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ABSTRACT

Computational notebooks (e.g., Jupyter, Google Colab) are widely
used by data scientists. A key feature of notebooks is the interactive
computing model of iteratively executing cells (i.e., a set of state-
ments) and observing the result (e.g., model or plot). Unfortunately,
existing notebook systems do not offer time-traveling to past states:
when the user executes a cell, the notebook session state consisting
of user-defined variables can be irreversibly modifiedÐe.g., the user
cannot ’un-drop’ a dataframe column. This is because, unlike DBMS,
existing notebook systems do not keep track of the session state.
Existing techniques for checkpointing and restoring session states,
such as OS-level memory snapshot or application-level session
dump, are insufficient: checkpointing can incur prohibitive stor-
age costs and may fail, while restoration can only be inefficiently
performed from scratch by fully loading checkpoint files.

In this paper, we introduce a new notebook system, Kishu, that
offers time-traveling to and from arbitrary notebook states using
an efficient and fault-tolerant incremental checkpoint and checkout
mechanism. Kishu creates incremental checkpoints that are small
and correctly preserve complex inter-variable dependencies at a
novel Co-variable granularity. Then, to return to a previous state,
Kishu accurately identifies the state difference between the current
and target states to perform incremental checkout at sub-second
latency with minimal data loading. Kishu is compatible with 146
object classes from popular data science libraries (e.g., Ray, Spark,
PyTorch), and reduces checkpoint size and checkout time by up to
4.55× and 9.02×, respectively, on a variety of notebooks.
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1 INTRODUCTION

Computational notebooks (e.g., Jupyter [81, 144], Rstudio [121])
are widely used by data scientists [113, 114]. A key feature of the
notebook workflow is iterative code execution and result observa-
tion [6, 25], which is highly compatible with the incremental nature
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Figure 1: Our system (attached to the kernel, right) enables

time-traveling to and from arbitrary notebook states.

of data science tasks, such as interactive tutorials [80], data explo-
ration [37, 43, 166], visualization [45], and model tuning [19, 155].
This iterative workflow is enabled by notebooks systems being
statefulÐto do work, users would start a session, then as users exe-
cute code in the notebook system, the results are held in the session
state as user-defined variables (e.g., loaded datasets, fitted models).

Limitation: no Time-Traveling for Notebooks. Oftentimes, dur-
ing a workflow, users would like to revert changes made to the
session state (i.e., time-travel), such as to undo a modification (e.g.,
restore a dropped column of a dataframe [140]), restoring an over-
written variable [72], or perform reverse debugging [23]. Unfortu-
nately, unlike program debuggers (e.g., gdb) [16, 61, 115], relational
databases (e.g., PITR in PostgreSQL and MySQL [70, 112]) or in-
teractive data systems [37, 43, 87] which support time-traveling
to past program states, existing notebook systems do not natively
keep track of past session states: cell executions cannot be undone,
e.g., the user cannot ’un-drop’ a dataframe column. If the user ex-
ecutes a cell that alters the session state, a common approach to
restore the previous state would be to restart the kernel and then
(painstakingly) re-run past cells in the correct order. While code ver-
sions can be saved using tools such as Git [64] or native commands
(e.g., Jupyter’s %checkpoint [145]1) to simplify identifying cells to
rerun for restoration, cell reruns can still be time-consuming (e.g.,
re-training an ML model) and/or result in incorrect restoration (e.g.,
random train-test splits). Another approach is for the user to pe-
riodically checkpoint the session state (e.g., memory dump [7, 35]
or session state serialization [58, 158]) to storage or a managed
database (e.g., KV-store [146]). Then, users can load an appropriate
checkpoint file to restore the session state. However, performing
session checkpointing and restoration using these tools is limiting:
checkpointing can incur prohibitive costs (ğ7.3, ğ7.4) and may fail
on certain workloads (e.g., GPU [1]), and restoration can either (1)
only be (inefficiently) performed from scratch, requiring completely
loading a checkpoint file [58] and/or killing the current kernel [35],
or (2) may be incorrect, breaking inter-variable relations [146].

OurGoal: Generalizable, Correct, and Efficient Time-Traveling.

We propose Kishu, a notebook system that enables time-traveling
between session states: as the user executes cells, Kishu tracks the

1Despite its name, %checkpoint only stores cell code and not objects in the state.
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Table 1: Comparison between Kishu and other possible approaches for time-traveling between session states

Approach Mechanism

Session Migration tools [57, 94] Replicates individual session states (no incremental checkpoint and restore)
OS-level Checkpoint tools [7, 35, 60, 79, 82] Incrementally saves dirty memory pages (no incremental restore, fails with multiprocessing)
Notebook code versioning [22, 73, 145] Versions notebook cell code and outputs for easier rerunning (but no directly restoring to a state)
PITR/time-travel in DBMS/HPC [8, 84, 95, 111, 129] Incrementally checkpoints tables/KV-stores (We handle arbitrarily complex, interdependent objects)
Ours (Kishu) Efficient incremental checkpoint and checkout, generalizable to almost all session states

session state evolution while writing per-cell incremental check-
points containing differing data between successive states (i.e., the
state delta) for returning to any past state via an incremental check-
out later. Kishu pursues three challenging goalsÐDelta-Efficient

Checkpoint: Kishu aims to minimize incremental checkpointing
overhead by exploiting the small per-cell deltas typical of data sci-
ence workflows (ğ2.2), but also avoid high detection overhead in the
face of complex access patterns and inter-variable dependencies.
Correct & Non-intrusive Checkout: Kishu aims to restore past
states in the same session non-intrusively by leveraging existing
objects in the kernel (that don’t need updating) to minimize data
loading costs, while still guaranteeing checkout accuracy as if it
completely loaded a checkpoint file. Generalizability: Kishu aims
to support checkpointing/checkout for almost all notebook libraries
(and/or use cases), of which there is a large variety, e.g., notebooks
can perform distributed computing (e.g., Spark [165]) or move data
off-CPU (e.g., GPUs [56]). If Kishu can achieve these goals, Kishu
will allow users to undo almost any executed cell that undesirably
modifies the state as if it never occurred by quickly checking out to
the pre-execution state at the cost of minimal workflow overhead.

Our Approach. Our core idea for achieving our goals is to capture
the state deltawith low overhead, but at sufficiently high granularity
using information exclusive to the application level, as follows:

First, for delta-efficient incremental checkpointing, Kishu utilizes
low-overhead live analysis (e.g., namespace patching) to track ses-
sion state evolution at a novel Co-variable granularity (i.e., con-
nected components of objects). Then, Kishu writes and versions
Co-variables with the checkpoint graph representing the user work-
flow in terms of cell executions to minimize delta storage overhead.

Second, for correct incremental checkout, Kishu identifies the dif-
ference between the current and target states at the aforementioned
Co-variable granularity according to the checkpoint graph. Then,
it replaces (only) Co-variables that need updating in the state by
loading data from appropriate incremental checkpoints, minimizing
data load time for checkout and transparently restoring the state in
the same kernel process without interruption, at sub-second latency.

Third,Kishu achieves generalizability and fault-tolerance through
fallback recomputation. If a Co-variable cannot be stored in a check-
point (e.g., it contains an unserializable object such as a hash [52])
or fails to load upon checkout, Kishu can efficiently reconstruct it
upon checkout via finding the shortest path combining intermediate
data loading and cell re-running according to the checkpoint graph.

Difference from Existing Work (Table 1). Our work enables effi-
cient time-traveling for computational notebooks through signifi-
cantly different techniques vs. existing work. OS-level tools [7, 35]
can incrementally checkpoint notebook states, but fail to exploit

the fine-grained deltas of data science workflows (ğ2.2), cannot
incrementally restore, and fail on remote objects (e.g. Ray [104],
on-device data [124]). Existing application-level tools for saving
state [55, 57, 94, 158] lack both the incremental checkpointing and
restoration capabilities of our work. Works for versioning notebook
cell code [22, 73, 145] help identify cells to rerun for restoration
but do not directly enable it. Incremental checkpointing/PITR in
DBMS [8, 111]/HPC [84, 95] and time-traveling DBMS [129, 136] fo-
cus on robust and fast logging of table/KV-store updates, while our
work focuses on delta computation for complex, interdependent ob-
jects unique to notebooks, i.e.,what to log (ğ2.2). Orthogonal works
include notebook systems for speeding up data exploration using
non-time-travel methods (e.g., code recommendation [89, 90]).

Contributions. According to our motivations in ğ2, we implement
Kishu (ğ3), a notebook system with the following contributions:

• State Delta Detection. We introduce our modeling of ses-
sion state evolution at a novel Co-variable granularity, and our
correct and efficient delta detection at this granularity. (ğ4)

• State Versioning. We introduce our delta-based session state
versioning with the Checkpoint Graph, which enables efficient
and fault-tolerant incremental checkpointing and checkout. (ğ5)

• Time-traveling. We show via experimental evaluation that
Kishu’s time-traveling is compatible with 146 classes from pop-
ular data science libraries and reduces checkpoint size and
checkout time by up to 4.55× and 9.02×, respectively. (ğ7)

2 MOTIVATION

This section describes use cases for time-traveling notebooks (ğ2.1),
characteristics of notebook workloads (ğ2.2), and, accordingly, our
intuition for time-traveling (ğ2.3) and capturing state delta (ğ2.4).

2.1 Why is Time Traveling Useful?

Time-traveling computational notebooks can enable users to effi-
ciently undo cell executions and perform path-based exploration.

Undoing Cell Executions. Data operations can be irreversible
(e.g., df=df.drop_col(’a’)), and users may want to return to
the previous state if the operation outcome is undesirable [23, 72].
To enable interruption-free time-traveling, we can checkpoint the
state delta to storage after each operation such that the session state
prior to performing the operation can be returned to via loading
the appropriate deltas. We empirically study this use case in ğ7.5.1.

Path-based exploration. Data scientists often manually create
branching, out-of-order cells, where each intended execution path
consists of only a subset of notebook cells (e.g., cleaning steps for
different models) [85, 127]. If we can efficiently persist all variations
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Figure 2: Pattern of a Sklearn notebook [151]: (Top) many

cells incrementally access a small portion of the state. (Bot-

tom) Users balance data creation and modification.

of objects in different paths as incremental deltas w.r.t. a shared
state, users can efficiently switch paths for comparisons: only the
(small amount of) data differing between paths need to be updated
via loading deltas. We empirically study this use case in ğ7.5.2.

2.2 Characteristics of Notebook Workloads

Data scientists commonly use computational notebooks for ex-
ploratory work [85], which exhibit these key characteristics:

Think Time. Notebook workflows often follow a sequential2 loop
of writing and running cell code, then observing output [127]. The
notebook kernel can be inactive mid-loopÐ∼10 seconds of think
time [45] when users decide what cells to write/run next. Note-
book systems use think time for computations (e.g., pre-loading
data [162]). Kishu can also leverage think time for checkpointing.

ComplexAccess Patterns. Python functions in notebooks can have
complex access patterns (e.g., non-parameter variable accesses) that
make them difficult and/or costly to analyze. Some works use rule-
based approaches to hard-code effects of common functions (e.g.,
print not modifying the namespace) [98]. however, data scientists
also often import custom functions into notebooks [127]; hence, an
efficient approach that handles arbitrary functions is desirable.

Incremental Operations. For fast iteration, users often run incre-
mental cells each consisting of few lines of code and accessing few
variables [85]: we observe this in on of our test notebooks, Sklearn
(ğ2.2), where 40/44 cells access <10% of state data. For these work-
loads, Kishu’s incremental checkpointing can offer larger benefits.

Data Modifications. Notebook providers often limit session mem-
ory consumption [67, 83]. Hence, while creating new data, users
also modify/delete existing data to conserve memory (e.g., after
they have been used to generate relevant figures): in Sklearn (ğ2.2),
we observe a 45:55 split between created and modified data. Kishu
must efficiently undo these modifications during checkout.

2.3 Enabling Time Traveling

We discuss the pros and cons of incremental checkpointing and
checkout approaches for enabling time-traveling to a previous state.

2Existing notebook systems, e.g., Jupyter, do not support concurrent cell executions.

Notebook

[1] df = read_csv(’...’)

[2] ser=pd.Series(

[’a’, ’b’, ’c’])

[3] obj = MyObj(foo=

ser[1],bar=’d’)

Namespace

# Identify Co-variables in
# Namespace

data idx

df

’a’ ’b’ ’c’ ’d’

ser obj

Figure 3: Co-variables are connected components of objects.

We can treat them as independent data tables.

OS-level Memory Snapshots. Tools such as CRIU [35] snapshot
notebook process memory to save session state data. (Incremental

Checkpointing) Subsequent snapshots can be made incrementally
w.r.t. prior snapshots storing only dirty memory pages. However,
memory-page granularity is too coarse for notebook workloads
as Python data structures (e.g., lists) can be fragmented, on which
operations (e.g., in-place list sorting) can cause multiple dirty pages
and high checkpoint costs (ğ7.3). (Complete Checkout) Memory
snapshots must be entirely loaded for state restoration and require
killing the existing notebook process (to avoid PID conflicts) before
restoration, which is not seamless and incurs high data loading
costs (ğ7.5). OS-level snapshotting is also limited to single processes,
hence fail on notebooks utilizing multiple/remote processors (ğ7.3).

Application-level Time-Traveling (Ours). We use (1) application-
level information to detect state deltas at a finer granularity versus
memory snapshots and (2) existing data in the kernel for incremen-
tal checkout to address the drawbacks of OS-level snapshotting:
(Incremental and Generalized Checkpointing) We track state
deltas at a more logical Co-variable granularity (described in ğ2.4)
by tracking in-notebook references for incremental checkpointing.
For generalizability, we use objects’ reductions as storage instruc-
tions to checkpoint multiprocessing and off-CPU workloads (ğ6.1).
(Incremental Checkout) As we can directly access the notebook
kernel at the application level, we can incrementally checkout by
computing the difference between the current and target states (e.g.,
via versioning [20]) and updating only differing kernel data (ğ5.2).

2.4 Tracking State Delta for Time Traveling

We discuss pros and cons of methods of tracking the state delta at
the application level for incremental checkpointing and checkout.

Provenance-based Tracking. Some existing notebook systems [86,
94, 98] track state deltas via provenance-based code analysis (e.g.,
via ASTs [50]) at variable-level granularity. Pure static analysis
requires conservativeness on identifying changed data w.r.t. control
flows (e.g., if(x<1)) and external function calls (ğ2.2), causing false
positives (e.g., assuming an untaken branch as taken) and large
deltas; hence, these systems augment static analysis with varying
levels of live instrumentation at cell runtime (e.g., resolving x’s
value when evaluating if(x<1)) [98], which can result in high
overhead (e.g., repeated resolutions in loops, ğ7.6).

Co-variable Granularity Live Tracking (Ours). To avoid po-
tential inefficiencies of provenance tracking’s runtime resolutions,
we propose performing live object comparison (i.e., comparing data
pre/post-execution) only between cell executions to track per-cell
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Notebook

[1] corpus=read_csv(’...’)

[2] sad_ls = []

happy_ls = []
...

[3] for row in corpus:

if row[’mood’]==’sad’:

sad_ls.append(row[’txt’])
...

[4] sad_ls = [re.sub(’r\W’)...

Namespace

corpus

corpus

corpus

corpus

...

sad_ls happy_ls ...

sad_ls happy_ls ...

(2) Incremental checkout
by only updating sad_ls

b’sad_ls’

(1) efficient Co-variable
level incremental ckpt.

Figure 4: Co-variable granularity deltas allows us to cre-

ate size-efficient incremental checkpoints (vs. memory-page

level deltas), and incrementally checkout to previous states.

updates. Our intuition is that while doing so at variable-level gran-
ularity (like existing provenance trackers) by comparing all state
objects can be costly (ğ7.6), it is also unnecessary as storing/loading
individual variables (e.g., with variable-level KV-stores [2, 135])
for checkpoint/checkout risks breaking shared references [94]. We
hence track updates at a coarser Co-variable levelÐconnected com-
ponents of objects (w.r.t. pointer references): we can reason from ac-
cess patterns which Co-variables were possibly/surely not updated
by each cell to limit object comparisons, and correctly store/load
Co-variables as if they are independent data tables. Fig 3 depicts our
idea: {ser,obj} is a Co-variable (red) as objects reachable from ser

and obj overlap (&ser[1]=&obj.foo). {df} is another Co-variable
(blue), and users cannot reach objects under df from objects under
ser/obj via references. Notably, Co-variables are the minimum

granularity for saving/loading state data without risking breaking
shared references. ğ4 formally describes Co-variables and how we
correctly and efficiently capture state delta at this granularity.

Motivating Example (Fig 4). A data analyst performs text mining
by loading the corpus (Cell 1), defining category lists (Cell 2), and
sorting texts by sentiment into the lists (Cell 3). They checkpoint
the state after each cell execution. Incremental Checkpoint-

ing: The analyst tests a mapping to clean the contained text in the
lists on sad_ls (Cell 4, blue). Due to its interleaved construction
(with other lists), sad_ls is fragmented; incrementally checkpoint-
ing at memory page granularity for Cell 4 (w.r.t. Cell 3) copies all
pages overlapping with sad_ls. However, a Co-variable granular-
ity incremental checkpoint stores only (the bytestring of) sad_ls.
Incremental Checkout: The analyst undoes Cell 4’s mapping due
to poor results. Returning to Cell 3’s state by (completely) loading
a memory snapshot is slow as it also reloads the corpus. However,
noting that Cell 3’s and 4’s states differ only by sad_ls, we can
only load Cell 3’s sad_ls (red) to replace Cell 4’s sad_ls (blue) to
incrementally checkout without touching the rest of the state.

3 SYSTEM OVERVIEW

This section presents Kishu components (ğ3.1) and workflow (ğ3.2).

3.1 Kishu Components

Kishu (Fig 5) interacts with notebook sessions via non-intrusive
hooks, which allow Kishu to transparently (1) monitor the names-
pace to track session state evolution, (2) write state data to storage
for checkpointing, and (3) alter the state on requested checkouts.

Notebook Interface

import pandas

df=pd.read_csv

df.head

[1]

[2]

col1 col2
1 hello

Kishu command palette

init/log...

Jupyter
Kernel

Kishu

Delta
Detector (ğ4)

VarGraphs

Data
Restorer (ğ5.3)

State
Loader (ğ5.2)

Patched Name-
space (ğ4.3)

Checkpoint
Graph (ğ5.1)

Data Writer

Figure 5: Kishu architecture. It utilizes a hook to observe

session state deltas and transparently write/replace data in

the kernel namespace for incremental checkpoint/checkout.

Patched Namespace. On session start, Kishu patches the names-
pace to monitor accesses to its contents during cell executions (ğ4.3).
It tracks user-referenced variable names to identify candidate Co-
variables to check for updates in, which are passed to the Delta
Detector to compute the Co-variable granularity state delta.

Delta Detector. The Delta Detector computes the state delta based
on the candidates identified from the Patched Namespace (i.e.,
which of the candidate Co-variables were actually updated by the
cell execution). We discuss the Kishu’s delta detection in (ğ4).

Checkpoint Graph. The Checkpoint Graph is a tree-like structure
analogous to Git’s commit graph [63], in which Kishuwrites, stores,
and versions incremental checkpoints consisting of the updated
Co-variables (i.e., the state delta) of each cell execution (ğ5.1). The
incremental checkpoints stored in the Checkpoint Graph are used
by the State Loader to perform incremental checkout.

State Loader. The State Loader restores to a session state upon
requested checkout. It first identifies the difference between the
current (i.e., existing items in the namespace) and target states
via the Checkpoint Graph, then loads necessary data from the
Checkpoint Graph to replace Co-variables that need updating (ğ5.2).

Data Restorer. The Data Restorer is a mechanism that utilizes
fallback recomputation to restore missing data for checkout (e.g.,
Kishu failed to serialize the data during prior checkpointing). It
reconstructs missing data by combining loading dependent data
and cell re-runs according to the Checkpoint Graph. (ğ5.3)

3.2 Kishu Workflow

This section covers Kishu’s operations during a notebook workflow.
Users interact with Kishu with the in-Jupyter Command Palette
(Fig 5), such as to attach it to a new notebook session;3 Kishu then
monitors the namespace for state deltas, checkpoint after each cell
execution, and perform on-demand checkout to previous states.

Attaching Kishu to a Notebook Session. When initializing a note-
book session, init attaches Kishu to the kernel, which will patch
the namespace and initialize the Checkpoint Graph on storage.

Incremental Checkpointing. After each cell execution, the Delta
Detector uses the Patched Namespace to identify updated Co-
variables and stores them in a new incremental checkpoint/node
with a unique ckpt_id on the Checkpoint Graph. The user may
view the stored graph, checkpoints, and their IDs with log.

3A depiction of Kishu’s interface can be found in our prior work’s demo paper [92].
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ser=pd.Series([’a’, ’b’, ’c’])

obj = MyObj(foo = ser[1], bar = ’d’)

’a’ ’b’ ’c’ ’d’

ser obj

obj.foo = None

st = {obj.bar}

’a’ ’b’ ’c’ ’d’

ser obj st

ser.replace(’c’, ’e’, inplace=True)

’a’ ’b’ ’e’ ’d’

ser obj

obj.foo = ser[2]

’a’ ’b’ ’c’ ’d’

ser obj

Split and Merge

Node Modification Edge Modification

Figure 6: Three ways which the Co-variable {ser,obj} (first

appearing in Fig 3) can be updated by a cell execution (red).

Incremental Checkout. Kishuwill restore a previous session state
with checkout ckpt_id. The State Restorer identifies differing Co-
variables between the current and target states according to the
Checkpoint Graph, then accordingly loads only the necessary data
for restoration. If necessary, the Data Restorer reconstructs data
that is missing or failed to load via fallback recomputation.

4 ACCURATE AND FAST DELTA DETECTION

This section describes how Kishu correctly detects Co-variable
granularity state deltas necessary for incremental checkpointing
and checkout (ğ2.4). We formally describe Co-variables in ğ4.1 and
how we detect Co-variable updates correctly (ğ4.2) efficiently (ğ4.3).

4.1 Co-variables

This section introduces Kishu’s definition of the Co-variable.

Preliminary. In Python and the Jupyter Notebook ecosystem, vari-
ables and objects are 2 distinct concepts: A variable is a named
entity from which various objects are reachableÐfor an example
list ls=[1,2,3], the list name (ls) is a variable and each list ele-
ment (1, 2, 3) is an object. We define reachability reference-wise,
i.e., object y is reachable from variable x if y can be accessed from
x through a chain of references. Some common reachability pat-
terns include subscripting (e.g., y=x[0]) and class member (e.g.,
y=x.attr). Given this distinction between variables and objects
and reachability definition, we now define Co-variables as follows:

Definition 1. A Co-variable is a set of variable names X =

{𝑥1, ..., 𝑥𝑖 } from which the reachable objects form a maximally

connected component. That is, for any variable 𝑦 not in the set,
the objects reachable from 𝑥1, ..., 𝑥𝑖 are not reachable from 𝑦.

A Co-variable can consist of one name (e.g., a primitive, x=1)
or multiple names from which same objects can be reached (i.e.,
shared references). For example, in Fig 6, the string object ’b’ is
reachable from both Pandas Series ser and object obj via subscript
and class member respectively, hence {ser,obj} is a Co-variable.
Co-variables are self-contained by definition, i.e., there are no inter-
Co-variable references. They can be modified by cell executions:

Definition 2. A Co-variable X = {𝑥1, ..., 𝑥𝑖 } is modified by a cell
execution if the graph structure of the connected component of
objects reachable from 𝑥1, ..., 𝑥𝑖 is modified, counting both node
(i.e., object) and edge (i.e., reference) additions and deletions.

Type:str
Addr:0xaaa0
Val:’a’

Type:str
Addr:0xbbb0
Val:’b’

Type:str
Addr:0xccc0
Val:’c’

Type:str
Addr:0xddd0
Val:’d’

Type:Series
Addr:0xeee0
Child:

Type:MyObj
Addr:0xfff0
Child:

ser obj

Figure 7: VarGraphs of ser and obj intersect from shared

reference to ’b’ (blue), hence {ser,obj} is a Co-variable.

For example, the Co-variable {ser,obj} in Fig 6 is modified
node-wise with an in-place update łser.replace” (bottom), and
edge-wisewith a re-assignment łobj.foo=ser[2]ž (bottom-right).
Co-variables can be created and deleted via split and merge (right):
{obj,ser} is deleted via a split as obj and ser longer share refer-
ences, and {obj,st} is created via a merge. We collectively refer
to Co-variable modifications, creations, and deletions as updates;
the Co-variables updated by a cell execution form its state delta.

4.2 Accurate State Delta Detection

This section describes how Kishu accurately detects Co-variable
membership (i.e., which variables form a Co-variable) and updates.

VarGraphs. Kishu detects Co-variable membership and updates
with VarGraphsÐa graph structure constructed on each variable
that captures its reachable objects in the namespace. Fig 7 shows
an example: each node in a variable’s VarGraph corresponds to
a reachable object, containing the (1) type, (2) memory address,
and one of (3) pointers to other reachable objects (i.e., children) for
non-primitives, or (4) value for primitives. For example, the node
for list contains 3 child pointers to the 3 nodes for strings ’a’,
’b’, and ’c’, and the node for string ’b’ holds its value ’b’. 4

Detecting Co-variable membership. Co-variable membership is
determined by intersecting VarGraphs. For example, in Fig 7, ser
and obj form a Co-variable as the node ’b’ is in both graphs (red).

DetectingCo-variable updates. Co-variable updates is determined
by comparing VarGraphs before and after cell executions. A graph
structure modification and/or a node attribute change (e.g., object
memory address or type) indicates an update to the Co-variable.

Accuracy Guarantee. As Kishu constructs VarGraphs following
object rechability, it detects Co-variable updates with no false nega-
tives (empirically verified in ğ7.2.1). However, Kishu’s update detec-
tion is conservative: there may be false positives if objects are dynam-
ically generated (e.g., datatype objects) with a different memory
address each time during VarGraph construction/object traversal,
or cannot be traversed into (i.e., lacking referencing instructions,
e.g., generators [51], which Kishu assumes to be updated on access).

4.3 Efficient State Delta Detection

This section describes how Kishu speeds up Co-variable update de-
tection. Identifying updates across the entire global namespace via
VarGraphs can be expensive (due to object traversals); Kishu needs
to reduce the number of Co-variables (i.e., portion of namespace) it
checks after cell executions without reducing detection accuracy.

4TheVarGraph is inspired by ElasticNotebook’s ID graph [94] which captures reachable
objects’ memory addresses;VarGraphs uniquely contain datatypes and primitive values
for additional robustness (e.g., detecting a different primitive in the same address).
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Figure 8: Kishu efficiently captures state delta via Patched

Namespace: it only needs to check Co-variable {ser,obj} for

updates, as other Co-variables surely weren’t updated.

Identifying Possibly Updated Co-variables. Cell executions in
Jupyter Notebook interact with the global namespace (i.e., globals()).
Therefore, if Kishu can capture variable references in the cell execu-
tion, it can reason about which Co-variables were possibly updated
(and which ones were definitely not), as follows:

Definition 3. A Co-variable X = {𝑥1, ..., 𝑥𝑖 } is accessed by a cell
execution if any variable 𝑥1, ..., 𝑥𝑖 is accessed (via getting, setting,
or deletion) during the cell execution.

Co-variable accesses indicates possible updates (e.g., via a mem-

ber function call ser.replace). Kishu patches the accessor, setter,
and deletion methods of the global namespace (Fig 8) to capture
variable (hence Co-variable) accesses, which helps identify the
possibly updated Co-variables: if the members of a Co-variable X
overlaps with the cell execution’s accessed variables, then it may
have been updated (e.g., {ser,obj} in Fig 8): Kishu will verify the
update by (1) re-generating VarGraphs for its member variables, (2)
comparing the VarGraphs with those before the cell execution to
identify modifications, and (3) intersecting the VarGraphs amongst
variables of accessed Co-variables to identify merges and splits.
Otherwise, the Co-variable surely wasn’t updated and Kishu skips
its check for this cell execution (e.g., {df} in Fig 8, greyed out).

Lemma 1. A Co-variable X = {𝑥1, ..., 𝑥𝑖 } can be updated by a cell
execution only if at least one of 𝑥1, ..., 𝑥𝑖 was accessed in the code.

Proof. Suppose not, i.e., Co-variableX does not intersect the ac-
cessed variables and was updated. Then,X must have been updated
through via variable 𝑦 that was not part of X before the start of the
cell execution. Due to Co-variables’ self-containment (ğ4.1), objects
reachable from X cannot possibly be accesed via 𝑦 during the cell
execution without creating a reference by using one of 𝑥1, ..., 𝑥𝑖
first (e.g., 𝑦.𝑓 𝑜𝑜 = 𝑥_𝑖), but doing so violates our assumption. □

As only a small portion of variables are accessed per cell in
a typical data science notebook, Kishu significantly reduces delta
detection overhead with this approach (empirically verified in ğ7.6).

Remark. As Kishu patches the notebook session’s global names-
pace, it is impossible for users to use variables from within the
notebook (e.g., to modify objects) undetected. Hence, Kishu will
not misidentify Co-variables possibly updated via references. Users
may still use non-referencing methods to update data such as C-
pointer-based modifications, but these cases are rare in notebooks
(found in 0/60 surveyed notebooks [94]) Some libraries do perform
memory-based updates (e.g. NumPy’s slicing [142]). However, the
objects are supported by Kishu as these updates are still invoked
via referencing (e.g., arr[0,1] += 1, empirically verified in ğ7.2.1).

CE 𝑡1

df=load_csv(’...’)

gmm.init(df)

: ({df}, 𝑡1) ({gmm}, 𝑡1)

CE 𝑡2

gmm.fit(k=3)

: ({gmm}, 𝑡2)

CE 𝑡3

plot=gmm.result()

: ({plot}, 𝑡3)

CE 𝑡4

gmm.fit(k=10)

: ({gmm}, 𝑡4)

CE 𝑡5 (HEAD)

plot=gmm.result()

: ({plot}, 𝑡5)(1): State delta of
updated Co-variables

(2): Cell code of
execution

(3): dependencies of
execution

Figure 9: A Checkpoint Graph with 2 branches (𝑡1 → 𝑡2 → 𝑡3
and 𝑡1 → 𝑡4 → 𝑡5). Kishu manages state deltas in the Check-

point Graph; Co-variables are versioned by update time.

5 INC. CHECKPOINT & CHECKOUT

This section describes Kishu’s efficient time-traveling with the Co-
variable granularity state deltas. We describe Kishu’ incremental
checkpointing in ğ5.1, Kishu’s incremental checkout in ğ5.2, and
how Kishu time-travels to and from notebook states with problem-
atic (e.g., unserializable) data in a fault-tolerant manner in ğ5.3.

5.1 Incremental Checkpointing

This section describes how Kishu performs incremental checkpoint-
ing by writing and managing per-cell-execution checkpoints con-
taining the updated Co-variables with the Checkpoint Graph.

Checkpoint Graph. The Checkpoint Graph is a directed tree of
(incremental) checkpoints representing the branch-based state evo-
lution. Nodes are added for each of Kishu’s checkpoints, and are
timestamped with the completion time 𝑡 of the corresponding cell
execution (we refer to the timestamped node and cell execution as
node 𝑡 and CE 𝑡 , respectively). The Checkpoint Graph maintains
a head node tracking the current state. Each node 𝑡 contains the
state delta consisting of Co-variables updated by CE 𝑡 . Co-variables
stored in each node 𝑡 are versioned accordingly:

Definition 4. AVersionedCo-variable is a Co-variable-timestamp
pair (X, 𝑡) representing the Co-variable X updated by CE 𝑡 .

Versioned Co-variables are analogous to versioned datasets: the
same Co-variable (w.r.t. variable membership) can take on multiple
values during a session being updated by different cell executions.
Fig 9 show an example: CE 𝑡3 creates the Co-variable {plot}, which
is stored in node 𝑡3 (red) as the Versioned Co-variable ((𝑝𝑙𝑜𝑡), 𝑡3).

Writing into the Checkpoint Graph. After each CE 𝑡 , Kishu
writes a new node 𝑡 in the Checkpoint Graph with (1) the ver-
sioned Co-variables in CE 𝑡 ’s state delta, (2) CE 𝑡 ’s code, and (3)
CE 𝑡 ’s accessed versioned Co-variables stored in previous check-
points (ğ4.3). For example, node 𝑡3 in Fig 9 (blue) contains the code
(łplot=gmm.result()ł) and its dependency on ((𝑔𝑚𝑚), 𝑡2) from
node 𝑡2 (dashed line). Notably, the state delta, code, and variable
accesses are respectively analogous to the update, operation, and
dependencies in database logging and versioning. The new node 𝑡
is written under the head node 𝑠 , and and a parent-child relation is
added from 𝑠 to 𝑡 (now the new head node).
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CE 𝑡1

df=load_csv(’...’)
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Figure 10: Checkout from session state 𝑡5 to session state 𝑡3:

The versions of df (blue) is identical between the branches.

The versions of gmm (red) has diverged and needs updating.

Handling Unserializable Data. If Kishu cannot write an updated
Co-variable into the Checkpoint Graph (e.g., it contains an unseri-
alizable object such as a generator [51] or hash [52]), Kishu simply
skips its storage. Instead, upon checkout, the missing Co-variable
will be restored through fallback recomputation enabled by the cell
code and dependencies stored in the Checkpoint Graph node (ğ5.3).

5.2 Efficient State Restoration

Kishu’s goal for incremental checkout is to accurately and efficiently
restore the current state to the target state. To do so, it must identify
the contents of the target state via its timestamp, analogousMVCC’s
timestamped snapshots [20]; instead of versioned tables, we identify
Versioned Co-variables in the (timestamped) target state:

Definition 5. The Session State at timestamp 𝑡 is a set of 𝑛 Ver-
sioned Co-variables {(X𝑖 , 𝑡𝑖 ) |1 ≤ 𝑖 ≤ 𝑛} such that for each (X𝑖 , 𝑡𝑖 ):

1. 𝑡𝑖 is an ancestor of 𝑡 on the Checkpoint Graph.
2. There must not exist another versioned Co-variable (Y𝑗 , 𝑡 𝑗 )

such that X𝑖 ∪ Y𝑗 ≠ ∅ and 𝑡 𝑗 is a child of 𝑡𝑖 and ancestor of 𝑡 .

The session state at timestamp 𝑡5 (state 𝑡 for brevity) is the set
of all Versioned Co-variables that are in the namespace after CE 𝑡 ,
i.e., not overwritten by a newer Versioned Co-variable prior to CE
𝑡 . For example, in Fig 10, state 𝑡3 (top-left) consists of ({𝑝𝑙𝑜𝑡}, 𝑡3),
({𝑔𝑚𝑚}, 𝑡2), and ({𝑑 𝑓 }, 𝑡1). It does not contain ({𝑔𝑚𝑚}, 𝑡1) as it
was overwritten byCE 𝑡2 (gmm.fit(k=3)) whichwrites ({𝑔𝑚𝑚}, 𝑡2).
Each state 𝑡 dictates which Versioned Co-variables should be loaded
from various Checkpoint Graph nodes for checkouts; for efficient
incremental checkout, Kishu identifies the current and target states’
difference w.r.t. the (versioned) Co-variables that need updating:
some Co-variables do not need updating when converting the cur-
rent state to the target state, identifiable via the Checkpoint Graph:

Definition 6. A Co-variable X is identical between the current
state 𝑡𝑎 and target state 𝑡𝑏 if a Versioned Co-variable (X, 𝑡𝑐 ) exists in
the session states of 𝑡𝑎 , 𝑡𝑏 , and 𝑡𝑐 , where 𝑡𝑐 is the lowest common

ancestor of node 𝑡𝑎 and node 𝑡𝑏 . Otherwise, if no such (X, 𝑡𝑐 )

exists, then the Co-variable X has diverged between 𝑡𝑎 and 𝑡𝑏 .

5Kishu stores snapshots of Session State metadata (i.e., references to contained Co-
variables) in Checkpoint Graph nodes.

CE 𝑡1

df=load_csv(’...’)

gmm.init{df}

: ({df}, 𝑡1) ({gmm}, 𝑡1)
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gmm.fit(k=3)

: ({gmm}, 𝑡2)

CE 𝑡3 (HEAD)

plot=gmm.result()

: ({plot}, 𝑡3)

CE 𝑡4

gmm.fit(k=10)

: ({gmm}, 𝑡4)

CE 𝑡5

plot=gmm.result()

: ({plot}, 𝑡5)(1): Loading
((plot), 𝑡3) fails

(2): Restore ((plot), 𝑡3)
by loading ((gmm), 𝑡2),
then rerunning cell 𝑡3

(3): if (2) also fails,
Restore ((gmm), 𝑡2)
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then rerunning cell 𝑡2

Figure 11: Fallback recomputation for ({plot}, 𝑡3) (green). It

can be recomputed by loading ({gmm}, 𝑡2), then rerunning

cell 𝑡3 (red). If ({gmm}, 𝑡2) also fails to load, it can be recom-

puted by loading ({gmm}, 𝑡1) and rerunning cell 𝑡2 (blue).

A Co-variable X is identical between states 𝑡𝑎 and 𝑡𝑏 if its ver-
sioned counterpart is consistent across 𝑡𝑎 , 𝑡𝑏 , and 𝑡𝑐 , i.e., no CE
between (1) nodes 𝑡𝑎 and 𝑡𝑐 and (2) nodes 𝑡𝑏 and 𝑡𝑐 updated X,
hence does not need updating when checking out from 𝑡𝑎 to 𝑡𝑏 . For
example, in Fig 10, if checking out from 𝑡5 to 𝑡3, the Co-variable
{df} (blue) is identical between the states as no CE between (1)
nodes 𝑡1 and 𝑡3 (2) nodes 𝑡1 and 𝑡5 updated it. Otherwise, if the
Co-variable X has diverged between the current and target states,
it will need updating (by either loading an appropriate Versioned
Co-variable or deleting it) to checkout to the target state. For ex-
ample, the Co-variable {gmm} (red) has diverged between nodes 𝑡5
and 𝑡3 as their parents (𝑡4 and 𝑡2) both updated gmm with their CE
(fitting with k=3 and k=10), hence, gmm (and plot) needs updating
via loading ({gmm},𝑡2) if checking out from state 𝑡5 to state 𝑡3.

Performing State Checkout. When checking out to the state at
node 𝑡 , The State Restorer (ğ3.1) performs the following steps:

1. Load the appropriate Versioned Co-variables from nodes (i.e.,
node 𝑡 and ancestors of node 𝑡 ) to update diverged Co-variables
between the state of the current head node 𝑠 and node 𝑡 .

2. Update/re-generate VarGraphs (ğ4.2) for updated Co-variables.
3. Move the head from node 𝑠 to the checked out node 𝑡 .

Notably, the next cell execution will create a node in a new branch
rooted at 𝑡 in the Checkpoint Graph, e.g., the graph in Fig 10 is gen-
erated through the sequence 𝑡1 → 𝑡2 → 𝑡3 → (checkout to 𝑡1) →

𝑡4 → 𝑡5. If during checkout, a required Versioned Co-variable is
missing (i.e., due to serialization failure, ğ5.1) or fails to load (i.e.,
deserialization failure), Kishu restores it via fallback recomputation.

5.3 Robust Restoration

In this section, we describe how Kishu restores problematic data to
achieve generalizable and fault-tolerant incremental checkout.

Fallback Recomputation. As each Checkpoint Graph node 𝑡 con-
tains the code of CE 𝑡 and (2) which previous Versioned Co-variables
(X𝑗 , 𝑡 𝑗 ) CE 𝑡 accessed (ğ5.1), any Versioned Co-variable in node 𝑡 ’s
state delta can be recomputed by (1) loading accessed Versioned
Co-variables from previous checkpoints, then re-running CE 𝑡 . For
example, in Fig 11, suppose ({plot}, 𝑡3) (green) fails to load when
checking out to state 𝑡3. (({gmm}, 𝑡2) is required to rerun CE 𝑡3 (red);
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therefore, ({gmm}, 𝑡2) is loaded from the parent node 𝑡2, and after
rerunning CE 𝑡3 on the input ({gmm}, 𝑡2), ({plot}, 𝑡3) is restored.

Dynamic and Recursive Fallbacks. Kishu’s fallback recompu-
tation is dynamic and recursiveÐif another Co-variable is missing
or fails to load when retrieving recomputation inputs, fallback re-
computation can be recursively performed for that Co-variable. For
example, if ({gmm}, 𝑡2) from node 𝑡2 fails to load (as fallback recom-
putation for ({plot}, 𝑡3) from node 𝑡3), it itself can be recomputed
by loading ({gmm}, 𝑡1) from node 𝑡1 and rerunning CE 𝑡2 (blue).

Remark. Kishu guarantees exact restoration for all serializable Co-
variables w.r.t. bytestring representation if there are no hidden serial-
ization errors (ğ6.2). While Kishu’s fallback recomputation restores
some problematic Co-variables, exactly restoring Co-variables that
both (1) fail to store/load and (2) are created non-deterministically
(e.g., random generators) is currently unsupported. This limitation
is similarly seen in Spark [165] and Ray’s [104] lineage-based fault
tolerance; however, in our case, such objects are rare in data science
libraries (ğ7.2), hence we consider this limitation to be acceptable.

6 IMPLEMENTATION AND DISCUSSION

This section describes Kishu’s implementation details (ğ6.1) and
design considerations (ğ6.2).

6.1 Implementation

Integrating with Jupyter. Kishu is implemented as a separate
application from the notebook process, usable without altering the
base Jupyter application. Upon session initialization, Kishu places
hooks into the kernel (pre_run_cell and post_run_cell [78])
and patches the namespace (user_ns [77]) (ğ3.1), allowing the stan-
dalone Kishu process to detect state deltas, write data to storage,
and overwrite data in the namespace upon checkout transparently.

Serialization Protocol. The Pickle protocol (i.e., __reduce__ [55])
is used for (1) object serialization and (2) constructingVarGraphs for
identifying Co-variables, i.e., object y is reachable from another ob-
ject x if pickle(x) includes y. As Pickle is the de-facto standard (in
Python) observed by almost all libraries (e.g., NumPy, PyTorch [47]),
Kishu can be used in almost all cases. Kishu’s per-Co-variable stor-
age also enables mixing and matching serialization libraries for
coverage: Currently, Kishu will try CloudPickle [32] first, then use
Dill [57] as a fallback for Co-variables that CloudPickle fails on.

Storing Checkpoints. Kishu uses SQLite [139] to store Versioned
Co-variables in the Checkpoint Graph. However, any storage mech-
anism [29ś31] can be used in its placeÐeven in-memory ones if the
user wants to maximize checkpointing/checkout efficiency.

6.2 Design Considerations

Silent Serialization Errors. Certain object classes may contain
incorrect serialization instructions, which, despite being able to
be stored/loaded to/from storage, result in silent errors. Kishu cur-
rently assumes that instructions are correctly implemented for all
objects w.r.t. equality before and after pickling, and does not prevent
these silent errors. However, these cases are rare (ğ7.2.1), and Kishu
provides a blocklist file for users to force fallback recomputation
for Co-variables containing objects belonging to these classes.

Table 2: Summary of Notebooks for Evaluation.

Notebook Topic Library Cells Time(s) Data(MB) Final

Cluster[40] Cluster analysis seaborn[157] 24 1703 43 Yes
TPS[154] Random forest intelex[132] 49 154 31 Yes
Sklearn[151] Text mining sklearn[130] 44 512 185 No
HW-LM[62] Linear regression NumPy[142] 81 13 1 Yes
StoreSales[18] TS analysis SM[141] 41 665 122 Yes
Qiskit[15] Quant. Computing Qiskit[125] 85 46 1 No
TorchGPU[88] Image classification PyTorch[56] 27 716 1090 Yes
Ray[126] Distrib. Computing Ray[9] 20 2361 92 No

Table 3: Categorization of 146 Object Classes for Evaluation.

Referred to in Fig 12, Table 4, and Table 5.

Category Example Libraries Example Class

Data Analysis pandas[109], polars[119], pyarrow[11] pd.DataFrame[110]
Data Visualization matplotlib[147], plotly[118], seaborn[157] plt.Figure[42]
Machine Learning sklearn[130], xgboost[161], scipy[133] GMM[131]
Deep Learning tensorflow[148], torch[56], keras[66] torch.Tensor[124]
NLP nltk[122], textblob[97], wordcloud[106] TextBlob[97]
Computer Vision photutils[41], torchvision[34] ImageDepth[116]
Dist. Computing pyspark[137], ray[9], optuna[33] pyspark.sql[138]
Data Pipelining huggingface[48], transformers[150] BertTokenizer[75]

Alternative Delta Detection Methods. While Kishu’s VarGraphs
can generalizably detect Co-Variable updates, there are specific
cases that allow for more efficient detection methods such as (1)
hashing (e.g., XXH64 [164]) for array-likes [142]) and (2) rule-based
static cell (e.g., df.head) identification for skipping update detec-
tion (ğ2.2). Kishu currently uses hashing for common array-likes
(e.g., tensors [148]), but can be extended to incorporate (1) other de-
tection methods for specific classes and (2) rule-based cell analyses.

7 EXPERIMENTAL EVALUATION

In this section, we empirically study the effectiveness of Kishu’s
time-traveling. We make the following claims:

1. Generalizable and Robust Mechanism: Kishu can identify
modifications to, and correctly restore session states containing
146 object classes from common Data Science libraries. (ğ7.2)

2. Low Checkpoint Storage Cost: Kishu’s optimizations result
in its per-cell-execution checkpoints being up to 4.55× smaller
compared to those from the next best mechanism. (ğ7.3)

3. Low Checkpoint Times: Kishu’s checkpoints are created up
to 5.12× faster compared to the next best mechanism. (ğ7.4)

4. Fast Incremental Checkout:Kishu’s novel incremental restora-
tion is crucial to its sub-second checkout times Ð up to 8.18×
and 4.18× faster than the next best mechanism for undoing cell
executions and switching branches, respectively. (ğ7.5)

5. Low Overhead Delta Detection: Kishu incurs negligible run-
time overheads on data science notebooks for capturing the
state delta Ð less than 3.0% of the notebook session runtime
and up to 4.08× less than alternative tracking approaches. (ğ7.6)

7.1 Experiment Setup

Datasets. We select 8 data science notebooks fromKaggle Grandmaster-
level users or Github-hosted tool tutorials (e.g., Ray) (Table 2), each
featuring a popular data science library, which we categorize as in-
progress (3/8) or final (5/8), with the former containing out-of-order
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Figure 12: Checkpoint/checkout failures. Kishu successfully

checkpoints/checkouts all object classes with no failures.

cell executions and the latter lacking them.6 Notably, the final note-
books are also cleaned and contain memory/runtime optimizations.
We empirically verify all notebooks follow traits discussed in ğ2.2.

We also select 146 common data science library classes ( Table 3),
on which we evaluate Kishu’s correctness and robustness.

Methods. We evaluate Kishu against existing tools capable of en-
abling time-travelling on notebooks to various degrees:

• CRIU [35]: Performs a system-level memory dump of the pro-
cess hosting the notebook session. The session state is restored
by loading the memory dump and reviving the process.

• CRIU-Incremental [35]: CRIU with snapshot deduplication,
storing only dirty memory pages in subsequent snapshots.

• DumpSession [58]: An application-level checkpointing tool that
serializes the entire session state into one single file.

• ElasticNotebook [94]: An application-level notebook migration
tool that balances data serialization and cell recomputation to
achieve optimized session replication times.

• Kishu+Det-replay: A checkpoint-optimized version of Kishu
based on operation replay [101, 108] that uses manual annota-
tion7 to skip incremental checkpointing for deterministic cells.
These deterministic cells are replayed as necessary on checkout.

Ablation Study. We additionally compare the overhead of Kishu’s
update detection mechanism with these tracking methods (ğ7.6):

• IPyFlow [134]: A hybrid dynamic-static (i.e., AST analysis with
live symbol resolution) for obtaining sub-variable (i.e., symbols,
e.g., ls[x]) level granularity to perform reactive cell executions.

• AblatedKishu (Check all): Always perform update detection for
all Co-variables in the session state after each cell execution,
regardless of whether they were accessed in the previous cell.

Methodology and Measurement. We run notebook cells sequen-
tially from top to bottom and checkpoint after each cell execution.
We checkout into the same state for Kishu and Kishu+Det-replay

and into a fresh kernel/process for other methods. We measure
the (1) checkpoint time (including both tracking and data writing)
after each cell execution, (2) checkout time to restore the state from
checkpoint files, and (3) tracking overhead of Kishu after each cell
execution to track updates. We clear the page cache between runs.

Environment and Reproducibility. Experiments are performed
on an Ubuntu server with 2 AMD EPYC 7552 48-Core Processors
and 1TB RAM. All checkpoints are written to a mounted NFS,
with disk read and write speeds of 519.8 MB/s and 358.9 MB/s,
respectively. Our Github repository8 contains our implementation
of Kishu, experiment notebooks/library classes, and scripts.

6Wediscuss this categorization and its implications in detail in our technical report [93].
7Automatically detecting non-/determinism in executions is out of scope for this work.
8https://github.com/illinoisdata/kishu-vldb

Table 4: Kishu handles these classes existing works fail on.

Tool Description Failure Classes

CRIU Dist. Computing pyspark.sql [138], ray.Dataset [143]
On-device data tf.tensor [149], torch.tensor [124]
Data Pipelining Pipeline [76], BertTokenizer [75]

DumpSession Unserializable Data pl.LazyFrame [120], bokeh.figure [21]

Table 5: Summary of Kishu’s update detection.

Result Description Count

Success Kishu reports an update when object is changed 120
False Positive Kishu reports update on access when object is unchanged 14
Pickle Error Object can’t be deterministically stored, Kishu reports update 12
Fail Object is changed but Kishu does not report an update 0

7.2 Generalized and Robust Time Traveling

This section compares the robustness of Kishu’s time-traveling to
existing methods. We attempt to checkpoint and checkout session
states containing objects from the 146 data science library classes
and compare number of classes each method fails to checkout.

We report results in Fig 12. Kishu completes time-traveling for
all 146 libraries, handling 6 classes with multiprocessing and/or off-
CPU data and 7 unserializable classes that CRIU and DumpSession

fail on, respectively: unlike CRIU, Kishu utilizes reductions (ğ6.1)
to store Co-variables, hence it can store distributed or off-CPU data
(e.g., Ray’s dataset[143] or on-GPU tensors[124, 149]) and unlike
DumpSession, Kishu’s fallback recomputation allows it to restore
Co-variables with (1) unserializable objects (e.g., pl.LazyFrame[120])
or (2) serializable objects that can’t deserialize (e.g., bokeh.figure[21]).
Table 4 summarizes these noteworthy classes.

7.2.1 Accurate Delta Detection. We verify Kishu’s delta detection
accuracy by comparing two VarGraphs generated for each class
object before and after (1) updating a class attribute (e.g., model.key
= ’A’) or (2) updating nothing. We count the number of VarGraph
differences for case (1) as successes and case (2) as false positives.

We report results in Table 5. Kishu’s VarGraphs accurately cap-
tures object updates in 120 classes. While Kishu reports false posi-
tives in 14 classes, (e.g., due to dynamically generated reachable ob-
jects), they only affectKishu’s efficiency (i.e., during time-traveling);
however, Kishu maintains accuracy by considering these objects
to be updated on access. We also find that 12 classes contain silent

pickling errors (ğ6.2); nevertheless, Kishu reports these objects to
be updated on access similar to false positives, and users may force
their (fallback) recomputation if needed (ğ6.2). Notably, Kishu has
no false negatives: Kishu will always report if an object is changed.

7.3 Small Incremental Checkpoint Sizes

This section compares Kishu’s checkpoint sizes with those of exist-
ing tools: we checkpoint the session state after each cell execution
with each method and measure the total storage size of checkpoints.

We report results in Fig 14. Kishu’s cumulative checkpoint size is
consistently the smallest (expectedly except for Kishu+Det-replay,
explained shortly) and is up to 4.55× smaller than the next best
alternative (HW-LM). ElasticNotebook, while the next best method
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Figure 13: Kishu’s cumulative incremental checkpoint storage costs compared to checkpoint storage costs of existing tools.

Kishu’s incremental checkpoints are consistently the smallest, and is up to 4.55× smaller than the next best alternative.
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Figure 14: Kishu’s cumulative incremental checkpoint time compared to existing tools. Kishu’s incremental checkpointing

incurs overhead of only up to 15.5% of notebook runtime and can be up to 5.12× faster than the next best alternative.

on 6/8 notebooks and also has fault-tolerant mechanisms to check-
point all 8 notebooks, can fall short in checkpointing time (ğ4.3).
CRIU-Incremental, while also incrementally checkpointing, is not
the next best method on any notebook, losing to ElasticNotebook

and DumpSession on 6 and failing to checkpoint on 2 as it (1) in-
crementally checkpoints at the coarser memory page level (ğ2.4),
and (2) does not handle off-CPU data and multiprocessing (ğ7.2).
DumpSession fails on Qiskit as it cannot handle unserializable data,
and CRIU incurs prohibitive storage costs (94GB, TPS) as it non-
incrementally checkpoints at OS-level. While Kishu+Det-replay can
save checkpoint storage cost of up to 3.95× vs. Kishu (StoreSales) by
skipping checkpointing after deterministic cells, it (1) needs manual
annotation and (2) can result in unacceptable checkout times (ğ7.5).

7.4 Low Incremental Checkpoint Time

This section compares the checkpoint time of Kishu with that of
existing tools: we measure the total time spent by each method
creating checkpoints after each cell execution.

We report results in Fig 13. Kishu’s cumulative checkpointing
time is the lowest (except for Kishu+Det-replay) on 5/8 notebooks,
being only up to 15.5% of notebook runtime (HW-LM) and up to
5.12× faster (HW-LM) than the next best alternative on these note-
books. While CRIU-Incremental checkpoints faster than Kishu on
3/8 notebooks owing to memory dumping being faster than serial-
ization for unit data, the difference is negligible (up to 3.03×, Store-
Sales) compared to the reliability issues (ğ7.2), space inefficiency

(ğ7.3), and slow checkout times (ğ7.5). Compared to ElasticNote-

book, Kishu’s checkpointing is EAFP-based [65]: if it fails to store a
Co-variable, it will simply recompute it upon checkout via fallback
recomputation. This allows it to skip the profiling (i.e., for data sizes
and serializability) required for ElasticNotebook’s optimization (for
what to store/recompute), which causes checkpoint times slower
than DumpSession on 2/8 notebooks.

7.5 Fast Incremental Checkout

This section compares the efficiency of Kishu’s incremental check-
out with the (non-incremental) checkout of existing methods. We
generate per-cell-execution checkpoints on the notebooks follow-
ing the methodology in ğ7.3 and ğ7.4, then measure the time it
takes for each method to checkout to a previous state (i.e. undo,
ğ7.5.1) or checkout to a different execution branch (ğ7.5.2).

7.5.1 Fast Execution Undo. For each notebook, we measure the
time it takes to undo various dataframe and plot operation cells.

We report the results in Fig 15a. Kishu is the only method capable
of incrementally checking out: it achieves sub-second cell execu-
tion rollbacks on all test cases, and is up to 8.18× faster than the
next best alternative (StoreSales). While CRIU-Incremental achieves
checkpoint times comparable with Kishu, it is up to 36× slower for
checking out (StoreSales) and the slowest method for undos on 5/6
notebooks, due to it needing to piece together the memory snap-
shot of the notebook process to restore from multiple (incremental)
checkpoint files. CRIU, DumpSession, and ElasticNotebook cannot
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Figure 15: Methods’ checkout time for undoing executions

(top) and switching to a branched states (bottom). Kishu’s

checkout is up to 8.18× and 4.18× faster, respectively, than

the next best alternative; notably, the former is sub-second.

incrementally checkout hence they cannot consistently perform
sub-second undos. For example, the Sklearn notebook test case
drops a column in an auxiliary dataframe that is 1.4MB in size (vs.
the 133MB main dataframe). Kishu identifies that it only needs to
load the auxiliary dataframe from before the cell execution and
undoes the operation in 0.4 seconds; however, other non-Kishu+Det-
replaymethods all require the entire session state to be overwritten
with a complete load of checkpoint data, taking an upwards of 6
seconds to do so (and in CRIU and CRIU-Incremental’s case, also
killing and restarting the current notebook process).

7.5.2 Fast Path Exploration. For each notebook, we (1) run the
notebook end-to-end, (2) checkout to the state before any models
are trained, (3) rerun to the end of the notebook (thus creating a
second branch), and measure the time taken to switch back to the
first branch containing different models and plots.

We report the results in Fig 15b. Similar to ğ7.5.1, Kishu performs
sub-second branch switching on 4/6 notebooks by updating (only)
models and plots differing between branches (i.e., not the input
dataframes) and does so up to 4.18× faster than the next best alter-
native (StoreSales). While there is considerable divergence between
branches in the StoreSales test case (i.e., new auxiliary dataframes
are created along ML models and plots), Kishu still performs branch
switching at a fast 1.73 seconds, which is 4.18× faster than the next
method (DumpSession). While Kishu+Det-replay can potentially
be faster than Kishu (TorchGPU ) by replaying cells that allow it to
bypass expensive data loading, it can also cause unacceptable check-
out times (1050s, Cluster, from replaying an entire deterministic
model fitting sequence); hence, cost-based optimization is required
for Kishu+Det-replay to function, which we leave to future work.

7.6 Fast Delta Detection

This section investigatesKishu’s Co-variable granularity state track-
ing overhead by comparing the time taken by Kishu to track per-cell
execution state delta with other tracking methods.

Cumulative Tracking Overhead (Table 6). Kishu is consistently
fastest at detecting state delta and is (1) up to 11.42× faster than the
best out of IPyFlow and AblatedKishu (Check all) (HW-LM), and
(2) only up to maximum of 2.03% of notebook runtime (Sklearn).

Table 6: Kishu’s delta tracking time vs. baselines. Kishu tracks

the per-execution delta up to 11.42× faster than the next best

method and is only up to 2.03% of notebook runtime.

Tracking overhead (s) (% of notebook runtime)

Notebook IPyFlow AblatedKishu (Check all) Kishu (Ours)

Cluster 5.091s (0.299%) 0.231s (0.014%) 0.094s (0.005%)

TPS 15.49s (10.06%) 4.618s (2.999%) 1.195s (0.776%)

Sklearn 11.75s (2.293%) 136.2s (26.61%) 10.39s (2.030%)

HW-LM 30.07s (231.3%) 2.964s (2.280%) 0.259s (1.992%)

StoreSales FAIL on cell 27 72.58s (10.91%) 11.24s (1.69%)

QiSkit 18.91s (41.12%) 2.235s (4.859%) 0.339s (0.737%)

Ray 12.90s (0.546%) 0.861s (0.036%) 0.199s (0.008%)

TorchGPU 3.731s (0.521%) 4.509s (0.630%) 0.578s (0.081%)
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Figure 16: Methods’ per-cell tracking overhead as × of cell

runtime. Gray vertical lines indicate long-running cells (>10s).

Kishu outperforms baselines by efficiently detecting delta of

long-running cells and identifying candidate updates (ğ4.3)

Per-Cell Tracking Overhead (Fig 16). We investigate per-cell exe-
cution tracking overhead of methods on selected notebooks. Kishu
efficiently handles long-running cells (>10s, gray vertical lines)
than IPyFlow: these cells often contain complex control flows (e.g.,
looped if statement, Sklearn cells 5 and 269) and/or call complex
functions (e.g., model fitting, all 4 long cells in TPS). As hypothe-
sized in ğ2.4, IPyFlow incurs significant overhead on these cells (e.g.,
0.3× on the 17s TPS cell 35) which Kishu circumvents by performing
live analysis only between cell executions (0.3× → 0.001×).

Compared to AblatedKishu (Check all), Kishu identifies and only
checks possibly updated Co-variables (ğ4.3): this exploits the incre-
mental nature of cell executions (ğ2.2) and is necessaryÐin Sklearn,
AblatedKishu (Check all)’s detection overhead grows significantly
as more objects are introduced into the kernel (up to 4936×, cell
42), while Kishu’s approach bounds the overhead (4936× → 0.84×).

Notably, there exists further optimization opportunities forKishu
such as for (1) cells updating Co-variables with nested VarGraphs

(e.g. list of strings text_neg, Sklearn cell 41) and (2) read-only
printing cells (e.g., y_train[:10], HW-LM cell 67). Kishu incurs

9StoreSales cell 27 contains complex control flows; IPyFlow hangs indefinitely.
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Table 7: Variable vs. Co-variable count in notebooks.

Notebook var# Co-var# Notebook var# Co-var# Notebook var# Co-var#

Cluster 28 26 TPS 47 47 Sklearn 43 42
HW-LM 172 170 StoreSales 27 27 Qiskit 51 41
Ray 29 28 TorchGPU 57 52
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Figure 17: Checkpoint/checkout efficiency vs. % of data in

updated list Co-variable. Kishu performs best when each Co-

variable contains few data in the state, which is typical of

real-world notebooks (Table 7, vertical line marks average).

significant overhead on these cases (260× and 1.06× respectively;
while they are of low absolute value due to the short cell runtimes
(547ms/2ms and 2ms/2ms respectively), this indicates need for more
efficient delta detection methods such as list hashing and rule-based
detection, respectively (ğ6.2), which we leave for future exploration.

7.7 Workload Study

This section studies Kishu’s performance versus parameter sweeps
on the degree of shared referencing between variables (i.e., Co-
Variable size) (ğ7.7.1) and number of cell executions (ğ7.7.2).

7.7.1 Performance vs. Shared Referencing. We insert ten 64MB
numpy arrays into a list (% of state data in a Co-Variable). We
evaluate Kishu’s checkpoint/checkout costs on cells modifying
only one array in the list/Co-Variable. DumpSession’s and CRIU-

Incremental’s performances are provided as comparison.
We report results in Fig 17. As Kishu detects updates and check-

points at the Co-variable granularity, it checks for updates and
then checkpoints all arrays in the list after each test cell. Kishu
performs best when the list contains a low % of data in the state, as
it can (1) limit the scope of update checking and (2) time-travel by
saving/loading a small amount of state data. Kishu’s performance
drops as the list Co-variable bundles the changed array with more
unchanged data and is equivalent to DumpSession10 when all 10
arrays (i.e., all data in the state) form one large Co-Variable: Kishu
has to (1) check the whole state for updates and (2) save/update
all data for checkpoint/checkout, while CRIU-Incremental can still
checkpoint only the one changed array in the (640MB) Co-variable.

However, as our evaluation workloads suggest (Table 7), states
typically consist of a large number of small Co-Variables (each
containing 2.57% of state data on average, black vertical lines in

10Different serialization libraries cause different checkpoint/checkout time cost; there
is also overhead with managing data with blob storage vs. writing directly to file (ğ6.1).
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Figure 18: Kishu’s scalability vs. cell executions. Checkpoint
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time is linear vs. total cell count in current and target states.

Fig 17). For these typical cases, our Co-Variable-based approach
significantly outperforms other baselines (ğ7.3, ğ7.4).

7.7.2 Scalability to Long Notebook Sessions. We choose 2 Data Vi-
sualization notebooks (HW-LM andQiskit, and randomly re-execute
up to 1000 cells.11 We measure the (1) Checkpoint Graph size and
(2) time to compute state difference for undoing 0-1000 cells (i.e., to
a prior state) from the state after the 1000th cell execution.

We report results in Fig 18. The size of Kishu’s Checkpoint Graph
scales linearly with the number of executed cells and is up to only
9MB at 1000 cells (ğ7.7.2, HW-LM). Kishu’s time to compute state
difference between current and target states scales linearly with
the sum of cell count in the two states, up to 81ms for any checkout
operation in a 1000 cell execution-long session.12 These overheads
are negligible on a more typical notebookÐonly 133KB and 5.8ms,
respectively, on our longest experiment notebook (Qiskit, 85 cells).

8 RELATED WORK

This section covers related work in PITR/checkpointing in vari-
ous database applications (ğ8.1) and related notebook systems and
their employed techniques for lineage tracing (ğ8.2). , and other
applicable tools for saving/loading data in notebook states (ğ8.3)

8.1 PITR and Incremental Checkpointing

PITR in Relational Databases. In many DBMSs, mechanisms like
ARIES [101, 102] and its variants [12, 69, 105, 128, 129, 136, 153, 167]
achieve durability and Point-in-time-Recovery (PITR) by combining
(incremental) checkpointing and physical/operation logging [8, 71,
111, 129, 136, 152, 163, 167]. Persisting dirty objects (e.g., rows in
relations) can enhance recovery efficiency by reducing the number
of log entries to replay. ARIES [101] identifies dirty objects at the
page level by recording a RecLSN, i.e., the earliest modification
time, in the dirty page table. This is possible because all the pages
are controlled by the transaction system’s buffer manager. Kishu
shares similarities: updates are periodically flushed. However, the
core question is how to define those updates in computational note-
books. There are no buffer managers; moreover, variables/objects
are dependent with inter-object references (i.e., memory pointers).
Simply storing/restoring some variables independently thus can
invalidate the state. Kishu addresses this with Co-Variables, atomic
units of persistence that can correctly preserve inter-object de-
pendencies. Kishu can still benefit from other PITR optimizations,

11This is the length of the longest observed notebook on Kaggle [68], and ∼10 times
the 97th percentile cell execution count of a notebook workload [127].
12This is because Kishu traverses the Checkpoint Graph to find the lowest common
ancestor state on checkout with an off-the-shelf algorithm [159].
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e.g., non-blocking checkpointing/restoration [101] and cost-based
deterministic replay [108] (ğ7.5.2), which we leave as future work.

PITR in Blob Storages. Blob storages have incorporated PITR for
recovering its state to earlier points [4, 5, 13, 14, 70, 96, 108]. These
systems typically log timestamped updates (e.g., Azure’s change
feeds [13] and SQLite’s binary log [96]), which can be used to return
the storage state to a previous snapshot. Computational notebooks
require different approaches to determining state deltas, and Kishu

addresses the unique challenge through Co-Variables and related
techniques, which is the core novelty of this work.

Incremental and Differential Checkpointing in HPC. HPC and
stream processing systems implement efficient incremental check-
pointing [10, 24, 84, 95]. These works focus on high-frequency
(e.g., >1M/second) updates to relatively simple data structures (e.g.,
KV-stores [10, 95] and datasets [24, 84]). For enhanced efficiency,
log truncation [95] and copying [84] are employed to ensure the
bounded size and robustness of incremental logs. Computational
notebooks require different delta detectionmethods as notebooks in-
volve more complex objects, e.g., graphs, tensors, dataframes (ğ2.2).
While orthogonal, the existing optimization techniques for HPC
may offer significant performance benefits if the core techniques
for Kishu are expanded to handle a significantly larger number of
executions (e.g., scripts) compared to interactive notebooks.

8.2 Notebook Systems and Techniques

Systems for Speeding upData Exploration. There are a variety of
works for enhancing data exploration efficiency in notebook-based
systems [17, 22, 28, 73, 74, 86, 89, 90, 134, 160]. Reactive execution
engines [86, 134, 160] track cell reruns and rerun their dependent
cells reactively to enforce consistent cell outputs. Notebook rec-
ommender systems [89, 90] compute next-cell recommendations
based on the current workflow. Symphony [17] and B2 [160] en-
able point-and-click interactions with ML models and dataframes,
respectively, by translation to equivalent code operations. Bur-
rito [73] and Vizier [22] construct and visualize a history graph
for versioning multi-language (Python, R, SQL) data science code.
Diff-in-the-loop [156] enables graphical comparisons of dataframes.
Kishu facilitates data exploration through efficient time-traveling,
and thus, is orthogonal and complementary to these works.

Notebook State Versioning. Notebook state versioning has been
explored by ForkIt [158], which performs backtracking and branch-
ing to/from states by saving entire states with pickle [55]. Our
work versions notebook states in a much more efficient and robust
manner compared to Forkit’s approach (which is equivalent to our
DumpSession baseline in ğ7) through efficient delta detection and
incremental checkpointing and checkout.

Lineage Tracing in Notebooks. Lineage tracing aims to capture
code dependencies, i.e., accessed and updated data of cells, and has
been widely used in notebook systems for a variety of downstream
tasks (e.g., reactive execution) [3, 22, 38, 39, 86, 89, 90, 94, 98, 99, 134,
160]. Tracing methods can be divided into (1) static code analysis
using methods like AST decomposition [50], and (2) live code instru-
mentation resolving variable/data references at runtime. They are
relatively (1) cheap but conservative, and (2) accurate but expensive,
respectively. Lineage tracers often combine static and live analysis,

to mitigate conservative assumptions of static analysis [94] with
dynamically computed ’ground truths’ [39, 98, 134]. Unfortunately,
to the best of our knowledge, all of these works, except for Elastic-
Notebook [94], detect modifications at the variable level, incorrectly
disregard shared references between variables. Kishu’s innovations
in lineage tracing is efficient live analysis through (1) modeling the
state at a coarser Co-variable granularity and (2) quickly pruning
update candidates. This allows Kishu to achieve low false positives
(ğ7.2) with low overhead (ğ7.6).

8.3 Checkpointing Notebook Objects

Data Serialization for Checkpoint/Restore. Data in IPython-
based (e.g., Jupyter) notebook session states can be saved with
serialization libraries [32, 44, 53ś55, 57, 100, 103], on which a va-
riety of existing checkpointing tools are built: On-disk KV-stores
save individual variables [2, 27, 59, 123, 135, 146], DumpSession [58]
saves the session state in bulk, and ElasticNotebook [94] combines
data storage/loading with cell replay for optimized session repli-
cation. These works do not checkpoint nor restore incrementally,
or have limitations/require significant user effort: Dill and Elastic-
Notebook’s checkpoint files must be entirely loaded for restoration;
while KV stores can store and load parts of a state, delta detection
and shared reference preservation must be manually handled. In
comparison, Kishu can perform low-overhead incremental check-
pointing and checkout while preserving shared references (i.e.,
correctness) and works with almost all data science libraries (ğ7.2).

Memory Snapshotting. There exist OS-level checkpointing tools
that can incrementally checkpoint a process for later restoration [7,
26, 35, 60, 79, 91, 117]. These tools identify and store dirty memory
pages, then piece together the process image for restoration [35]:
they often (1) cause large checkpoint sizes due to coarse page-
level deltas [46], (2) can only handle single processes [36], and (3)
can only restore from scratch: while we found a patent [107] and
paper [49] enabling incremental checkpointing for multiprocess-
ing jobs and with sub-memory-page granularity, respectively, we
could not locate working implementations. In comparison, Kishu
achieves lower checkpoint overheads via the logical Co-variable
granularity deltas (ğ7.3), checkpoint multiprocessing notebooks via
application-level instructions (ğ7.2), and incrementally restores via
state difference detection and using existing kernel data (ğ7.5).

9 CONCLUSION

We have proposed Kishu, a new computational notebook system
that offers efficient and fault-tolerant time-traveling between note-
book states. Kishu captures session state evolution at a novel Co-
variable granularity for efficient incremental checkpointing of state
deltas, which Kishu then uses to perform incremental checkout
with minimal data loading. Kishu’s contributions include (1) low-
overhead state delta detection, (2) branch-based state versioning,
and (3) generalizable time-travelingÐpreserving inter-variable de-
pendencies and handling missing data with fallback recomputation.
We have shown that Kishu is compatible with 146 data science ob-
ject classes and reduces checkpoint storage size and checkout time
by up to 4.55× and 8.18×, respectively, on real-world notebooks.
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