
E�icient Graph Embedding Generation and Update for
Large-Scale Temporal Graph

Yifan Song
HKUST(GZ)

ysong853@connect.hkust-gz.edu.cn

Xiaolong Chen
HKUST(GZ)

xchen738@connect.hkust-gz.edu.cn

Wenqing Lin
Tencent

edwlin@me.com

Jia Li
HKUST(GZ) & HKUST
xiyou3368@gmail.com

Chen Zhang
Zhejiang CreateLink Technology
zhangchen@chuanglintech.com

Yan Zhou
Zhejiang CreateLink Technology
zhouyan@chuanglintech.com

Lei Chen
HKUST(GZ) & HKUST
leichen@cse.ust.hk

Jing Tang∗

HKUST(GZ) & HKUST
jingtang@ust.hk

ABSTRACT

Graph embedding aims at mapping each node to a low-dimensional
vector, bene�cial for various applications like pattern matching,
retrieval augmented generation and recommendation. In this pa-
per, we study the large-scale temporal graph embedding problem.
Di�erent from simple graphs, each edge has a timestamp in tem-
poral graphs, which requires the embeddings to encode the tem-
poral biases. Factorizing similarity matrix is a common approach
for generating simple graph embeddings where similarity can be
well characterized by some conventional metrics like personalized
PageRank. However, how to construct a similarity that can encode
interactions with temporal biases is a critical problem for large
scale temporal graphs. To address this, we introduce the concept
of temporal-based bipartite graph (TBG) and develop the temporal
preferential attachment similarity (TPASim) that re�ects concurrent
node activity over time. Directly factorizing the TPASim matrix,
which contains nearly =2 non-zeros, is not feasible for large graphs
with = nodes. Instead, we present LTGE, which constructs and fac-
torizes a temporal matrix with at most 2< non-zeros, where< is
the number of edges. Our theoretical analysis shows that LTGE
achieves the same embeddings as factorizing the TPASim matrix

but signi�cantly reduces complexity by a factor of =2

< . On the other
hand, when graphs evolve over time, to avoid recomputing, we
further propose LTGEInc that utilizes a novel incremental singu-
lar value decomposition (SVD) algorithm with provable guarantee
for updating the embeddings. Extensive experiments on several
datasets with up to 17 million nodes and 1.3 billion edges demon-
strate that LTGE outperforms the state of the art signi�cantly and
is orders of magnitude faster than the baselines specially designed
for temporal graphs. For embeddings update, LTGEInc retains the
performance with small computational overhead.

PVLDB Reference Format:

Yifan Song, Xiaolong Chen, Wenqing Lin, Jia Li, Chen Zhang, Yan Zhou,
Lei Chen, and Jing Tang. E�cient Graph Embedding Generation and
Update for Large-Scale Temporal Graph. PVLDB, 18(4): 929–942, 2024.

doi:10.14778/3717755.3717756

∗Corresponding author: Jing Tang.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/yfsong00/VLDB2025LTGE.

1 INTRODUCTION

Graph is a common data structure in real world which can model
complex relationships. For instance, it can represent associations
between users and products on shopping platforms or interactions
in biomolecular systems. For graph analytics, graph embedding is a
fundamental task aiming to represent graph as low-dimensional em-
beddings for downstream tasks such as link prediction [48, 59, 60]
and recommendation [6, 56, 62]. There are a plethora of techniques
for generating graph embeddings, with early approaches utiliz-
ing random walks on the graph as sentences to train word2vec
models [19, 44]. Later, Liu et al. [38] provide a general view for
using matrix factorization (MF) to obtain graph embeddings with
thorough theoretical analysis. Since then, many MF-based meth-
ods [16, 46, 59, 60, 65] are proposed to improve the e�ciency of
generating graph embeddings. Nevertheless, the aforementioned
methods mainly focus on simple graphs, without considering the
temporal information in temporal graphs.

In recent years, some work studies the temporal graph embed-
ding problem [8, 35, 49, 68]. In a temporal graph, each edge is as-
sociated with a timestamp that represents when the edge is added,
which introduces the temporal biases. For example, Figure 1(b) is
a temporal co-author graph collected from 2022 to 2023, where
every edge has a timestamp about their generation time, while
Figure 1(a) is the simple co-author graph at 2023 with the same
structure. Considering temporal interactions, node 9 has a more
recent publication co-authored with node 7 than node 6, indicating
a closer collaboration with the former. In the view of simple graph
at 2023 by ignoring the timestamps, with respect to node 7, node 6

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 4 ISSN 2150-8097.
doi:10.14778/3717755.3717756

929

https://doi.org/10.14778/3717755.3717756
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/yfsong00/VLDB2025LTGE
mailto:info@vldb.org
https://doi.org/10.14778/3717755.3717756
https://www.acm.org/publications/policies/artifact-review-and-badging-current

and node 9 are structurally equivalent. As a result, existing tempo-
ral graph embedding methods aim to capture the temporal biases
in the temporal graphs.

However, previous temporal graph embedding methods are hard
to scale to large graphs with billions of edges due to prohibitive
training time and/or memory usage. To address the de�ciency of
previous work, we propose LTGE via temporal similarity matrix
factorization tailored to Large Temporal Graph Embedding. The
challenge is two-fold, which requires (i) a proper temporal similar-
ity metric and (ii) an e�cient factorization. For simple graphs, the
similarity between two nodes can be well characterized by some
conventional metrics such as personalized PageRank [27], prefer-
ential attachment similarity [2], and SimRank [26]. Such metrics,
unfortunately, cannot capture temporal information.

Inspired by the preferential attachment similarity [2], we divide
time into a sequence of snapshots, and create an edge between a
node and a snapshot if the node is active in the snapshot (i.e., the
node interacts with some other nodes in the snapshot). Moreover,
if a node has more interactions in one snapshot, the weight of the
corresponding edge is larger. In this way, we create a temporal bi-
partite graph (TBG) consisting of the original nodes, snapshots, and
node-snapshot edges. Then we propose a new similarity measure
based on TBG, called temporal preferential attachment similarity
(TPASim). That is, the TPASim between two nodes is the logarithm
weight products of them appearing in the same snapshot. We show
that if ignoring temporal information, i.e., simple graphs, TPASim
is exactly a preferential-attachment-like similarity. Furthermore,
factoring a similarity matrix with =2 elements is computationally
expensive, where = is the number of nodes in the graph. According
to the de�nition of TPASim, we prove that the singular value de-
composition (SVD) of the similarity matrix can be easily obtained
from the SVD of a smaller matrix with = × : dimensions, among
which $ (<) are non-zeros, where< is the number of edges in the
graph and : is the number of snapshots. As a result, the e�ciency
is signi�cantly improved.

On the other hand, as real-world graphs always evolve over
time, the embeddings shall be updated accordingly. Considering
the example given in Figure 1, for the embeddings obtained at 2022,
it is obvious that node 8, node 9 and node 10 are unseen unless
we update their embeddings at 2023. Previous studies on embed-
ding update [13, 23, 36] focus on simple dynamic graphs without
considering temporal interactions. Therefore, another challenge
for temporal graph embedding is to deal with evolving nodes and
edges while reserving temporal information. A naive solution is to
recompute whenever needed, which is computationally expensive
and time-consuming. In this paper, we propose LTGEInc that can
update the embeddings incrementally while retaining temporal in-
teractions. Basically, LTGEInc is based on a novel incremental SVD
that applies to our temporal similarity matrix. Moreover, through a
rigorous analysis, we show that the error introduced by LTGEInc

is theoretically bounded. It supports LTGEInc to perform well in
downstream tasks even with multiple updates to the embeddings
without signi�cant degradation under limited error accumulation.

Finally, the e�ectiveness and e�ciency of our proposed methods
are demonstrated through experiments on multiple datasets. In
particular, LTGE outperforms all competitors on future link predic-
tion and top- recommendation, while LTGEInc shows its superior

2022

2022

2023

9

2023

8
2020

2017

2

2016

20151

20235

2021

2016

3

4 20206 7

10

(a) Simple graph (b) Temporal graph

9

8
2

1

5

3

4 6 7

10

Figure 1: Simple graph vs. temporal graph.

capability on incremental future link prediction task. Moreover,
previous temporal graph embedding baselines are hard to derive
embeddings on million-scale graphs, whereas our LTGE �nishes
within 9 hours on the largest dataset tested, i.e., Taobao with 17.9
million nodes and 1.3 billion edges.

In summary, our contributions in this paper are as follows.

• We propose LTGE via temporal similarity matrix factoriza-
tion for large temporal graph embedding. In particular, we
devise a novel similarity measure TPASim that can encode
temporal interactions e�ectively and can be factorized in
an e�cient way.

• We further develop LTGEInc that updates embeddings in-
crementally with provable guarantees as graph evolves,
instead of intractable recomputing.

• We evaluate LTGE on ten public datasets against eleven
competitors and LTGEInc on three large dynamic graphs
against three methods with high e�ciency, respectively.
The experimental results demonstrate the superiority of
LTGE and LTGEInc. In particular, for the Taobao dataset
with 17.9 million nodes and 1.3 billion edges, all the tempo-
ral graph embedding methods fail to produce embeddings
except LTGE. Meanwhile, LTGEInc outperforms all com-
petitors in the incremental task with the highest e�ciency.

Roadmap. In Section 2, we review the related work on the graph
embedding problem. Problem formulation is given in Section 3. To
address the problem, in Sections 4 and 5, we present LTGE and its in-
cremental update version LTGEInc, respectively. Section 6 conducts
complexity analysis. Performance of our solutions is evaluated in
Section 7. Finally, we conclude our paper in Section 8.

2 RELATED WORK

Simple Graph Embedding. Techniques such as locally linear
embedding [50] and Laplacian eigenmaps [3] are signi�cant early
contributions. However, these methods can only capture the local
structure to generate low-quality embeddings. Later, the advent of
word embedding models inspires researchers for generating graph
embedding. DeepWalk [44] considers random walks as sentences,
and samples several random walks on the graph to train skip-gram
model [39] to get the graph embeddings. On the basis of Deep-
Walk, node2vec [19] adjusts two parameters to control the random
walk, thus obtaining more structural information and providing
more adaptable embeddings. LINE [53] de�nes the �rst-order and
second-order similarity between nodes and optimizes the skip-gram
model [39] through negative sampling. HuGE [16] utilizes a hybrid-
property heuristic random walk to capture structural information

930

and uses a heuristic algorithm to determine parameters of the ran-
dom walk. Some methods [1, 7, 9, 55, 66] apply deep learning to
graph embeddings, but they tend to be computationally expensive
on large graphs.

To further improve the e�ciency and provide comprehensive
theoretical analysis, many e�cient matrix-factorization-based ap-
proaches [45, 46, 59, 60, 65] are proposed for generating graph
embeddings. Speci�cally, NRP [59] designs node-reweighting pager-
ank, which is an e�ective similarity measure for generating embed-
dings e�ciently. NetSMF [46] utilizes spectral sparsi�cation theo-
ries to improve the e�ciency of matrix factorization. ProNE [65]
enhances the embeddings by disseminating them within the space
modulated spectrally on the basis of sparse matrix factorization.
However, the aforementioned methods overlook the temporal infor-
mation in temporal graphs. To address this issue, temporal graph
embedding has garnered increased attention in recent years.

Temporal Graph Embedding. Temporal graph embedding meth-
ods aim to utilize temporal information to enhance the quality of
embeddings. For temporal graph embedding, CTDNE [41] intro-
duces the temporal random walk to encode temporal information.
EHNA [24] later improves upon this temporal random walk and
designs a deep neural network to learn high-quality embeddings.
Over recent years, temporal graph neural network (T-GNN) has
emerged as potent models for learning representations on tem-
poral graphs. TGAT [8] utilizes the message-passing scheme of
simple GNNs and incorporates time information to obtain tem-
poral graph embeddings. TGN [49] leverages a memory module
to track historical interactions, thereby gaining temporal informa-
tion and achieving signi�cant accuracy improvements over simple
graph embedding methods. APAN [57] expedites model inference
via asynchronous message propagation. Furthermore, the state-of-
the-art T-GNN model Zebra [35] employs a top-k T-PPR to reduce
neural network layers, demonstrating high e�ectiveness in future
link prediction task.

However, even for the most e�cient temporal graph embed-
ding method Zebra, the memory module update remains time-
consuming, and storing historical interactions requires substantial
memory, restricting its applicability for massive graphs. Meanwhile,
T-GNNs need node feature to train the model, which is not always
available for di�erent downstream tasks [5, 13]. Also, all of the
aforementioned T-GNN models cannot update the embeddings for
new nodes using the model trained on the original subgraph. Nev-
ertheless, practical applications often demand incremental tasks,
which require that the embeddings can be adjusted with new data
instead of generating embedding based on subgraph knowledge
[11, 13, 52].

Embedding Update for Dynamic Graphs. There are several
studies that aim at e�ciently updating the embeddings with the
graph structure changes, which are also called dynamic graph em-
bedding. DNE [12] modi�es the embeddings of nodes by tuning the
skip-grammodel to accommodate the dynamic nature of graphs. Lo-
calAction [37] randomly samples the neighbors of the updated node
and modi�es the embeddings of the sampled node. This method is
highly e�cient, but it performs poorly in practical tests because
it does not consider high-order proximity. DynGEM [18] uses an
autoencoder to obtain graph embeddings and avoids retraining by

Table 1: Frequently used notations.

Notation Description

� = (+ , E) A temporal graph � with node set + , edge set
E, where each (E8 , E 9) ∈ E is associated with
a timestamp CEğ ,EĠ

=,< The numbers of nodes and edges in �
3 The dimension of embedding
: The number of snapshots
*) The temporal node set generated by snapshots
�C=(+C , EC) A bipartite graph�C with node set+C=(+∪*))

and edge set EC ¦ + ×*)
w(E8 , D 9) Theweight of edge in�C between nodes E8 ∈ +

and D 9 ∈ *)
TPASim(E8 , E 9) Temporal preferential attachment similarity

between nodes E8 and E 9 in temporal-based
bipartite graph �C

W ∈ R=×: The temporal matrix of�C such thatW[8, 9] =
lnw(E8 , D 9)

means of regularization parameter passing. GloDyNE [23] designs
a novel node selection strategy combined with a novel incremen-
tal learning paradigm to enhance the capture of high-order prox-
imity changes. DAMF [10] is the state-of-the-art dynamic graph
embedding method for large dynamic graph, which updates the
embeddings via space projection and uses personlized pagerank to
enhance its embeddings. However, most dynamic graph embedding
methods only focus on how to e�ciently update the embedding
when the graph structure changes and ignore the temporal infor-
mation brought by the timestamp, so they always perform worse
than temporal graph embedding methods on temporal graphs.

In this paper, we (i) develop scalable temporal graph embedding
algorithms for large graphs with millions of nodes, and (ii) propose
an e�cient method for update embeddings incrementally when
graph evolves.

3 PROBLEM FORMULATION

3.1 Preliminaries

In the context of directed temporal graphs, a temporal graph de-
notes as � = (+ , E), where + represents the set of nodes, and E
represents the set of edges, and each edge (E8 , E 9) ∈ E is annotated
with a timestamp CEğ ,EĠ indicating the generation timestamp of the
edge. Temporal graph embedding aims to project each node E8 ∈ +

into a low-dimensional vector space, represented by zEğ , that en-
capsulates both the topological structure and the temporal features
of the node. High quality embeddings are expected to facilitate
accurate predictions in various tasks, such as future link prediction
[24, 41] and top- recommendations [29]. Our work �rstly studies
the problem of generating high quality temporal graph embeddings.
Also, as real-world graphs always evolve over time, this work fur-
ther delves into strategies for incrementally updating temporal
graph embeddings, with a particular focus on the addition of edges
and nodes, which is crucial for many important applications. For
example, in citation networks, new citations (i.e., edges) and new
papers (i.e., nodes) are produced over time, while in e-commerce

931

networks, there are new purchases (i.e., edges) and new customers
(i.e., nodes) everyday.

Notations. For a given temporal graph � = (+ , E), let = = |+ | and
< = |E | be the number of nodes and edges in� , respectively. Denote
by3 the dimension of embeddings, where3 j =. All matrices in this
paper will use bold uppercase. In particular, Z ∈ R=×3 represents
the graph embeddings, while z8 denotes the 8-th row vector. �C

is a temporal-based bipartite graph with node set +C = (+ ∪*))
and edge set EC ¦ + ×*) , where*) is the node set generated by
snapshots. We denote w(E8 , D 9) as the edge weight between node

E8 and D 9 in�C , whileW ∈ R=×: is the temporal matrix of�C such
that W[8, 9] = lnw(E8 , D 9). Moreover, ∥X∥� means the Frobenius
norm of X, while f8 (X) means the 8-th singular value of X. Table 1
shows the frequently used notations in this paper.

3.2 Matrix Factorization for Graph Embedding

To generate graph embeddings from the similarity matrix, many
previous studies [46, 47, 58, 59] use SVD to get a primary high-
dimension representation H ∈ R=×= and then set the graph em-
bedding Z = H3 ∈ R=×3 as the top-3 columns of H to reduce
the dimensions. That is, given a similarity matrix S ∈ R=×= , SVD
derives that

dS = UΣV¦, and H = U
√
Σ, (1)

where U and V are = × = complex unitary matrices, Σ is an = × =

rectangular diagonal matrix with non-negative real numbers on the
diagonal, and d is a parameter for adjusting the value of embeddings.
In fact, leveraging the framework developed by Liu et al. [38], H is
the solution of maximizing the following objective function with
respect to vector ~8 ∈ R1×= for each node E8 .

$ (E8 , E 9) = fd (B8, 9) lnf (~8~¦9) + fd (−B8, 9) lnf (−~8~¦9), (2)

where f (G) = 1
1+4−Į is the sigmoid function, fd (G) = 1

1+4−ĀĮ , and
B8, 9 is the similarity between nodes E8 and E 9 . Here, this objective
function follows the target that two similar (resp. dissimilar) nodes
E8 and E 9 in a graph, i.e., large (resp. small) value of B8, 9 , are also
close (resp. far away) in embedding space, i.e., large (resp. small)
value of ~8, 9 = ~8~

¦
9 .

To maximize (2), one can treat ~8, 9 as an independent value [34].
Considering the local objective function for a node pair (E8 , E 9), we
can get the partial derivative with respect to ~8, 9 that

m$ (E8 , E 9)
m~8, 9

= fd (B8, 9)
(

1 − f (~8, 9)
)

− fd (−B8, 9)
(

1 − f (−~8, 9)
)

= fd (B8, 9)
(

1 − f (~8, 9)
)

−
(

1 − fd (B8, 9)
)

f (~8, 9),

where the �rst equality is due to mf (G)
mG = f (G)

(

1 − f (G)
)

and the
second equality is due to f (−G) = 1−f (G) and fd (−G) = 1−fd (G).
Setting

m$ (Eğ ,EĠ)
m~ğ,Ġ

= 0, we can get that

~8, 9 = d · B8, 9 .
Alternatively, letting ~8 be the 8-th row of matrix Y, we can write
in the form of matrix that

YY¦ = dS, (3)

where B8, 9 is the 8-th row and 9-th column element of the similarity
matrix S ∈ R=×= . Note that when S is a semi-positive de�nite

matrix we have U = V [17]. According to (1), it is trivial to see that
HH¦

= dS. This implies that Y = H is the solution to maximize (2).
At the same time, truncated SVD of S is the best 3-rank approxi-

mation of S in Frobenius space, which means Z = H3 is the solution
of the following equation.

min
Z∈RĤ×Ě

∥ZZ¦ − HH¦∥� , (4)

Thus Z is a good 3-dimension representation for H. Equations (1)–
(4) aim to make the embeddings retain the similarity information on
the graph. The above analysis indicates that for a well-de�ned sim-
ilarity measure, truncated SVD on the similarity matrix is suitable
for generating graph embeddings. On this basis, the primary prob-
lem of temporal graph embedding is how to de�ne a new similarity
measure that can encode the temporal information. Moreover, we
�nd that it is also important for temporal graph embedding meth-
ods to have the ability to update rapidly facing addition of nodes or
edges for practical application. In the following content, we state
how to solve the issues mentioned above through a well-de�ned
similarity TPASim and an incremental SVD algorithm to handle
the embeddings update problem.

4 THE LTGE ALGORITHM

4.1 Temporal Distribution Similarity

Given a temporal graph� = (+ , E), we �rstly de�ne a snapshot as a
subset of nodes and temporal edges within a time range. Speci�cally,
for a temporal graph with time span) , each snapshot contains
nodes and edges within a �xed length of time)̃ 8 and

∑

8)̃ 8 =

) . One kind of intuitive temporal information is that nodes that
appear in the same snapshot may have similar temporal bias in
behavior. Based on the idea, we �rst divide the temporal graph into
: snapshots, while each snapshot has the)

:
length of time.

After splitting the graph, the entire edge set is divided into :

di�erent subsets across distinct time intervals with each snapshot.
These subsets are denoted as �1, �2, ..., �: , where the intersection of
each subset is empty (i.e., ∀8≠9 , �8 ∩ � 9 = ∅) and the union of these

sets forms the entire edge set E (i.e.,
⋃:

8 �8 = E). We treat each of
the : subsets as new nodes, labeled as D1, D2, ..., D: ∈ *) , where D;
corresponds to �; . Each D8 ∈ *) denotes a temporal node, while*)
is the temporal node set. Every temporal node represents a period
of time, thus we can build the connection between temporal nodes
and original nodes to model the temporal information preference
of each node.

Then we initialize a new graph �C = (+C = (+ ∪*)), EC = ∅)
which contains both the original nodes and the temporal nodes.
Next, we generate the edges that associate these two types of nodes.
For each ℓ = 1, 2, ..., : , we perform the following operations on each
edge 4 = (E8 , E 9) in E:
(1) If there is no edge (E8 , Dℓ) in the edge set EC of the new graph,

then add an edge (E8 , Dℓ) with weight CEğ ,EĠ ; if an edge (E8 , Dℓ)
already exists, then add the weight of the edge by CEğ ,EĠ .

(2) Perform the same for the edge (E 9 , Dℓ).
After above operations, we construct a bipartite graph that can

explicitly represent the connection between nodes and di�erent
time intervals, which is called Temporal-based Bipartite Graph
(TBG) in the following content.

932

v1

v2

v3

v4

v5

t2

v1

v2

v3

u1

u2

t1

v4

v5

A

B

t1 t4 u1

u2

:

:

[t1, t2]

[t3, t4]

t1+t2
t2
t4

t3

t4
t3

t3

Figure 2: Example of temporal bipartite graph conversion

(the left picture is the original temporal graph � , the center

is the generated temporal node, and the right picture is the

converted bipartite graph � ′).

Example. We provide an example of how to generate a TBG from
a general temporal graph. In the left of Figure 2, there is a sub-
graph � with �ve nodes and four edges. As stated above, if we
set : = 2 for � , all edges in � can be divided into two snap-
shots �1 = {(E1, E2), (E2, E3)} and �2 = {(E3, E4), (E2, E5)} based
on their generation time. For �1 = {(E1, E2), (E2, E3)}, we create a
new node D1 to represent the snapshot and generate new edges
(E1, D1), (E2, D1), and (E3, D1), where D1 is called a temporal node.
Since nodes E1 and E3 each appear in an edge of �1, as stated above,
edge (E1, D1) has a weight C1 and (E3, D1) has a weight of C2, while
node E2 appears in both edges and hence the edge (E2, D1) has a
weight of C1 + C2. Similarly, we can generate edges for temporal
node D2. Finally, the TBG is constructed with original node set �
and temporal node set �. The temporal-based bipartite graph after
the construction is shown in the right of the �gure.

Temporal-based bipartite graph could e�ectively retain the time
sequence information of the original temporal graph by connecting
the original graph nodes to the corresponding temporal nodes. Next
task is to �nd a similarity measurement on TBG to capture the struc-
ture and temporal information simultaneously. Previous studies
like Personalized PageRank [27] or SimRank [26] just focus on the
connection between original nodes, which only consider structure
information but ignore the temporal information in temporal graph.

Thus, we propose a new similarity called TPASim, that concen-
trates on temporal distribution around each node. The motivation
behind is that two nodes are close when they appear in same tempo-
ral snapshots frequently, because it means their activity trajectory
is coincident partly to some extent. In the constructed TBG, the sim-
ilarity between two original nodes is determined by the edges they
connect to the same temporal nodes, which is de�ned as follow:

De�nition 4.1. Given a TBG �C = (+C , EC), the temporal prefer-
ential attachment similarity (TPASim) between any pair of graph
nodes E8 and E 9 is

TPASim(E8 , E 9) =
∑

Dℓ ∈*
lnw(E8 , Dℓ) · lnw(E 9 , Dℓ).

Here w(E8 , D;) represents the weight of the edge between node
E8 and node D; . The similarity de�nition takes the time distribution
related to nodes into account, where two nodes are more similar
when the generation time distribution of the edges around two
nodes are closer.

In fact, TPASim is inspired by preferential attachment similarity
[2] that is a common measurement in simple graph de�ned as

PASim(E8 , E 9) = 38 · 3 9 . Preferential attachment similarity has been
used in many areas such as percolation [22], transportation [64] and
synchronization [61]. The following lemma shows the connection
between TPASim and preferential attachment similarity.

Lemma 4.2. For a simple graph, which means the timestamp C for

every edge is a constant C0 > 1 and the number of snapshots : = 1 is
the only reasonable choice, we have

TPASim(E8 , E 9) = ln38 ln3 9 + ln C0 ln PASim(E8 , E 9) + ln2 C0 .

Proof. Because : = 1, there is only one temporal node in TBG,

which means that ∀E ∈ + ,w(E, 1) = ln(Σ3Ĭ1 C0) = ln(C0 · 3E), where
3E is degree of node E . So we can get:

TPASim(E8 , E 9) = w(E8 , 1) · w(E 9 , 1)
= (ln(C0) + ln3Eğ) · (ln(C0) + ln3EĠ)
= ln38 ln3 9 + ln C0 ln PASim(E8 , E 9) + ln2 C0,

which completes the proof. □

In conclusion, with constructing TBG and computing TPASim,
we could simultaneously consider structure information and tempo-
ral information. In what follows, we show that the embeddings can
be generated e�ciently through factorizing a small matrix, which
avoids computing and factorizing the whole TPASim matrix.

4.2 E�cient Matrix Factorization for Temporal
Graph Embedding

As stated in Section 3.2, we should factorize the similarity matrix
to generate the �nal embeddings [38]. However, it is ine�cient to
factorize the whole similarity matrix, thus we next give analysis on
how to get the same result by factorizing a small matrix. First, we
de�ne the temporal matrix, which represents the logarithm of
weighted connection relationship between the original nodes and
the temporal nodes on TBG, as follow:

W[8, 9] = lnw(E8 , D 9),
where E8 ∈ + is an original node, D 9 ∈ *) is a temporal node and

W ∈ R=×: is the temporal matrix where S = WW¦. Note that for
each edge (E8 , E 9) in the original temporal graph � , at most two
edges are created in the corresponding TBG �C that connect E8
and E 9 to one temporal node Dℓ . Hence, �C has at most 2< edges,
indicating thatW contains$ (<) non-zero elements, where< j =2

in general, = and< are the number of nodes and edges in � .
Next, the following lemma can prove that the objective function

could be maximized by just factorizing the temporal matrixW ∈
R
=×: with SVD factorization.

Lemma 4.3. Let Z ∈ R=×3 be matrix obtained by the objective

function (1) and do the singular value decomposition (SVD) of the

temporal matrix W that W = UΣV¦, where U¦U = I, V¦V = I, and

I is identity matrix. We then have:

Z =
√
dU3Σ3 ,

where U3 and Σ3 represent the top-3 columns of U and Σ, respectively.

Proof. Let S[8, 9] = TPASim(E8 , E 9). It has been proved that
Equation (4) can be optimized by factorizing the similarity matrix

933

Algorithm 1: LTGE

Input: Temporal graph � = (+ , E), the whole time span) ,
the number of snapshots : , embedding dimension 3 ,
parameter d .

Output: Graph embeddings Z, right singular matrix V¦
3

1 Clabel ← 0, size ←)
:
, snapshot ← 0 ;

2 Initialize a null matrixW ∈ R=×: ;
3 for (E8 , E 9) ∈ E do

4 if CEğ ,EĠ − Clabel > size then
5 Clabel ← CEğ ,EĠ ;

6 snapshot ← snapshot + 1;

7 W[E8 , snapshot] ← W[E8 , snapshot] + CEğ ,EĠ ;

8 W[E 9 , snapshot] ← W[E 9 , snapshot] + CEğ ,EĠ ;

9 W ← √
d lnW for all nonzero elements inW;

10 U3 ,Σ3 ,V
¦
3
← RandomizedSVD(W);

11 Z ← U3Σ3 ;
12 return Z, V¦

3
;

S. According to the de�nition of TPASim, we have S = WW¦.
Meanwhile, W = UΣV¦ and V¦V = I. Thus we can get:

HH¦
= d ·S = dWW¦

= d ·UΣV¦ (UΣV¦)¦ = (√d ·UΣ) (√d ·UΣ)¦ .

Therefore, Z = H3 =
√
dU3Σ3 . □

To further improve the e�ciency of LTGE, we use Randomized
SVD [20] to calculate the �nal embeddings. Its computational time
primarily depends on the non-zero elements in the temporal matrix,
i.e.,$ (<). Finally, Algorithm 1 illustrates the pseudo-code of LTGE.

5 AN INCREMENTAL METHOD: LTGEINC

When the initial graph contains only a small number of edges
(e.g., newly constructed graph datasets), the �nal graph may have
far more nodes and edges than the original subgraph with newly
adding data, and the topological structure of the graph will also be
changed. In this case, it is di�cult for the embeddings trained on
the initial subgraph to obtain the knowledge applicable to the �nal
large-scale graph, which leads to a serious decline in the quality of
the graph embeddings.

A naive approach to handle this issue is to retrain the model
with �xed time intervals. However, existing temporal graph embed-
ding methods require a signi�cant amount of time to generate the
embeddings, while multiple recalculations necessitate extensive
time and computing resources. To solve this problem, we propose
an incremental algorithm named LTGEInc. It avoids repeatedly
recomputing and has a theoretical guarantee.

Example. Figure 3 gives a toy example of the temporal matrix
of Figure 2 and how it changes when new edges (E2, E5) at time
C5 and (E5, E6) with new node E6 at time C6 are added. Since the
timestamps of new edges are larger than any existing edge’s, they
will only add new temporal nodes in TBG, which will only append
new columns to original temporal matrix. For newly added nodes,
they do not have interaction with existing temporal nodes, so that
the newly added row will have zeros below the original temporal

Algorithm 2: IncrementalSVD

Input: Factorization of original matrix U1Σ1 and V¦
1 ,

factorization of new added matrix U2Σ2 and V¦
2 .

Output: Incremental truncated SVD of new matrix U�Σ�V
¦
�
.

1 Q1,R1 ← QR
([

U1Σ1 U2Σ2
])

;

2 Q2,R2 ← QR

([

V1 0
0 V2

])

;

3 U',Σ',V
¦
'
← SVD(R1R¦2);

4 U� ,Σ� ,V
¦
�
← Q1U',Σ',V

¦
'
Q¦
2 ;

5 return U� ,Σ� ,V
¦
�
;

ýý ýþþþ ln(�1 + �2) ln �4þÿ ln �2 ln �3þý ln �4
ýý ýþ ýÿþþ ln(�1 + �2) ln �4 0.0þÿ ln �2 ln �3 ln �5þý ln �4 ln(�5 + �6)þþ ln �6

(a) Origin Temporal Matrix (b) Incremental Temporal Matrix

Figure 3: A toy example of incremental temporal matrix

update (the left is the original temporal matrix of node E2, E3,

E5 in Figure 2, and the right is the new temporal matrix after

adding edge (E2, E5) at time C5 and (E5, E6) at time C6.

matrix. Motivated by this property of the temporal matrix, we can
use incremental SVD to complete incremental embedding update.

Nevertheless, existing incremental SVD methods either need
high computation cost [63] or have unique striction on matrix [25]
to get an exact result. In this section, we propose an incremental
SVD method with both high e�ciency and theoretical bound to
compute its truncated result. Speci�cally, for an original temporal
matrix W and a new temporal matrix X = [W,W8], where W8 ∈
R
=×V is the newly added data and we already have the svd UΣV¦ of

W, written asWd. Let the svd ofW8 = U2Σ2V
¦
2 . First, a factorization

of X could be written as:

X =

[

UΣ U2Σ2
]

[

V¦ 0
0 V¦

2

]

. (5)

Next, we conduct QR factorization on each part of the above fac-
torization to get the orthogonal submatrix with an upper triangular
matrix in center. Finally, factorize the upper triangular matrix by
SVD, then the approximate incremental SVD can be obtained and
the new embeddings are the product of the left part and the singular
value matrix in the center. The detail is shown in Algorithm 2.

The following lemma shows that the results returned from Al-
gorithm 2 are equal to the SVD of new temporal matrix X.

Lemma 5.1. For the original temporal matrix W, if U1Σ1 = UΣ

and V1 = V, the U� ,Σ� ,V
¦
�
returned from Algorithm 2 is equal to the

SVD of new temporal matrix [W,W8].

Proof. By (5) and QR factorization of Algorithm 2, we can get

[W,W8] = Q1R1R
¦
2 Q

¦
2 .

By the SVD of Algorithm 2, we know that

R1R
¦
2 = U'Σ'V

¦
' .

934

Algorithm 3: LTGEInc

Input: Newly added edge set E′, original embeddings Z,
original truncated right singular matrix V3 , original
number of snapshot : , parameter d , original time
span) .

Output: New embeddings Z8 , new right singular matrix V8 .
1 Clabel ← 0, snapshot ← 0, size ←)

:
;

2 :′ ← |E′ |/+)
:
,;

3 Initialize a null matrixW8 ∈ R=×:
′
;

4 for (E8 , E 9) ∈ E′ do
5 if CEğ ,EĠ − Clabel > size then
6 Clabel ← CEğ ,EĠ ;

7 snapshot ← snapshot + 1;

8 W8 [E8 , snapshot] ← W8 [E8 , snapshot] + CEğ ,EĠ ;

9 W8 [E 9 , snapshot] ← W8 [E 9 , snapshot] + CEğ ,EĠ ;

10 W8 ←
√
d lnW8 for all nonzero elements inW8 ;

11 U2,Σ2,V
¦
2 ← TruncatedSVD(W8 , 3);

12 U8 , Σ8 , V¦
8 ← IncrementalSVD(Z,V¦

3
,U2Σ2,V

¦
2);

13 Z8 ← U8Σ8 ;
14 return Z8 ,V

¦
8 ;

Thus, we can obtain that

[W,W8] = Q1U'Σ'V
¦
'Q

¦
2 .

Since Q¦
1 Q1 = I and U¦

'
U' = I, we have (Q1U')¦ (Q1U') = I.

Similarly, we also have (Q2V')¦ (Q2V') = I. Therefore, U� =

Q1U' , Σ� = Σ' , and V¦
�
= V¦

'
Q¦
2 form the SVD of [W,W8]. □

For a matrix M, consider the SVD that M = UΣV¦. Denote by
(M)3 = U3Σ3V

¦
3
the 3-rank approximation of M derived by the

truncated SVD, where U3 , Σ3 and V3 are the top 3-columns of
U, Σ and V, respectively. Based on Lemma 5.1, we could set the
truncated SVD of origin as input of incremental SVD to get the
increment ofX′

= [(W)3 , (W8)3], while the embeddings generated
from LTGE satis�es that it is the left part of (W)3 ’s SVD. LTGEInc
takes the embeddings with truncated right singular matrix as input
of Algorithm 2 and gets the �nal incremental embeddings. Thus
it reduces the computational dimension of the incremental SVD.
Algorithm 3 shows the whole process of LTGEInc.

Next, we will give the bound of approximate incremental SVD.
For an original temporal matrix W and a new temporal matrix X =
[W,W8] that needs to be updated, the error between approximate
incremental matrix X′

3 and original new temporal matrix X can
be bounded by the following lemma:

Lemma 5.2. Let (M)3 be the 3-rank approximation of a matrix

M. For X = [W,W8] and X′
= [(W)3 , (W8)3], we have that (X′)3

returned by Algorithm 3 satis�es ∥(X′)3 − X∥� f 3∥(X)3 − X∥� .

Proof. By the triangle inequality of matrix norm, we have

∥(X′)3 − X∥� f ∥(X′)3 − X′∥� + ∥X′ − X∥� . (6)

On one hand, since (X′)3 is the 3-rank approximation of X′,

according to [14], we can get that ∥(X′)3−X′∥� =

√

∑23
8=3+1 f

2
8 (X′),

where f8 (X′) is the 8-th largest singular value of X′. Moreover,
according to [63], for two matrices A and B, we have

f8 ([A,B]) g max{f8 (A), f8 (B), f8 ([(A)3 , (B)3])}.
Thus, we can get that

f8 (X) = f8 ([W,W8]) g max{f8 (W), f8 (W8), f8 (X′)}.
As a consequence, we obtain that

∥(X′)3 − X′∥� =

√

∑23

8=3+1 f
2
8 (X′) f

√

∑23

8=3+1 f
2
8 (X)

f
√

∑:+V
8=3+1 f

2
8 (X) = ∥(X)3 − X∥� .

(7)

On the other hand, based on the de�nition of Frobenius matrix

norm (i.e., ∥A∥� =

√

∑

8, 9 A[8, 9]2), we have

∥X′ − X∥�

=

√

∑

8, 9
(W[8, 9] − (W)3 [8, 9])2 +

∑

8, 9
(W8 [8, 9] − (W8)3 [8, 9])2

f
√

∑=

8=1

∑:

9=1
(W[8, 9] − (W)3 [8, 9])2

+
√

∑=

8=1

∑V

9=1
(W8 [8, 9] − (W8)3 [8, 9])2

=

√

∑:

8=3+1 f
2
8 (W) +

√

∑V

8=3+1 f
2
8 (W8)

f
√

∑:

8=3+1 f
2
8 (X) +

√

∑V

8=3+1 f
2
8 (X)

f 2

√

∑:+V
8=3+1 f

2
8 (X) = 2∥(X)3 − X∥� . (8)

Combining (6)–(8) completes the proof. □

Lemma 5.2 provides a theoretical guarantee for approximating
incremental updating. The experiments on incremental future link
prediction detailed in Section 7.5 corroborates that our method can
maintain relatively stable performance while undergoing numer-
ous updates, thus obviating the need for frequent recomputing to
guarantee the quality of the embeddings. Concurrently, we analyze
the complexity of the incremental algorithm in Section 6, showing
that it is more e�cient than recomputing.

6 COMPLEXITY ANALYSIS

In this section, wewill analyze the complexity of LTGE and LTGEInc
to explain their theoretical scalability.

First, we give the analysis of LTGE (Algorithm 1). Construct-
ing the temporal matrix W needs to operate on every edge in
the original temporal graph � (lines 1–8) and perform log opera-
tion on every non-zero element (line 9). Since there are< edges
in � and at most 2< non-zero elements in W as per our anal-
ysis in Section 4.2, the construction of W requires $ (<) time.
Moreover, by Randomized SVD, factorizing W ∈ R=×: with $ (<)
non-zero elements to U3 ∈ R=×3 , Σ3 ∈ R3×3 and V3 ∈ R=×3
takes $ (<3 log(:) + =32 log(:)) [40] (lines 10). Finally, calculating
Z = U3Σ3 ∈ R=×3 takes $ (=32) time (lines 11). Putting it together,
the total time complexity of LTGE is $ (<3 log(:) + =32 log(:)).
Meanwhile, it takes$ (=3) to store Z, U3 , Σ3 and V3 , while storing

935

W with$ (<) non-zero elements takes$ (<) space via compressed
sparse row [4]. Thus, the space complexity of LTGE is $ (< + =3).

Next, we analyze the IncrementalSVD algorithm (Algorithm 2).
For U1Σ1,V1,U2Σ2,V2 ∈ R=×3 , performing QR factorization takes
$ (=32) time [54] (lines 1–2). For R1,R2 ∈ R3×3 , performing SVD
of R1R2 takes $ (33) time (lines 3). Finally, for Q1,Q2 ∈ R=×3 and
U',V' ∈ R3×3 , calculating U� = Q1U' and V¦

�
= V¦

'
Q¦
2 takes

$ (=32) time (line 4). Therefore, the time complexity of Algorithm
2 is $ (=32). Meanwhile, its space complexity is $ (=3).

Now, we derive the complexity of LTGEInc (Algorithm 3) when
the newly added data span V snapshots. Constructing W8 with
at most �< non-zero elements needs $ (�<) time (lines 1–10).
Performing truncated SVD on W8 ∈ R=×V takes $ (=3V) time [51]
(line 11). Invoking Algorithm 2 takes $ (=32) time (line 12). For
U8 ∈ R=×3 and Σ8 ∈ R3×3 , calculating Z8 = U8Σ8 takes $ (=32)
time (lines 13). Therefore, the total time complexity of LTGEInc
is $ (=3V + =32 + �<). Meanwhile, LTGEInc takes $ (=3) to store
matrices except for W8 which requires $ (�<) space. Therefore,
the space complexity of LTGEInc is $ (=3 + �<).

7 EXPERIMENTS

We evaluate our proposed method LTGE and LTGEInc, by compar-
ing them with 11 baselines across three tasks: future link prediction,
future top- recommendation and incremental future link predic-
tion. Experiments are conducted on a single machine with Intel
Xeon 8377C, 1T RAM. For baselines that need GPU, we use one
Nvidia 3090.

7.1 Datasets

In this paper, ten public datasets are used to widely evaluate the
performance of LTGE and LTGEInc. The datasets contain various
kinds of temporal graphs, including social graphs, web graphs, rat-
ing graphs, shopping graphs, etc. The statistics of each dataset
are listed in Table 2. CollegeMsg1 [42] is a private message so-
cial graph and each edge represents a message sent between two
users. Bitcoin1 [31, 32] is a user-trust-user graph, where edges rep-
resent users’ trust in blockchain transactions. Serendipity2 [30] is
a bipartite rating graph that collects the rating when user meets
serendipitous recommendation. Math1, AskUbuntu1, Superuser1

and Stack1 are all web graphs, in which nodes represent users and
edges means question and answer between users [43]. Movielen2

[21] is a rating graph collected from the MovieLen web site. Wik-
italk1 [33, 43] is an editing graph representing Wikipedia users
editing each other’s Talk page. Taobao3 [67, 69] is a shopping graph
that we generate from the Tianchi, which contains over 17 million
nodes and 1.3 billion edges. To our best knowledge, there is no
existing work on temporal graph embedding can deal with datasets
on this scale.

7.2 Baselines and Parameter Settings

We compare LTGE with 11 competitive methods, including (i) four
temporal graph embedding methods: Zebra [35], APAN [57], TGN
[49], and CTDNE [41], (ii) �ve simple graph embedding methods

1https://snap.stanford.edu/data/
2https://grouplens.org/datasets/
3https://tianchi.aliyun.com/dataset/140281/

Table 2: Statistics of Datasets. Task 1: Link Prediction, Task

2: Recommendation, Task 3: Incremental Link Prediction.

(K = 103, M = 106, B = 109)

Name |+ | |� | |) | Task

CollegeMsg 1.9K 59.8K 193 days 1
Bitcoin 5.8K 33.5K 1903 days 1 & 2
Math 24.8K 506.5K 2350 days 1
Serendipity 153.6K 9.9M 2978 days 2
AskUbuntu 159.3K 964.4K 2613 days 1
Superuser 194.0K 1.4M 2773 days 1
Movielen 221.6K 25M 9082 days 2
Wikitalk 1.1M 7.8M 2320 days 1 & 3
Stack 2.6M 63.4M 2774 days 1 & 3
Taobao 17.9M 1.3B 184 days 1 & 2 & 3

for large-scale graphs: Geep [58], HuGE [16], ProNE [65], LINE [53],
node2vec [19], and (iii) three dynamic graph embedding methods:
DAMF[10], GloDyNE [23], LocalAction [36].

For fair comparison, we set the embedding dimension 3 as 32 for
all methods and implement them in Python. The iteration number
of randomized svd is �xed to 6 to get best performance for every
dataset. We select the parameter : from {100, 200, 400, 800, 1600}
and select d from {0.001, 0.01, 0.1, 1, 10} in LTGE.

The results of future link prediction, incremental link prediction
and future top- recommendation are reported in Sections 7.3, 7.5
and 7.6, respectively. We eliminate methods that cannot �nish in
three days or run out of memory. In Section 7.4, we evaluate the
e�ciency of all methods and the scalability of LTGE. Finally, the
evaluation results of LTGE with di�erent parameters are reported
in Section 7.7.

7.3 Future Link Prediction

Future link prediction is a fundamental downstream task for tem-
poral graph analysis. It aims to predict whether an edge is likely
to form between nodes in the future. For all datasets, we �rst sort
all edges by increasing order with their timestamp, split them into
70%-30% for obtaining the embeddings and testing. Following [68],
since we do not use node features or edge features for all methods,
we remove the test edges that contain unseen nodes in training
set for correctness. Then we randomly sample the same number
of negative edges for testing. To get the prediction score of edges,
LTGE �rst obtains the embeddings using positive training edges.
Then it mixes positive test edges and negative test edges to generate
a whole test set. For each edge (E8 , E 9 , C) in the test set, we use the
sigmoid of dot product IEğ · IEĠ as the prediction score.

Following prior work [28, 35], Area Under Curve (AUC) and
Average Precision (AP) are adopted to evaluate future link predic-
tion performance. Table 3 reports the result of LTGE and other
competitors on each dataset. The highest score is highlighted with
blue and the second best is single-underlined. It shows that LTGE
outperforms all competitors over all datasets for all metrics. On
AskUbuntu, LTGE achieves 91.0% AUC and 93.8% AP, outperform-
ing the best-performing competitor Zebra by a margin of up to
1.4% for AUC score and 2.5% for AP score. On the largest dataset
Taobao, only three simple graph embedding method and LTGE can
successfully generate the graph embeddings, while LTGE achieve

936

Table 3: Future link prediction performance.

Method
CollegeMsg Bitcoin Math AskUbuntu Superuser Wikitalk Stack Taobao

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

node2vec 0.642 0.646 0.624 0.612 0.718 0.717 0.665 0.696 0.651 0.701 0.611 0.580 - - - -
LINE 0.601 0.640 0.511 0.582 0.830 0.880 0.737 0.811 0.720 0.801 0.756 0.801 0.601 0.614 - -
ProNE 0.764 0.772 0.622 0.606 0.893 0.902 0.814 0.858 0.792 0.831 0.896 0.903 0.858 0.856 0.613 0.632
HuGE 0.801 0.810 0.769 0.776 0.920 0.929 0.868 0.895 0.852 0.871 0.923 0.931 0.879 0.887 - -

CTDNE 0.502 0.533 0.560 0.648 - - - - - - - - - - - -
TGN 0.830 0.834 0.858 0.878 0.890 0.907 0.867 0.892 0.828 0.846 - - - - - -
APAN 0.800 0.805 0.832 0.849 0.905 0.914 0.860 0.883 0.819 0.838 - - - - - -
Zebra 0.827 0.830 0.864 0.883 0.941 0.950 0.896 0.913 0.888 0.907 0.963 0.972 - - - -

LocalAction 0.578 0.588 0.536 0.559 0.595 0.607 0.544 0.552 0.431 0.460 0.613 0.672 0.608 0.649 0.501 0.546
GloDyNE 0.642 0.651 0.646 0.641 0.720 0.721 0.632 0.640 0.640 0.658 0.580 0.556 0.759 0.762 - -
DAMF 0.801 0.809 0.853 0.879 0.922 0.933 0.835 0.871 0.845 0.876 0.945 0.954 0.856 0.876 0.670 0.694

LTGE 0.852 0.853 0.878 0.905 0.955 0.965 0.910 0.938 0.912 0.931 0.966 0.977 0.919 0.939 0.773 0.791

(a) Running time varying #nodes. (b) Running time varying #edges.

Figure 4: Running time with di�erent scale.

77.3% AUC and 79.1% AP, signi�cantly superior than the strongest
competitor DAMF with 10.3% improvement in AUC and 9.7% im-
provement in AP. These �ndings underscore LTGE’s superior per-
formance and e�ciency, attributable to the e�ective TPA similarity
measure and the construction of the sparse temporal matrix.

To sum up, (i) compared to the simple graph embedding methods
(i.e., node2vec, LINE, ProNE, and HuGE), LTGE demonstrates a
signi�cant advantage in performance. In particular, while running
as fast as the most e�cient baseline ProNE (see Figure 5), LTGE
achieves a remarkably higher AUC and AP than ProNE by 11.4%
and 11.7% in average, respectively; (ii) compared to the dynamic
graph embedding methods (i.e., DAMF, GloDyNE, and LocalAction),
LTGE outperforms the best baseline DAMF by 5.5% in AUC and
5.1% in AP, while running faster by one order of magnitude (see
Figure 5); (iii) compared to T-GNNs (i.e., Zebra, APAN, TGN, and
CTDNE), LTGE outperforms them in terms of both e�ectiveness
and e�ciency. For the strongest baseline Zebra, LTGE shows an
average improvement of 1.6% in AUC and 1.9% in AP, and is faster
by two orders of magnitude (see Figure 5).

7.4 E�ciency and Scalability

We compare the e�ciency of the methods used for generating em-
beddings in future link prediction. Figure 5 illustrates the running
time of each method, excluding data preprocessing, loading edges,
and outputting embeddings. Notably, for HuGE, the computation
of common neighbors is considered part of the algorithm rather
than preprocessing, so it is included in its overall running time.

As depicted in Figure 5, LTGE surpasses all temporal graph em-
bedding methods in terms of e�ciency across all datasets. For exam-
ple, it takes only 9.18 seconds for LTGE to generate the embeddings
for AskUbuntu, 116× faster than Zebra that needs 1071.70 seconds
to train the T-GNN model, while LTGE has the higher AUC and AP
score. For massive temporal graph Stack and Taobao, it is di�cult
for most existing temporal graph embedding methods to �nish in
three days without running out of memory. This situation re�ects
that LTGE �lls the gap by providing an e�cient method for large
temporal graph embedding. In particular, on the largest dataset
Taobao, only LTGE, ProNE, DAMF and LocalAction could generate
embeddings in three days, while only LTGE specially designs for
temporal graphs and considers temporal information. Compared
with the strongest temporal graph embedding method Zebra, LTGE
is two orders of magnitude faster, demonstrating its superior e�-
ciency and capability to handle massive temporal graphs. Although
ProNE and LocalAction have similar e�ciency with LTGE, their
performance is very poor in future link prediction task. Spe�ci-
cally, LTGE achieves an average improvement of 11.4% in AUC and
11.7% in AP compared to ProNE, and 34.5% in AUC and 22.9% in
AP compared to LocalAction.

To further evaluate the scalability of LTGE, we conduct tests
on the graphs with varying scales. Following previous work [58],
we utilize the random graph model from [15] to generate random
graphs of di�erent sizes and record the running times of LTGE. For
comparison purposes, we also include the running time of the most
e�cient T-GNN model Zebra. In Figure 4a, we keep the number
of edges at 1 × 107 and vary the number of nodes in {2 × 105, 4 ×
105, 6 × 105, 8 × 105, 1 × 106}. The plots show that the running
time of LTGE and Zebra increases below linear growth with the
number of nodes, with LTGE exhibiting a slow growth. Similarly,
in Figure 4b, we keep the number of nodes at 1 × 106 and varied
the number of edges in {1 × 107, 2 × 107, 3 × 107, 4 × 107, 5 × 107}.
LTGE and Zebra display near-linear growth in running time, and
LTGE also exhibits a slower growth showing that the constant
factor is far more smaller than Zebra. This observation suggests
that the running time of LTGE is more sensitive to the increase
in the number of edges. Overall, the scalability tests demonstrate

937

(a) CollegeMsg (b) Bitcoin (c)Math (d) AskUbuntu

(e) Superuer (f) Wikitalk (g) Stack (h) Taobao

Figure 5: Running time (best viewed in color).

that our proposed method LTGE is scalable and consistent with the
presented time complexity analysis.

7.5 Incremental Link Prediction

As mentioned in Section 5, incremental learning is an important
ability that is always ignored by existing temporal graph embed-
ding works. It aims at learning from newly added edges and nodes
continuously and then updating embeddings (or updating GNN
model). It is meaningless to conduct the incremental experiments
on small datasets since we can get accurate result by recomput-
ing the embeddings with little cost. For large datasets including
Wikitalk, Stack and Taobao, we �rst use only 20% percent of edges
to obtain the embeddings and test future link prediction on the
following 2% percent of edges. Then the positive edges in the test
set will be added into training set, and the test set will change to the
next 2% future edges. The process will be repeated until the end of
whole edge set to simulate data growth that appears in real-world
scenarios. We choose DAMF, LocalAction and GloDyNE as base-
lines in this task. To measure the performance of incremental link
prediction task, AUC score is used for every set of tests during the
evaluation. We eliminate methods that cannot �nish in �ve days or
run out of memory.

Figure 6 shows the results of LTGEInc and competitors. LTGEInc
consistently delivers the highest AUC performance in every test. In
contrast, LocalAction and GloDyNE exhibit a varying degree of per-
formance deterioration with new graph data. DAMF exhibits less
susceptibility to degradation but it always performs worse than LT-

GEInc. Table 4 gives the running time of recomputing and LTGEInc
on each dataset when facing the last 2% test edges. It is obvious that
LTGEInc can speed up more than an order of magnitude compared
with recomputing the whole embeddings. Also, Figure 7 gives the
whole running time during the incremental link prediction task.
LTGEInc achieves the shortest running time for each dataset, which
is based on the rapid incremental updating algorithm. At the same

Table 4: Running time of recomputation vs. LTGEInc.

Datasets Wikitalk Stack Taobao

Recomputation 90.2s 672.7s 29128.6s
LTGEInc 4.4s 31.8s 1163.2s

time, it also shows that LTGEInc demonstrates remarkable stability
across all three test datasets, outperforming all baselines under
nearly all scenes. This performance underlines the e�ectiveness of
our uniquely designed incremental embedding update method in
handling new data processing challenges.

7.6 Future Top- Recommendation

Top- recommendation is another usual downstream task, where
the objective is to recommend nodes to each nodeD. For instance,
given a user-good graph � , the target is to recommend items
potentially of interest to each user D. In a temporal graph context,
each edge appears as serialized data, making it ill-suited to random
test set selection based on simple graph testing methods. Hence,
we examine the e�ect of the future top- recommendation task.
Speci�cally, edges are sorted in ascending order by their generation
time. The �rst 70% of these time-ordered edges are used as the
training set for embeddings generation, while the remaining edges
are served as ground-truth for testing. For each node E8 appearing
in the test set, we �rst generate all nodes connected to node E8 in the
test set, then use the dot product IEğ · IEĠ to calculate the similarity
between each node E8 and node E 9 , identifying the nodes with
the greatest bias to node E8 as a recommendation list.

Next, we generate the actual top- list of node E8 based on the
ground-truth list in the test set. Comparing the ground-truth list and
recommendation list for each node, we compute four standard met-
rics: F1, Mean Average Precision (MAP), Normalized Discounted
Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR). All
of the four metrics are the higher the better and we report the
average scores across all test nodes. We’ll exclude the edges in the

938

(a)Wikitalk (b) Stack (c)Taobao

Figure 6: Incremental link prediction results (best viewed in color).

Table 5: Future top- (= 10) recommendation performance.

Method
Bitcoin Serendipity Movielen Taobao

F1 MAP MRR NDCG F1 MAP MRR NDCG F1 MAP MRR NDCG F1 MAP MRR NDCG

node2vec 0.773 0.665 0.916 0.742 0.440 0.353 0.573 0.437 - - - - - - - -
LINE 0.779 0.670 0.921 0.748 0.440 0.352 0.567 0.436 0.319 0.238 0.442 0.315 - - - -
ProNE 0.776 0.666 0.915 0.744 0.443 0.356 0.581 0.441 0.324 0.243 0.458 0.322 0.731 0.675 0.808 0.732
HuGE 0.781 0.673 0.925 0.751 0.444 0.356 0.584 0.442 0.316 0.237 0.442 0.315 - - - -
Geep - - - - 0.459 0.367 0.622 0.461 0.333 0.250 0.492 0.335 0.730 0.674 0.804 0.731

CTDNE 0.777 0.670 0.915 0.746 - - - - - - - - - - - -
GloDyNE 0.772 0.663 0.913 0.740 0.441 0.353 0.566 0.437 0.322 0.241 0.448 0.319 - - - -

LocalAction 0.776 0.673 0.918 0.747 0.459 0.367 0.605 0.458 0.364 0.276 0.522 0.368 0.751 0.702 0.820 0.753
DAMF 0.782 0.674 0.922 0.752 0.464 0.371 0.627 0.466 0.337 0.254 0.502 0.340 0.786 0.751 0.850 0.791

LTGE 0.785 0.679 0.941 0.758 0.518 0.422 0.713 0.528 0.414 0.316 0.623 0.426 0.887 0.882 0.975 0.911

Figure 7: Running time of incremental link prediction

test set containing unseen nodes or missing ground truth to ensure
the correctness. Because T-GNNs are end-to-end and principally de-
signed for future link prediction or future edge classi�cation, they
are not well suited to future top- recommendation task. Thus, we
will not compare with T-GNN related methods in this task. Since
Bitcoin is not a bipartite graph, we do not apply Geep to this dataset.
Meanwhile, any method that runs for more than three days or out
of memory will be terminated.

Table 5 shows the result of future top- (=10) recommendation.
LTGE again outperforms all competitors on all the datasets in this
task. For instance, LTGE achieves 41.4% F1, 31.6% MAP, 62.3% MRR
and 42.6% NDCG on Movielen, where all metrics are higher than
the strongest competitor LocalAction, with 7.0% in F1, 5.0% in MAP,
10.1% in MRR, and 5.8% in NDCG. On the non-bipartite graph

Bitcoin, LTGE still performs well on this type of graph and beats all
baselines for all metrics. These results demonstrate the e�ectiveness
of LTGE on the future top- recommendation task. The excellent
performance in future link prediction and top- recommendation
tasks simultaneously re�ects the universality of LTGE.

7.7 Parameter Analysis

In this section, we conduct experiments on Bitcoin, Serendipity and
Superuser to study the impact of di�erent parameters used in LTGE

and give advice for choosing the applicable parameters. In short,
the setting of parameter d depends on di�erent downstream tasks
and types of graphs. For future link prediction, the guiding setting
is d = 0.001. For top- recommendation, d = 0.001 is also suitable
for non-bipartite graph and d = 1 is a good choice for bipartite
graph. For the number of snapshots: , the choice of it should depend
on the characteristics of di�erent temporal graphs, but it will not
signi�cantly a�ect the performance within the reasonable range
from 100 to 1600 as we suggest.

Impact of parameter d . To study the impact of d on LTGE, we
�x the parameter : to 400 and report the performance with vary-
ing d in {0.001, 0.01, 0.1, 1, 10} on future link prediction and top-
recommendation task. As shown in Figure 8a, AP on each dataset
has increasing with smaller d until d = 10−3 in future link predic-
tion task. On top- recommendation task, the F1 score increases
when d become larger and is basically stable for d g 1 for bipartite
graph Serendipity. For non-bipartite graph Bitcoin, d = 10−3 is

939

(a) AP with di�erent d on future
link prediction.

(b) F1 with di�erent d on top- rec-
ommendation.

(c) AP with di�erent : on future
link prediction.

(d) F1 with di�erent : on top- rec-
ommendation.

Figure 8: Results with di�erent parameters.

the best choice. Through the above results, we suggest choosing
d = 10−3 for future link prediction and top- recommendation on
non-bipartite graphs. For bipartite graphs, d = 10−3 is also suit-
able for future link prediction but d = 1 should be used on top-
recommendation task.

Impact of the number of snapshots : . In Lemma 4.2, we prove
that TPA will degrade into a static similarity when : = 1, which
indicates that choosing too small : may make the embeddings miss
temporal information. On the other hand, too large : will split a
large amount of snapshots, while each snapshot contains only a few
edges. It will not only reduce the e�ciency of LTGE but damage the
quality of embeddings. To investigate the appropriate choice of : ,
we �x d for di�erent downstream tasks and datasets as we suggest
above and select : from {100, 200, 400, 800, 1600}. Figure 8c and 8d
report the results with di�erent : . On future link prediction task,
the performance of LTGE decreases slightly with the increasing of
: and also decreases with : smaller than 200, which is consistent
with our analysis. Also, the best performance shows on : smaller
than 200 for small dataset Bitcoin and : larger than 400 for medium
dataset Superuser, which indicates that large datasets need large : .
On top- recommendation task, the change of : in our given range
will not signi�cantly a�ect the F1 score. In general, it is reasonable
to select : as 200 to small datasets and increase it for large datasets,
which will not make appreciable impact for performance in this
reasonable range.

To sum up, LTGE is easy to achieve good performance on various
datasets with the parameters we suggest and it is not necessary
to put a lot of e�ort to adjust parameters if anyone uses LTGE for
di�erent datasets. For LTGEInc, it has the same conclusion since
the parameters of LTGEInc is consist with LTGE.

8 CONCLUSION AND DISCUSSION

In this paper, we introduce a large temporal graph embedding
method LTGE that can e�ciently encode temporal information

in temporal graphs. Speci�cally, we propose a new data structure
temporal-based bipartite graph (TBG) to model connections be-
tween nodes and temporal information. Then we devise an innova-
tive node similarity measure called temporal distribution similarity
(TPASim) and e�ciently generate the high-quality embeddings
with the property of TPASim. In addition, an advanced incremental
learning algorithm LTGEInc is designed, o�ering an e�ective so-
lution with theoretical guarantee to the challenges of incremental
embedding update in real-world temporal graphs. Extensive exper-
iments demonstrate that our methods LTGE and LTGEInc surpass
state-of-the-art solutions in both e�ciency and e�ectiveness.

In current work, our method does not consider node features,
which may further enhance the embedding quality as evidenced by
previous T-GNNs like Zebra. For such attributed graphs, a naive
solution is to fuse the feature information by concatenating the
node features with the embeddings generated by LTGE. In our
future work, we aim to extend our methods to attributed graphs by
incorporating the type of nodes and edges into the embeddings. In
addition, when graphs evolves, LTGEInc focuses on the addition of
edges and nodes. Some existing work [13, 70] proposes incremental
SVD for matrix deletion. It is an interesting direction to incorporate
such an approach with LTGEInc for handling the deletion of edges
and nodes. In particular, it remains an open problem on developing
e�cient algorithms with provable guarantees. To further expand
the applicability of our methods, we will study more applications
such as graph anomaly detection and temporal graph generation.

ACKNOWLEDGMENTS

Jing Tang’s work is partially supported by National Key R&D
Program of China under Grant No. 2024YFA1012701, by the Na-
tional Natural Science Foundation of China (NSFC) under Grant
No. 62402410 and U22B2060, by Guangdong Provincial Project (No.
2023QN10X025), by Guangdong Basic and Applied Basic Research
Foundation under Grant No. 2023A1515110131, by Guangzhou Mu-
nicipal Education Bureau (No. 2024312263), by Guangzhou Munici-
pal Science and Technology Bureau under Grant No. 2023A03J0667
and 2024A04J4454, and by Guangzhou Municipality Big Data Intel-
ligence Key Lab (No. 2023A03J0012), Guangzhou Industrial Infor-
mation and Intelligent Key Laboratory Project (No. 2024A03J0628)
and Guangzhou Municipal Key Laboratory of Financial Technol-
ogy Cutting-Edge Research (No. 2024A03J0630). Lei Chen’s work is
partially supported by National Key Research and Development Pro-
gram of China Grant No. 2023YFF0725100, National Science Founda-
tion of China (NSFC) under Grant No. U22B2060, Guangdong-Hong
Kong Technology Innovation Joint Funding Scheme Project No.
2024A0505040012, the Hong Kong RGC GRF Project 16213620, RIF
Project R6020-19, AOE Project AoE/E-603/18, Theme-based project
TRS T41-603/20R, CRF Project C2004-21G, Guangdong Province Sci-
ence and Technology Plan Project 2023A0505030011, Guangzhou
municipality big data intelligence key lab, 2023A03J0012, Hong
Kong ITC ITF grants MHX/078/21 and PRP/004/22FX, Zhujiang
scholar program 2021JC02X170, Microsoft Research Asia Collabo-
rative Research Grant, HKUST-Webank joint research lab and 2023
HKUST Shenzhen-Hong Kong Collaborative Innovation Institute
Green Sustainability Special Fund, from Shui On Xintiandi and the
InnoSpace GBA.

940

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. 2018.

Watch your step: Learning node embeddings via graph attention. Advances in
neural information processing systems 31 (2018).

[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[3] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. Advances in neural information processing
systems 14 (2001).

[4] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. In Proceedings of the twenty-�rst
annual symposium on Parallelism in algorithms and architectures. 233–244.

[5] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W
Tsang. 2020. Learning on attribute-missing graphs. IEEE transactions on pattern
analysis and machine intelligence 44, 2 (2020), 740–757.

[6] Xiaolong Chen, Yifan Song, and Jing Tang. 2024. Link Recommendation
to Augment In�uence Di�usion with Provable Guarantees. arXiv preprint
arXiv:2402.19189 (2024).

[7] Yuhan Chen, Yihong Luo, Jing Tang, Liang Yang, Siya Qiu, Chuan Wang, and
Xiaochun Cao. 2023. LSGNN: towards general graph neural network in node
classi�cation by local similarity. In Proceedings of the Thirty-Second International
Joint Conference on Arti�cial Intelligence. 3550–3558.

[8] da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. 2020.
Inductive representation learning on temporal graphs. In International Conference
on Learning Representations. https://openreview.net/forum?id=rJeW1yHYwH

[9] Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and DanWang. 2019. Adversarial
training methods for network embedding. In The World Wide Web Conference.
329–339.

[10] Haoran Deng, Yang Yang, Jiahe Li, Haoyang Cai, Shiliang Pu, and Weihao Jiang.
2023. Accelerating Dynamic Network Embedding with Billions of Parameter
Updates to Milliseconds. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. https://doi.org/10.1145/3580305.3599250

[11] Zezhong Ding, Yongan Xiang, Shangyou Wang, Xike Xie, and S Kevin Zhou.
2024. Play like a vertex: A stackelberg game approach for streaming graph
partitioning. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

[12] Lun Du, YunWang, Guojie Song, Zhicong Lu, and JunshanWang. 2018. Dynamic
Network Embedding: An Extended Approach for Skip-gram based Network
Embedding. In Proceedings of the Twenty-Seventh International Joint Conference
on Arti�cial Intelligence. https://doi.org/10.24963/ijcai.2018/288

[13] Xinyu Du, Xingyi Zhang, Sibo Wang, and Zengfeng Huang. 2023. E�cient
Tree-SVD for Subset Node Embedding over Large Dynamic Graphs. Proceedings
of the ACM on Management of Data 1, 1 (2023), 1–26.

[14] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another
of lower rank. Psychometrika 1, 3 (1936), 211–218.

[15] László Erdős, Antti Knowles, Horng-Tzer Yau, and Jun Yin. 2013. SPECTRAL
STATISTICS OF ERDŐS—RÉNYI GRAPHS I: LOCAL SEMICIRCLE LAW. The
Annals of Probability (2013), 2279–2375.

[16] Peng Fang, Fang Wang, Zhan Shi, Hong Jiang, Dan Feng, and Lei Yang. 2021.
HuGE: An entropy-driven approach to e�cient and scalable graph embeddings.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
2045–2050.

[17] Gene H Golub and Charles F Van Loan. 2013. Matrix computations. JHU press.
[18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep

Embedding Method for Dynamic Graphs. (May 2018).
[19] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[20] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review 53, 2 (2011), 217–288.

[21] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[22] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. 2002. Attack
vulnerability of complex networks. Physical review E 65, 5 (2002), 056109.

[23] Chengbin Hou, Han Zhang, Shan He, and Ke Tang. 2022. GloDyNE: Global Topol-
ogy Preserving Dynamic Network Embedding. IEEE Transactions on Knowledge
and Data Engineering (Oct 2022), 4826–4837. https://doi.org/10.1109/tkde.2020.
3046511

[24] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J Shane Culpepper.
2020. Temporal network representation learning via historical neighborhoods
aggregation. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 1117–1128.

[25] Mark A Iwen and BW Ong. 2016. A distributed and incremental SVD algorithm
for agglomerative data analysis on large networks. SIAM J. Matrix Anal. Appl.
37, 4 (2016), 1699–1718.

[26] Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. 538–543.

[27] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-
ings of the 12th international conference on World Wide Web. 271–279.

[28] Ming Jin, Yuan-Fang Li, and Shirui Pan. 2022. Neural temporal walks: Motif-
aware representation learning on continuous-time dynamic graphs. Advances in
Neural Information Processing Systems 35 (2022), 19874–19886.

[29] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:
//doi.org/10.1109/MC.2009.263

[30] Denis Kotkov, Joseph A Konstan, Qian Zhao, and Jari Veijalainen. 2018. Inves-
tigating serendipity in recommender systems based on real user feedback. In
Proceedings of the 33rd annual acm symposium on applied computing. 1341–1350.

[31] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. ACM, 333–341.

[32] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 221–230.

[33] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Governance in
social media: A case study of the Wikipedia promotion process. In Proceedings of
the International AAAI Conference on Web and Social Media, Vol. 4. 98–105.

[34] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. Advances in neural information processing systems 27 (2014).

[35] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
Temporal Graph Neural Networks Meet Temporal Personalized PageRank. Pro-
ceedings of the VLDB Endowment 16, 6 (2023), 1332–1345.

[36] Xi Liu, Ping-Chun Hsieh, Nick Du�eld, Rui Chen, Muhe Xie, and Xidao
Wen. 2019. Real-Time Streaming Graph Embedding Through Local Actions.
In Companion Proceedings of The 2019 World Wide Web Conference. https:
//doi.org/10.1145/3308560.3316585

[37] Xi Liu, Ping-Chun Hsieh, Nick Du�eld, Rui Chen, Muhe Xie, and Xidao
Wen. 2019. Real-Time Streaming Graph Embedding Through Local Actions.
In Companion Proceedings of The 2019 World Wide Web Conference. https:
//doi.org/10.1145/3308560.3316585

[38] Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, and Chenyi
Zhuang. 2019. A general view for network embedding as matrix factorization. In
Proceedings of the Twelfth ACM international conference on web search and data
mining. 375–383.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[40] Cameron Musco and Christopher Musco. 2015. Randomized block krylov meth-
ods for stronger and faster approximate singular value decomposition. Advances
in neural information processing systems 28 (2015).

[41] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion proceedings of the the web conference 2018. 969–976.

[42] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and dynam-
ics of users’ behavior and interaction: Network analysis of an online community.
Journal of the American Society for Information Science and Technology 60, 5
(2009), 911–932.

[43] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In Proceedings of the tenth ACM international conference on web search
and data mining. 601–610.

[44] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[45] Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. 2021.
Lightne: A lightweight graph processing system for network embedding. In
Proceedings of the 2021 international conference on management of data. 2281–
2289.

[46] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factoriza-
tion. In The World Wide Web Conference. 1509–1520.

[47] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[48] Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teo�li. 2022.
Explaining link prediction systems based on knowledge graph embeddings. In
Proceedings of the 2022 international conference on management of data. 2062–
2075.

[49] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal Graph Networks for Deep Learn-
ing on Dynamic Graphs. arXiv:2006.10637 [cs.LG]

941

https://openreview.net/forum?id=rJeW1yHYwH
https://doi.org/10.1145/3580305.3599250
https://doi.org/10.24963/ijcai.2018/288
https://doi.org/10.1109/tkde.2020.3046511
https://doi.org/10.1109/tkde.2020.3046511
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3308560.3316585
https://doi.org/10.1145/3308560.3316585
https://doi.org/10.1145/3308560.3316585
https://doi.org/10.1145/3308560.3316585
https://arxiv.org/abs/2006.10637

[50] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323–2326.

[51] Serge L Shishkin, Arkadi Shalaginov, and Shaunak D Bopardikar. 2019. Fast
approximate truncated SVD. Numerical Linear Algebra with Applications 26, 4
(2019), e2246.

[52] Junwei Su, Difan Zou, Zijun Zhang, and Chuan Wu. 2023. Towards robust graph
incremental learning on evolving graphs. In International Conference on Machine
Learning. PMLR, 32728–32748.

[53] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[54] Lloyd N Trefethen and David Bau. 2022. Numerical linear algebra. SIAM.
[55] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-

bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 1225–1234.

[56] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 839–848.

[57] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. 2021. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In Pro-
ceedings of the 2021 international conference on management of data. 2628–2638.

[58] Renchi Yang, Jieming Shi, Keke Huang, and Xiaokui Xiao. 2022. Scalable and
E�ective Bipartite Network Embedding. In Proceedings of the 2022 International
Conference on Management of Data. 1977–1991.

[59] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S Bhowmick.
2019. Homogeneous network embedding for massive graphs via reweighted
personalized pagerank. arXiv preprint arXiv:1906.06826 (2019).

[60] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S
Bhowmick. 2020. Scaling attributed network embedding to massive graphs.
arXiv preprint arXiv:2009.00826 (2020).

[61] Chuan-Yang Yin, Wen-Xu Wang, Guanrong Chen, and Bing-Hong Wang. 2006.
Decoupling process for better synchronizability on scale-free networks. Physical
Review E 74, 4 (2006), 047102.

[62] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[63] Hongyuan Zha and Horst D. Simon. 1999. On Updating Problems in Latent
Semantic Indexing. SIAM Journal on Scienti�c Computing 21, 2 (1999), 782–791.
https://doi.org/10.1137/S1064827597329266

[64] Guo-Qing Zhang, Di Wang, and Guo-Jie Li. 2007. Enhancing the transmission
e�ciency by edge deletion in scale-free networks. Physical Review E 76, 1 (2007),
017101.

[65] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. Prone: Fast
and scalable network representation learning.. In IJCAI, Vol. 19. 4278–4284.

[66] Wentao Zhang, Yu Shen, Yang Li, Lei Chen, Zhi Yang, and Bin Cui. 2021. Alg:
Fast and accurate active learning framework for graph convolutional networks.
In Proceedings of the 2021 International Conference on Management of Data. 2366–
2374.

[67] Yuyu Zhang, Liang Pang, Lei Shi, and Bin Wang. 2015. Large Scale Pur-
chase Prediction with Historical User Actions on B2C Online Retail Platform.
arXiv:1408.6515 [cs.LG]

[68] Tongya Zheng, Xinchao Wang, Zunlei Feng, Jie Song, Yunzhi Hao, Mingli Song,
Xingen Wang, Xinyu Wang, and Chun Chen. 2023. Temporal Aggregation
and Propagation Graph Neural Networks for Dynamic Representation. IEEE
Transactions on Knowledge and Data Engineering (2023).

[69] Wenliang Zhong, Rong Jin, Cheng Yang, Xiaowei Yan, Qi Zhang, and Qiang Li.
2015. Stock constrained recommendation in tmall. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2287–2296.

[70] Xun Zhou, Jing He, Guangyan Huang, and Yanchun Zhang. 2015. SVD-based
incremental approaches for recommender systems. J. Comput. System Sci. 81, 4
(2015), 717–733.

942

https://doi.org/10.1137/S1064827597329266
https://arxiv.org/abs/1408.6515

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Preliminaries
	3.2 Matrix Factorization for Graph Embedding

	4 The LTGE Algorithm
	4.1 Temporal Distribution Similarity
	4.2 Efficient Matrix Factorization for Temporal Graph Embedding

	5 An Incremental Method: LTGEInc
	6 Complexity Analysis
	7 Experiments
	7.1 Datasets
	7.2 Baselines and Parameter Settings
	7.3 Future Link Prediction
	7.4 Efficiency and Scalability
	7.5 Incremental Link Prediction
	7.6 Future Top-K Recommendation
	7.7 Parameter Analysis

	8 Conclusion and Discussion
	Acknowledgments
	References

