
GTI: Graph-based Tree Index with Logarithm Updates for Nearest
Neighbor Search in High-Dimensional Spaces

Ruiyao Ma
Zhejiang University
ryma@zju.edu.cn

Yifan Zhu
Zhejiang University
xtf_z@zju.edu.cn

Baihua Zheng
Singapore Management University

bhzheng@smu.edu.sg

Lu Chen
Zhejiang University
luchen@zju.edu.cn

Congcong Ge
Zhejiang University
gcc@zju.edu.cn

Yunjun Gao
Zhejiang University
gaoyj@zju.edu.cn

ABSTRACT
Nearest neighbor search (NNS) is fundamental for high-dimensional
space retrieval and impacts various fields, such as pattern recogni-
tion, information retrieval, recommendation systems, and vector
database management. Among existing NNS methods, graph-based
methods often excel in query accuracy and efficiency. However,
these methods face significant challenges, including high construc-
tion costs and difficulties with dynamic data updates. Recent efforts
have focused on combining graph methods with hashing, quan-
tization, and tree-based approaches to address these issues, but
problems with large index sizes and update performance remain
unresolved. In response, this paper proposes GTI, a novel, light-
weight, and dynamic graph-based tree index for high-dimensional
NNS. GTI constructs a tree index built across the entire dataset and
employs a lightweight graph index at the level 1 of the tree to sig-
nificantly reduce graph construction costs. It also features effective
data insertion and deletion algorithms that enable logarithmic real-
time updates. Additionally, we have developed an effective NNS
algorithm for GTI, which not only achieves approximate search
performance on par with SOTA graph-based methods but also sup-
ports exact NNS. Extensive experiments on six real-world datasets
demonstrate that GTI achieves an approximately 10× improvement
in update efficiency compared to SOTA tree-based methods, while
achieving search effectiveness comparable to SOTA approximate
NNS methods. These results underscore the potential of GTI for
effective application in dynamic and evolving scenarios.

PVLDB Reference Format:
Ruiyao Ma, Yifan Zhu, Baihua Zheng, Lu Chen, Congcong Ge, and Yunjun
Gao. GTI: Graph-based Tree Index with Logarithm Updates for Nearest
Neighbor Search in High-Dimensional Spaces. PVLDB, 18(4): 986 - 999,
2024.
doi:10.14778/3717755.3717760
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ZJU-DAILY/GTI-Graph-based-Tree-Index.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717760

1 INTRODUCTION
Nearest neighbor search (NNS) is a crucial technique for identifying
the closest data points to a query within a dataset, and it plays a
fundamental role in high-dimensional space retrieval. This tech-
nique is widely applied across various domains, including pattern
recognition [21, 39], information retrieval [25, 72], recommenda-
tion systems [47, 56], retriever-augmented generation [63], and
vector database management [53, 70]. For instance, top-𝑘 queries,
which leverage ranking function scores to retrieve the 𝑘 most im-
portant query results, covering various query models, data access
methods, and ranking functions [34], are similar to NNS based on
object-query similarity. Thus, variants of NNS are applicable to
answer top-𝑘 queries. Building on index-free approaches [17, 18]
and using R-tree [32] for dataset preprocessing, recent top-𝑘 stud-
ies [48, 49] effectively combine skyline queries with top-𝑘 queries,
serving a role similar to NNS. However, such tree-based methods
tailored for top-𝑘 queries face limitations due to the curse of di-
mensionality [9, 64], resulting in reduced search performance in
high-dimensional spaces. Over the past few decades, numerous
methods have been proposed to enhance NNS efficiency, including
tree-based methods, hash-based methods, quantization-based meth-
ods, and graph-based methods. Among these, graph-based methods
stand out for representing neighbor relationships effectively and
delivering highly accurate query results through greedy algorithms.
They achieve an optimal balance between query efficiency and
accuracy [59], and have become a preferred and popular choice in
many practical applications [52].

Despite their advantages, graph-based methods face significant
challenges. Index construction can be time-consuming, often taking
hours or even days for billion-scale datasets, even with paralleliza-
tion [6, 71]. While parallel processing accelerates construction,
it also significantly increases memory usage, which limits scal-
ability and complicates large dataset management. Additionally,
graph-based methods struggle with dynamic data updates, making
them less suitable for scenarios with frequent data changes. For
example, major platforms like Microsoft [46] and Facebook [38]
integrate graph-based methods for their search engines but face
issues with real-time updates. When new data, such as recent de-
velopments in ChatGPT, become available, these methods may
not update promptly, leading to degraded query performance. To
address this, incremental construction approaches have been pro-
posed [44, 45], which support data insertion but often fail with data

986

https://doi.org/10.14778/3717755.3717760
https://github.com/ZJU-DAILY/GTI-Graph-based-Tree-Index
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717760
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Graph MethodTree Method

Index construction and update

Nearest neighbor search

SlowFast

Slow Fast

Hybrid Method

Fast

Fast

Figure 1: Motivating Example

deletions, as seen with social media content removal. Periodic re-
construction methods offer a solution for handling both insertions
and deletions [55], but they incur high reconstruction costs.

Recent studies have explored hybrid approaches (e.g., integrat-
ing graph-based methods with hashing, quantization or trees) to
alleviate the construction and update bottlenecks of graph-based
methods. For instance, ELPIS [6] partitions the dataset using a
tree index and builds subgraphs within leaf nodes, which reduces
construction costs by avoiding a complete graph over the entire
dataset. However, ELPIS still faces challenges with frequent data
updates. Similarly, Aguerrebere et al. [1] employ quantized com-
pressed vectors to construct and search graphs, aiming to reduce
memory usage and speed up the construction and search processes,
yet the graph index still struggles with updates. LSH-APG [71]
leverages a lightweight LSH framework to improve search speeds
and pruning conditions, thereby reducing construction and search
costs while supporting data insertions and deletions. Nevertheless,
its lazy deletion strategy necessitates periodic index adjustments,
and the coexistence of hash and graph indexes can lead to a large
index size, potentially affecting query performance.

Hybrid methods offer a promising solution by combining differ-
ent approaches to overcome the limitations of existing methods. As
illustrated in Fig. 1, tree-based methods are efficient in construc-
tion and well-suited to dynamic scenarios but often suffer from
poor search performance in high dimensional spaces. In contrast,
graph-based methods excel in fast NNS but are hampered by high
construction and update costs. To address these challenges, we
propose a hybrid tree-graph index that leverages the strengths of
both methods: supporting dynamic updates, and maintaining ef-
ficient query performance, especially in high-dimensional spaces.
However, achieving this requires overcoming three key challenges.

Challenge 1: Optimizing graph construction costs. Graphs
are known for their excellent query performance but come with ex-
pensive construction costs. Although parallelization can accelerate
construction, it requires substantial memory, limiting scalability
and complicating the management of large datasets. Recent ap-
proaches [6, 23] attempt to mitigate these costs by hierarchically
partitioning the dataset individually with the tree index to accel-
erate graph construction. However, they still struggle with the
significant memory demands of maintaining complex neighbor
relationships between objects. To address this, we propose a multi-
granularity partitioning approach. By hierarchically partitioning
the data using the tree index and selectively building graphs at one
internal level of the tree, we can effectively reduce overhead and
more efficiently manage neighbor relationships.

Challenge 2: Achieving real-time graph updates. Graph-
based methods face difficulties in efficiently updating data due

to their reliance on complex neighbor structures when performing
searches. Frequent changes, such as product listings on e-commerce
platforms like Alibaba’s Taobao and content updates on social media
platforms like Twitter and Instagram, create dynamic environments
where existing tree-graph methods [6, 16, 23, 35, 50] struggle. To
overcome this, we design efficient data insertion and deletion al-
gorithms that enable logarithmic real-time updates. Our approach
separates updates into two components: tree updates for all objects
and graph updates for the selected internal nodes. This design en-
sures that overall update complexity remains 𝑂 (log𝑛) on average,
leveraging the logarithmic time complexity of tree updates and the
relatively small number of graph nodes.

Challenge 3: Maintaining efficient search performance. The
hybrid tree-graph method requires a top-down search through the
tree during the search phase, which can limit search performance.
Furthermore, the over-reliance on tree partition information may
limit the global navigation structure of the graph, resulting in de-
clining query accuracy. Additionally, existing hybrid tree-graph
methods tend to support only approximate queries, making them
unsuitable for applications requiring exact searches, such as obsta-
cles locating by robotics and autonomous vehicles for navigation
and path planning, and disease diagnosis based on medical imaging.
To address this, our approach diverges from traditional methods
by conducting searches directly on the graph, bypassing the per-
formance limitations of tree traversal and maintaining efficient
graph query performance. By leveraging both global neighbor re-
lationships in the graph and local neighbor relationships in the
tree’s leaf nodes, we ensure comprehensive dataset reachability and
high query accuracy. Furthermore, our hybrid structure supports
both efficient approximate and exact queries, capitalizing on the
advantages of both the tree and graph components.

In summary, our key contributions are:

• Lightweight and dynamic graph-based tree index. We intro-
duce GTI, a novel dynamic Graph-based Tree Index for
NNS in high-dimensional spaces. GTI features a tree index
built spanning the entire dataset and a lightweight graph
index constructed from nodes at level 1 of the tree. This
design significantly reduces both index construction time
and space costs.

• Efficient data update algorithms.We propose effective up-
date strategies for dynamic scenarios, encompassing algo-
rithms for both data insertion and deletion that support
logarithmic real-time updates on the proposed GTI.

• Efficient and general search algorithms. Building on the re-
duced construction costs and robust update capabilities, we
develop an efficient approximate NNS algorithm for GTI,
achieving performance comparable to SOTA graph-based
methods. Meanwhile, GTI supports exact NNS, encompass-
ing all queries traditionally supported by tree indexes.

• Extensive experiments.We conduct comprehensive experi-
mental evaluations on six real-world datasets, demonstrat-
ing GTI’s efficiency and effectiveness. GTI achieves an ap-
proximately 10× improvement in update efficiency com-
pared to SOTA tree-based methods, offers significantly
lower construction cost compared to graph-based meth-
ods, and maintains search effectiveness on par with SOTA

987

approximate NNS methods. These results underscore GTI’s
potential for widespread application in dynamic scenarios.

The rest of this paper is organized as follows.We review previous
work in Section 2 and present the problem statement in Section 3.
Subsequently, we introduce our newly proposed lightweight and
dynamic graph-based tree index, GTI, in Section 4 and detail the
nearest neighbor search process in Section 5. Finally, we report
comprehensive experimental studies in Section 6 and conclude the
paper with future directions in Section 7.

2 RELATEDWORK
In this section, we review the existing work on nearest neighbor
search in high-dimensional spaces.
2.1 Basic solution for nearest neighbor search
Numerous methods have been proposed to efficiently answer near-
est neighbor search in high-dimensional spaces. They can be classi-
fied into four main categories: hash-based methods, quantization-
based methods, tree-based methods, and graph-based methods.
Hash-based methods. Hash-based methods [30, 31, 43, 65, 69]
map high-dimensional data objects into several low-dimensional
hash buckets and answer queries by locating the hash buckets of
real answers. Although hash-based methods provide theoretical
guarantees on precision, they face several challenges, including
low-quality results and inadequate support for range queries and
other complex search functionalities.
Quantization-based methods. Quantization-based methods [29,
36, 54, 60, 64] partition data objects based on quantified feature
values and search for candidate points with the same quantiza-
tion value as the final results. However, quantization errors can
make it difficult to achieve high query accuracy, especially in high-
dimensional spaces.
Tree-based methods. Tree-based methods [4, 7, 11–13, 19, 24, 32,
40, 41, 51, 57, 61, 67, 68, 74] divide the data space into subspaces
using pivot mapping or hyperplane partitioning and construct tree
indexes to manage these subspaces. By reducing the search space
to points within overlapping subspaces, tree-based methods can
support both approximate and exact searches with relatively low
indexing overhead and can adapt flexibly to dynamic scenarios.
Graph-based methods. Graph-based methods leverage the near-
est neighbor relationships among objects to construct proximity
graphs, facilitating approximate nearest neighbor search. These
methods generally provide superior query performance in terms
of both accuracy and efficiency compared to other methods [5].
Existing graph-based methods often rely on base graphs such as De-
launay Graph, Relative Neighborhood Graph, K-Nearest Neighbor
Graph and Minimum Spanning Tree [59]. Despite their advantages,
graph-based methods face high construction cost and difficulties
with updates [71]. To mitigate construction costs, approaches such
as approximate proximity graph [22, 27, 28] and parallel construc-
tion strategies [27, 28, 45] have been proposed, though they still
result in large index sizes. On the other hand, to handle updates,
periodic reconstruction methods [55] have been developed, but
they are hindered by high reconstruction costs.

2.2 Hybrid solutions
Given the superior query performance of graph-based methods,
there has been exploration of graph-based hybrid solutions that aim

Table 1: Symbols and description
Notation Description
𝑞, 𝑜 ,𝑂 A query, an object and an object set
𝑛 The number of objects in object set𝑂 , i.e., |𝑂 |
𝑑 (·, ·) A distance function
𝑁 , 𝑒 , 𝑣 A tree node, a tree entry and a graph vertex
𝑁𝑐 The node capacity of the tree
𝑚 The graph sparsity

to enhance overall performance by integrating graphswith trees [16,
26, 35, 50], hash tables [37], and quantized objects [42]. While such
hybrid methods improve the graph search performance, they still
face significant challenges, including high graph construction costs
and difficulties in handling dynamic data operations.

Recent research has shifted focus towards reducing construction
costs and supporting dynamic real-world applications. Prominent
examples include ELPIS [6] and LANNS [23] that effectively reduce
graph construction costs through hierarchical partitioning informa-
tion from trees, LVQ [1] that provides a generalized quantization
framework to improve data compression and accelerate graph nav-
igation, LSH-APG [71] that employs a lightweight LSH framework
to provide high-quality search seeds and pruning conditions for
graph, and MNG [55] that employs inner product technique to ac-
celerate graph navigation and introduces a lazy deletion strategy
with periodic rebuild operation to facilitate graph updates.

However, the graph size of the aforementioned methods remains
considerable, posing challenges for graph storage in main mem-
ory and for handling dynamic updates. The recent study SPFresh
[66] introduces a lightweight incremental rebalancing protocol de-
signed specifically for updating posting lists stored on disk. While
it adopts a rebuild strategy that works effectively with small graphs
based on posting centroids, this method is inherently tailored for
disk-based data management systems. Consequently, SPFresh is
not generalizable for main memory data management and fails to
support scenarios requiring real-time updates. Motivated by these
challenges and the promising potential of graph-tree hybrid meth-
ods [62], we propose a novel dynamic graph-based tree index, GTI.
GTI addresses construction bottlenecks by building a lightweight
graph on top of a tree index and supports efficient real-time updates
through graph-based single-point retrieval and logarithmic tree
update operations. Consequently, GTI achieves more efficient index
updates and comparable construction efficiency to tree-based meth-
ods, while maintaining the high search performance of approximate
graph-based methods and supporting exact similarity searches.

3 PROBLEM FORMULATION
We begin by formally defining the nearest neighbor search and
range queries. Table 1 summarizes the frequently used notations.

Nearest neighbor search is a fundamental problem in database
management and artificial intelligence, and is widely applied to
high-dimensional spaces. The 𝑘-nearest neighbor search (𝑘-NNS)
problem is defined as follows:

Definition 3.1. (𝑘 Nearest Neighbor Search.) Given a set of objects
𝑂 in a high-dimensional space, a query object 𝑞, a distance function 𝑑 (·, ·) ,
and an integer 𝑘 , a 𝑘-nearest neighbor search (𝑘-NNS) finds a set 𝑆 of
min(𝑘, |𝑂 |) objects in 𝑂 that are closest to 𝑞. Formally, 𝑘-NNS(𝑞, 𝑘) =
{𝑆 | 𝑆 ⊆ 𝑂 ∧ |𝑆 | = min(𝑘, |𝑂 |) ∧ ∄𝑠 ∈ 𝑆, 𝑜 ∈ 𝑂 − 𝑆,𝑑 (𝑞, 𝑠) > 𝑑 (𝑞,𝑜) }.

Exact 𝑘-NNS in large high-dimensional datasets can be compu-
tationally intensive. A more efficient and potentially more practical

988

Tree Graph

GTI
Tree construction

for all data

Graph construction
at level 1

Index construction

Tree update for
all data

Graph update at
level 1

Index update

Approximate NN search Exact NN search

Nearest neighbor search

Figure 2: The overall framework of GTI
alternative is the approximate nearest neighbor search (ANNS),
defined as follows:

Definition 3.2. (𝜖-Approximate 𝑘 Nearest Neighbor Search.) Given
a set of objects 𝑂 in a high-dimensional space, a query object 𝑞, a dis-
tance function 𝑑 (·, ·) , an integer 𝑘 , and a small constant 𝜖 > 0, an ap-
proximate 𝑘 nearest neighbor search (A𝑘NNS) finds a set 𝑆 of min(𝑘, |𝑂 |)
objects in 𝑂 such that A𝑘NNS(𝑞, 𝑘) = {𝑆 | 𝑆 ⊆ 𝑂 ∧ |𝑆 | = min(𝑘, |𝑂 |) ∧
∄𝑠 ∈ 𝑆, 𝑜 ∈ 𝑂 − 𝑆,𝑑 (𝑞, 𝑠) > (1 + 𝜖)𝑑 (𝑞,𝑜) }.

To simplify modeling and evaluation, the metric recall can be
used to approximate the exact value of 𝜖 , which can be defined as
follows [30]:

𝑟𝑒𝑐𝑎𝑙𝑙 (A𝑘NNS(𝑞, 𝑘)) =
|𝑘-NNS(𝑞, 𝑘) ∩ A𝑘NNS(𝑞, 𝑘) |

|𝑘-NNS(𝑞, 𝑘) | , (1)

In addition to nearest neighbor search, range queries are also
commonly used in database management, which are defined as:

Definition 3.3. (Range Query.) Given a set of objects 𝑂 in a high-
dimensional space, a query object 𝑞, a distance function𝑑 (·, ·) , and a search
radius 𝑟 , a range query (RQ) finds all objects in𝑂 that are within a distance
𝑟 from the query 𝑞. Formally, 𝑅𝑄 (𝑞, 𝑟) = {𝑜 | 𝑜 ∈ 𝑂 ∧ 𝑑 (𝑞,𝑜) ≤ 𝑟 }.

In this paper, we focus on how GTI efficiently answers general
nearest neighbor search in dynamic scenarios, supporting both
approximate and exact queries. Additionally, due to the nature of
its hybrid tree-graph structure, our proposed method GTI naturally
supports exact range queries.

4 INDEX
In this section, we present an overview of our graph-based tree in-
dex GTI, examine the construction and update strategies to support
dynamic scenarios effectively, and provide a theoretical analysis of
space consumption and time complexity.

4.1 Overview
Graph-based methods excel at representing neighbor relationships
and achieve efficient approximate NNS, while tree-based methods
offer low construction and update costs. Inspired by this, we propose
the Graph-based Tree Index (GTI), which combines the querying
advantages of graphs with the dynamic benefits of tree indexes.
GTI supports lightweight index construction and dynamic real-time
updates, while enabling efficient and comprehensive nearest neigh-
bor searches. As illustrated in Fig. 2, GTI integrates tree index and
graph index built on one internal level of the tree. We first utilize
a tree structure to hierarchically partition the dataset and then
selectively construct a graph at the tree’s one internal level, thus
reducing overall construction costs. Meanwhile, GTI supports flexi-
ble updates through efficient tree and lightweight graph updates,
achieving logarithmic complexity on average. Finally, GTI accom-
modates both approximate and exact nearest neighbor searches
efficiently, meeting diverse query requirements.

4.2 Index Structure
The proposed hybrid index GTI consists of two key components:
(i) a tree index that efficiently partitions datasets hierarchically,
maintains local neighbor information within nodes, and reduces
construction and update overhead; and (ii) a graph index, lightly
constructed at one internal level of the tree, which establishes global
adjacency relationships and enables fast navigation to locate query
regions. For a clearer understanding, Fig. 3 provides a comprehen-
sive illustration of the GTI structure.
The Tree Index. The tree index is built upon the complete dataset,
with nodes (entries) maintaining local neighborhood relationships.
To efficiently construct the tree index and support data updates,
we use a structure similar to the M-tree [19], which exhibits strong
performance among dynamic indices according to a recent sur-
vey [15]. Specifically, the tree organizes data hierarchically using
ball partitioning, where each node represents a hypersphere defined
by a center and radius. Leaf nodes correspond to the smallest hy-
perspheres that contain neighboring objects, while non-leaf nodes
represent larger hyperspheres encompassing groups of nearby hy-
perspheres. The tree is incrementally constructed from the bottom
up, creating nested hyperspheres that progressively partition the
dataset into clusters.

Each node in GTI comprises multiple entries, with each entry
holding an object and the distance 𝑝𝑑 from the object to the center
of its parent entry. Furthermore, a non-leaf entry includes a pointer
to its subtree node, along with the center point and the radius of the
hypersphere represented by the subtree node. As illustrated in Fig. 3,
node 𝑁2 contains three non-leaf entries 𝑒3, 𝑒4, and 𝑒5. The last entry,
𝑒5, points to its subtree node 𝑁6, which represents a hypersphere
(depicted as a circle in a two-dimensional plane) with center 𝑜3
and radius 𝑟5, and stores the distance 𝑑 (𝑜3, 𝑜7) to the center of its
parent entry 𝑒1. The number of entries in a node is constrained by
the node capacity 𝑁𝑐 . As shown in Fig. 3, given a node capacity
of 3, there are up to 3 entries within each node. Additionally, leaf
and internal nodes may have different node capacities in practice
to accommodate the graph (see Sec. 6.3 for details).
The Graph Index. The graph index is constructed from nodes
located at the level immediately above the leaf entries of the tree
(e.g., Level 1 in Fig. 3 where leaf entries are at Level 0). This de-
sign maintains global neighborhood relationships to facilitate rapid
query navigation. Leveraging the hierarchical structure of SOTA
graph-based method HNSW [45], the GTI graph enables efficient
and high-quality searches by starting from the top layer of the
graph and progressively delves deeper. Specifically, the top-layer
graph contains the fewest vertices and the longest edges. As we
move to the lower layers, the edges become shorter and the number
of vertices increases. Vertices in the upper layer are always included
in the lower layers, culminating in the bottom layer, which includes
all vertices. The graph is built incrementally. For each new vertex,
a random integer 𝑙 is chosen, defining the maximum number of
layers to which the vertex belongs, e.g., 𝑙 = 2 implies that a vertex
only appears in two layers, layer 0 and layer 1. A proximity graph
is then built incrementally for all vertices at each layer. By using
an exponentially decaying probability for 𝑙 , the expected number
of layers in the graph scales logarithmically. This random strat-
egy to determine the maximum layer height for vertices has been
demonstrated to be effective [45].

989

To enhance search quality and mitigate the potential issue of
local optima due to incomplete vertices on the graph, each vertex at
the bottom layer of the graph stores a pointer to the corresponding
leaf node in the tree. This pointer directs to the child node of the
corresponding tree entry. When accessing the bottom layer of the
graph during the search, we simultaneously search both the vertices
on the graph and the associated leaf nodes in the tree, leveraging
both global neighbor relationships on the graph and the local neigh-
bor relationships within the leaf nodes in the tree. As illustrated in
the Tree and Graph parts of Fig. 3, vertex 𝑜3 at the bottom layer of
the graph corresponds to entry 𝑒5 in level 1 of the tree and has a
pointer to the child node of 𝑒5, i.e., the leaf node 𝑁6. When a search
accesses vertex 𝑜3 on the bottom layer of the graph, it also accesses
objects within 𝑁6 through the pointer. Due to space constraints and
to enhance the clarity of our drawing, we only include the pointers
for vertices 𝑜3 and 𝑜6 and omit pointers for the other vertices in
the bottom layer of the graph shown in Fig. 3.

Additionally, we maintain an in-degree radius table that stores
the maximum distance between each vertex and its reverse neigh-
bors (in-degree edges) across all layers. This facilitates locating re-
verse neighbors of each vertex to support deletion operations on the
graph (see Section 4.4). As shown in the Graph part of Fig. 3, the re-
verse neighbors of 𝑜2 at different layers of the graph are {𝑜1, 𝑜7, 𝑜9}
respectively, with the maximum distance being 𝑑 (𝑜2, 𝑜9).

4.3 Index Construction
Graph indexes accelerate approximate nearest neighbor searches
but are expensive to construct and require substantial memory to
store neighborhood relationships. Optimization techniques, such as
refining graph structure [22, 27, 28], employing parallelization [27,
28, 45], and leveraging tree partitioning information [6, 23] can
mitigate computational overhead. However, challenges remain due
to high space costs, as the graph must index the entire dataset.

In contrast to existing methods that index every data object
directly, our approach first utilizes a tree index to hierarchically
partition the dataset and then constructs a graph index from the
nodes located at level 1 of the tree. This approach reduces both the
time and space costs. During graph construction, we maintain an
in-degree radius table to facilitate efficient index maintenance. Ad-
ditionally, to enhance index search quality, we incorporate pointers
from graph vertices to the tree’s leaf nodes.

Algorithm 1 outlines the construction process of our index. The
input to the algorithm is an object set𝑂 , the node capacity 𝑁𝑐 , and
the graph sparsity𝑚 which controls the maximum number of the
neighbors of each vertex in the graph. The output is the GTI index
𝐼 . Firstly, the GTI index is initialized by encompassing both a tree
index and a graph index (line 1). Subsequently, it builds the tree
index to hierarchically partition the entire dataset following the
insertion operation of the M-tree [19] (lines 2–4), which is one of
the SOTA tree-based methods according to the survey [15].

Next, the graph index is constructed on the entries located at
level 1 immediately above the leaf entry level of the tree (lines
5–10). Initially, all entries from level 1 of the tree are retrieved (line
5), and an empty in-degree radius table of the graph is initialized
(line 6). Subsequently, the 𝑐𝑒𝑛𝑡𝑒𝑟 of each entry is incrementally
inserted into the graph (lines 7–9). Similar to the SOTA graph-based
method HNSW [45], vertices are inserted into the graph at various

Algorithm 1: Index Construction
Input: an object set𝑂 , the node capacity 𝑁𝑐 , and the graph

sparsity𝑚
Output: the GTI index 𝐼

1: 𝐼𝑇 ← ∅, 𝐼𝐺 ← ∅
2: foreach 𝑜𝑖 ∈ 𝑂 do
3: create leaf entry 𝑒 , 𝑒.𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑜𝑖 , 𝑒.𝑝𝑑 ←∞
4: InsertTree(𝐼𝑇 , 𝑒 , 𝑁𝑐) // tree construction

5: 𝐸 ← entries in 𝐿𝑒𝑣𝑒𝑙 1 of 𝐼𝑇
6: 𝐼𝑅 ← ∅ // in-degree radius table
7: foreach 𝑒𝑖 ∈ 𝐸 do
8: 𝑣 ← 𝑒𝑖 .𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑙𝑒𝑎𝑓 ← 𝑒𝑖 .𝑐ℎ𝑖𝑙𝑑

9: InsertGraph(𝐼𝐺 , 𝑣, 𝐼𝑅,𝑚) // graph construction
10: add pointer from 𝑣 to 𝑙𝑒𝑎𝑓

11: return 𝐼𝑇 ∪ 𝐼𝐺

layers, and a top-down graph search is utilized to find neighbors for
each vertex within their respective layers. The maximal number of
neighbors of a vertex in the upper layers of the graph is𝑚, and that
in the bottom layer is 2𝑚 [45]. Meanwhile, we also synchronize the
recording of the maximum in-degree edge distance (radius) of each
vertex and store it in the in-degree radius table (line 9), to support
subsequent efficient index updates. Subsequently, in the bottom
layer of the graph, a pointer is added to each vertex, directing it
to the corresponding leaf node of its associated entry in the tree
(line 10). Finally, the tree index and the graph index are returned
together, forming the finalized GTI index (line 11).
4.4 Index Updating
In real-life scenarios, data insertion and deletion are very frequent.
Existing graph-based methods often face challenges with these
dynamic updates due to their reliance on maintaining global navi-
gational relationships. For instance, the graph-based method NSG
integrated into Alibaba’s Taobao e-commerce platform struggles
with dynamic updates [28]. While some graphmethods [44, 45] han-
dle data insertion through incremental construction, they typically
face difficulties with data deletion, such as in scenarios involving
product discontinuation. Although periodic reconstruction strate-
gies with lazy updates [55] have been proposed to address both
data insertion and deletion, the high cost of reconstruction remains
a significant limitation.

Our GTI index combines the strengths of tree and graph struc-
tures, enabling flexible data insertion and deletion while preserving
efficient graph query performance post-update. The update process
of GTI index involes two components: updating the tree index and
updating the graph index. The tree index update is highly efficient,
requiring adjustments only to the affected local nodes. For the graph
index update, we design an efficient data update algorithm and uti-
lize the exact search capabilities of the tree structure to assist the
update on the graph. Since the graph index is built on the entries
on the tree’s level one rather than the entire dataset, graph update
operations are relatively lightweight. Consequently, the GTI index
update operates within logarithmic complexity relative to the tree
update (as detailed in Section 4.5). We detail the object insertion
and deletion algorithms for the GTI index below.
Object Insertion. The insertion of an object into the GTI index
involves both tree and graph insertions. When a new object comes,

990

Data objects

N1

pd: d(o7,o7)

 center: o7

pd: d(o7,o7)

 center: o7

 radius: r3

 entry e3

pd: d(o7,o7)

 center: o7

 radius: r3

 entry e3

Graph

Layer 2

Layer 0

pd:

 center: o7

pd:

 center: o7

 radius: r1

 entry e1

pd:

 center: o7

 radius: r1

 entry e1

pd:

 center: o6

pd:

 center: o6

 radius: r2

 entry e2

pd:

 center: o6

 radius: r2

 entry e2

e5

r5

pd: d(o3,o7)

 center: o3

pd: d(o3,o7)

 center: o3

 radius: r5

 entry e5

pd: d(o3,o7)

 center: o3

 radius: r5

 entry e5

pd: d(o6,o6)

 center: o6

pd: d(o6,o6)

 center: o6

 radius: r6

 entry e6

pd: d(o6,o6)

 center: o6

 radius: r6

 entry e6

pd: d(o6,o9)

 center: o9

pd: d(o6,o9)

 center: o9

 radius: r7

 entry e7

pd: d(o6,o9)

 center: o9

 radius: r7

 entry e7

pd: d(o1,o6)

 center: o1

pd: d(o1,o6)

 center: o1

 radius: r8

 entry e8

pd: d(o1,o6)

 center: o1

 radius: r8

 entry e8

pd: d(o3,o3)

 object: o3

pd: d(o3,o3)

 object: o3

pd: d(o3,o3)

 object: o3

pd: d(o3,o8)

 object: o8

pd: d(o3,o8)

 object: o8

pd: d(o3,o8)

 object: o8

pd: d(o6,o6)

 object: o6

pd: d(o6,o6)

 object: o6

pd: d(o6,o6)

 object: o6

pd: d(o6,o11)

 object: o11

pd: d(o6,o11)

 object: o11

pd: d(o6,o11)

 object: o11

··· ··· ··· ···

pd: d(o2,o7)

 center: o2

pd: d(o2,o7)

 center: o2

 radius: r4

 entry e4

pd: d(o2,o7)

 center: o2

 radius: r4

 entry e4

 object: o10 object: o10 object: o10

pd: d(o6,o10)

N2 N3

N6 N7o6

o9

o7

o4

o5

o1

o3

o8

o2

o10

o11
o12

o13

r1

e1

r2

e2

e3

r3

e4r4

r6r7

r8

e6

e7
e8

o6

o9

o7

o4

o5

o1

o3

o8

o2

o10

o11
o12

o13

r1

e1

r2

e2

e3

r3

e4r4

r6r7

r8

e6

e7
e8

o3

o7 o2

o1

o6

o9

o3

o7 o9

o6

o3
o6

build
graph

Tree

Layer 1

node capacity = 3

in-degree radius table

o1 d(o1,o3)o1 d(o1,o3)
o2 d(o2,o9)o2 d(o2,o9)

objects radiusobjects radius

o3 d(o3,o6)o3 d(o3,o6)
o6 d(o3,o6)o6 d(o3,o6)
o7 d(o7,o9)o7 d(o7,o9)
o9 d(o7,o9)o9 d(o7,o9)

o1 d(o1,o3)
o2 d(o2,o9)

objects radius

o3 d(o3,o6)
o6 d(o3,o6)
o7 d(o7,o9)
o9 d(o7,o9)

Level 2

Level 1

Level 0

Figure 3: The structure of our proposed graph-based tree index, GTI

Algorithm 2: Object Insertion
Input: a new object 𝑜 to be inserted, and a GTI index 𝐼
Output: the updated GTI index 𝐼

1: 𝐼𝑇 , 𝑁𝑐 ← tree index information from 𝐼

2: create leaf entry 𝑒 , 𝑒.𝑐𝑒𝑛𝑡𝑒𝑟 ← 𝑜 , 𝑒.𝑝𝑑 ←∞
3: InsertTree(𝐼𝑇 , 𝑒 , 𝑁𝑐) // tree insertion
4: if insertion of 𝑒 leads to leaf node split then
5: 𝐼𝐺 , 𝐼𝑅,𝑚 ← graph index information from 𝐼

6: 𝑣 ← 𝑐𝑒𝑛𝑡𝑒𝑟 of the new entry in 𝐼𝑇 ’s 𝐿𝑒𝑣𝑒𝑙 1
7: InsertGraph(𝐼𝐺 , 𝑣, 𝐼𝑅,𝑚) // graph insertion
8: add pointer from bottom-layer 𝑣 to new entry’s child leaf node
9: return 𝐼𝑇 ∪ 𝐼𝐺

it is first inserted into the tree index. If this insertion triggers a node
split in the tree, i.e., a new entry is added into level 1 of the tree,
the graph must also be updated.

Algorithm 2 outlines the process for updating theGTI index with
a new object 𝑜 . The algorithm takes as input the new object 𝑜 and
the currentGTI index 𝐼 , and outputs the updatedGTI index 𝐼 . Firstly,
we insert the new object into the tree index in GTI (lines 1–3). Next,
we determine if the graph index needs updating. If the insertion of
𝑜 causes a leaf node split in the tree, leading to a new entry in level
1, GTI synchronizes the graph insertion (lines 4-8). It first initializes
the graph index information, including the graph 𝐼𝐺 , the in-degree
radius table and the graph sparsity (line 5). Then, the algorithm
inserts the new entry’s 𝑐𝑒𝑛𝑡𝑒𝑟 as a vertex to the graph, similar to
HNSW (lines 6–7). It also adds a pointer from the new vertex at the
graph’s bottom layer to the new entry’s child node in the tree (line
8). Note that we follow the confirmed 𝑀_𝐿𝐵_𝐷𝐼𝑆𝑇 [19] strategy
for node splitting, ensuring that each node split results in only one
new entry in the upper layer. If no leaf node split occurs, level 1
of the tree remains unchanged, and no graph update is required.
Finally, the GTI index update completes (line 9).
Object Deletion. The deletion of objects in the GTI index involves
two main processes: tree deletion and graph deletion. First, we
locate and efficiently remove the target object from the tree index.
If this deletion causes a node underflow in the tree, such as the re-
moval of an entry from level 1 of the tree, a graph update becomes
necessary. When a vertex in the graph needs to be deleted, we
remove it along with its corresponding in-degree and out-degree
edges across all layers. Deleting out-degree edges is straightforward,
as they are directly stored in the graph’s adjacency list. However,
deleting in-degree edges is more complex due to the potentially
large and variable number of in-degree edges. Directly storing all

Algorithm 3: Object Deletion
Input: an object 𝑜 , a GTI index 𝐼 , and a search parameter 𝑒 𝑓
Output: the updated GTI index 𝐼

1: 𝐼𝑇 ← tree index information from 𝐼

2: 𝐼𝐺 , 𝐼𝑅,𝑚 ← graph index information from 𝐼

3: 𝑜′ ← A𝑘NNSearch(𝑜 , 𝐼 , 𝑒 𝑓 , 1)
4: if 𝑜′ ≠ 𝑜 then 𝑜′ ← RangeSearchT(𝑜 , 0, 𝐼𝑇)
5: if 𝑜′ ≠ 𝑜 then return 𝐼 // 𝑜 does not exist in 𝐼

6: DeleteTree(𝑜′ , 𝐼𝑇) // tree deletion
7: if deletion of 𝑜′ leads to leaf node underflow then
8: 𝑣 ← 𝑐𝑒𝑛𝑡𝑒𝑟 of the deleted entry in 𝐼𝑇 ’s 𝐿𝑒𝑣𝑒𝑙 1
9: delete pointer to 𝑣’s leaf node from bottom-layer of the graph
10: 𝐶 ← RangeSearchT(𝑣, 𝐼𝑅 [𝑣], 𝐼𝑇)
11: 𝑁 ← reserve neighbors of 𝑣 in𝐶
12: DeleteGraph(𝐼𝐺 , 𝑁 , 𝑣, 𝐼𝑅,𝑚) // graph deletion
13: foreach 𝑟 ∈ objects to be reinserted do
14: 𝐼𝐺 ← InsertGraph(𝐼𝐺 , 𝑟 , 𝐼𝑅,𝑚) // graph reinsertion

15: return 𝐼𝑇 ∪ 𝐼𝐺

in-degree edges could lead to significant space inefficiencies. Conse-
quently, finding all in-degree edges, or reverse neighbors, involves
traversing all vertices, which is time-consuming. To address this
challenge, we develop an efficient graph deletion algorithm. This al-
gorithm leverages the maximum in-degree radius of vertices stored
in the in-degree radius table, combined with range queries on the
tree, to efficiently locate and delete all reverse neighbors, ensuring
accurate edge removal.

Algorithm 3 outlines the object deletion process in theGTI index.
It takes as input an object 𝑜 , a GTI index 𝐼 , and a search parameter
𝑒 𝑓 , and outputs the updated GTI index 𝐼 . The process begins by
retrieving information about both the tree and graph indexes (lines
1–2). To locate the object to be deleted, it first conducts an approxi-
mate 1-𝑁𝑁 search using the GTI index (line 3). If this search fails
to locate the object, this algorithm proceeds with an exact range
query [19] on the tree index, using 𝑜 as the center and 0 as the
radius to find the object (line 4). Should the exact range query also
fail, it indicates that the object to be deleted does not exist, and the
deletion operation terminates (line 5). Our algorithm prioritizes
the A𝑘NN search to locate the target object due to its superior
performance compared to the exact range search.

If the object is successfully located, the deletion process con-
tinues (lines 6-15). The object is initially removed from the tree
according to the deletion rules of the M-tree [19] (line 6). Sub-
sequently, we check whether a graph update is necessary. If the

991

Algorithm 4: A𝑘NN Search
Input: a query object 𝑞, a GTI index 𝐼 , a search parameter 𝑒 𝑓 , and

an integer 𝑘
Output: approximate 𝑘 nearest neighbors of 𝑞

1: 𝐼𝑇 , 𝐼𝐺 ← tree and graph indices from 𝐼

2: 𝐶 ← ∅ // set for the current NNs
3: 𝑝 ← entry point of 𝐼𝐺 // a random vertex in the top-layer graph
4: 𝐿 ← number of layers in the graph
5: foreach 𝑙 ← 𝐿 − 1 to 1 do
6: 𝐶 ← SearchUpperLayer(𝑞, 𝑝 , 1, 𝑙 , 𝐼𝐺)
7: 𝑝 ← nearest object from𝐶 to 𝑞
8: 𝐶 ← A𝑒 𝑓 NNSBottomLayer(𝑞, 𝑝 , 𝑒 𝑓 , 𝐼)
9: return 𝑘 nearest neighbors in𝐶

deletion causes a leaf node to become empty, leading to the removal
of both the leaf node and its parent entry in level 1, the graph must
be updated to reflect these changes (lines 7-14). In this context, the
vertex 𝑣 corresponding to the 𝑐𝑒𝑛𝑡𝑒𝑟 of the deleted entry is identi-
fied in the graph (line 8). The pointer to the corresponding leaf node
is then removed from the graph bottom layer (line 9). To address
the remaining connections, an exact range query is performed on
the tree with a radius equivalent to 𝑣 ’s in-degree radius (line 10).
The results from this range query include all reverse neighbors
of 𝑣 across different layers in the graph (line 11). For example, if
object 𝑜2 in Fig. 3 is to be deleted, the corresponding range query
radius from the in-degree radius table is 𝑑 (𝑜2, 𝑜9), and the identified
reverse neighbors are {𝑜1, 𝑜7, 𝑜9}. Subsequently, we delete the corre-
sponding vertex, along with all its associated edges from the graph
(line 12). It is important to note that such deletions may reduce the
number of neighbors for some vertices, potentially causing them
to violate the graph construction rules. Meanwhile, visiting the
neighbors of these vertices does not guarantee to find their true
nearest neighbors. To address this, the algorithm reinserts these
vertices into the graph to re-establish their correct set of neighbors
(lines 13-14). Finally, the algorithm returns the updated GTI index
to complete the object deletion process (line 15).

4.5 Index Complexity Analyses
Space Consumption of Index. Our index consists of two com-
ponents, i.e., the tree index and the graph index. Let 𝑛 denote the
cardinality of the object set (i.e., |𝑂 |) and 𝑁𝑐 denote the node ca-
pacity. The tree index is built on the entire dataset and is balanced.
Its space cost depends only on the number of tree nodes, which
is 𝑂 (𝑛). For graph index, it is a hierarchical graph built based on
nodes located at level 1 of the tree. Its space cost depends on the
number of vertices and the edges. The number of vertices is𝑂 (𝑛

𝑁𝑐
),

while the number of edges is related to the number of layers, which
is 𝑂 (log 𝑛

𝑁𝑐
). Considering that the number of neighbors of each

vertex in each layer of the graph is a constant related to 𝑚, the
number of edges can be estimated as𝑂 (log 𝑛

𝑁𝑐
·𝑚). Thus, the space

cost of the graph index is𝑂 (𝑛 ·𝑚
𝑁𝑐
·log 𝑛

𝑁𝑐
). Consequently, the overall

space complexity of our index is 𝑂 (𝑛 + 𝑛 ·𝑚
𝑁𝑐
· log𝑛).

Time Complexity of Index Construction. Index construction
consists of two parts: tree construction and graph construction.
For the tree index, the overall complexity for constructing the tree
index is 𝑂 (𝑛 log𝑛). For the graph index built on the nodes located
at level 1 of the tree, a top-down search is conducted to find each
vertex’s neighbors at each layer of the graph. The time complexity

of this search is equivalent to the complexity of searching in HNSW,
which is 𝑂 (log 𝑛

𝑁𝑐
) [45, 55]. HNSW [45] demonstrates logarith-

mic search complexity in low-dimensional spaces, while MNG [55]
unifies the search complexity of HNSW to 𝑂 (𝑛′

2
𝐷 log𝑛′), where

𝐷 is the dimensionality, and 𝑛′ is the number of graph vertices.
When the dimensionality is high, as in this paper (𝐷 = 128 and
𝑛′ = 1, 000, 000), 𝑛′

2
𝐷 = 1.2 ≈ 1, so the time complexity can be sim-

plified to𝑂 (log𝑛′) for both low-dimensional and high-dimensional
spaces. Therefore, the overall complexity for graph construction
is 𝑂 (𝑛

𝑁𝑐
log𝑛). Consequently, the overall time complexity of index

construction for GTI is 𝑂 (𝑛 log𝑛 + 𝑛
𝑁𝑐

log𝑛).
Time Complexity of Index Updating. Index updating involves
two main operations: object insertion and deletion. For object inser-
tion, we first add the object to the tree. If this insertion causes a tree
node split in the tree - an event that is relatively infrequent com-
pared to the overall update - we then proceed to update the graph.
Due to the logarithmic nature of both tree and graph structures,
the time complexity for insertion is 𝑂 (log𝑛). For object deletion,
we first locate the object to be deleted through a range search of
radius 0, which has a complexity of 𝑂 (log𝑛) according to previous
studies [14]. After locating the object, we remove it from the tree,
which also has a time complexity of𝑂 (log𝑛). If the deletion causes
a node underflow in the tree - another relatively rare event - we
then perform a deletion operation on the graph. This includes locat-
ing reverse neighbors using a tree range query, deleting nodes and
edges across all layers, and re-inserting a few objects into the graph.
The time complexities for these operations are𝑂 (log𝑛),𝑂 (log 𝑛

𝑁𝑐
),

and 𝑂 (log 𝑛
𝑁𝑐
), respectively. Therefore, the time complexity of ob-

ject deletion is 𝑂 (log𝑛). In conclusion, the overall time complexity
for index updating remains logarithmic.

5 NEAREST NEIGHBOR SEARCH
In this section, we propose efficient algorithms for nearest neighbor
search in high-dimensional spaces using GTI, including approxi-
mate nearest neighbor search and exact nearest neighbor search.

5.1 Approximate Nearest Neighbor Search
In this section, we detail the approach to achieving efficient approx-
imate query performance within the tree-graph structure of GTI.
Given a query 𝑞, the approximate nearest neighbor search finds the
approximate nearest neighbors of 𝑞 in the dataset. Existing hybrid
tree-graph methods [6, 26, 35] often rely on a top-down tree search
to accelerate the graph search by leveraging the tree’s partition
information. However, their search performance is constrained by
the need for hierarchical tree traversal and an over-reliance on
tree partitioning, which can misguide the search and lead to local
optima. Consequently, these methods fail to fully exploit the global
navigation advantages offered by the graph structure.

To address the aforementioned issues, our approach deviates
from the traditional approaches of first searching the tree and then
the graph. Instead, we initiate the search directly within the graph.
This strategy avoids the performance limitations imposed by hier-
archical traversal and misleading tree partitioning, leading to more
efficient graph-based query performance. During the graph search,
we simultaneously leverage both global neighborhood relationships
within the graph and local neighborhood relationships of tree leaf
nodes. This dual approach ensures comprehensive coverage of the

992

Algorithm 5: A𝑒 𝑓NNS at Bottom Layer
Input: a query object 𝑞, an entry point 𝑝 , a search parameter 𝑒 𝑓 ,

and a GTI index 𝐼
Output: approximate 𝑒 𝑓 nearest neighbors of 𝑞

1: 𝐼𝑇 , 𝐼𝐺 ← tree and graph indices from 𝐼

2: 𝑉 ← {𝑝 } // the set of visited vertices
3: 𝑄 ← {⟨𝑝,𝑑 (𝑞, 𝑝) ⟩} // the priority queue to store candidate vertices
4: 𝐴← {𝑝 } // the global nearest neighbors of 𝑞
5: 𝑑𝑖𝑠𝑚𝑎𝑥 ←∞ // the local maximum distance to 𝑞 among objects in

𝐴 retrieved from the graph
6: while 𝑄 ≠ ∅ do
7: ⟨𝑐,𝑑𝑖𝑠 ⟩ ← 𝑄.𝑝𝑜𝑝 ()
8: if 𝑑𝑖𝑠 > 𝑑𝑖𝑠𝑚𝑎𝑥 then break
9: foreach 𝑐′ ∉ 𝑉 ∧ 𝑐′ ∈ neighbors of 𝑐 in bottom layer of 𝐼𝐺 do
10: 𝑉 ← 𝑉 ∪ {𝑐′ }
11: if 𝑑 (𝑐′, 𝑞) < 𝑑𝑖𝑠𝑚𝑎𝑥 then
12: update𝑄 , 𝐴, 𝑑𝑖𝑠𝑚𝑎𝑥 with ⟨𝑐′, 𝑑 (𝑐′, 𝑞) ⟩
13: foreach 𝑠 ∈ leaf node in 𝐼𝑇 pointed to by 𝑐′ do
14: update 𝐴 with ⟨𝑠,𝑑 (𝑠, 𝑞) ⟩ if possible

15: return 𝑒 𝑓 nearest neighbors in 𝐴

dataset and preserves the integrity of neighborhood relationships,
ultimately improving the quality of query results.

Algorithm 4 outlines the procedure for performing an approx-
imate 𝑘 nearest neighbor search using our index. The algorithm
takes as input a query object 𝑞, aGTI index 𝐼 , a search parameter 𝑒 𝑓 ,
and an integer 𝑘 , and outputs approximate 𝑘 nearest neighbors of
𝑞. The process begins by retrieving the tree and graph information
from the GTI (line 1). It then initializes a set𝐶 to hold the candidate
nearest neighbors for graph expansion (line 2), selects a random
vertex 𝑝 from the top layer of the graph as the entry point (line 3),
and records the total number of layers 𝐿 in the graph (line 4).

Next, the algorithm traverses the graph from the top layer down
to layer 1 (lines 5–7). It employs a hierarchical search method of
HNSW [45], similar to the process of finding neighbors for each
point during the graph’s incremental construction. Specifically,
starting at the entry point 𝑝 in the top layer, the algorithm performs
a greedy search [28, 45] to expand the neighbors of the current
vertex until the approximate 1-NN neighbor for the query is found
(line 6). It uses this 1-NN as the entry point for the next lower layer
(line 7), iterating through each layer until reaching layer 1. Once 𝑞’s
1-NN in layer 1 is identified, the algorithm proceeds to search for 𝑞’s
approximate 𝑒 𝑓 -NNs within the bottom layer of the graph (line 8).
This process includes both the neighbors directly accessible in the
bottom layer of the graph and the leaf nodes in the tree structure
pointed to by the graph vertices at the bottom layer (i.e., layer 0).
Finally, the 𝑘 nearest neighbors from the candidate set are returned
as the final results for the query (line 9).

Algorithm 5 outlines the details of searching the bottom layer of
the graph to find the approximate 𝑒 𝑓 -NNs for a given query object.
The algorithm takes as input a query object 𝑞, an entry point 𝑝 , a
search parameter 𝑒 𝑓 , and aGTI index 𝐼 , and outputs𝑞’s approximate
𝑒 𝑓 nearest neighbors. The process begins by retrieving the tree and
graph indexes from the GTI (line 1). The algorithm then initializes
several structures: a set 𝑉 to track visited vertices, a priority 𝑄

to store candidate vertices sorted by their distances to 𝑞, a set 𝐴
to store the current nearest neighbors of 𝑞, and a distance 𝑑𝑖𝑠𝑚𝑎𝑥

to keep track of the local maximum distance to 𝑞 among objects

Algorithm 6: 𝑘NN Search
Input: a query object 𝑞, a GTI index 𝐼 , a search parameter 𝑒 𝑓 , and

an integer 𝑘
Output: exact 𝑘 nearest neighbors of 𝑞

1: 𝐶 ← A𝑘NNSearch(𝑞, 𝐼 , 𝑒 𝑓 , 𝑘)
2: 𝐼𝑇 ← tree index from 𝐼

3: 𝑅 ← 𝑘SearchT(𝐶 , 𝐼𝑇 , 𝑘)
4: return 𝑘 nearest neighbors in 𝑅

in 𝐴 retrieved from the graph (lines 2-5). The search proceeds by
exploring layer 0 of the graph and the leaf nodes pointed to by the
visited vertices until𝑄 becomes empty or other termination criteria
are met (lines 6-14). Specifically, the algorithm retrieves the vertex
𝑐 from 𝑄 that is closest to 𝑞 and compares its distance to 𝑞 with
𝑑𝑖𝑠𝑚𝑎𝑥 . If 𝑐’s distance exceeds 𝑑𝑖𝑠𝑚𝑎𝑥 , the algorithm terminates
the search early, as the remaining vertices in 𝑄 are unlikely to
contribute significantly to the query results (lines 7-8). Otherwise,
the algorithm continues to examine each un-visited neighbor 𝑐′ of
𝑐 in the bottom layer of the graph.

For each candidate vertex 𝑐′, if its distance to 𝑞 is within 𝑑𝑖𝑠𝑚𝑎𝑥 ,
the algorithm enqueues 𝑐′ to 𝑄 , adds 𝑐′ to 𝐴 and updates 𝑑𝑖𝑠𝑚𝑎𝑥

if necessary. Specifically, 𝑑𝑖𝑠𝑚𝑎𝑥 is updated if including 𝑐′ in 𝐴

changes 𝑞’s distance to its 𝑒 𝑓 -th nearest neighbor among graph ob-
jects in𝐴 (lines 9-12). Note that 𝑑𝑖𝑠𝑚𝑎𝑥 captures the local maximum
distance to 𝑞 from existing result objects in 𝐴 that are retrieved
from the graph, excluding those from the tree. The algorithm then
examines each object 𝑠 in the leaf nodes pointed to by 𝑐′. If 𝑠 is
closer to 𝑞 than 𝑞’s furthest object in 𝐴, the algorithm updates the
result set 𝐴 with 𝑠 (lines 13-14). For instance, accessing object 𝑜6
in the bottom layer triggers access to additional objects {𝑜10, 𝑜11}
within leaf node 𝑁7 pointed to by 𝑜6, as illustrated in Fig. 3. Notably,
the access of objects in leaf nodes does not influence the search
condition within the graph. Instead, it updates 𝐴 if any objects in
the leaf nodes are closer to 𝑞 than the current objects in 𝐴, with-
out altering 𝑑𝑖𝑠𝑚𝑎𝑥 . Finally, the algorithm returns the 𝑒 𝑓 nearest
neighbors from 𝐴 (line 15).

5.2 Exact Nearest Neighbor Search
Benefiting from the tree-graph structure of our GTI index, we sup-
port the exact nearest neighbor search efficiently. Traditional exact
𝑘-NNS methods on tree indexes treat 𝑘-NNS as a specialized range
query [19]. The radius is initially set to infinite. As the search pro-
gresses, the radius is updated to the distance from 𝑞 to its current
𝑘-th nearest neighbor and is gradually reduced until the true 𝑘-
NNs are found. However, an excessively large radius early in the
search can lead to inefficient tree pruning, causing unnecessary
calculations. To address this inefficiency, we propose initializing the
search radius with a high-quality approximate 𝑘-th nearest neigh-
bor distance, derived from the approximate 𝑘-NN search algorithm
described in Section 5.1. Such a high-quality initial radius helps
improve pruning efficiency and accelerate the search process.

Algorithm 6 outlines the exact 𝑘 nearest neighbor search process
using our index. The algorithm takes as input a query object 𝑞, a
GTI index 𝐼 , a search parameter 𝑒 𝑓 , and an integer 𝑘 . It outputs the
exact 𝑘 nearest neighbors of 𝑞. First, we execute an approximate
𝑘-NNS to find the approximate 𝑘-NNs of the query (line 1). Next,
the algorithm performs the exact 𝑘-NNS on the tree index using the
high-quality initial radius instead of an infinite radius traditionally

993

used in tree-based searches [19] (lines 2–3). Finally, the algorithm
returns the results of the exact search (line 4).
Remark. Our GTI method integrates the SOTA M-tree [15], which
inherently supports exact range queries, such as finding all objects
within a given search radius from a query. However, the M-tree
index only supports exact range queries using metrics that satisfy
the triangle inequality. For scenarios where the triangle inequality
is not satisfied, the M-tree index employed inGTI can be substituted
with a Cover tree index [8, 33].

5.3 Search Complexity Analyses
The approximate nearest neighbor search in GTI consists of two
components: searching for neighbors within the hierarchical graph
and examining corresponding leaf nodes in the tree. The time com-
plexity for searching the hierarchical graph, constructed from the
entries at level 1 of the tree, equals the number of layers multiplied
by the average number of neighbors in graph. This can be expressed
as the search path length times the cost of a single search. Consid-
ering that the number of neighbors in graph is a constant related
to𝑚, and the number of layers in the graph is 𝑂 (log 𝑛

𝑁𝑐
) [45, 55],

the complexity becomes 𝑂 (𝑚 log𝑛).
Each candidate vertex in the bottom layer of the graph has 𝑁𝑐

more neighbors connected to the associated leaf entry in the tree
index. As a result, the number of neighbors of each vertex in the
bottom layer of graph is𝑚′ = 2𝑚 + 𝑁𝑐 . Note that the size of candi-
date vertexes is related to the search parameter 𝑒 𝑓 , the complexity
of searching their corresponding leaf nodes is 𝑂 (𝑁𝑐 · 𝑒 𝑓). Conse-
quently, the overall time complexity of the approximate search on
GTI is 𝑂 (𝑚 log𝑛 + 𝑁𝑐 · 𝑒 𝑓).

6 EXPERIMENTS
In this section, we conduct empirical experiments to evaluate the
performance of our proposed graph-based tree index GTI against
its competitors, considering the construction and update costs, the
search performance, and the scalability.

6.1 Experimental Settings
Datasets. We employ six widely used real-life datasets for eval-
uating NNS methods [6, 28, 45, 55, 58, 59, 71, 73] in our study.
These datasets are generated from different data types and vary
in cardinality and distributions: (i) Deep [71], image vectors ex-
tracted from the last layers of a convolutional neural network; (ii)
Msong [3], a collection of one million western popular music pieces;
(iii)Gist [2], one million images with 960 dimensions; (iv) Color [10],
image features extracted from Flickr; (v) Turing [58], Bing textual
queries encoded by Turing AGI v5; and (vi) Bigann [2], SIFT vectors
representing image feature descriptions. Table 2 summarizes all
the datasets used, where 𝐷𝑖𝑚. denotes the dataset dimension. The
query workloads in this paper are derived from Deep, Msong, Gist,
Turing and Bigann, or sampled from Color.
Baselines. To evaluate our proposed graph-based tree index GTI,
we compare it with multiple baseline methods: (i) two well-establi-
shed and efficient tree-based methods for exact NNS and range
queries [15], including the dynamic index M-tree [19] and the
static index MVPT [11, 12]; (ii) two SOTA graph-based methods
for ANNS [59], including HNSW [45] and NSG [28], where the ad-
vanced MNG [55] update strategy is applied to both methods; and
(iii) two recent hybrid methods for ANNS, including the dynamic

Table 2: Dataset statistics
Dataset Cardinality Dim. Size (GB) Type
Deep 1, 000, 000 256 0.96 Image
Msong 992, 272 420 1.56 Audio
Gist 1, 000, 000 960 3.58 Image
Color 5, 000, 000 282 5.27 Image
Turing 100, 000, 000 100 37.63 Text
Bigann 100, 000, 000 128 48.06 Image

Table 3: Evaluation parameters
Parameter Value
Integer k 1, 5, 10, 20, 50

Search radius r (×0.01%) 1, 2, 4, 8, 16
Leaf node capacity 𝑁𝑐 2, 4, 6, 8, 10
Graph sparsity𝑚 4, 8, 16, 32, 64

Proportion of dataset (%) 1, 5, 10, 20, 40, 50, 60, 80, 100

hash-graph combination method LSH-APG [71], and the static tree-
graph combination method ELPIS [6]. Note that we do not select
MNG as a separate baseline, because it requires fine-tuning for dif-
ferent datasets and becomes NSG when adopting the edge selection
strategy with 𝜏 = 0. In addition, LVQ [1] was excluded from the
experiments, as it is a quantization-based framework that can be in-
tegrated with graph-based and hybrid methods, including our GTI.
While combining LVQ with these methods might offer efficiency
and storage benefits, LVQ has several limitations: (i) LVQ could
potentially increase the update overhead of other methods, as its
updates scale linearly with dataset size [1], making it incompatible
with GTI, which supports logarithmic updates; (ii) LVQ accelerates
calculations using AVX512, but this instruction set is not widely
supported, including on the processor used in our experiments and
the latest Intel(R) Xeon(R) E Processor series [20]; and (iii) LVQ’s
compression can reduce accuracy in graph construction and search,
lowering query recall for approximation methods. Therefore, we
do not apply LVQ to baselines in our experiments.
Configuration.We implement GTI and the baseline methods in
C++. To ensure fairness in comparison, we clear the caches between
query workloads and disable certain optimizations employed by
some baselines. These optimizations, designed to improve distance
computations or hardware configurations, can be applied to both
GTI and all the baselines. They include normalized distance for
NSG, AVX-512 support for LSH-APG, and parallel computing op-
timization for ELPIS. All experiments are conducted on a Linux
server with a 2.20GHZ Intel(R) Xeon(R) CPU and 256GB of memory.
Parameters and PerformanceMetrics. In this study, we evaluate
the performance of our proposed index GTI and its competitors by
examining the impact of several key parameters. Specifically, we
vary the integer 𝑘 for 𝑘-nearest neighbor search, the search radius 𝑟
for range queries that is adjusted based on the number of qualified
objects required, the leaf node capacity 𝑁𝑐 that controls the num-
ber of objects in each leaf node, the graph sparsity𝑚 that controls
the number of neighbors in the graph, and the proportion of the
datasets used in the experiments. Table 3 provides an overview of
these key parameters and their corresponding values, with default
values highlighted in bold. To ensure a fair evaluation, we use 1
million objects as the default size for datasets larger than 1 million.
Consequently, the default proportions are set as follows: Color, Tur-
ing and Bigann at 20%, 1% and 1%, respectively, while Deep, Msong

994

Table 4: Index construction cost of different methods

Method Deep Msong Gist Color Turing Bigann
Time (s) PM (MB) Time (s) PM (MB) Time (s) PM (MB) Time (s) PM (MB) Time (s) PM (MB) Time (s) PM (MB)

Tree-based
Methods

M-tree 10.32 29.64 15.79 29.94 24.33 30.02 11.35 29.13 8.07 30.87 7.07 29.24
MVPT 67.08 3.82 102.97 3.79 201.58 3.82 33.16 3.82 26.55 3.82 17.49 3.82

Graph-based
Methods

HNSW 285.62 375.12 285.95 376.29 1221.12 382.69 240.54 378.34 286.35 377.80 142.08 377.81
NSG 453.86 1697.78 537.31 1607.13 1469.09 1611.39 408.99 1654.68 1087.48 1763.69 297.27 1657.62

Hybrid
Methods

LSH-APG 201.85 434.56 195.04 430.36 298.15 408.65 231.32 434.56 170.82 441.41 129.76 439.96
ELPIS 108.92 385.36 188.52 386.53 355.52 382.69 122.54 388.58 122.86 385.44 62.96 385.46
GTI 71.25 162.67 106.35 162.77 218.94 170.56 70.68 169.91 57.38 166.87 35.76 158.14

and Gist are set at 100%. Baseline methods are tested with their de-
fault parameter settings. We assess the efficiency and effectiveness
of GTI and its competitors by measuring several metrics, including
index construction cost, update time, search time, and search recall
(defined in Equation (1)). All graph-oriented components of graph-
based and hybrid methods are built in parallel, and the update
methods are also processed in parallel. Each search measurement
is based on the average performance across 100 random queries.

6.2 Construction and Update Performance
Construction Performance.We first compare the construction
costs of GTI with those of competitors across all datasets. The re-
sults are presented in Table 4, where 𝑃𝑀 denotes the peak memory
usage during index construction (excluding the size of the dataset).
Overall, tree-based methods (M-tree, MVPT) exhibit significantly
lower construction costs compared to graph-based methods (HNSW
and NSG) and hybrid methods (LSH-APG, ELPIS and GTI). This
is because their efficient hierarchical partitioning approach is less
complex than the computation and storage of neighborhood rela-
tionships required by graph-based and hybrid methods. As a result,
it is more cost-effective in terms of construction while necessitating
more complex search traversals. In addition, hybrid methods lever-
age auxiliary indexes such as hash or tree structures to accelerate
the construction of internal graph indexes, resulting in a shorter
construction time than graph-based methods.

Among graph-based and hybrid methods, GTI incurs the low-
est construction overhead. Specifically, GTI has the shortest con-
struction time, comparable to MVPT, approximately 4× faster than
graph-based methods, and about 2× faster than hybrid methods
on average. Notably, NSG takes the longest construction time due
to the need to build two graphs: first, the 𝑘NNG, and then the
subsequent NSG built using the 𝑘NNG.

In terms of peak memory usage during index construction, our
proposed method GTI uses the least memory among graph-based
and hybrid methods, with a footprint at least 2× smaller than that of
graph-based and hybrid methods. This efficiency stems from GTI’s
approach of first using a tree for fast hierarchical partitioning and
then constructing a graph index only for nodes located at level 1 of
the tree, rather than on the entire dataset. This strategy effectively
reduces both the time and space costs of index construction. Al-
though ELPIS writes to disk during index construction, it requires
loading the entire index and graph into memory during search op-
erations, resulting in a higher peak memory usage compared toGTI.
Additionally, MVPT maintains a consistent index size due to its
balanced tree structure based on pivot points, which is unaffected
by data type variations.

 M-tree HNSW NSG LSH-APG GTI

ll

0.2M 0.4M 0.6M 0.8M 1M
10

-2

10
-1

10
0

10
1

10
2

10
3

ru
n

n
in

g
 t

im
e

(s
)

dataset size

(a) Gist

0.2M 0.4M 0.6M 0.8M 1M
10

-3

10
-2

10
-1

10
0

10
1

10
2

ru
n

n
in

g
 t

im
e

(s
)

dataset size

(b) Color

0.2M 0.4M 0.6M 0.8M 1M
10

-3

10
-2

10
-1

10
0

10
1

10
2

ru
n

n
in

g
 t

im
e

(s
)

dataset size

(c) Bigann

0.2M 0.4M 0.6M 0.8M 1M
0.6

0.7

0.8

0.9

1.0

r
e
c
a

ll

dataset size

(d) Gist

0.2M 0.4M 0.6M 0.8M 1M
0.90

0.92

0.94

0.96

0.98

1.00

r
e
c
a

ll

dataset size

(e) Color

0.2M 0.4M 0.6M 0.8M 1M
0.90

0.92

0.94

0.96

0.98

1.00

r
e
c
a

ll

dataset size

(f) Bigann

Figure 4: Update performance vs. dataset size (the recall of
exact methods are omitted as the values are always 1)

ru
n

n
in

g
ti

m
e

(m
s)

re
ca

ll

Nc

0

4.5

0.4

1

3

1.5

2 4 6 8 10

0.6

0.8

recall
running time
recall
running time

(a) Deep

ru
n

n
in

g
ti

m
e

(m
s)

re
ca

ll

Nc

0

6

0.4

1

4

2

2 4 6 8 10

0.6

0.8

recall
running time
recall
running time

(b) Color

Figure 5: Effect of the leaf node capacity 𝑁𝑐 on NNS

Update Performance. Next, we investigate the impact of up-
date operations on various methods while varying the dataset size.
Specifically, we perform update operations including inserting and
removing objects, which correspond to 0.1% of the cardinality of the
test datasets. Meanwhile, we intersperse query operations within
the updates. This approach simulates real-world dynamic scenar-
ios, such as frequent changes in product listings on e-commerce
platforms like Alibaba’s Taobao, where updates and user queries
may occur concurrently.

For M-tree, we perform the exact 𝑘NN searches, while for other
methods, we conduct approximate 𝑘-NNS. Although GTI supports
various query types, we focus solely on approximate 𝑘-NNS in this
evaluation. We compare average running time and search recall
against baselines that support updates, where we adopt MNG’s
periodic graph reconstruction update strategy for HNSW, NSG,
and LSH-APG. Notably, LSH-APG is an approximate method and
only supports object deletion based on IDs rather than the objects
themselves. Since real-world scenarios often require object-based
deletions, we adapt MNG’s update strategy to support object-based
deletions in LSH-APG.

995

ru
n

n
in

g
ti

m
e

(m
s)

re
ca

ll

m

0

6

0.4

1

4

2

4 8 16 32 64

0.6

0.8

recall
running time
recall
running time

(a) Deep

ru
n

n
in

g
ti

m
e

(m
s)

re
ca

ll

m

0

3

0.7

1

2

1

4 8 16 32 64

0.8

0.9

recall
running time
recall
running time

(b) Color

Figure 6: Effect of the graph sparsity𝑚 on NNS

The results, shown in Fig. 4, highlight the comparative perfor-
mance. Thanks to its tree-graph hybrid structure and efficient up-
date strategy, GTI significantly outperforms other methods in up-
date performance. GTI is approximately 10× faster than the next
best tree-based method and two orders of magnitude faster than
other graph-based and hybrid methods. Additionally, GTI’s update
time scales similarly with cardinality as M-tree, i.e. logarithmic com-
plexity, which supports our theoretical analysis. However, due to
slower query times of the M-tree, particularly for locating deletion
points, its overall update operation time is longer than our proposed
method. In terms of search recall post-updates, GTI maintains per-
formance comparable to other SOTA approximate methods, with
the recall of over 0.97 on Color and Bigann. This demonstrates the
effectiveness and robustness of our proposed update strategy.

6.3 Search Performance
We proceed to investigate the search performances of GTI and its
competitors by varying four key parameters: node capacity 𝑁𝑐 ,
graph sparsity𝑚, the number 𝑘 for 𝑘-NNS, and the search radius
𝑟 for exact range queries. Additionally, we analyze the trade-off
between recall and search time through recall-time curves.
Impact of 𝑁𝑐 and 𝑚. Fig. 5 illustrates the approximate 𝑘-NNS
performance of GTI as leaf node capacity 𝑁𝑐 varies. When 𝑁𝑐

increases, search time tends to rise while recall decreases. This
observation aligns with our complexity analysis in Section 5.3. An
increase in𝑁𝑐 results in a greater number of objects within each tree
leaf node, leading to an increase in the total number of neighbors
that need to be visited during search. Although the graph size and
height (i.e., the search path length 𝑂 (log 𝑛

𝑁𝑐
)) decreases, this effect

is minor due to the dataset size 𝑛 ≫ 𝑁𝑐 . Consequently, the search
time increases with larger 𝑁𝑐 . Additionally, a larger 𝑁𝑐 reduces the
size of the graph and impairs global navigation performance and
recall, even though the number of objects in the leaf nodes increases.
Therefore, a smaller 𝑁𝑐 generally results in better performance.

Fig. 6 illustrates the approximate 𝑘-NNS performance as graph
sparsity𝑚 varies. The results reveal that as𝑚 increases, both the
search time and recall rise, highlighting a trade-off between search
efficiency and accuracy. This observation is in line with our com-
plexity analysis presented in Section 5.3. Increased𝑚 means more
neighbors (𝑂 (2𝑚 + 𝑁𝑐)) must be accessed during each search step,
leading to longer search time and higher recall. Despite the increas-
ing complexity, GTI maintains a high search recall (above 0.9) even
with smaller𝑚, due to effective neighbor relationships within tree
nodes. For our experiments, we use 𝑁𝑐 = 2 and𝑚 = 16 as their
default values, which strike a good balance between search time
and recall. For the capacity of internal nodes in the tree, we use
commonly accepted values like 64 as the default setting.

 M-tree MVPT HNSW NSG

 LSH-APG ELPIS GTI-Exact GTI

1 5 10 20 50
10

-4

10
-3

10
-2

10
-1

10
0

10
1

ru
n

n
in

g
 t

im
e

(s
)

k

(a) Deep

1 5 10 20 50
10

-4

10
-3

10
-2

10
-1

10
0

10
1

ru
n

n
in

g
 t

im
e

(s
)

k

(b) Color

1 5 10 20 50
10

-4

10
-3

10
-2

10
-1

10
0

10
1

ru
n

n
in

g
 t

im
e

(s
)

k

(c) Turing

1 5 10 20 50
0.85

0.90

0.95

1.00

r
e
c
a

ll

k

(d) Deep

1 5 10 20 50
0.90

0.92

0.94

0.96

0.98

1.00

r
e
c
a

ll

k

(e) Color

1 5 10 20 50
0.6

0.7

0.8

0.9

1.0

r
e
c
a

ll

k

(f) Turing

Figure 7: Impact of integer 𝑘 on NNS (the recall of exact
methods are omitted as the values are always 1)

 M-tree MVPT GTI-Exact

1 2 4 8 16

10-1

100

ru
n

n
in

g
 t

im
e

(s
)

r (x 0.01%)

(a) Msong

1 2 4 8 16
10-1

100

101

ru
n

n
in

g
 t

im
e

(s
)

r (x 0.01%)

(b) Gist

1 2 4 8 16
10-2

10-1

100

ru
n

n
in

g
 t

im
e

(s
)

r (x 0.01%)

(c) Bigann

Figure 8: Impact of search radius 𝑟 on exact range queries

Effects of 𝑟 and 𝑘 . Figs. 7 and 8 illustrate the performance of
𝑘NNS and range queries for different algorithms, while varying
the integer 𝑘 and the search radius 𝑟 . Note, our GTI supports both
approximate 𝑘-NNS (shown as GTI) and exact 𝑘-NNS and range
query (shown as GTI-Exact). As shown in Fig. 7, approximate 𝑘-
NNS methods (HNSW, NSG, LSH-APG, ELPIS, and GTI) are about
two orders of magnitude faster than exact 𝑘-NNS methods (M-tree,
MVPT, GTI-Exact). This speed advantage comes at the expense of
some query accuracy, demonstrating that approximate methods
significantly enhance efficiency by sacrificing accuracy. Meanwhile,
this also indicates that the time cost of A𝑘NNS remains negligible
compared to exact search methods, while still maintaining high
recall. Therefore, using A𝑘NNS first to locate the object to be deleted
during the deletion process is more efficient in most cases. Even in
extreme cases where most target objects do not exist, the time cost
incurred by the A𝑘NNS remains negligible.

Besides, regardless of whether the 𝑘-NNS is exact or approxi-
mate, our method performs comparably to leading SOTA methods
in terms of both time and accuracy, reflecting the efficacy of our
search strategy. Notably, on datasets where approximate methods
struggle to maintain high recall, such as Turing, our GTI also sup-
ports exact queries to meet high-precision requirements when nec-
essary. Additionally, ELPIS exhibits relatively slower performance
among the approximate methods due to its need to sequentially
search subgraphs across multiple leaf nodes. GTI also supports
exact range queries due to the benefits of its internal tree index.
As shown in Fig. 8, GTI’s performance in exact range queries is
comparable with other efficient range query methods. Overall, GTI
provides efficient graph-like approximate query performance, while
also supporting exact queries. This dual capability makes GTI more
versatile and efficient compared to other methods, enabling it to
better accommodate diverse query requirements.

996

 HNSW NSG LSH-APG ELPIS GTI

ll

0.7

0.8

0.9

1.0

10
-4

10
-3

10
-2

running time (s)

re
ca

ll

(a) Msong

0.5

0.6

0.7

0.8

0.9

1.0

10
-3

10
-2

10
-1

running time (s)

re
ca

ll

(b) Gist

0.75

0.80

0.85

0.90

0.95

1.00

10
-4

10
-3

10
-2

running time (s)

re
ca

ll

(c) Bigann

Figure 9: The recall vs. time for approximate 𝑘-NNS

The recall vs. time. Increasing the number of objects examined
in an ANNS method can enhance accuracy, but this improvement
comes at the cost of reduced query efficiency. An algorithm is
deemed to have superior query performance if it achieves a given
target recall level within a shorter search time. Fig. 9 presents the
approximate 𝑘-NNS recall-time of GTI compared to other approxi-
mate methods. We observe the following trends: (i) As search time
increases, all algorithms show improved recall, adhering to the
fundamental principle of ANNS methods where increased search
time yields higher accuracy. Furthermore, the search time required
to achieve a given recall grows almost exponentially as recall im-
proves. (ii) WhileGTI does not outperform all approximate methods
in terms of recall due to its reduced proximity graph size - resulting
in significantly lower construction and update costs - its perfor-
mance is still comparable. GTI maintains competitive graph-like
approximate 𝑘-NNS performance, differing from the best methods
by only a few milliseconds at similar recall levels, and achieving
high query accuracy. Furthermore, GTI uniquely supports both
exact 𝑘-NNS and range queries, a capability not provided by any
other approximate methods.

6.4 Scalability Analysis
Finally, we present the construction and 𝑘-NNS performance with
varying dataset proportions, as shown in Fig. 10. Note GTI per-
forms only approximate 𝑘-NNS. For construction time, we focus on
cases where the construction time is 36 hours or less; algorithms
exceeding this limit are considered unable to build the index within
a reasonable timeframe, such as ELPIS on Bigann and Turing, and
HNSW on Turing.

We observe that the construction time increases with dataset
cardinality. Tree-based methods (M-tree and MVPT) generally have
shorter construction times compared to graph-based (HNSW, NSG)
and hybrid (LSH-APG, ELPIS, andGTI) methods. The latter methods
require establishing complex neighbor relationships to accelerate
the search process significantly. Among graph-based and hybrid
methods, GTI demonstrates notably better construction time per-
formance, showcasing its efficiency. For instance, on the largest
Bigann dataset with 100 million objects, GTI’s construction time is
only 5 hours, whereas other graph-based and hybrid methods take
half a day to nearly two days.

Additionally, increasing dataset size poses memory issues on
NSG on Bigann and Turing, while ELPIS and HNSW cannot com-
plete index construction on Bigann and Turing within the limited
timeframe due to prolonged disk writes from oversized leaf nodes
and the complexity of multi-layer neighbor relations, respectively.
In terms of search performance, we find that search time generally
increases with dataset size, while the recall of graph-based and
hybrid methods decreases. Exact tree-based methods, in contrast,

 LSH-APG ELPIS GTI

 M-tree MVPT HNSW NSG

20% 40% 60% 80% 100%

10
1

10
2

10
3

co
n

st
ru

ct
io

n
 t

im
e

(s
)

proportion

(a) Color

1% 5% 10% 50% 100%

10
1

10
2

10
3

10
4

10
5

co
n

st
ru

ct
io

n
 t

im
e

(s
)

proportion

(b) Turing

1% 5% 10% 50% 100%

10
1

10
2

10
3

10
4

10
5

co
n

st
ru

ct
io

n
 t

im
e

(s
)

proportion

(c) Bigann

20% 40% 60% 80% 100%
10

-4

10
-3

10
-2

10
-1

10
0

se
a

rc
h

 t
im

e
(s

)

proportion

(d) Color

1% 5% 10% 50% 100%
10

-4

10
-2

10
0

10
2

se
a

rc
h

 t
im

e
(s

)

proportion

(e) Turing

1% 5% 10% 50% 100%
10

-4

10
-2

10
0

10
2

se
a

rc
h

 t
im

e
(s

)

proportion

(f) Bigann

20% 40% 60% 80% 100%
0.80

0.85

0.90

0.95

1.00

r
e
c
a

ll

proportion

(g) Color

1% 5% 10% 50% 100%
0.6

0.7

0.8

0.9

1.0

r
e
c
a

ll

proportion

(h) Turing

1% 5% 10% 50% 100%
0.80

0.85

0.90

0.95

1.00

r
e
c
a

ll

proportion

(i) Bigann

Figure 10: Index and 𝑘-NNS performance vs. proportion of
dataset (the recall of exact methods are omitted as the values
are always 1)

are 2-4 orders of magnitude slower than approximate graph-based
and hybrid methods, which trade off construction performance
for improved search efficiency. Among the graph-based and hy-
brid methods, GTI shows comparable search time and recall. This
indicates that GTI scales effectively with increasing data sizes.

7 CONCLUSIONS
In this paper, we introduce GTI, a new, agile graph-based tree index
designed for NNS in high-dimensional spaces. GTI comprises a tree
index spanning the entire dataset and a lightweight graph index
constructed at the upper tree level. This approach significantly
reduces the time and space costs associated with index construc-
tion. We also present efficient algorithms for data insertion and
deletion, enabling real-time updates with logarithmic complexity
on GTI. Furthermore, we propose approximate nearest neighbor
search algorithms for GTI, achieving efficient graph-like query per-
formance compared to SOTA methods. Additionally, GTI supports
both exact NNS and range search functionalities. Extensive experi-
ments demonstrate that GTI achieves efficient index construction
with minimal time and space costs, and surpasses state-of-the-art
methods in update efficiency. Extensive experiments on six real-
world datasets demonstrate the efficient search performance and
strong scalability of the proposed method. These results highlight
the superior efficiency of GTI, making it a promising solution for
various real-life applications. Moving forward, we plan to explore
NNS with the learned index or consider the GPU architecture to
further enhance efficiency.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC under Grants No.
(62025206, U23A20296, and 62102351), Zhejiang Province’s "Lingyan"
R&D Project under Grant No. (2024C01259), and the Key Lab of Big
Data Intelligent Computing of Zhejiang Province. Congcong Ge is
the corresponding author of the work.

997

REFERENCES
[1] Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper,

and Theodore L. Willke. 2023. Similarity search in the blink of an eye with
compressed indices. Proc. VLDB Endow. 16, 11 (2023), 3433–3446.

[2] Laurent Amsaleg and Hervé Jegou. 2010. Datasets for approximate nearest
neighbor search. Retrieved from http://corpus-texmex.irisa.fr/ (2010).

[3] Anon. 2011. Million Song Dataset Benchmarks. Retrieved from
http://www.ifs.tuwien.ac.at/mir/msd/ (2011).

[4] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-
Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search
in High-Dimensional Spaces. Proc. VLDB Endow. 11, 8 (2018), 906–919.

[5] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Inf. Syst. 87 (2020), 101374.

[6] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-Based
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (2023),
1548–1559.

[7] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. In SIGMOD. 322–331.

[8] Alina Beygelzimer, Sham M. Kakade, and John Langford. 2006. Cover trees for
nearest neighbor. In ICML, Vol. 148. 97–104.

[9] Christian Böhm. 2000. A cost model for query processing in high dimensional
data spaces. ACM Trans. Database Syst. 25, 2 (2000), 129–178.

[10] Paolo Bolettieri, Andrea Esuli, Fabrizio Falchi, Claudio Lucchese, Raffaele Perego,
and Fausto Rabitti. 2009. Enabling content-based image retrieval in very large
digital libraries. In Proceedings of the SecondWorkshop on Very Large Digital
Libraries.

[11] Tolga Bozkaya and Z. Meral Özsoyoglu. 1997. Distance-Based Indexing for
High-Dimensional Metric Spaces. In SIGMOD. 357–368.

[12] Tolga Bozkaya and Z. Meral Özsoyoglu. 1999. Indexing Large Metric Spaces for
Similarity Search Queries. ACM Trans. Database Syst. 24, 3 (1999), 361–404.

[13] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and
Eamonn J. Keogh. 2014. Beyond one billion time series: indexing and mining
very large time series collections with i SAX2+. Knowl. Inf. Syst. 39, 1 (2014),
123–151.

[14] Edgar Chávez, Gonzalo Navarro, Ricardo A. Baeza-Yates, and José L. Marroquín.
2001. Searching in metric spaces. ACM Comput. Surv. 33, 3 (2001), 273–321.

[15] Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Chris-
tian S. Jensen. 2023. Indexing Metric Spaces for Exact Similarity Search. ACM
Comput. Surv. 55, 6 (2023), 128:1–128:39.

[16] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In NIPS. 5199–5212.

[17] Paolo Ciaccia and Davide Martinenghi. 2017. Reconciling Skyline and Ranking
Queries. Proc. VLDB Endow. 10, 11 (2017), 1454–1465.

[18] Paolo Ciaccia and Davide Martinenghi. 2020. Flexible Skylines: Dominance for
Arbitrary Sets of Monotone Functions. ACM Trans. Database Syst. 45, 4 (2020),
18:1–18:45.

[19] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB. 426–435.

[20] Intel Corporation. 2023. Intel(R) Xeon(R) E Processors. Retrieved from
https://www.intel.com/content/www/us/en/products/details/processors/xeon/e.html
(2023).

[21] Thomas M. Cover and Peter E. Hart. 1967. Nearest neighbor pattern classification.
IEEE Trans. Inf. Theory 13, 1 (1967), 21–27.

[22] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. In WWW. 577–586.

[23] Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2021. LANNS: A Web-Scale Approximate Nearest
Neighbor Lookup System. Proc. VLDB Endow. 15, 4 (2021), 850–858.

[24] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,
and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.
Proc. VLDB Endow. 15, 10 (2022), 2005–2018.

[25] Myron Flickner, Harpreet S. Sawhney, Jonathan Ashley, Qian Huang, Byron
Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele,
and Peter Yanker. 1995. Query by Image and Video Content: The QBIC System.
Computer 28, 9 (1995), 23–32.

[26] Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Nearest
Neighbor Search Algorithm Based on kNN Graph. CoRR abs/1609.07228 (2016).

[27] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity
SearchWith Satellite System Graph: Efficiency, Scalability, and Unindexed Query
Compatibility. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8 (2022), 4139–4150.

[28] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[29] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 36, 4 (2014), 744–755.

[30] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. 518–529.

[31] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: Indexable
Distance Estimating Codes for Approximate Nearest Neighbor Search. Proc.
VLDB Endow. 13, 9 (2020), 1483–1497.

[32] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD. 47–57.

[33] Michael E. Houle and Michael Nett. 2013. Rank Cover Trees for Nearest Neighbor
Search. In SISAP (Lecture Notes in Computer Science), Vol. 8199. 16–29.

[34] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of
top-k query processing techniques in relational database systems. ACM Comput.
Surv. 40, 4 (2008), 11:1–11:58.

[35] Masajiro Iwasaki. 2015. Neighborhood Graph and Tree for Indexing Highdimen-
sional Data. Yahoo Japan Corporation. Retrieved August 22 (2015), 2020.

[36] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[37] Zhongming Jin, Debing Zhang, Yao Hu, Shiding Lin, Deng Cai, and Xiaofei He.
2014. Fast and Accurate Hashing Via Iterative Nearest Neighbors Expansion.
IEEE Trans. Cybern. 44, 11 (2014), 2167–2177.

[38] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[39] Atsutake Kosuge and Takashi Oshima. 2019. An Object-Pose Estimation Acceler-
ation Technique for Picking Robot Applications by Using Graph-Reusing k-NN
Search. In First International Conference on Graph Computing. 68–74.

[40] Michele Linardi and Themis Palpanas. 2018. Scalable, Variable-Length Similarity
Search in Data Series: The ULISSE Approach. Proc. VLDB Endow. 11, 13 (2018),
2236–2248.

[41] Michele Linardi and Themis Palpanas. 2020. Scalable data series subsequence
matching with ULISSE. VLDB J. 29, 6 (2020), 1449–1474.

[42] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS: Hi-
erarchical Graph Structure Based on Voronoi Diagrams for Solving Approximate
Nearest Neighbor Search. Proc. VLDB Endow. 15, 2 (2021), 246–258.

[43] Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. 2020. VHP: Approxi-
mate Nearest Neighbor Search via Virtual Hypersphere Partitioning. Proc. VLDB
Endow. 13, 9 (2020), 1443–1455.

[44] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Inf. Syst. 45 (2014), 61–68.

[45] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[46] Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan
Gu, Harsha Vardhan Simhadri, and Yihan Sun. 2024. ParlayANN: Scalable and
Deterministic Parallel Graph-Based Approximate Nearest Neighbor Search Al-
gorithms. In SIGPLAN. 270–285.

[47] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben
Liao, and Guangyong Chen. 2020. PMD: An Optimal Transportation-Based User
Distance for Recommender Systems. In ECIR (Lecture Notes in Computer Science),
Vol. 12036. 272–280.

[48] KyriakosMouratidis, Keming Li, and Bo Tang. 2021. Marrying Top-k with Skyline
Queries: Relaxing the Preference Input while Producing Output of Controllable
Size. In SIGMOD. 1317–1330.

[49] Kyriakos Mouratidis and Bo Tang. 2018. Exact Processing of Uncertain Top-k
Queries in Multi-criteria Settings. Proc. VLDB Endow. 11, 8 (2018), 866–879.

[50] Javier Alvaro Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias, and Ricardo
da Silva Torres. 2019. Hierarchical Clustering-Based Graphs for Large Scale
Approximate Nearest Neighbor Search. Pattern Recognit. 96 (2019), 106970.

[51] Beng Chin Ooi. 1987. Spatial kd-Tree: A Data Structure for Geographic Database.
In Datenbanksysteme in Büro, Technik und Wissenschaft, GI-Fachtagung, Darm-
stadt, 1.-3. April 1987, Proceedings (Informatik-Fachberichte), Vol. 136. 247–258.

[52] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. The VLDB Journal 33 (2024), 1591–1615.

[53] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Vector Database Manage-
ment Techniques and Systems. In SIGMOD. 597–604.

[54] John Paparrizos, Ikraduya Edian, Chunwei Liu, Aaron J. Elmore, and Michael J.
Franklin. 2022. Fast Adaptive Similarity Search through Variance-Aware Quanti-
zation. In ICDE. 2969–2983.

[55] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases.
Proc. ACM Manag. Data 1, 1 (2023), 54:1–54:27.

[56] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. In WWW. 285–
295.

[57] Patrick Schäfer and Mikael Högqvist. 2012. SFA: a symbolic fourier approxi-
mation and index for similarity search in high dimensional datasets. In EDBT.
516–527.

998

[58] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Kr-
ishnaswamny, Gopal Srinivasa, et al. 2022. Results of the NeurIPS’21 challenge
on billion-scale approximate nearest neighbor search. In NIPS. 177–189.

[59] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approximate
Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.

[60] Runhui Wang and Dong Deng. 2020. DeltaPQ: Lossless Product Quantization
Code Compression for High Dimensional Similarity Search. Proc. VLDB Endow.
13, 13 (2020), 3603–3616.

[61] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-
adaptive and Dynamic Segmentation Index for Whole Matching on Time Series.
Proc. VLDB Endow. 6, 10 (2013), 793–804.

[62] Zeyu Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Graph- and
Tree-based Indexes for High-dimensional Vector Similarity Search: Analyses,
Comparisons, and Future Directions. IEEE Data Eng. Bull. 46, 3 (2023), 3–21.

[63] Zijie J Wang and Duen Horng Chau. 2024. MeMemo: On-device Retrieval Aug-
mentation for Private and Personalized Text Generation. In SIGIR. 2765–2770.

[64] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In VLDB. 194–205.

[65] Yair Weiss, Antonio Torralba, and Robert Fergus. 2008. Spectral Hashing. In
NIPS. 1753–1760.

[66] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li,
Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023. SPFresh:

Incremental In-Place Update for Billion-Scale Vector Search. In Proceedings of
the Symposium on Operating Systems Principles. 545–561.

[67] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.
2020. Massively Distributed Time Series Indexing and Querying. IEEE Trans.
Knowl. Data Eng. 32, 1 (2020), 108–120.

[68] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2023. LiteHST: A Tree Embedding
based Method for Similarity Search. Proc. ACM Manag. Data 1, 1 (2023), 35:1–
35:26.

[69] Huayi Zhang, Lei Cao, Yizhou Yan, Samuel Madden, and Elke A. Rundensteiner.
2020. Continuously Adaptive Similarity Search. In SIGMOD. 2601–2616.

[70] Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are There Fundamental
Limitations in Supporting Vector Data Management in Relational Databases? A
Case Study of PostgreSQL. In ICDE. 3640–3653.

[71] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
Efficient Index Construction and Approximate Nearest Neighbor Search in High-
Dimensional Spaces. Proc. VLDB Endow. 16, 8 (2023), 1979–1991.

[72] Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, and Minghu Song. 2019. Ac-
celerating Large-Scale Molecular Similarity Search through Exploiting High
Performance Computing. In BIBM. 330–333.

[73] Yifan Zhu, Ruiyao Ma, Baihua Zheng, Xiangyu Ke, Lu Chen, and Yunjun Gao.
2024. GTS: GPU-based Tree Index for Fast Similarity Search. Proc. ACM Manag.
Data 2, 3 (2024), 142.

[74] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. VLDB J. 25, 6 (2016), 843–866.

999

	Abstract
	1 Introduction
	2 Related Work
	2.1 Basic solution for nearest neighbor search
	2.2 Hybrid solutions

	3 Problem Formulation
	4 Index
	4.1 Overview
	4.2 Index Structure
	4.3 Index Construction
	4.4 Index Updating
	4.5 Index Complexity Analyses

	5 Nearest neighbor Search
	5.1 Approximate Nearest Neighbor Search
	5.2 Exact Nearest Neighbor Search
	5.3 Search Complexity Analyses

	6 Experiments
	6.1 Experimental Settings
	6.2 Construction and Update Performance
	6.3 Search Performance
	6.4 Scalability Analysis

	7 conclusions
	Acknowledgments
	References

