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Figure 1: Provenance-based intervention for a cross-filter visualization. (a) Input relations are annotated with ids, and (b)
query results are annotated with provenance polynomials that describe how tuples are joined (×) and aggregated (+). (c) In the
visualized results, clicking on NY updates the lower chart by re-running 𝑄2 without 𝑏1,𝑏3. (d) Existing methods set the existence
bits 𝑏1 = 𝑏3 = 0 in the provenance circuit and recursively compute the circuit—often slower than re-running the query. (e)
FaDE models provenance as dense arrays (𝐵𝑙 , 𝐵𝑟 , 𝐵𝛾 ) and interventions (𝐼𝐴, 𝐼𝐵 ) as bit vectors over operator inputs where 1 means
intervene (e.g., delete) rather than ‘exist’. Join uses provenance to ∨ the appropriate interventions (𝐼𝐴 [𝐵𝑙 ] ∨ 𝐼𝐵 [𝐵𝑟 ]), and group-by
counts the non-intervened join results. On TPC-H SF=1, FaDE evaluates >1𝑀 interventions per second.

ABSTRACT
What-if queries are the building blocks for many explanation and

analytics applications—sensitivity analysis, hypothetical reasoning,

data cleaning, probabilistic databases—that explore how a query’s

output changes due to input data changes. Their response time

is bounded by intervention evaluation latency, which can be in

the minute or hours for complex queries and large datasets. FaDE
is a compilation engine that uses provenance to evaluate hypo-

thetical deletion and scaling interventions at low latency and high

throughput. FaDE forgoes conventional provenance representa-

tions as symbolic expressions and leverages their underlying rela-

tional structure. This accelerates intervention evaluation on average

by 1000× against IVM and 10,000× against prior provenance-based

approaches. In addition, FaDE develops a suite of optimizations

(e.g., compilation, parallelization, incremental evaluation, sparse

representations) that collectively raise evaluation throughput to >1

million interventions per sec—a rate that can brute-force existing

applications within 1𝑠 .
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1 INTRODUCTION
What-if queries are the building block for a wide range of appli-

cations, such as sensitivity analysis, deletion-based query expla-

nations, data cleaning, debugging, interactive visualization, data

integration, probabilistic databases, and query-by-example [4, 10,

13, 14, 20, 24, 27, 30, 33, 36]. These applications measure changes to

a query 𝑄 (𝐷)’s output when deleting subsets of the query’s input

relations (“deletion interventions” ) or transforming attribute values
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used to compute aggregated metrics (“scaling interventions” ). They
primarily differ in the type and set of interventions to evaluate, and

their main bottleneck is the cost to quickly re-evaluate 𝑄 under

each intervention. Let us examine three exemplar applications:

• What-if Analysis and Hypothetical Reasoning evaluates

user-specified interventions on 𝑄 . For instance, how would prof-

its change if click rates increased by 80% in all California cities?

• Explanation Engines & Why Analysis help explain unex-

pected trends in an aggregation query𝑄 (𝐷)’s results. A common

form of explanation [4, 33, 36] identifies a conjunctive predi-

cate 𝑝 such that removing the input that matches the predicate

𝑄 (𝜎¬𝑝𝐷) has a desired result on the query output. To do so,

explanation engines search the space of all 𝑁 𝑡ℎ-order equality

predicates for those that maximize a loss function over𝑄 (𝜎¬𝑝𝐷).
• Possible Worlds and Incomplete Databases Conditional ta-

bles (c-tables) [23] encode incomplete databases where tuples are

annotated with propositional formulas over random variables.

Probabilistic databases extend c-tables with a probability space

over random variable assignments, and a query output’s probabil-

ity can be estimated using monte-carlo methods by re-evaluating

𝑄 over sampled database instances.

Many applications require searching over a large space of candi-

date interventions—tens of thousands or even millions—and are

bound by the throughput of intervention evaluation. General ap-

proaches such as incremental viewmaintenance (IVM) are designed

for arbitrary database interventions and suffer from large memory

overheads and slow evaluation when the intervention is large [5].

Thus, prior applications identify problem-specific assumptions

to heuristically prune the search space and/or perform efficient pre-

computation. For instance, Caravan [14, 16] uses apriori knowledge

of the desired hypothetical scenarios (parameterized interventions)

and pre-computes provenance circuits that include special variables

that turn on/off combinations of hypotheticals.

Explanation engines suffer from similar constraints: Explanation-

Ready Databases (ERDB) [33] requires the developer to pre-define

explanation templates in order to pre-compute tables to accelerate

IVM, Scorpion [36] is limited to incrementally updatable aggrega-

tion functions such as SUM and COUNT, and DIFF [3, 4] heuristically

uses minimum support (number of tuples that match the predicate)

to prune the search space. Even ignoring the offline costs, they still

take seconds or minutes to run.

What if it is possible to evaluate interventions at a sufficiently

high throughput that such heuristics and assumptions are not nec-

essary? For instance, monte-carlo methods for probabilistic queries

typically draw 100-1000 samples [25]. Similarly, given a set of 10

attributes each with 50 unique values, there are only 112,000 second-

order conjunctive predicates to evaluate. A system that can evalu-

ate 1𝑀 interventions per second would greatly accelerate existing

search heuristics, support ad-hoc questions, and solve many practi-

cal problems within a second using brute force.

The Promise of Provenance. A promising method that matches

the needs of these applications is to use data provenance to accel-

erate query re-evaluation. Most data provenance systems [21, 34]

today are built on the provenance semiring formalism. Each out-

put tuple is annotated with a symbolic polynomial expression that

describes how input tuples (variables) were joined (×) or unioned
(+) during query processing. Re-evaluating the query result under

different interventions is equivalent to re-evaluating each polyno-

mial under different variable assignments for Select-Project-Join-

Aggregate-Union (SPJAU) queries .

Example 1. Output tuples in Figure 1(b) are annotated with a
provenance polynomial 𝑜 𝑗,𝑖 that records how the output tuple was
computed. Setting 𝑏2 = 0 deletes 𝐵’s second tuple, which updates
𝑜1,1 = 1 and 𝑜1,2 = 0. This indicates that only 𝑜1,1 remains. Similarly,
setting 𝑏3 = 0 updates the output aggregates of 𝑜1,1 to 6.

In theory, provenance-based re-execution addresses the draw-

backs of IVM because 1) it performs strictly less work since all data

dependencies and join matches are known apriori, 2) it does not

need to maintain large intermediate relations and reduces mem-

ory pressure, and 3) the re-execution cost is independent of the

intervention size. In practice, ProvSQL [34] is the only system that

implements provenance-based IVM for deletion and scaling inter-

ventions. Unfortunately, it is slower than general IVM systems like

DBToaster [5] and even re-running the query from scratch due

to recursive evaluation of the circuit-based representation. This

makes non-sequential memory accesses, which wastes memory

bandwidth and CPU cache. Each node also executes a different

operation, which reduces code locality.

Example 2. Figure 1(d) depicts the standard circuit-based repre-
sentation [15] of the provenance polynomials for 𝑜2,1 The circuit is
stored as a directed acyclic graph (DAG) and evaluated by recursively
traversing it in a top down fashion.

Our key insight is that every output tuple shares the same circuit

structure—all circuit nodes that correspond to the same logical

operator apply the same logical/arithmetic operations and access

the same data. We can improve instruction and data locality by

representing provenance and re-executing the polynomials on a

per-operator basis. This can be analogized as the difference between

row- and column-oriented query execution.

Example 3. Figure 1(e) depicts per-operator representations for the
join and group-by operators of Q2, along with the intervention evalu-
ation code. In contrast to the circuit representation, the provenance is
represented as integer arrays: 𝐵𝑙 [𝑖] (𝐵𝑟 [𝑖]) specifies the input offset
in A (B) for the 𝑖𝑡ℎ join result, and 𝐵𝛾 [𝑖] specifies the indexes of the
join results that contribute to the 𝑖𝑡ℎ group (and consequently query
output 𝑜2,1). FaDE takes as input interventions 𝐼𝐴 , 𝐼𝐵 as bit masks
over the input relations, – 1 to interven (delete/scale).

In this work we propose FaDE, which builds on recent advances

in provenance-capturing DBMSes to evaluate what-if queries at

low-latency and high-throughput by using provenance-based inter-

vention evaluation. Recent DBMSes like SmokedDuck [27] are able

to capture per-operator provenance as dense 2D (for group-by) or

1D (other operators) integer arrays during query execution with

very low runtime overhead—as little as 0% for some TPC-H queries.

FaDE observes that these provenance arrays, when used for inter-
vention evaluation, are amenable to fast scans, parallelizaton, and

hardware vectorization. FaDE first translates the initial query 𝑄’s

execution plan into a corresponding intervention plan composed of

pre-defined operators as well as operators generated and compiled
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at run time. Given matrices that encode the desired interventions,

the intervention plan quickly evaluates them using tight loops.

Although the high level intuition is simple, achieving high through-

put for practical applications is difficult—a straight-forward imple-

mentation processes a mere 20 interventions/second. This is be-

cause every step—both intervention generation and evaluation—of

the process must be high throughput in order to avoid bottlenecks.

This leads to several interlocking challenges.

First, fast intervention evaluation is sensitive to the provenance

representation as it impacts hardware prefetching, caching, and

memory utilization. For instance, using backward provenance for

group-by requires inefficient scattered memory accesses over the in-

put tuples. In addition, fast provenance capture techniques evaluate

operators bottom-up during query execution, and can over-generate

provenance for intermediates that do not contribute to any output

tuples [27, 31]. This directly increases the amount of wasted work

during intervention evaluation.

Second, intervention representation is important because dense

bit-matrix representation is quadratic in size with respect to the in-

put database size and number of interventions. For example, 100,000

interventions on an input table with 1M records would be 12.5GB.

A more efficient representation is necessary to avoid materializing

and processing over gigabytes of interventions for applications like

explanation engines, which search large intervention spaces.

Third, the appropriate intervention implementations, as well as

the appropriate level of parallelization, batching, and vectorization,

vary greatly depending on the base query, the set of interventions,

available resources, and the complexity of the group-by aggregation

functions. There are too many factors for a single approach to

adequately support, and an effective automated approach is needed

to choose the best intervention plan on a per-query basis.

In summary, we contribute:

• FaDE, a database engine that supports fast what-if query eval-

uation for ad-hoc SPJAU queries with nested aggregates, and

exposes a general and expressive what-if API that subsumes

most prior specialized what-if systems

• A suite of effective optimizations including: software and hard-

ware data parallelism, such as multi-threading, batched execu-

tion, and SIMD-vectorization; incremental intervention evalu-

ation when the aggregation function is expressible as a ring; a

sparse representation for mutually exclusive intervention sets,

such as all conjunctive equality predicates of a fixed arity; and

efficient provenance pruning to reduce the space and runtime

complexity of provenance-based intervention evaluation.

• Extensive experimental comparisons between FaDE, the IVM
engine DBToaster, and provenance based engine ProvSQL. In

relative terms, FaDE is on average 1,000× and 10,000× faster

than DBToaster and ProvSQL, respectively. In absolute terms,

FaDE can interactively evaluate hundreds of thousands of inter-

ventions on multi-join queries in <100ms.

2 MOTIVATING USE CASE AND API
This section describes a data-driven use case [18] that uses sensitiv-

ity analysis, what-if, and how-to functionality as well as two other

use cases that FaDE can accelerate. We include code snippets in the

use case, and then formally introduce FaDE’s API and semantics.

2.1 Analytics Use Case
Mona is a data scientist studying customer churn rates at her com-

pany. She runs an initial query and plots the result as a line chart:

SELECT EXTRACT(MONTH FROM date) AS month,
LinearRegressionUDF(churn, clicks) AS slope

FROM sales JOIN custs USING (cid)
WHERE date >= CURRENT_DATE - INTERVAL '6 months'
GROUP BY EXTRACT(MONTH FROM date) ORDER BY month

(U1)What-if Analysis.Mona has a $30𝐾 budget and from past experience,

knows that adding $5K to an email campaign in a city should increase the

email click rate by 10% for that city’s customers. She thus asks: What if we
increase email click rates by 80% in all California cities? This is expressed as:

O.whatif({'custs.click': 1.8, 'where':"custs.state='CA'"})

(U2) Sensitivity Analysis.Mona notices that the churn rate has steadily

risen in the past two months. She wants to understand this rise, so asks

the system to identify data slices that the rise is most sensitive to. She

suspects it may be related to the state of sale and age of the customers, and

performs sensitivity analysis that deletes every combination of state and

age (e.g., state=CA∧age=20s) and finds those that minimize the churn rate.

To answer the question Which combination of state and age that if removed,
minimizes the churn rate the most?, she first defines a metric that computes

the churn rate in the post-intervention query result and then calls FaDE to

return the top-3 state, age combinations that minimize the metric:

metric = lambda pre,post:abs(post["churn"])
O.whatif({'where':"custs.state=? and custs.age=?"},

{'k':3, 'metric':metric, 'objective':"minimize"})

(U3) How-to Analysis. Mona then submits a How-to question to identify

which subset of Californian cities she should target, assuming she increases

their click rate by 30% each. Formally, she asksWhich city if we increase their
click rates by 30% would minimize the churn rate the most?, and executes:

O.whatif({'custs.click':1.3, 'where':"custs.city=?"},
{'k':3, 'metric':metric, 'objective':'minimize'})

Focusing now on Palm Springs, she submits a second How-to question to

understand how many resources to put into her campaign. Specifically, for

different increases in the email click rate, howmuch would the churn reduce

and is the marginal reduction worth the increased budget? This is expressed

as How much should we increase click rates for customers in Palm Springs city
that would minimize the churn rate the most?. She searches between 0 to

100% increase in click rates:

O.whatif({'custs.click': range(1, 2, 0.1),
'where':"city='Palm Springs'"},

{'k':3, 'metric':metric, 'objective':'minimize'})

To summarize, the above use case switches between several related tasks:

(1) Deletion Intervention: removing one or more subsets of input (U2)

(2) Scaling Intervention: scale the aggregated attribute of the subset of

input tuples that match one (U1) or multiple (U3) predicates.

(3) Ranking interventions based on a custom metric over the intervened

query result and return the top-K answers (U2, U3).

2.2 Additional Use Cases
In addition to extending data analysis with interactive sensitivity, what-if,

and how-to analysis, FaDE supports many other use cases.

Interactive Cross-Filtering. Prior work [29] aims to interactively update

cross filtering based visualizations. In a typical cross filtering setup, users

highlight data of interest in one view and the results of another view up-

date to consider only the selected subset. While [29] already makes use of

provenance metadata to identify the selected data in one view, it could also

use FaDE instead of IVM to update the results of the other view.
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For example, if a user selects state ‘CA’ in a map visualization, a linked

histogram visualization is updated by a hypothetical delete request to re-

move all other influence from tuples that are not in ‘CA’ state.

O.whatif({'where':"cust.state<>'CA'"})

FaDE can further accelerate the interactions further by prefetching the

results for multiple states at once:

O.whatif({'where':"custs.state<>?"})

Probabilistic Databases. Probabilistic databases [12] annotate each tuple

with the probability that it exists in the database. Calculating probabilis-

tic query results evaluates the provenance polynomial over input tuple

probabilities. Since this must be done for every possible output row, query

evaluation is #𝑃-complete. Monte Carlo methods were proposed in [12] to

estimate output tuple probabilities by sampling database instances from the

probability distribution and averaging the query results over the samples.

FaDE can express this by specifying the target list as a random sample

whose tuple probabilities are given by attribute prob in the table.

O.whatif({'where': { 'B': {p: 'B.prob', n: 1000}}})

2.3 Fade Python API
The FaDE Python API extends a query’s result cursor with a general

whatif() method that specifies the set desired intervention(s), optional

semantics if there are interventions over multiple tables, and an optional

objective to rank the interventions and return the top k:

O = con.execute(Q)
O' = O.whatif(intervention, operation, objective)

2.3.1 Interventions and Operation. The core component of deletion and

scaling interventions is the whereclause, which specifies the subsets of

the query’s input tuples to intervene. Deletion interventions are fully de-

scribed by the whereclause, while scaling interventions also specify how

attribute(s) are scaled:

whereclause // deletion
{ [attrname: scalefactors]+, whereclause } // scaling

Below, we introduce whereclause, scaling interventions, and then the se-

mantics of interventions on multiple tables.

The whereclause is the core component of an intervention, which specifies

the subsets of the query’s input tuples to intervene upon. The whereclause
maps an input relation 𝑅 to a Target Matrix𝑀 = [𝑆1, . . . , 𝑆𝑛 ] that encodes
a batch of 𝑛 subsets of R, where 𝑆𝑖 ⊆ 𝑅:

{ [relationname: targetmatrix]+ } // whereclause

By default,𝑀 is a dense numpy array. 𝑆𝑖 is bitmask over𝑅, where 1 deletes/s-

cales and 0 preserves the corresponding tuple. Although flexible, materializ-

ing the target matrix and passing it to FaDE is impractical when 𝑅 and batch

size are large. For instance, 1M tuples and a batch size of 100K would require

12.5GB. Thus, we introduce two declarative target matrix specifications for

common use cases:

(1) Predicates: Notice that each bitmask in the target matrix is logically

a predicate over the relation. Thus, we express the target matrix with

a list of predicate strings, where each string represents one or more

predicates that are logically concatenated into the target matrix. Each

predicate string is of the form attr op vwhere attr is a fully qualified
attribute, op is a comparison operator, and v is a constant. A common

application is to search a space of conjunctive equality predicates, so

for equality predicates, the constant can be replaced with a parameter

?, which binds all domain values. For instance, A=? and B=? and C<1
expresses all combinations of A and B values.

(2) Random Samples: given a list 𝑝 of tuple probabilities (or uniform if not

specified), we generate𝑛 samples where each sample draws tuple 𝑖 with

probability 𝑝 [𝑖 ]. For instance, {p: [0.5, 0.5], n: 10} generates 10

samples, each sample includes both tuples with uniform probability. 𝑝

may also be specified as an attribute in the sampled relation.

Scaling Interventions are specified by mapping fully qualified attribute

names to a scaling factor 𝑠 𝑓 . The input attributes marked 1 in the target

matrix are scaled by 𝑠 𝑓 , and the rest retain their original value. As a conve-

nience, users can supply a list of scaling factors and FaDE evaluates each

one. All references to the scaled attribute in the query plan will use the

scaled values instead. We restrict attributes to those that are not part of any

control flow decision (e.g. filter or join conditions) to ensure new tuples

are not added to the query result through attribute scaling/updates. For

instance, the following scales the first and third rows in 𝐵 in two ways:

decreasing them by 50% and doubling their values.

{ 'B.q': [-0.5, 1.0], 'where':{'B':[[1,0,1]]} }

Multi-table Semantics. If the whereclause specifies target matrices for

multiple relations, either explicitly or using a string predicate (e.g., A.a=1
and B.b=1), then we assume that each matrix has the same number of

columns (interventions). For deletion interventions, each intervention is

logically a predicate over a base relation, but how to combine them across

multiple relations is ambiguous. There are two semantics that the user

can choose from using the operation argument. OR semantics simulates

deleting tuples from the base relations: if any tuple is deleted, all derives
tuples are deleted as well. In contrast, AND semantics simulates a conjunctive

predicate that spans the base relations, where an intermediate tuple is

deleted only if all participating tuples are deleted.
A wrinkle arises when the scaled attribute and whereclause reference

disjoin tables (e.g., scale A.$ where B.q>1). It is not obvious which tuples

in A should be scaled prior to joining A and B. Given the restriction that

A.$ (and any derivatives) cannot be used for control flow, we rewrite the

base query plan before it is executed into a canonical form by pushing all

projection expressions and group-by aggregations that are not involved in

control flow above the joins. The tuples to scale are thus defined by the

target matrix after the join results. Note that projections can further be

removed by inlining their expressions into the aggregation functions that

reference them. Canonicalization simplifies the query plan by eliminating

projections that might involve scaled attributes.

2.3.2 Optimization Objective. Many applications wish to find “the best”

interventions given a search space. To support this use case, the user can

specify a metric to optimize, whether to minimize or maximize the metric,

and a top K value. This is primarily to avoid the communication costs

of sending all intervention results to the client, and to avoid the need to

materialize result values for all interventions.

A metric is a lambda function given by the user that is evaluated for each

intervention. It takes the original and updated query results 𝑝𝑟𝑒 = 𝑄 (𝐷 )
and 𝑝𝑜𝑠𝑡 = 𝑄 (𝐼 (𝐷 ) ) , respectively, as dataframes indexed by the column

names and returns a numerical score value per intervention. For instance,

the following measures the total difference between half the original query’s

churn rates and the churn rates of the intervened queries:

metric = lambda pre,post:sum(pre["churn"]/2-post["churn"])

3 BACKGROUND
We now introduce provenance and its use for view maintenance, existing

limitatons, and the motivation behind FaDE.

3.1 Provenance and View Maintenance
Provenance polynomials is a general model based on semi-ring annota-

tions [19]. Each output tuple is annotated with a symbolic polynomial

expression that represents its derivation tree: each variable represents an

input tuple, and operators union (+) or join (×) tuples together (see Figure 1
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for an example). K-semimodules [6] extend this framework to support ag-

gregation by also logging the expression values passed into the aggregation

function (e.g., the values of 𝐵.𝑞 in Figure 1(a)).

Provenance polynomials are sufficient for view maintenance under dele-

tions for monotonic queries including SPJAU queries [6, 19] because dele-

tions do not generate new tuples. Provenance polynomials express deletion

interventions by setting the variables of the deleted tuples to the semiring

zero element (e.g., false for normal relational algebra). The logic is very

simple: 𝜎 and Union deletes its output tuple if its contributing tuple is

deleted, ⊲⊳ if either contributing tuple is deleted, and 𝛾 if the entire group is

deleted. K-semimodules support attribute scaling as long as 1) the values

of the variables referenced in the aggregation expression are logged, and

2) the scaled attributes do not affect the query’s control flow in a way that

introduces new tuples under intervention (e.g., not used in filter, grouping,

join conditions). Once the aggregate’s input values have been updated, it

simply re-evaluates itself over the non-deleted inputs.

In theory, provenance-based view maintenance should be competitive or

more efficient than IVM because it skips filters and joins re-execution, does

not need to build nor maintain hash tables, and does not perform work that

does not contribute to tuples not in the output.

3.2 Limitations of Existing Approaches
The dominant ways to evaluate deletion and scaling interventions are based

on provenance circuits [14, 15, 34] and Provisioning Autonomous Repre-

sentation (PAR) [14]. We now describe their limitations.

3.2.1 Provenance Circuits. All modern provenance management systems

capture provenance as circuits (e.g., Figure 1(d)). A provenance circuit is

a directed acyclic graph (DAG) where the leaves are tuple variables, and

interior nodes are operators (semiring + or ×, or an aggregation function).

An operator takes its children as input and routes its output to its par-

ents. During query execution, each operator computes each output tuple’s

provenance circuit from the circuits of its inputs.

To the best of our knowledge, ProvSQL [34] is the only publicly available

DBMS that supports provenance-based interventions. It maps tuple variables

to semiring elements, and evaluates the circuit top-down using user defined

types and functions (e.g., Figure 1(d)). For instance, deletion interventions

would use the boolean semiring and map (×, +) to (&, |).
Circuits benefit from simplicity. The representation is independent of

the query plan and how provenance was tracked, which also simplifies

the evaluation logic. Unfortunately, operator independence comes at a

deep performance cost due to poor instruction and data locality. Circuit

evaluation relies heavily on branching and pointer-based accesses to find

the next instruction, which prevents efficient out-of-order execution and

leads to non-sequential memory accesses. These access patterns make poor

use of CPU caches and memory bandwidth.

Provisioning Autonomous Representations and followup work [8, 14,

16] are similar to ERDB [33] in that they pre-compute data structures—

specifically provenance circuits—to accelerate pre-registered classes of dele-

tion and scaling intervention such as those supported by FaDE. Theoretically,
the general approach requires provenance size that is exponential in the

number of hypothetical scenarios [8], and the main techniques are to reduce

the granularity of interventions (e.g., allow users to delete at year rather

than month granularity). However, this still requires the expensive overhead

of capturing provenance circuits, compressing them, and then evaluating

the circuits, all of which take between seconds to hours on TPC-H SF=10.

Ultimately, this approach is neither fast nor suitable for ad-hoc analysis.

3.3 The Opportunity
Provenance circuits are stored on a per-tuple basis, and incur considerable

overhead when used for intervention evaluation. However, unlike gen-

eral circuits, provenance circuits have structured access patterns that are

amenable to a more efficient per-operator representation and execution,

analogous to the difference between row and columnar query execution. In

addition, recent provenance systems like Smoke [31] and SmokedDuck [27]

generate provenance in precisely this representation.

3.3.1 Per-operator Provenance-based Evaluation. All circuit nodes produced
by the same query operator have the same operation type and access their

inputs in the same way. For instance, 𝜎 evaluates the same predicate for

every input tuple. This circuit-based execution is a consequence of the

circuit-based representation that existing provenance-capture DBMSes such

as ProvSQL [34] capture and expose.

An alternative to this per-tuple circuit representation is a per-operator

representation [31] where each operator’s provenance is modeled as a 1D or

2D integer arrays, where the 𝑖𝑡ℎ element stores the tuple offsets of the inputs

that contributed to the 𝑖𝑡ℎ output tuple. For instance, filter’s provenance is

a 1D array 𝐵𝜎 where 𝐵𝜎 [𝑖 ] stores the input tuple offset for the 𝑖𝑡ℎ output

tuple. The join provenance in Figure 1(e) consists of integer arrays 𝐵𝑙 (and

𝐵𝑟 ) where their 𝑖
𝑡ℎ

element stores store the offset of the left (and right)

input tuple that contributed to the 𝑖𝑡ℎ output tuple. Similarly, the group-by

provenance 𝐵𝛾 is an array where the 𝑖𝑡ℎ element stores the offsets for all

input tuples in the group that emits the 𝑖𝑡ℎ output tuple.

This array representation is amenable to fast evaluation because the

structure of the computations for all tuples of a given operator are identical,

and the regularity results in intervention logic is amenable to data paral-

lelism and improved instruction and data locality. Figure 1(e) shows example

intervention evaluation code for the join-aggregation query. Rather than

the base tables A and B, it takes as input interventions 𝐼𝐴 and 𝐼𝐵 where each

element is set if we want to intervene on the corresponding input tuple (e.g.

delete/scale). Since the join’s provenance arrays 𝐵𝑙 and 𝐵𝑟 specify which in-

put tuples contribute to each intermediate join result, 𝐽 = 𝐼𝐴 [𝐵𝑙 ] ∨ 𝐼𝐵 [𝐵𝑟 ]
computes which join results are still present under the intervention. Simi-

larly, the aggregation provenance 𝐵𝛾 is used to locate all contributing input

tuples and exclude any selected tuples from the updated results by inverting

𝐽 . Since these are standard matrix operations, we can batch interventions

by simply adding extra columns of interventions to 𝐼𝐴 and 𝐼𝐵 .

3.3.2 Fast Provenance Systems. The key opportunity is that recent work de-
veloped a columnar analytical database that efficiently captures per-operator

provenance polynomials for SPJAU queries. The system, SmokedDuck [27],

instruments DuckDB’s [32] physical operators to emit dense integer arrays

in precisely the above representation (e.g., 𝐵𝑙 , 𝐵𝑟 , 𝐵𝛾 in Figure 1(e)). On

TPC-H queries, its provenance capture incurs an average runtime slowdown

of 10% (max: 33%) across SF=1 to 10; the resulting lineage is compact (8MB

vs 1GB database). As we show in the end-to-end experiments, this overhead

is sufficiently low to support ad-hoc provenance capture and provenance

applications such as FaDE while out-performing specialized systems like

Caravan, ERDB, and others.

3.4 Scope
FaDE is an application of fine-grained provenance-capturing databases [27,

31], meaning it takes as input the dense array provenance representation

generated during query execution by a system such as SmokedDuck [27],

and uses the provenance to accelerate hypothetical deletion and scaling

what-if queries for SPJAU queries. It supports nested group-by over the last

group-by operator, similar to supported class of queries by ERDB [33] where

SPJU operators appear below all aggregates. In general, we limit scaling to

attributes used in aggregate functions and that do not affect the query’s data

flow (e.g., filter or join conditions, grouping expressions)—these are often

called “measures” in BI analytics. This ensures new tuples are not added

to the query result through attribute scaling/updates. We assume Union

under bag semantics concatenates its input tables and under set semantics

is followed with a group-by operator.

947



O b sum

0 1 5

1 2 2

O
ptim

izer

0 2

1 Intervention 
Executor

T a b c

0 1 1 1

1 1 2 2

2 2 2 3

3 1 1 4

I a b c

0 1 1 1

1 1 2 2

2 1 1 4

0

1

3

 

 

ioperator 
Library

Fade Python API
O.whatif({‘where’:‘T.c=4’})Fade Results

Q(T) Exec Interm.
Results

Input T

Q(T) Results

(1) Provenance Capture (2) Compilation

Client

DuckDB

 

 

Provenance

TopK
Base query,
provenance stats

Intervention 
Generator

Target Matrices

Codegen & 
Compiler

(3) Execution
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4 SYSTEM ARCHITECTURE
FaDE extends SmokedDuck to support fast and high-throughput what-if

analysis. This section describes the FaDE architecture and its components.

4.1 Architecture
FaDE is implemented inside SmokedDuck to avoid Inter-Process Commu-

nication between FaDE and SmokedDuck. Figure 2 shows the end-to-end
workflow for𝑄 = 𝛾𝑏,𝑠𝑢𝑚 (𝑐 ) (𝜎𝑎=1 (𝑇 ) ) . FaDE runs in three phases. When

the client submits the base query Q , FaDE first rewrites the physical plan

into a canonical form (Section 2.3.1) to ensure that, when the query engine

captures provenance during plan execution, FaDE caches the values of all

attributes referenced in aggregation expressions (e.g. T.c for Q). During
query execution, FaDE uses SmokedDuck’s instrumented operators [27] to

efficiently capture backward provenance on a per-operator basis (blue data

in Figure 3). FaDE then walks the query plan and generates an interven-

tion evaluation plan where each operator translates into a corresponding

intervention operator (ioperator) (e.g. 𝛾 is replaced with 𝐸𝛾 and 𝜎 with 𝐸𝜎 ).

The optimizer uses memory resources and provenance statistics gathered

during base query execution to decide the appropriate physical ioperators

and the optimal level of batching and parallelism (Section 5.5). Finally, when

the user makes a whatif() call (e.g. whatif({‘where’:‘T.c=4’})), FaDE
parses any string predicates in the whereclause and scans the database to

generate an internal target matrix representation. (e.g. ‘T.c=4’ is replaced

with [0,0,0,1]), (Section 5.2). The executor loads the previously captured

provenance into the intervention plan and processes the interventions as a

batched stream. The optional top-k module evaluates the optimization met-

ric and returns the optimal interventions, and their updated query results.

Many of the above steps can be freely scheduled depending on application

needs. Although provenance capture is low overhead, if the base query

cannot accept any slowdown, it can be run without provenance capture

and then scheduled to run again with provenance capture during user think

time [9]. Similarly, the optimizer and compilation can run immediately after

provenance capture, or deferred to when the user makes a whatif() call
via the Python API; in this work we use the latter policy.

4.2 Naive Design
The major challenge to designing FaDE is to ensure that the end-to-end

what-if query process is fast. This means that any pre-processing must be
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cheap, that intervention generation and evaluation are high-throughput,

and that no component is a bottleneck. We outline a naive design that fails

to meet these requirements, and the challenges that still must be addressed.

4.2.1 Intervention Plan. FaDE walks the base query plan and generates an

intervention plan with the identical structure, but each intervention opera-
tor (ioperator) is specialized to evaluate deletion or scaling interventions.

Each ioperator is initialized with its corresponding operator’s provenance

(blue arrows in Figure 2); it takes as input a target matrix and outputs a

target matrix for the parent ioperator (Section 4.2.2). Aggregation iopera-

tors additionally take the cached values of the attributes referenced in the

aggregation functions and an optional scaling specification as input, and

also output updated aggregate values. Execution is bottom up on a per-

operator basis. We now describe naive templates for each operator using

numpy-style pseudocode. Projection under bag semantics is 1-to-1 so can

be ignored, and modeled as a group-by under set semantics. Figure 3 lists

example provenance representations used by each ioperator.

Selection (𝐸𝜎 ) . The backward provenance B𝜎[o] stores the offset 𝑖 of the

input tuple that contributed to the 𝑜𝑡ℎ output. It scans the provenance and

copies the corresponding bits from target matrix in to the target matrix out:

for o, i in enumerate(𝐵𝜎 ):

out[o,:] = in[i,:]

Join (𝐸⊲⊳ ) . The backward provenance B𝑙[o] and B𝑟 [o] respectively contain
the input tuple offsets 𝑖𝑙 and 𝑖𝑟 that generated it. Under AND semantics, an

output tuple is deleted if both inputs are deleted (their bits are both 1), while

under OR semantics, the output is deleted if either input is deleted. In the

following code, in𝑙 and in𝑟 are the target matrices from the left and right

tables, op corresponds to logical & or | depending on the semantics:

for o, (𝑖𝑙 , 𝑖𝑟 ) in enumerate(zip(𝐵𝑙 ,𝐵𝑟 )):
out[o,:] = in𝑙 [𝑖𝑙 ,:] op in𝑟 [𝑖𝑟 ,:]

Aggregation (𝐸𝛾 ) . The backward lineage B𝛾 [o] stores a list of input off-

sets (𝑖𝑖𝑑𝑠) for the 𝑜𝑡ℎ group (output tuple). The ioperator also takes the

cached values of all attributes referenced in the aggregation function and

an optional list of scaling factors SFs for scaling interventions. For deletion

interventions, if any input is not deleted, then its group is non-empty and

the output tuple is preserved. For legibility, the code assumes a single scale

factor sf and sum aggregation over a single attribute cached in vals, but the
logic supports arbitrary aggregations e.g., median(a+b):

for o, iids in enumerate(B𝛾 ):
vs = vals[iids]

out[o,:]=in[iids ,:]. apply (&) // deletion only

agg[o,:]=(vs×!in[iids ,:]). sum(axis =0) // deletion only

agg[o,:]=(vs×(1+(sf×in[iids ,:]))). sum(axis =0) // scaling
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Figure 4: Group-by intervention evaluation latency using for-
ward (Listing 5.1.2) vs. backward provenance (Listing 4.2.1),
varying groups & threads for scalar & SIMD variations.

in is inverted via ! because 1 means delete, whereas it means scale for the

scaling intervention. Subsequent group-by ioperators consume the target

matrix out and updated values agg.

4.2.2 Intervention Generation. FaDE by default represents the target matrix

as a n×m dense matrix to encode m interventions for a relation with n rows.

Each column is called a target list and encodes the subset of intervened

tuples using a bit mask. The application can directly submit the target

matrix that FaDE passes along to the intervention evaluator. However, if

the user specifies conjunctive predicate strings, then FaDE splits the string

into separate per-relation predicates 𝑝𝑅 for each relation 𝑅. FaDE then

computes a target list𝑇𝐿𝑅 by running:𝑇𝐿𝑅 = Π𝑝𝑅 (𝑅) .𝑚 interventions (a

parameterized predicate such as A=? or an explicit list of predicate strings)

can be batched by executing Π𝑝𝑅
1
,...,𝑝𝑅𝑚

(𝑅) to construct the target matrix.

4.3 Challenges
The naive design exhibits numerous performance bottlenecks that cripple

its end-to-end throughput. We ran a microbenchmark using TPC-H Q7 with

SF=1 and 1000 random interventions over all 6 input tables. The naive design

processes 8 interventions/second end-to-end, when taking intervention

generation and evaluation into account. We list the main reasons for the

poor performance below, along with the proposed solution that we detail in

the following sections. Our final optimized system increases the throughput

by 1920× to 174K interventions/second.

4.3.1 Group-by Operator Design. Although the above ioperator designs

for join and filter based on their backward provenance are already high-

throughput, aggregation (Listing 4.2.1) exhibits severe scalability limitations

that lead to poor throughput. Figure 4 illustrates the results of a scalability

benchmark. We initialize the provenance B𝛾 for a group-by over 10𝑀 input

records with few (8) or many (10K) groups, where the distribution of bucket

sizes are either uniform (zipf=0) or skewed (zipf=1). We then vary the degree

of parallelization along the x-axis by assigning each worker thread an output

tuple to update in a round robin fashion, and report the time to process 1024

interventions. The red line in Figure 4 shows poor scalability for skewed

bucket sizes when there are fewer than <1000 groups. This is because

the naive work distribution results in imbalance in assigned workload per

thread. In general across all groups, scalar FaDE-forward is 1.5× (max: 4×)
faster than FaDE-backward, and SIMD variants is 1.8× (max: 3.7×) faster.
We discuss SIMD optimization further in Section 6.5.4.

Solution: we design and optimize an alternative ioperator to use forward

provenance, which scales linearly with the number of threads (Section 5.1.2).

4.3.2 Intervention Generation. Our declarative target matrix specification—

both string predicates and random samples—makes it very easy for users

to specify large sets of intervention. Suppose table T(a,b,c) contains 1M
tuples and the domain of each attribute is 100. Then the string predicate

A=? and B=? and C=? would generate 100
3 = 1𝑀 interventions, and the

fully materialized target matrix would be 125GB. Even if FaDE can generate

the target matrix in batches, intervention generation would cripple the

end-to-end throughput.

Solution: we design specialized target matrix representations for the com-

mon case of parameterized conjunctive equality predicate strings, which

enables a compact sparse representation of size 𝑁 × 𝑘 , where 𝑁 is the

relation cardinality and 𝑘 is the number of parameterized attributes in the

predicate. We then specialize the physical ioperators to efficiently evaluate

over this sparse representation. Section 5.2 describes this in more detail.

4.3.3 Provenance Size. The ioperators use provenance to access values in

their input target matrix, however this can lead to non-sequential memory

access patterns if the base operator is highly selective. For instance, the

backward provenance for group-by can lead to scattered memory accesses

of the target matrix when scanning the provenance of a given bucket.

In addition, provenance capture is performed bottom-up, so it could have

materialized a considerable amount of irrelevant provenance data if the

base query was highly selective. Thus, intervention execution performs un-

necessary work that is proportional to the amount of irrelevant provenance.

For instance, if a base query plan executes 𝜎𝑓 𝑎𝑙𝑠𝑒 (𝐴×𝐵) , the cross-product
provenance size with be quadratic in size, yet the query does not generate

any results so all of its provenance is irrelevant. Note that this contrasts

from circuit-based provenance representations which by definition, only

contain derivations of tuples in the query result.

Solution: FaDE post-processes the provenance to prune irrelevant prove-

nance and transform backward to forward provenance representations if

needed (Section 6.5.3). We show that after pruning, provenance evaluation

is linear in the number of tuples in the intermediate result after all joins.

4.3.4 Large Plan Space. Aggregation necessitates multiple physical iopera-

tors that consume backward and forward provenance. In general, aggrega-

tion and scaling interventions introduce many more complex trade-offs that

are dependent on the properties of the base query, database contents, and

interventions. For instance, aggregation ioperators need to read and write

the attribute values referenced in their expressions, and the user may want

to update many aggregate expressions in the output. This greatly increases

memory usage as compared to the bit-packed target matrices, and adversely

affects the degree of parallelism and batching that the intervention executor

can employ. Furthermore, aggregation exhibits different constraints perfor-

mance characteristics depending on whether using backward or forward

provenance representations; for instance, the forward approach is restricted

to aggregates that can be incrementally updated.

Solution: we design an optimizer to quickly search through the large phys-

ical plan space to choose the appropriate physical operators and configure

them for high end-to-end throughput. A benefit of using provenance-based

evaluation is that all cardinalities and needed statistics are apriori known.

5 HIGH-THROUGHPUT FADE DESIGN
In this section, we describe optimizations for multi-dimensional parallelism

using both multi-threading and vectorization, as well as a technique we

refer to as provenance pruning which provides upper bounds for execution

SPJAU queries that are linear in the join output size.

5.1 Provenance Post-processing
5.1.1 Provenance Pruning. In contrast to provenance circuits, FaDE can

“over-produce” provenance that does not contribute to any output results.

Prior works have proposed pruning provenance [7, 11, 26, 35] as a way to re-

duce its size, however it has not been proposed in a general workflow context

for the purpose of supporting provenance-based intervention evaluation

for SQL queries. Pruning greatly accelerates intervention evaluation—up to

80× even taking pruning cost into account (Section 6.5.3).

The high level algorithm is straight forward. Starting with a desired

subset of the output tuple offsets (say, the user only wants to update two

949



⨝ 1

2

oids

1

4

4

0

3

7

pre

3

7

r_oids

4

l_oids

B
r
[oids]

0

0

0

1

post

dict 
encoding

right

left

pruned input

B
r

B
l

B̃
r

B
l
[oids]

B̃
l

dict 
encoding

Figure 5: Provenance pruning propagating filtered tuples oids
from the parent of a join to each of its children.

of the output tuples), we recursively walk the tree top down, use each

operator’s backward provenance to lookup the input tuple offsets, and

use those as the desired output offsets for the child operator. For example,

Figure 5 prunes the provenance of a join operator. [1,2] are the output

ids we wish to keep, so we look up in 𝐵𝑙 and 𝐵𝑟 for their contributing

input offsets—[4] and [3,7] are the outputs for the left and right child,

respectively. We then recompute the backward provenance so they index

into the l/r_oids arrays for the child operators.

Since group-by does not filter tuples and is always after filter and join

in the canonicalized query plan, we only require pruning logic for filter

and join. The logic is simple and efficient. In the below pseudocode, oids is

the set of output ids to keep, 𝐵𝜎,𝑙,𝑟 denotes the backward provenance for

filter and join’s left and right children, and np.unique() deduplicates its
first argument and indices into the deduplicated array to reconstruct the

original (the pruned backward provenance). {c,l,r}_oids denote output
ids of the child/left/right operators to keep.

// filter
iids = B𝜎 [oids] // oids is output ids to keep

c_oids , B𝜎 = np.unique(iids , return_inverse =1)

// join

l_iids , r_iids = B𝑙 [oids], B𝑟 [oids]

l_oids , B𝑙 = np.unique(l_iids , return_inverse =1)

r_oids , B𝑟 = np.unique(r_iids , return_inverse =1)

5.1.2 Forward Provenance. The group-by ioperator design that uses back-

ward provenance suffers from poor scalability due to random lookups and

work imbalance across threads (Section 4.3.1). Even though it is necessary

for holistic aggregates that require processing all of a group’s tuples at

once, aggregates that are distributive can be computed incrementally and in

parallel. Thus, we propose a design based on forward provenance, which is

a simple 1D array that maps input tuple offset to the output tuple (bucket)

it contributes to (𝐹𝛾 in Figure 3). This design can horizontally partition the

input and evenly distribute work across threads. vals caches the aggregated
attribute values, in,out are the input and output target matrices, sf is the
scaling factor, and agg is the updated aggregates.

for i, o in enumerate(F𝛾 ):
out[o,:] &= in[i,:] // deletion only

agg[o,:] = vals[i] × !in[i,:] // deletion only

agg[o,:] = vals[i] × (1+(sf×in[i,:])) // scaling only

Figure 4 shows that this forward provenance design scales linearly and is

generally robust across experimental conditions.

5.2 Efficient Intervention Generation
As described in Section 4.3, the dense target matrix representation is pro-

hibitively large to materialize when there are hundreds or thousands of

interventions—easily the case when using parameterized predicate strings

to specify the target matrix. We now describe an efficient sparse represen-

tation for conjunctive equality predicates of the form a=? and b=? ..., as
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well a generalization that supports conjunctions of range predicates. Both

accelerate all ioperators prior to aggregation—the former guarantees mem-

ory and runtime costs linear in the input relation, while the latter defers

target matrix materialization until aggregation. Our examples will focus

on equality and ≤ operators, but inequality and other range operations are

straightforward to support via logical transformations (𝑎! = 1 is !(𝑎 = 1)).

5.2.1 Conjunctive Equality Predicates. This class of predicates is commonly

used in applications like explanation engines [33, 36] to search for user-

interpretable predicates that the output is most sensitive to. A The key

property is that each tuple matches exactly one predicate (intervention),

and thus the target matrix can be represented as a single integer array the

size of the input relation. The sparse array stores the index of the non-zero

column index in the dense matrix. For a predicate string of the form A.a=?
and A.x=? and B.b=?, we first partition by table (e.g., A.a=? and A.x=?,
B.b=?), and generate sparse representations for the predicates over each

table (e.g., one for 𝐴 and one for 𝐵). Note that the sparse representation is

equivalent to a dictionary encoding of the column, so in many DBMSes,

constructing this is free for string attributes. Let 𝑁𝑥 be the active domain

size for attribute 𝑥 , and𝐴𝑡𝑡𝑟𝑠 (𝑝 ) be the set of unique attributes in the string
predicate 𝑝 ; the total number of interventions is Π𝑎𝑡𝑡𝑟 ∈𝐴𝑡𝑡𝑟𝑠 (𝑝 )𝑁𝑎𝑡𝑡𝑟 .

The join propagates the left and right sparse target matrices (distin-

guished by a ‘sparse’ prefix); 𝑁𝑟 is the number of interventions in 𝑟 :

for o, (𝑖𝑙 , 𝑖𝑟 ) in enumerate(zip(𝐵𝑙 ,𝐵𝑟 )): // join

sparse_out[o] = sparse_in𝑙 [𝑖𝑙 ] × N𝑟 + sparse_in𝑟 [𝑖𝑟 ]

The first group-by after joins and filters needs to materialize the updated

aggregate values for each intervention, so it emits a 𝑁 ×𝑀 matrix where

𝑁 (𝑀) is the number of output rows (interventions). We illustrate deletion

intervention evaluation and the variation for scaling interventions is very

similar. The core logic enumerates over the intervention space. For the itv’th

intervention, we test if the input row is included in the intervention set by

replacing pred(sparse_in[i], itv) with sparse_in[i]==itv.

out[:,:] = 1

for i, o in enumerate(F𝛾 ):
for itv in range(sin.max ()):

pval = pred(sparse_in[i], itv)

out[o,k] &= pval // deletion

agg[o,k] += vals[i] × !pval // deletion

agg[o,k] += vals[i] × (1+(sf×pval) // scaling

The subsequent group-bys consume fully materialized target matrices,

and reuse the previous templates.

5.2.2 Conjunctive Range Predicates. Range predicates are challenging be-
cause each input tuple can satisfy multiple interventions. B We observe

that the range clause a≤i implies a≤j if 𝑖 ≤ 𝑗 . Thus, for each tuple, the

sparse representation for a≤? can simply store the minimum attribute value
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that satisfies the predicate. We replace pred(sparse_in[i], itv) with

sparse_in[i]<=itv to test if the i’th row belongs to the intervention set.

The ioperator designs are similar to those for equality predicates. The

filter and join ioperators simply propagate the sparse target matrices and

the group-by ioperator materializes all interventions. C Given a predicate

over relation 𝑅 with 𝑘 parameterized clauses, we construct a |𝑅 | × 𝑘 matrix

where each parameterized clause is encoded in a separate column. The

inclusivity test is the conjunction of each parametrized clause test.

5.2.3 Variations. There are many variations of the above code templates

omitted for brevity, such as batch-wise intervention processing or support-

ing multi-attribute aggregation functions. For instance, suppose we wish to

scale 𝑦 in the query 𝛾𝑓 (𝑥+𝑎),𝑓 (𝑥∗𝑥 ) (𝛾𝑎,𝑓 (𝑦)→𝑥 (𝑇 ) ) . The outer group-by
references the nested aggregated value 𝑥 as well as the value of 𝑎. 𝑥 will be

emitted from the child ioperator as a matrix that encodes its value across all

interventions, while 𝑎 is cached as an array. For these cases, FaDE compiles

a custom aggregation ioperator based on the base query and which final

aggregates the whatif() call requests.

5.3 Incrementally Removable Aggregations
The primary downside for the preceding group-by ioperator designs is that

the cost to update a single output tuple’s aggregate is still linear in vals
because we need to scan vals in order to remove the deleted values and

recompute the output. This heavily penalizes group-bys with many groups.

Incrementally removable [36] aggregation functions, such as sum and avg,
are amenable to an alternative design where updating each output tuple is

linear in its provenance size. The idea is to subtract the deleted values from

the original aggregation results. Below, we assume a sparse target matrix

representation and sum aggregation for clarity.

The first group-by ioperator initializes agg[i,:] with the original aggrega-

tion result in the 𝑖𝑡ℎ output tuple, with one copy per intervention. It then

incrementally updates the original result by subtracting the deleted value or

adding the scaled value. The output target matrix at out[i,j] is set to 1 only if
all tuples mapped to the 𝑖𝑡ℎ output group are deleted after applying the 𝑗𝑡ℎ

intervention. As such, we record how many tuples map to an output group

𝑖 in count[i], and compare it with del_count. If they are equal, then the

corresponding output group is deleted.

del_count [:,:] = 0

for i, o in enumerate(𝐹𝛾 ):
del_count[o, sparse_in[i]] += 1 // deletion only

agg[o,sparse_in[i]] -= vals[i] // deletion only

agg[o,sparse_in[i]] += vals[i]×(sf -1) // scaling only

out = del_count == count [:]

This forward provenance-based design is always beneficial for incremen-

tal aggregates when using the sparse target matrix representation because

the sparse representation reduces the target matrix from quadratic to linear

in size, and the total ioperator cost to linear in the number of input values.

Thus, we exclusively use the forward ioperator design in the experiments.

5.4 Parallel Execution
FaDE executes the entire plan over a batch of interventions at a time. This

is to simplify the executor design, and because a what-if application may

wish to dynamically decide which batch of interventions to evaluate next

based on the results of the current batch (e.g., to support pruning heuristics).

Thus the goal is to process each batch as quickly as possible.

For horizontal parallelization, the provenance and input target matrices

are stored in shared memory, and each worker is assigned a subset of the

provenance to scan and process. For filter and join, they use backward

provenance so this logically partitions the output tuples across workers; it

does not exhibit any write contention and scales linearly. For the forward-

provenance group-by designs presented in this section, we logically partition

by input tuples so there can be write contention for updating the same

aggregate values. Instead, each worker writes their results to a private buffer,

we merge the buffers to construct the final results at the end. The need for

private buffers whose size are proportional to the number of interventions

necessitates an optimizer to trade-off memory utilization and throughput

improvements. FaDE also uses SIMD vectorization as a form of vertical

parallelization.

5.5 Optimizer
A benefit of provenance-based evaluation is that we have full selectivity and

cardinality statistics about the inputs (𝑁𝑜 ) and outputs (𝑂𝑜 ) of every opera-

tor. Given these statistics, we developed a simple optimizer to determine,

per-operator, the number of interventions per batch 𝐵𝑜 and the number of

workers𝑊𝑜 to horizontally parallelize. We first use the cost model to evalu-

ate all combinations of (𝑊𝑜 , 𝐵𝑜 ) for each operator 𝑜 , where we discretize

batches to powers of 2. We then identify the bottleneck operator with the

highest cost, and use its optimal batch size 𝐵∗ as the global batch size. We

then iterate over each operator and find the optimal𝑊𝑜 given 𝐵∗.

5.5.1 Cost Model. Let 𝐴 be the number of aggregation functions in the

group-by. We describe simplified operator cost models that estimate 1) the

total memory needed to execute an operator, which must not exceed a

fixed memory bound 𝑀 , and 2) the expected runtime to evaluate 𝐼 total

interventions. For clarity, we ignore operator selectivity and assume each

aggregation references a single and different attribute. The cost of a plan is

the sum of all operator costs.

𝑚𝑒𝑚𝑜 =

{︄
𝑊𝑜 ∗ ( (𝐴 ∗𝑂𝑜 ∗ 𝐵) +𝑂𝑜

𝐵
64
) ) + 𝑁𝑜

𝐵
64

+ (𝐴 ∗ 𝑁𝑜 ) if groupby

𝐵
64

∗𝑂𝑜 + 𝐵
64

∗ 𝑁𝑜 else

𝑐𝑜𝑠𝑡𝑜 ∼ 𝑁𝑜
𝐵

𝑊𝑜
+ ∞ ∗ (𝑚𝑒𝑚𝑜 > 𝑀 )

The group-by memory usage includes each of the𝑊𝑜 workers’ output

buffers, the input target matrix, and cached attribute values; the other oper-

ators simply require input and output target matrix buffers. The operator

cost is proportional to the level of horizontal parallelization, but is infinity

if the memory usage exceeds𝑀 .

5.5.2 Additional Heuristics. We use several heuristics for other optimiza-

tion decisions. We decide to prune the provenance if the base query’s join

and filter operators filtered more than 30% of the input tuples. We also

generate group-by templates that process between 𝐴 ∈ {1, 2, 3, 4} aggre-
gation functions at a time, and run the optimizer for each 𝐴 to choose the

best setting. If the number of output groups exceed 1000 or if the group-by

uses holistic aggregates, then we revert to the slower backward-provenance

ioperator design; since this design partitions based on output groups, there

is not worker contention and we simply use all workers. Finally, if the

whatif() call specifies a metric function, we can restrict interventions to

only update the output aggregated attributes (often only one aggregation)

that are referenced by the metric.

5.6 Cascade-Delete
The user may wish to define a target matrix over a table𝑇 not referenced

by the base query 𝑄 . Although it may appear that the intervention does

not affect𝑄 , it can due to referential integrity constraints—deleting a tuple

in 𝑇 may cause a cascading delete that affects a table referenced by 𝑄 .

Prior work [33] requires knowing the desired IVM intervention apriori, and

composes a join query to translate it into a delta over the queried relations.

FaDE uses a similar mechanism but supports arbitrary ad-hoc interventions.

For each path 𝑇 〜 𝑅 where 𝑅 is referenced by 𝑄 , it executes the query

𝑄𝑇〜𝑅 = 𝛾𝑇 .𝑟𝑖𝑑 (𝑇 ⊲⊳ . . . ⊲⊳ 𝑅) and capture its provenance. FaDE then uses

this provenance to propagate the target matrix over𝑇 into a target matrix

over 𝑅, and then executes the intervention plan as usual.
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6 EXPERIMENTS
We compare FaDE with state-of-the-art IVM and circuit-based view mainte-

nance systems in terms of raw intervention evaluation throughput on the

standard TPC-H benchmark. We report end-to-end comparison with the

ERDB on real-world datasets and conclude with ablation studies.

6.1 Experimental Settings
6.1.1 Systems. DBT: We configure DBT to generate C++ code it evaluates

one intervention at a time. For each table used by the query, we apply all

deletions/scaling interventions of a single table ∀𝑒 ∈ Δ𝐷 . We report code

compilation and initial database loading separately from intervention evalu-

ation runtime. Scaling interventions are treated as update deltas (delete then

insert). DBT-P is a variation that first uses backward provenance to prune

the input database to the sufficient subset to evaluate the interventions.

All systems are logically equivalent under deletion and scaling interven-

tions. Given the same interventions, all systems return the same solution.

ProvSQL: To the best of our knowledge, ProvSQL [34] is the only other

provenance system that supports provenance-based view maintenance. We

run the ProvSQL extension on PostgresSQL 13 and report the arithmetic

circuit evaluation time relative to base query execution. ProvSQL’s circuits
do not contain non-contributing tuples, so pruning is not needed. View

maintenance systems need to consistently beat from scratch execution to

be practically useful, and ProvSQL often fails to do so.

FaDE: We report provenance capture overhead, code generation and compi-

lation, intervention generation and evaluation; end-to-end results consider

all four costs. The suffix lists the optimizations used:𝑊𝑛 for horizontal par-

allelization where 𝑛 is the number of workers, P for pruning, B for batching,
D for SIMD FaDE without any suffix indicate the optimal configuration.

FaDE is configured to recompute all aggregates to report worst case results.

ERDB [33] rewrites a set of non-overlapping interventions (each input

tuple contributes to at most one intervention) into a single SQL query that

can be materialized offline to accelerate intervention evaluation. Our end-

to-end evaluation compares with ERDB’s reported results on two queries

from different workloads (NSF [1] and flights datasets [2]).

6.1.2 Workload and Metrics. We evaluate 11 out of 22 TPC-H queries that

both IVM and provenance-based view maintenance can support (namely,

SPJAU queries) and vary scale factor from 1 to 10. All queries have one

aggregate function except for Q1 with 8 aggregate functions. All queries

have an average of 3 output tuples except Q3 (11620 tuples), Q9 (175 tuples),

Q10 (37967 tuples). Provenance on SF=1 is on average 19MB (0.8 − 45MB)

and 5MB (3𝐾𝐵 − 45MB) after pruning; it scales linearly with DB size.

We report throughput as interventions/second, and relative speedup

when studying optimizations and scalability. To keep the text easy to read,

we will primarily report results for queries {1, 3, 5, 7, 9, 10, 12} as they are

representative of the rest of the workload. For completeness, Section 6.2

reports results for all supported TPC-H queries.

6.1.3 Interventions. Our initial experiments generate random interventions

with varying tuple intervention probability on all input tables of a query to

simulate complex interventions across many database tables. We will then

generate sets of interventions using parameterized conjunctive equality

predicates, and control the number of interventions by varying the number

of unique attributes values for the intervened attributes.

6.1.4 Implementation. All our experiments are executed on Google Cloud

c2-standard-16 machines (16 vCPU, 64GB memory). Vectorized opera-

tions use AVX-512, a 512-bit SIMD instruction set on Intel processors. We

generate and compile C++ programs using GCC 11.2.0.
FaDE uses code generation and compilation if the base query 1) com-

putes aggregation over an expression or 2) contains multiple aggregation

functions. In the latter case, we partition the aggregation functions into

Figure 7: Latency of FaDE-𝑊1, FaDE-𝑊1-P, DBT, DBT-P, with
intervention probability of 0.1, and the original query on
PostgresSQL andProvSQLwithout deletions at SF 1. ProvSQL
runs out of memory for Q1 & Q8

Figure 8: Latency of FaDE-𝑊1, DBT, FaDE-𝑊1-P, and DBT-P,
varying intervention probability (x-axis) at SF 1.

groups of up to 4 and generate code templates for all four conditions; the

optimizer then picks the appropriate templates. FaDE’s code generation
and compilation takes 1𝑠 and is independent of the size of the database.

6.2 Comparison with Baselines
In this first experiment, we compare the performance of FaDE against

IVM baselines DBT, and DBT-P on TPC-H SF=1. For a fair comparison, we

evaluate single-threaded FaDEwithout SIMD, using the dense target matrix,

and vary pruning (FaDE-𝑊1 and FaDE-𝑊1-P).

6.2.1 Setup and Pre-processing cost. FaDE takes on average 141ms to cap-

ture provenance, 480ms to cache input to aggregates values, 54ms (max

113ms) to post-process the provenance data and allocate output buffers

for the ioperators, and 30𝑚𝑠 for provenance pruning—a total of 705𝑚𝑠 on

average. Both DBT and DBT-P requires a code generation and compilation

step, each step having an average latency of 5 seconds. DBT-P also takes on

average 14s to prune the base tables (though the procedure is not optimized).

Since our focus here is to evaluate raw evaluation throughput, they are

excluded from throughput calculations.

6.2.2 Single Deletion Intervention Evaluation. Figure 7 evaluates all sys-

tems for a single intervention with intervention probability 0.1 on SF=1.

FaDE-𝑊1 and FaDE-𝑊1-P take on average 6ms (max: 41ms) as compared to

116ms (max: 1sec) for DBT-P and 8sec (max: 39sec) for DBT. FaDE-𝑊1-P is

faster than DBT-P on average by 129× (max: 1000×) except for Q19 that is
instantaneous for both systems and Q6 – a selective single table aggregate

query that benefit’s from the incremental evaluation of DBT-P. Even with-

out pruning, FaDE-𝑊1 is competitive with DBT-P; when >99% of tuples are

pruned, FaDE-𝑊1 is only 3𝑚𝑠 (max: 9ms) slower than DBT-P.
Figure 8 shows that FaDE variants are insensitive to intervention proba-

bility with overall lower execution runtime compared to DBT variants.
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Figure 9: Throughput of intervention evaluation using 8
threads and vectorization for TPC-H scale factors 1, 5 and 10.

Figure 10: Throughput of the base query execution (Baseline),
and throughput when evaluating 2048 interventions using
DBT-P, FaDE, FaDE-Sparse, and FaDE-Sparse-Δ.

Excluding Q19 (<0.1ms), FaDE-𝑊1 and FaDE-𝑊1-P are consistently

5−>1000× faster than DBT and DBT-P for all queries except Q1 and Q6.

The two queries are essentially a single table group-by query of which

FaDE re-evaluates its aggregates over the original input, while DBT-P takes

advantage of the incrementally removable property of the aggregates and

only evaluates aggregates over Δ𝐷 .

6.2.3 Single Scaling Intervention Evaluation. We evaluate scaling interven-

tion by selecting a random attribute from lineitem table, applying a fixed

scaling factor, and varying the number of scaled tuples by varying the inter-

vention probability between 10
−3

and 0.5. DBToaster implements scaling as

deletion followed by insert. We see similar trends to deletion interventions,

DBT-P wins over FaDE-𝑊1-P for Q1 and Q6 with small target list.

6.2.4 ProvSQL. FaDE-𝑊1 is faster than ProvSQL by between 7× (Q19) to

10,000× (Q14). Although some of the performance gap can be attributed

to differences in the underlying DBMSes, ProvSQL is also on average 15×,
and up to 50×, slower than re-running the base query on PostgresSQL. Q1
and Q8 did not finish due to a circuit limit error.

6.3 Scalability
6.3.1 Database Size. Data locality is more important with larger data sizes

because the relative size of the CPU cache shrinks. Figure 9 reports the

throughput of FaDE with 8 workers, SIMD, and the maximum batch size

within memory limits for SF 1 to 10. Throughput decreases linearly with

scale factor, yet FaDE still evaluates up to 0.5𝑀 interventions per second at

SF=10, which for many applications is interactive speed.

6.3.2 Workload-Specific Optimizations. We ablate the sparse encoding and

incrementally removable optimizations by evaluating a parameterized con-

junctive equality predicate. We intervene the lineitem table because it’s
used by all TPC-H queries. To control the intervention size, we add a syn-

thetic asynth attribute to lineitem, assign to it 2048 unique values uniformly,

and run a deletion intervention predicate asynth=? at SF=10. We include

pruning time overhead to FaDE variants.

Figure 10 shows throughput of FaDE, the two optimizations, DBT-P
and the base query as a reference. Evaluating 2048 interventions using

FaDE, FaDE-Sparse, and FaDE-Sparse-Δ are on average 15×, 260×, and
1000× faster than the base query, respectively. As expected, sparse encod-

ing reduces memory and compute from quadratic to linear, and has the

largest wins. Incremental computation particularly benefits aggregate-heavy

queries like Q1, where it is 100× faster than FaDE-Sparse.

6.3.3 Memory. From SF=1 to 10, the memory (provenance and dense target

matrix) used by naive FaDE with batch size 2048 grows linearly on average

from 1.9GB to 19GB. Provenance pruning and sparse encoding reduces used

memory by 28× (67MB to 672MB).

6.4 End-to-end Evaluation
Wenow reproduce experiments from the ERDB explanation experiments [33].

ERDB uses two base queries: a group-by on the NSF awards dataset, and a

nested group-by on the Flights dataset. We restate ERDB’s reported num-

bers because their code and exact settings are not available. The numbers

are not strictly apples-to-apples because ERDB runs as SQLServer queries.

6.4.1 NSF Awards. This query references two tables: Awards (table A, 400K
tuples) and Institution (table B, 419K). The user computes the top 5 institu-

tions that received CS NSF funding, where the core logic is:

𝛾
B.instName,𝑆𝑈𝑀 (A.amount)→𝑇𝑜𝑡𝑎𝑙 (𝜎dir=′𝐶𝑆 ′∧year≥1990 (𝐴 ⊲⊳ 𝐵) )

The user then asks why the funding gap between UIUC and CMU is so

high. To provide explanations, ERDB evaluates the effect of applying 170𝐾

pre-generated deletion interventions that in total delete 1.3𝑀 tuples from

Awards. Each intervention deletes less than 10 tuples on average. These

interventions are specified by 8 parameterized predicates. Some are simple

(e.g. "institution.name=?") and benefit from FaDE’s sparse representation
(Section 5.2). Others are complex expressions that need to be executed

explicitly to construct a dense target matrix. For example the following

query finds Top-10 PIs with highest average award amounts:

investigator.pi IN (SELECT pi FROM (

SELECT i.pi, AVG(a.award) AS totalAward

FROM awards AS a JOIN investigator AS i ON a.ai = i.ai

GROUP BY i.pi ORDER BY totalAward DESC LIMIT 10))

Following ERDB, we submit their 8 predicates ahead of time to FaDE and

pre-compute their corresponding target lists. ERDB does not report the pre-

processing times, so we cannot compare. However, FaDE takes 2 seconds

to generate the target matrices, <5𝑚𝑠 to capture provenance, and 3ms to

post-process the provenance. In total, the provenance is 5MB.

The user submits a what-if query that requests the top 10 pre-registered

predicates (by passing in the targetmatrixid returned frompre-processing)

that minimize the difference between the total awards between both schools

(with UIUC having group 0 and CMU having group 1):

O.whatif(targetmatrixid, {'k':3, 'objective':'minimize",
'metric': lambda _, post: post["total"][0]-post["total"][1] })

ERDB evaluates this query in 3.4 seconds (1.6s to evaluate interventions,

1.8s to score and rank) despite favorable IVM settings where each interven-

tion deletes ∼10 tuples. In contrast, FaDE evaluates all interventions <5𝑚𝑠—
multiple orders of magnitude faster. Even when taking pre-processing time

into account, FaDE is faster than ERDB. We believe that at this latency

range, FaDE can be used interactively for ad-hoc what-if analyses.

6.4.2 Flights Dataset. The flights dataset contains 123𝑀 tuples and is 11GB.

The base query runs in 10𝑠 and uses a nested aggregation to compute the

slope of the linear regression line between scheduled departure and actual

departure times. The user asks why the slope is high, and ERDB evaluates

887 interventions in 82𝑠 . They do not report pre-computation time.

In FaDE, the base query takes 2.8s to run with additional 53ms overhead

from provenance capture and caching input attributes to the aggregate

functions. Pre-processing overhead takes 140ms to post-process the prove-

nance, and 1s for compilation. Unfortunately, the ERDB paper does not
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Figure 11: Throughput and Speedup against FaDE-𝑊1

from Figure 7 as we incrementally stack optimizations.

report what their interventions are, so we conservatively generate 887

random interventions with 0.1 tuple intervention probability, which takes

400ms. Finally, evaluating the interventions takes 250ms. Even taking all

pre-processing time into account, FaDE is still >28× faster than ERDB’s

intervention evaluation time.

6.5 Ablation Study
Although FaDE is much faster than all baselines for processing one inter-

vention (Figure 7), it only processes <1𝐾 intervention/second (Baseline bar

in figure 11). We now incrementally add optimizations from Section 5 that

cumulatively increase the throughput to hundreds of thousands of inter-

ventions per second. These include batching (+B), horizontal parallelization
(+W), provenance pruning (+P), and SIMD (+D).

6.5.1 Interventions Batching. Figure 11 shows that batching 2048 inter-

ventions (+B) is 13× faster than the baseline because 1) FaDE packs 64

interventions in one int64 and only uses one & and | instruction, 2) the bit-
packed target matrix representation improves data locality for all operators,

and 3) batching amortizes fixed ioperator call overheads.

6.5.2 Worker Threads. FaDE reduces single operator evaluation by hori-

zontally partitioning input data equally across threads. Figure 11 (+B+W)

improves throughput by on average 87× over the baseline when using

8 workers. This is also a linear 8× speedup over batching only, with the

exception of Q10 (4.7× faster) because it generates a huge number of output

groups, which slows down the final merge step. In general, the merge step

will need to aggregate more data than the original group-by operation if

the ratio of input to output tuples is below the number of workers.

6.5.3 Provenance Pruning. Provenance strictly reduces the amount of work

intervention evaluation needs to perform. Figure 11 (+B+W+P) is on average

579× faster than the baseline and 5× (max: 17×) faster than +B+W. For

instance, Q7 has the largest speedup because pruning removes more than

90% of the join and filter provenance. In contrast, pruning is slower than

+B+W for Q9 and Q10. This is because we include the pruning cost (avg 30ms,

max 340ms) and pruning only removes <30% of the provenance, which does

not offset the cost. This is a similar reason why the filter-aggregation Q1

doesn’t see strong pruning benefits. This motivated our optimizer heuristic

threshold of 30% for deciding whether or not to prune.

6.5.4 SIMD. FaDE leverages the bit-packed target matrix to evaluate mul-

tiple interventions at a time using SIMD instructions for the join and filter,

and for aggregates whose instructions can be vectorized (e.g., counts, sums).

Figure 11(+B+W+P+D) is on average 1.8× (max: 3.8×) faster than +B+W+P.
Pruning is the key ingredient to benefit from SIMD because it increases the

goodput of the CPU. Without pruning, most operators are memory-bound

so improving CPU utilization has little benefit. After pruning, group-by

becomes the bottleneck because it is compute-heavy. Q1 is an exception

Figure 12: Vectorization speedup with and without pruning
over multi-threading execution for representative queries as
we vary size of interventions in a batch.

because it’s already compute-heavy query and pruning removes few tuples.

At the same time, larger batch sizes are not always better. Figure 12 varies

the batch size and reports SIMD speedups with and without pruning relative

to (+B+W+P) and (+B+W) respectively for representative queries. We see

that larger batch sizes have varying wins for different queries, it can have

negative effect as in Q1 and Q9, no effect as in Q5, or increased wins as

in Q12. The degree of speedup is affected by the memory pressure from 8

worker as we increase the batch size.

7 RELATEDWORK
Section 3.2 presented related work that focuses on IVM and provenance-

based view maintenance. This section introduces other relevant works.

Niu et al. [28] also use provenance to accelerate query evaluation, but for

data-skipping. The base query’s provenance identifies which input tuples or

blocks satisfied the base query’s predicates 𝑝⊥. A new query with predicate

𝑝 ⊆ 𝑝⊥ only needs to read that provenance. They further study how coarse-

grained capture can balance provenance capture and space overhead with

pruning effectiveness. FaDE focuses on re-evaluating the same query under

deletion (filtering) and scaling interventions, however if a new query shares

subplans with the base query vis a vis deletions or scaling, FaDE could be

used to accelerate their re-execution.

iOLAP [37] combines IVM and provenance to accelerate approximate

query processing (AQP) [17]. As AQP processes streams of data, the same

tuple may be repeatedly inserted and deleted in an intermediate relation.

Rather than de/allocate a tuple each time, iOLAP creates the tuple once and

then toggles its deletion status using provenance metadata. Unlike FaDE,
iOLAP still uses IVM for the actual query execution.

Panda [22] accelerates view maintenance when the input database be-

comes stale due to external updates and need to be refreshed. Panda uses

provenance to selectively refresh the inputs, but still uses IVM to update

the target view after refreshing the inputs.

8 CONCLUSION
The majority of what-if analyses—from sensitivity analysis, deletion-based

explanation engines, and how-to analyses—are predicated on the ability

to quickly evaluate and rank many deletion and/or scaling interventions.

Unfortunately, evaluating interventions is slow: IVM scales poorly with

intervention size and requires expensive materialization, while provenance-

based view refresh has poor data locality and inefficient execution strategies.

At the same time, application-specific solutions use ad-hoc heuristics to

prune the search space and still take seconds or minutes to run.

FaDE is a provenance-based intervention evaluation engine that is suf-

ficiently high-throughput to brute force solve many what-if applications

within a second. FaDE leverages the relational structure of provenance

circuits to generate efficient, parallel evaluation code, and evaluate >1𝑀

interventions per second—orders of magnitude higher throughput than

any prior approach. This enabling interactive time query explanations over

more complex queries and data than previously possible.
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