—those in the Top-5 contribute
perturbed true values, while others send perturbed dummy values
(e.g., ~0). In particular, to enforce this conditional participation,

124

the curator P; informs the dealer Py of dummy-user indices so that
Py can zeroize the corresponding columns in the shuffle matrix M,
preventing unqualified users from injecting non-dummy data. As
shown in Figure 18, this two-step pipeline can improve analytical
accuracy and reduces MSE across all categories, demonstrating the
potential of structured multi-round shuffle DP analytics.

7 DISCUSSION

We next discuss several deployment-oriented aspects of DoppIo.

Chunked processing. Practical deployments must handle some
high-dimensional user records with large bit-widths (e.g., £~ 1 KB).
To maintain scalability and avoid the inefficiency of encoding
such records within a single, large finite field, Dopp1o partitions
each user’s f-bit record into k fixed-size chunks, denoted as x; :=
Xi1ll - .. ||xik. The silent shuffle then generalizes to a matrix—-matrix
multiplication that reuses and amortizes a single shuffle correlation
across all k chunks. For example, on the realistic Fire [24] dataset,
each record can be split into 50 X 8 B or 4 X 128 B chunks, incurring
modest and predictable overhead with a tunable trade-off.

On-the-fly preprocessing. Doppio features a lean online phase,
with communication- and computation-intensive operations shifted
to the offline. In secure data crowdsourcing, user submissions natu-
rally arrive asynchronously, whereas shuffling requires a complete
batch. Dopr1o leverages this inherent interval to pipeline on-the-fly
preprocessing during data collection, effectively hiding the offline
workload and avoiding idle resources.

Limitations. DoppIo currently operates in a static mode with fixed
batch size n and pre-registered users, assumes semi-honest servers,
and—due to the nature of shuffle DP—supports only commutative
statistics whose outputs are invariant to record order.

8 CONCLUSION

This work introduced the AMP-SDP model and the Dopp1o0 frame-
work. By co-designing MPC and shuffle DP techniques, our model
decentralizes trust, optimizes efficiency, enhances security, and ex-
pands the known technical scope, establishing DopPIO as a new,
promising paradigm for privacy-aware data management. Looking
ahead, we aim to address the current model limitations and further
generalize AMP-SDP across rich, diverse data-processing pipelines.
We also plan to integrate Dopp1o with large-scale database infras-
tructures, enabling practical, end-to-end privacy-preserving data
analytics in real-world deployments.

ACKNOWLEDGMENTS

The authors sincerely thank all reviewers for their insightful feed-
back. This research was supported in part by Hong Kong Research
Grants Council (RGC) under Grants 11217620, 11218521, 11218322,
11219025, R6021-20F, R1012-21, RFS2122-1S04, C2004-21G, C1029-
22G, C6015-23G, and N_CityU139/21; Hong Kong Innovation and
Technology Commission (ITC) under Project MHP/135/23; Japan
Society for the Promotion of Science (JSPS) under Grant KAKENHI
JP23K24851; and Japan Science and Technology Agency (JST) under
Grants PRESTO JPMJPR23P5, CREST JPMJCR21M2, and NEXUS
JPMJNX25C4. This work was also substantially supported by the In-
noHK initiative, the Government of the HKSAR, and the Laboratory
for Al-Powered Financial Technologies (AIFT).

REFERENCES

(1]

(2]

[11]

[12]

[13

[14

[15]

[16

[17]

(18

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27

[28

[29]

Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-
niadou. 2022. Prio+: Privacy preserving aggregate statistics via boolean shares.
In Proc. of SCN. 516-539.

Apple. 2020. Apple and Google partner on COVID-19 contact tracing tech-
nology. https://www.apple.com/hk/en/newsroom/2020/04/apple-and-google-
partner-on-covid- 19-contact-tracing-technology/ [Online; accessed: Apr./2025].
Nuttapong Attrapadung, Goichiro Hanaoaka, Takahiro Matsuda, Hiraku Morita,
Kazuma Ohara, Jacob CN Schuldt, Tadanori Teruya, and Kazunari Tozawa. 2021.
Oblivious linear group actions and applications. In Proc. of ACM CCS. 630-650.
Borja Balle, Gilles Barthe, and Marco Gaboardi. 2018. Privacy amplification by
subsampling: Tight analyses via couplings and divergences. In Proc. of NeurIPS.
Borja Balle, James Bell, and Adria Gascon. 2023. Amplification by Shuffling
without Shuffling. In Proc. of ACM CCS, Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda (Eds.). 2292-2305.

Borja Balle, James Bell, Adria Gascén, and Kobbi Nissim. 2019. The privacy
blanket of the shuffle model. In Proc. of CRYPTO. 638-667.

Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. 2020. Private Summation
in the Multi-Message Shuffle Model. In Proc. of ACM CCS. 657-676.

Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct
histograms. In Proc. of ACM STOC. 127-135.

Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data
analysis: Simultaneously solving how and what. In Proc. of CRYPTO. 451-468.
Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. 2017. Prochlo: Strong privacy for analytics in the crowd. In Proc. of ACM
SOSP. 441-459.

Jonas Béhler and Florian Kerschbaum. 2020. Secure multi-party computation of
differentially private median. In Proc. of USENIX Security. 2147-2164.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
2021. Lightweight techniques for private heavy hitters. In Proc. of IEEE S&P.
762-776.

Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-
ments and extensions. In Proc. of ACM CCS. 1292-1303.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Data poisoning attacks
to local differential privacy protocols. In Proc. of USENIX Security. 947-964.
Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. 2019. Securely sampling
biased coins with applications to differential privacy. In Proce. of ACM CCS.
603-614.

Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-Shared Shuffle.
In Proc. of ASIACRYPT, Shiho Moriai and Huaxiong Wang (Eds.). 342-372.

E Chen, Yang Cao, and Yifei Ge. 2024. A Generalized Shuffle Framework for
Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility.
In Proc. of AAAL 11267-11275.

Albert Cheu, Adam Smith, and Jonathan Ullman. 2021. Manipulation attacks in
local differential privacy. In Proc. of IEEE S&P. 883-900.

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.
2019. Distributed differential privacy via shuffling. In Proc. of EUROCRYPT.
375-403.

Albert Cheu and Maxim Zhilyaev. 2022. Differentially private histograms in the
shuffle model from fake users. In Proc. of IEEE S&P. 440-457.

Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang
Zhang, Somesh Jha, Nicolas Papernot, and Xiao Wang. 2021. CaPC Learning:
Confidential and Private Collaborative Learning. In Proc. of ICLR.

Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable
computation of aggregate statistics. In Proc. of USENIX NSDI. 259-282.
TuGraph DB. 2023. HTAP-TuGraph documentation. https://tugraph-db.
readthedocs.io/en/v4.3.2/2.introduction/5.characteristics/3.htap.html [Online;
accessed: Jul./2025].

San Francisco City Fire Department. 2024. San Francisco Fire Department Pub-
lic Dataset. https://www.kaggle.com/datasets/imankity/san-francisco-fire-
department-public-dataset [Online; accessed: Jul./2025].

Wentao Dong, Peipei Jiang, Huayi Duan, Cong Wang, Lingchen Zhao, and Qian
Wang. 2025. Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared
Shuffle. In Proc. of NDSS.

Wentao Dong and Cong Wang. 2023. Poster: Towards Lightweight TEE-Assisted
MPC. In Proc. of ACM CCS. 3609-3611.

Wentao Dong, Lei Xu, Legian Zheng, Huayi Duan, Cong Wang, and Qian Wang.
2025. Do Not Skip Over the Offline: Verifiable Silent Preprocessing From Small
Security Hardware. IEEE Trans. on Information Forensics and Security 20 (2025),
4860-4873.

F. Betiil Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase.
2024. Precio: Private Aggregate Measurement via Oblivious Shuffling. In Proc. of
ACM CCS. 1819-1833.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.
In Proc. of EUROCRYPT. 486-503.

125

(30]

[31]

(32]

(38]
(39]

[40]

[41]

[42]

[43]

[44]

[45

[46

[47]

(48]

[49

[50]

[52

[53

[54

[55

[56]

o
=

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4
(2014), 211-407

Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan
Pryvalov. 2014. Differentially private data aggregation with optimal utility. In
Proc. of ACSAC. 316-325.

Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Shanshan Han, Shantanu Sharma,
Chaoyang He, Sharad Mehrotra, Salman Avestimehr, et al. 2023. Federated
analytics: A survey. APSIPA Transactions on Signal and Information Processing
12, 1(2023).

Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida. 2023. Effi-
cient Noise Generation Protocols for Differentially Private Multiparty Computa-
tion. IEEE Trans. on Dependable and Secure Computing 20, 6 (2023), 4486-4501.
Ulfar Erlingsson, Vitaly Feldman, Illya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. 2019. Amplification by shuffling: From local
to central differential privacy via anonymity. In Proc. of ACM-SIAM SODA. 2468
2479.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In Proc. of ACM CCS.
1054-1067.

Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous communication
from multiparty shuffling protocols. In Proc. of NDSS.

Vitaly Feldman, Audra McMillan, and Kunal Talwar. 2022. Hiding among the
clones: A simple and nearly optimal analysis of privacy amplification by shuffling.
In Proc. of IEEE FOCS. 954-964.

Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. 2018.
Privacy amplification by iteration. In Proc. of IEEE FOCS. 521-532.

Yucheng Fu and Tianhao Wang. 2024. Benchmarking Secure Sampling Protocols
for Differential Privacy. In Proc. of ACM CCS. 318-332.

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Amer Sinha.
2021. Differentially private aggregation in the shuffle model: Almost central
accuracy in almost a single message. In Proc. of ICML. 3692-3701.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and
Ananda Theertha Suresh. 2021. Shuffled model of differential privacy in federated
learning. In Proc. of AISTATS. 2521-2529.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Ananda Theertha Suresh, and
Peter Kairouz. 2021. On the renyi differential privacy of the shuffle model. In
Proc. of ACM CCS. 2321-2341.

Dov Gordon, Jonathan Katz, Mingyu Liang, and Jiayu Xu. 2022. Spreading the
privacy blanket: Differentially oblivious shuffling for differential privacy. In Proc.
of ACNS. 501-520.

Matan Hamilis, Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2025. Prepro-
cessing for Life: Dishonest-Majority MPC with a Trusted or Untrusted Dealer.
In Proc. of IEEE S&P. 2433-2452.

Mikko Heikkild, Eemil Lagerspetz, Samuel Kaski, Kana Shimizu, Sasu Tarkoma,
and Antti Honkela. 2017. Differentially private bayesian learning on distributed
data. In Proc. of NeurIPS.

Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. 2013. On the power of correlated randomness in secure
computation. In Proc. of TCC.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete
gaussian mechanism for federated learning with secure aggregation. In Proc. of
ICML. 5201-5212.

Banashri Karmakar, Nishat Koti, Arpita Patra, Sikhar Patranabis, Protik Paul,
and Divya Ravi. 2024. Asterisk: Super-fast MPC with a Friend. In Proc. of IEEE
S&P. 542-560.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith. 2011. What can we learn privately? SIAM J. Comput.
40, 3 (2011), 793-826.

Darya Kaviani and Raluca Ada Popa. 2023. MPC Deployments. https://mpc.cs.
berkeley.edu/ [Online; accessed: Apr./2025].

Hannah Keller, Helen Méllering, Thomas Schneider, Oleksandr Tkachenko, and
Liang Zhao. 2024. Secure Noise Sampling for DP in MPC with Finite Precision.
In Proc. of ARES. 1-12.

Ryo Kikuchi, Dai Ikarashi, Takahiro Matsuda, Koki Hamada, and Koji Chida.
2018. Efficient bit-decomposition and modulus-conversion protocols with an
honest majority. In Proc. of ACISP. 64-82.

Antti Koskela, Mikko A. Heikkils, and Antti Honkela. 2024. Numerical Account-
ing in the Shuffle Model of Differential Privacy. In ICLR.

Avinash Kumar. 2022. Towards interactive, adaptive and result-aware big data
analytics. Ph.D. Dissertation. University of California, Irvine.

Xiaoyu Li, Yang Cao, and Masatoshi Yoshikawa. 2023. Locally Private Streaming
Data Release with Shuffling and Subsampling. In Proc. of IEEE ICDEW. 125-131.
Xiaoguang Li, Ninghui Li, Wenhai Sun, Neil Zhengiang Gong, and Hui Li. 2023.
Fine-grained poisoning attack to local differential privacy protocols for mean
and variance estimation. In Proc. of USENIX Security. 1739-1756.

Xiaochen Li, Weiran Liu, Hanwen Feng, Kunzhe Huang, Yuke Hu, Jinfei Liu, Kui
Ren, and Zhan Qin. 2024. DUMP: Privacy Enhancement Via Dummy Points in
the Shuffle Model. IEEE Trans. on Dependable and Secure Computing 21, 3 (2024),

https://www.apple.com/hk/en/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
https://www.apple.com/hk/en/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
https://tugraph-db.readthedocs.io/en/v4.3.2/2.introduction/5.characteristics/3.htap.html
https://tugraph-db.readthedocs.io/en/v4.3.2/2.introduction/5.characteristics/3.htap.html
https://www.kaggle.com/datasets/imankity/san-francisco-fire-department-public-dataset
https://www.kaggle.com/datasets/imankity/san-francisco-fire-department-public-dataset
https://mpc.cs.berkeley.edu/
https://mpc.cs.berkeley.edu/

[58]

[59]

[60]
[61]
[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

1001-1016.

Seng Pei Liew, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, and
Masatoshi Yoshikawa. 2022. Network shuffling: Privacy amplification via random
walks. In Proc. of SIGMOD. 773-787.

Yixuan Liu, Suyun Zhao, Li Xiong, Yuhan Liu, and Hong Chen. 2023. Echo of
neighbors: privacy amplification for personalized private federated learning with
shuffle model. In Proc. of AAAL 11865-11872.

Donghang Lu and Aniket Kate. 2023. RPM: Robust anonymity at scale. In Proc.
of PETs.

Qiyao Luo, Yilei Wang, and Ke Yi. 2022. Frequency Estimation in the Shuffle
Model with Almost a Single Message. In Proc. of ACM CCS. 2219-2232.

Casey Meehan, Amrita Roy Chowdhury, Kamalika Chaudhuri, and Somesh Jha.
2022. Privacy implications of shuffling. In Proc. of ICLR.

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable
privacy-preserving machine learning. In Proc. of IEEE S&P. 19-38.

Takao Murakami, Yuichi Sei, and Reo Eriguchi. 2025. Augmented Shuffle Proto-
cols for Accurate and Robust Frequency Estimation under Differential Privacy.
In Proc. of IEEE S&P. 3892-3911.

San Francisco Controller’s Office. 2024. San Francisco Employee Compensa-
tion Dataset. https://www.kaggle.com/datasets/san-francisco/sf-employee-
compensation [Online; accessed: Jul./2025].

Vibhor Rastogi and Suman Nath. 2010. Differentially private aggregation of
distributed time-series with transformation and encryption. In Proc. of ACM
SIGMOD. 735-746.

Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. 2020. Crypte: Crypto-assisted differential privacy on untrusted
servers. In Proc. of ACM SIGMOD. 603-619.

Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. 2011.
Privacy-preserving aggregation of time-series data. In Proc. of NDSS.

Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, and Dawn Song. 2017.
Distributed Private Data Analysis: Lower Bounds and Practical Constructions.
ACM Trans. on Algorithms 13, 4 (2017), 50:1-50:38.

Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy
enhanced matrix factorization for recommendation with local differential privacy.

126

(71]

(72]

(73]

[75]

[76]

(7]

(78]

[80]

(81]

IEEE Trans. Knowledge and Data Engine. 30, 9 (2018), 1770-1782.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards personal-
ized federated learning. IEEE Trans. on Neural Networks and Learning Systems
34, 12 (2022), 9587-9603.

Wei Tong, Haoyu Chen, Jiacheng Niu, and Sheng Zhong. 2024. Data Poisoning
Attacks to Locally Differentially Private Frequent Itemset Mining Protocols. In
Proc. of ACM CCS. 3555-3569.

Shaowei Wang, Changyu Dong, Di Wang, and Xiangfu Song. 2025. Beyond Sta-
tistical Estimation: Differentially Private Individual Computation in the Shuffle
Model. In Proc. of USENIX Security. 2789-2808.

Shaowei Wang, Yun Peng, Jin Li, Zikai Wen, Zhipeng Li, Shiyu Yu, Di Wang, and
Wei Yang. 2024. Privacy Amplification via Shuffling: Unified, Simplified, and
Tightened. Proc. of VLDB 8 (2024), 1870-1883.

Tianhao Wang, Bolin Ding, Min Xu, Zhicong Huang, Cheng Hong, Jingren
Zhou, Ninghui Li, and Somesh Jha. 2020. Improving utility and security of the
shuffler-based differential privacy. Proc. of VLDB 13 (2020), 3545-3558.
Chengkun Wei, Ruijing Yu, Yuan Fan, Wenzhi Chen, and Tianhao Wang. 2023.
Securely Sampling Discrete Gaussian Noise for Multi-Party Differential Privacy.
In Proc. of ACM CCS. 2262-2276.

Hao Wu, Olga Ohrimenko, and Anthony Wirth. 2022. Walking to Hide: Privacy
Amplification via Random Message Exchanges in Network. In ArXiv Preprint.
Yongji Wu, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Poisoning
Attacks to Local Differential Privacy Protocols for Key-Value Data. In Proc. of
USENIX Security. 519-536.

Lihua Yin, Jiyuan Feng, Hao Xun, Zhe Sun, and Xiaochun Cheng. 2021. A Privacy-
Preserving Federated Learning for Multiparty Data Sharing in Social IoTs. IEEE
Trans. on Network Science and Engineering 8, 3 (2021), 2706-2718.

Mingxun Zhou and Elaine Shi. 2022. The power of the differentially oblivious
shuffle in distributed privacy mechanisms. Cryptology ePrint Archive (2022).
Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li. 2020.
Federated heavy hitters discovery with differential privacy. In Proc. of AISTATS.
3837-3847.

https://www.kaggle.com/datasets/san-francisco/sf-employee-compensation
https://www.kaggle.com/datasets/san-francisco/sf-employee-compensation

	Abstract
	1 Introduction
	1.1 Technique Overview
	1.2 Comparison with Relevant DP Models

	2 Preliminaries
	3 AMP-SDP Model
	3.1 Threat Model
	3.2 Communication Model
	3.3 Ideal Functionality and Design Choices

	4 Doppio Framework
	4.1 Shuffle Correlation and Silent Shuffle
	4.2 Generalized, Reversible, Scalable Shuffle
	4.3 DP Correlation and Silent Randomization
	4.4 Relaxed Shuffle DP Randomization

	5 Security Analysis
	6 Prototype and Evaluation
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

