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ABSTRACT
Advancements in remote sensing technology allowed for collecting

vast amounts of satellite and aerial imagery with up to 1 cm pixel

resolutions, stored in raster format crucial for various research

fields. However, processing this data poses challenges, including

resolving data dependencies when location, resolution, and coor-

dinate systems do not align and managing large datasets within

memory constraints. This paper introduces RDPro, a novel Spark-

based system that efficiently processes and analyzes large raster

datasets. RDPro features a new data model tailored for data depen-

dencies in a distributed, shared-nothing environment, complete

with tools for loading and writing raster data. It also optimizes core

raster operations within Spark, allowing users to integrate com-

plex data science workflows. Comparative analysis shows RDPro

outperforms existing systems by up to two orders of magnitude.
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1 INTRODUCTION
Advancements in remote sensing technology have led to an ever-

increasing amount of geospatial data. In the past few years, over

500 satellites have been launched [51], collecting Earth observa-

tional data at resolutions from 50 cm to 1 km per pixel. Today we

have petabytes of earth observational data which became an im-

portant component of research in fields such as disaster response

and monitoring [5, 21], wild fire detection [41], management of

energy and natural resources [12, 32, 33], agricultural monitor-

ing [11, 20, 24, 37, 39, 55], and marine biology [19, 27]. Machine

learning paves the way for more application including object de-

tection, classification and prediction [1, 8, 20, 24].
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Figure 1: Example of RDPro Query Pipeline

Figure 1 illustrates an example of a query pipeline that an agronomist

can use to track crop health using satellite imagery. First, it loads

the Cropland dataset (CDL) [38] and applies a sliding window op-

eration that cleans the data. Concurrently, it loads the Landsat8

dataset [46] and computes the normalized difference vegetation

index (NDVI) for each pixel. To combine both datasets, we reshape
Landsat8 to match the coordinate reference system (CRS) and reso-

lution of CDL. Then, we overlay both datasets. This output is saved
as GeoTIFF files that the agronomist can further explore in a GIS

software. Additionally, the individual pixel values can be flattened
to aggregate using a standard Spark aggregateByKey operation.

The above example highlights three main challenges that data

scientists face when processing raster data. First, the system should

handle a single large file as in CDL and tens of thousands of small

files as in Landsat8. Second, it should process and optimize complex

query pipelines that mix raster operations, e.g., sliding window and

reshape, and regular operations, e.g., aggregateByKey. Third, raster

data processing often requires geographical alignment of thousands

of files to ensure a correct answer.

There are many big spatial data systems that can handle vector

data [2, 15, 52, 54, 57] but only limited work on raster data [16,

29, 40, 59]. Some systems tried to systematically process big raster

data, e.g., GeoTrellis [18], Rasdaman [4], Google Earth Engine [23],

Apache Sedona [56], and others [17, 34, 44, 59]. However, these

systems suffer from one or more limitations that hinder their use

in real data science applications as further detailed below:

(1) Single Machine: Some traditional database systems and pro-

gramming packages [17, 34] for raster data are limited to a single

machine and either fail or take too long to process large-scale data.

(2) Heavy Ingestion: Some raster-based systems [4, 23, 44] re-

quire an expensive data ingestion to load data into an internal model

for partitioning and indexing, optimizing for repetitive queries,

while modern applications often focus on one-time ad-hoc queries.
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Figure 2: Boundary conditions of convolution operation

(3) Limited Functionality: Some systems [7, 9, 30, 56] support

limited pixel-level operations but lack functionality for processing

the dataset as a coherent unit. For example, some systems ignore

tile boundaries in some operations. Figure 2 illustrates an example

of the convolution operation where GeoTrellis produces wrong

results at tile boundaries while RDPro handles the data correctly.

This illustrates the risk of prioritizing performance over accuracy.

(4) Constrained Query Runtime:GDAL and ChronosDB [17, 59]

are designed to run one primitive operation at a time, and users

have to run each operation separately.

(5) ExpensiveMemoryUsage:GeoTrellis andApache Sedona [18,
56] load large data chunks into memory, causing failures when the

dataset exceeds memory capacity.

This paper proposes RDPro, a novel distributed system implemented

on Spark that helps data scientists to efficiently perform complex

analysis on big raster data. It overcomes the limitations of existing

systems as follows: (1) RDPro is a distributed system built on Spark.

It introduces a new concept of Maplets by extending Spark RDD as

data processing model. (2) RDPro avoids data ingestion step and it

directly process raster files in common formats including GeoTIFF,

NetCDF, and HDF. (3) RDPro implements an exhaustive list of

operations that users may need to analyze raster data. (4) RDPro

extends the Spark RDD model to support raster data which gives

the users the advantage to run a complex spatial query pipeline

on their datasets. (5) RDPro has built-in components to partition

data into small units that can fit in memory.It also uses memory

optimization strategies to reduce memory cost along operations.

We run an extensive experimental evaluation that compares RDPro

to the state-of-the-art Spark-based systems, GeoTrellis [18] and

Sedona [56]. RDPro has up-to two orders of magnitude performance

gain while being perfectly able to scale to big raster data. Through

our collaboration with environmental science, we provide case

studies of RDPro applied in real applications.

The rest of this paper is organized as follows: Section 2 covers

the related work. Section 3 describes the proposed data model and

the design of raster operations in RDPro. Section 4 runs experimen-

tal evaluations of the proposed system. Section 5 describes three

real-world use cases and how RDpro can provide benefits. Finally,

Section 6 concludes the paper.

2 RELATEDWORK
This section covers the relevant work in the area of raster data

processing including single-machine and parallel systems.

2.1 Single Machine
The GIS community makes use of tools such as QGIS [35], Ar-

cGIS [36], PostGIS [34], GDAL [17] and raster analysis packages in

R [25] and Python [22] for their application needs. However, all of

these systems are limited to a single machine making them inef-

ficient when working with large raster datasets. When compared

to distributed systems, these single-machine systems either fail to

process large datasets or take significantly more time to perform

queries on large raster datasets. The proposed system RDPro is

implemented in Spark, which makes it more efficient and scalable

for processing large raster datasets than single-machine systems.

2.2 Parallel Raster Systems
Parallel raster processing systems can be categorized into CPU-

based distributed systems and GPU-based parallel systems. CPU-
based distributed systems that can process raster data include

SciDB [6, 44, 45], Rasdaman [3, 4], GeoTrellis [18], Apache Se-

dona [56, 58], Google Earth Engine [23], and ChronosDB [59]. Some

systems use MapReduce such as SciSpark [30], SciHadoop [7], Mr-

Geo [29], and ClimateSpark [9, 26]. The next part gives an overview

of these distributed systems and framework, especially the funda-

mental operations, such as reprojection and file loading process.

Some distributed work [7, 9, 30, 31, 44, 49] use the array data

model to support big scientific data and ignore the geographical

component, i.e., coordinate reference system (CRS), of the raster

data. They lack the reprojection operation which is particularly

critical when dealing with datasets with mixed projections. It is

common to store a big raster dataset as a set of files, called scenes,

with mixed projections, e.g., Landsat8. Thus, ignoring the geograph-

ical component renders these system unusable for big raster data.

Some systems [4, 23] support geographical data, but are limited

by an expensive data ingestion step. These systems implement

their own data model and require an ingestion phase that reads

the data and re-structures it according to their data model. Other

systems [59] require the user to manually place the files on each

machine in a specific way for the operations to work. This process

is suitable for repetitive queries on the same dataset where the

cost of the ingestion step is amortized over the number of queries.

However, modern data science applications often require one-time

ad-hoc queries which makes the data ingestion step a bottleneck.

Some systems [56, 59] support limited raster operations and

are not suitable for most data science applications. Furthermore,

they suffer from memory issues [18, 56] as they require loading

large data blocks into memory before processing. This limits their

scalability as shown in this paper.

GPU-based approaches are natural for processing raster data

and there is some preliminary work to utilize GPUs in raster analy-

sis. Some work [13, 14] focuses on vector data processing on GPU

which is typically done through rasterization. Other raster-based

work addresses specific raster operations such as indexing[28, 61,

62], compression[28, 61, 62] and polygon rasterization[48, 50, 60].

Some work [43, 53] provides raster processing frameworks but are

limited in reprojecting multiple files with different CRS. Work[53]

focuses on improving primitive operations using GPU while writ-

ing intermediate data to disk. Map reprojection work [42] also faces

similar limitations in handling multiple file dependencies with their
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Figure 3: Challenges with Real-world Raster Data

GDAL-based design and offers less functionality compared to this

paper. In general, this paper focuses on disk-based distributed pro-

cessing so GPU processing can be integrated to improve in-node

performance.

The proposed system, RDPro, is a distributed raster system that

fully supports geographical operations. It works directly on raster

files as they are obtained from satellite data repositories with no

need for any data conversion or ingestion. RDPro provides a rich

processing runtime that includes the major raster operations includ-

ing reprojection which is necessary to combine multiple datasets

together. RDPro takes complex query pipelines from users, breaks it

down into small units, and process it in parallel. This keeps memory

usage under control while scaling to terabytes of data.

3 PROBLEM FORMULATION AND DESIGN
First, we describe the challenges of handling real-world raster data.

Second, we define the raster data. Next, we define the logical data

model utilized in this system design and operations for raster analy-

sis. Finally, we present memory and network optimization solutions.

3.1 Problem Setting: Real Raster Data
Real world raster generally comes from various sources includ-

ing raw satellite data, rectified data, aerial imagery, and machine-

generated raster products such as land cover maps. Data scientists

explore these datasets to monitor land cover, crop health, or climate

change. One research demand requires the combination of multiple

data sources, e.g., Sentinel-2 and Landsat-8, for better performance

and coverage [7, 29]. However, the harmonization methodology

becomes increasingly complex as more raster data sources are used.

We summarize these challenges in the following few points which

could all occur at the same time.

(1) Multiple overlapping files:. In general, a single raster dataset

can be made available as a large set of files, sometimes thousands

of files. For example, Figure 3 shows files A, B, and C which

could belong to one dataset. Sometimes, these files slightly over-

lap which results in conflicting data that need to be resolved.

Thus, one cannot simply treat the dataset as a single large array.

Yet, these small arrays need to be aligned correctly to process

overlapping or boundary regions.

(2) Various resolutions: Raster products can have a wide range

of resolutions depending on the sensor used to collect the data,

e.g., E & F in Figure 3. As a real example, MODIS data has 1 km

resolution while some Sentinel products have 10 m resolution.

(0, 0) i

j

(W, H)(2, 12)

t0 t1 t3

t4 t5 t6 t7

t8 t9 t10 t11

w = 1
3x3 window

t2 tile

Figure 4: A raster dataset withwidth𝑊 = 17 and height𝐻 = 14

partitioned into a grid of 5 × 5 pixels.

This means that a single pixel of MODIS can overlap 10,000

Sentinel pixels. Users will want to harmonize these datasets.

(3) Various CRS: A CRS defines a geographical projection that

maps a region of the earth surface to a two-dimensional space

that corresponds to a raster dataset. Various datasets could have

different CRSs such as G&H in Figure 3. Even one raster product

could havemultiple CRS depending on the geographical location,

e.g., UTM zones in Landsat data. To combine these datasets,

users need to easily reproject datasets to a common reference

space before processing them.

(4) Large scale size: Satellite images can be collected daily, with up-

to terabytes of data with high-resolution. Additionally, satellite

images are dense, resulting in larger file sizes.

3.2 Raster data definitions
The first step in building a new query processing engine for raster

data processing is to define a logical data model to represent the

data and operations on it.

Definition 1 (Grid Space, 𝐺). A grid space is defined as a two-
dimensional grid that consists of𝑊 columns and 𝐻 rows with the
origin (0, 0) at the top-left corner as shown in Figure 4. The location of
a raster in the grid space bears no resemblance to what geographical
area it represents.

Definition 2 (Pixel, 𝑝). A pixel 𝑝 = (𝑖, 𝑗) represents the cell in
the grid at column 0 ≤ 𝑖 <𝑊 and row 0 ≤ 𝑗 < 𝐻 .

Definition 3 (Raster Tile). Given a grid𝐺 , and tile dimensions
𝑡𝑤×𝑡ℎ, the grid is broken down into tiles where each tile consists of 𝑡𝑤
columns and 𝑡ℎ rows, with the exception of the tiles at the last column
and/or the last row. Additionally, Figure 4 illustrates an example of a
raster tile with associated tile ID.

Definition 4 (Measurement,𝑀). The measurement is a func-
tion that defines a value for each pixel. We use𝑀 (𝑖, 𝑗) to indicate the
value of the pixel at location (𝑖, 𝑗).

Definition 5 (Non-geographical Raster Dataset). A non-
geographical raster dataset is defined by a grid𝐺 and a measurement
function𝑀 .

Definition 6 (World Space). The world space represents a rect-
angular space on the Earth’s surface defined by four geographical co-
ordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) that define the space [𝑥1, 𝑥2 [×[𝑦1, 𝑦2 [.
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The world space is associated with a coordinate reference system (CRS)
that maps world coordinates map to earth’s surface.

Definition 7 (Grid-to-World, G2W). G2W is a 2D affine
transformation that transforms a point from the grid space to the
world space. The inverse of this matrix is called world-to-grid, W2G
=G2W−1 and can be used to map locations from world space back
to grid space.

Definition 8 (Geographical Raster Dataset, 𝑅). A geograph-
ical raster dataset is defined by a grid space, 𝐺 = (𝑊,𝐻 ), a measure-
ment function𝑀 , a grid-to-world G2W transformation, and a CRS
defined by a unique spatial reference identifier (SRID).

In a geographical raster dataset, termed raster dataset from this

point on, each pixel occupies a rectangular space in the world de-

fined by transforming its occupied grid space using the associated

G2W. The measure value 𝑀 (𝑖, 𝑗) of that pixel indicates a physi-
cal value measured for that area, e.g., temperature or vegetation.

Although, the pixel width and height in grid space is one unit of

measurement, in world space the pixel width may not be equal to

pixel height. For example, the pixel width in world space may be

80 𝑐𝑚 and height may be 30 𝑐𝑚.

3.3 RDPro Design with Raster Operations
This section outlines RDPro design and defines how the data model

is integrated into Spark. We then detail how it addresses real-world

raster data challenges through a pipeline of various operations.

Figure 5 illustrates the RDPro system design. To efficiently

process raster data in a distributed environment, RDPro needs to

split large raster datasets into smaller pieces that can be processed

independently. At the same time, it should be able to treat arbitrarily

large raster datasets as one coherent dataset. To accomplish this

goal, RDPro introduces the notion of Maplets. A Maplet is a subset

of the raster data with additional location information, termed

MapLocator, enabling RDPro to process it independently. While

many file formats and systems split raster files into tiles, they remain

tied to the parent raster file. Maplets can freely move between

machines to allow greater scalability in a shared-nothing system.

Maplets also benefit from reducing memory usage because they are

a small subset of the data, which is different from loading the data

as an array in other works [18, 57].
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Figure 6: Raster Operations

Definition 9 (Raster MapLocator (RM)). Each raster is associ-
ated with auxiliary information called MapLocator, which is a light-
weight record that consists of the following information: (1) Raster
grid size,𝑊 and 𝐻 . (8 bytes) (2) The raster grid-to-world, G2W,
transformation. (48 bytes) (3) The SRID of the raster CRS. (4 bytes)
(4) Tile width and height, 𝑡𝑤 and 𝑡ℎ. (8 bytes)

Definition 10 (Raster Maplet). A Maplet consists of a MapLo-
cator, a tile ID (𝑡𝑖𝑑 ), and measure values for this tile.

The innovation of RDPro is to redefine all raster operations to

process a set of Maplets which allows them to scale on large clusters

and process terabytes of data.

Parallel data loading is essential in a distributed system. RDPro

reads both large files and a directory with numerous of files. It splits

each file into 128 MB partitions, aligning Spark’s lazy execution

paradigm. Once the entire query pipeline is defined, see Figure 1,

each partition is assigned to a processing core. Each core first reads

the file header to extract MapLocator information. To ensure correct

reading of the tiles across partition boundaries, each processing

core reads the tiles that start at the corresponding partition and

attaches the MapLocator to each of them, as illustrated in Figure 5.

Raster operations in RDPro define the basic set of operations

that data scientists use to build a query pipeline. All these opera-

tions are defined as Spark transformations that can be integrated

with existing Spark operations into one coherent application. Due

to limited space, this part focuses on three operations, Reshape,
SlidingWindow, and Overlay. Other operations, e.g., MapPixels or

FilterPixels, Flatten, and Rasterize, are simpler and are excluded

from this discussion.

(1) Reshape(𝑅1, 𝑅𝑀2): The reshape operation, as in Figure 6(r5),

converts the input raster dataset to a target MapLocator 𝑅𝑀2 with

possibly different CRS, raster size, and tile size. This operation is

crucial in aligning one or more raster datasets.

One challenge with the Reshape function is the complex conver-

sion between coordinate reference systems involving non-linear

functions like trigonometric functions. To solve this, the Reshape
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operation computes a grid-to-grid G2G transformation to map

locations from the input Maplet to the output grid space.

To calculate G2G for a specific source Maplet 𝑟𝑖𝑑 , RDPro begins

by retrieving a transformation function W2W that transforms

between the world coordinates of 𝑟𝑖𝑑 and the target CRS of 𝑅𝑀2.

Some existing libraries, e.g., GeoTools and Proj4J, provide this func-

tion for all standard CRS definitions. After that, the G2W from the

two MapLocators, G2W1 and G2W2, are used to compute G2G as:

G2G = G2W−1
2

◦W2W ◦ G2W1

, where ◦ denotes function composition. RDPro will optimize the

composite function, e.g., ifW2W is an affine transformation, then

the final function G2G is optimized by multiplying the three affine

matrices into onematrix. Subsequently, the inverse functionG2G−1

is calculated similarly. With G2G, the reshape operation continues

by processing the Maplet 𝑟𝑖𝑑 to map all its pixels to the target raster.

This creates a set of partial Maplets which are then grouped by

their IDs and merged into a set of final Maplets.

(2) SlidingWindow(𝑅,𝑤, 𝑓 ): As shown in Figure 6(r4), this opera-

tion applies a user-defined window calculation function to generate

an output raster dataset. For𝑤 ≥ 1, this focal operation needs all

pixels within a 2𝑤 + 1× 2𝑤 + 1 window around each pixel. Figure 7

shows an example when 𝑤 = 1, there are 3 × 3 = 9 pixels in the

window. A key challenge is efficiently handling pixels at Maplet

boundaries, especially, when spread across different machines.

A naive implementation of SlidingWindow would work at the

pixel level. For𝑤 = 1, each input pixel is replicated to nine output

windows which incurs a huge computational and memory overhead

that makes it unscalable.

To solve the above challenge, we develop an optimized algorithm

that works at theMaplet level. It replicates each input Maplet to the

affected output Maplets, using shallow copies to minimize overhead.

We also introduce intermediate WindowTiles, a logical wrapper

that groups input Maplets contributing to one output Maplet. For

example, in Figure 7,𝑤0 contains the four input tiles that contribute

Raster Dataset

Compressed

Decompressed

Shu�e
Access
pixels

Load

Load

Save as
GeoTIFF

01001
11001

Figure 8: Maplet compression life cycle along network

to the output Maplet 𝑠0. Once the WindowTile is complete, e.g.,𝑤0

with four tiles, the output tile is eagerly computed. Otherwise, we

group the window tiles by their ID to compute the final set of tiles

as shown in Figure 7. The eager computation of output Maplets

greatly reduces the network overhead since we only shuffle one

final output Maplet instead of up-to nine input Maplets.

(3) Overlay(𝑅1, 𝑅2): The overlay operation stacks 𝑅1 and 𝑅2 and

returns a single RDD[Maplet] as shown in Figure 6(r3). The Over-

lay operation ensures that each Maplet in the datasets shares the

same MapLocator. With the help of Reshape, the implementation of

Overlay becomes simpler and more efficient. Once the two datasets

are aligned, we co-partition and group them by 𝑡𝑖𝑑 and create a

wrapper that stacks the two tiles. This operation is used to combine

multiple bands per pixel including time series data.

Data writing efficiently produces raster files on disk. While

parallel data writing into multiple files is straightforward, RDPro

merges them into a single file for GIS applications. GeoTrellis and

Sedona collect all pieces into a single machine, causing crashes

with large GeoTIFF files. RDPro introduces compatibility mode
overcomes this. This mode operates in two phases: the first involves

parallel data writing. Each worker node independently writes its

Maplets to a file. It keeps track of the offset and length of each tile

on disk. The second phase concatenates all the files into a single file

and updates the tile offsets in the concatenated file. Accordingly, it

compiles the final header of the output file that allows a standard

GIS software to read the file correctly.

3.4 Memory and Network Optimization
RDPro employs two main memory optimization strategies. First,

to reduce the memory and network overhead RDPro employs the

lifecycle shown in Figure 8 to automatically compress and decom-

press Maplets as needed. When a file is initially loaded, Maplets

are represented in the same state of the input data which is usually

compressed. A Maplet is lazily decompressed when pixels are ac-

cessed. It is compressed again when it is shuffled over network or

when the final output is written to disk.

Second, objects in Spark are immutable so we must create a new

Maplet to modify pixel values, e.g., multiply each value by a con-

stant. RDPro addresses this by creating a lightweight tile-wrapper
class that references the original Maplet and adds the user-defined

function, e.g., multiply by a constant. Values are then converted
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Table 1: Raster Datasets

Dataset # pixels Resolution Size

CDL_Riverside 52.71 M 30 m 201.09 MB

CDL_California 1.57 B 30 m 5.33 GB

CDL_US 16.88 B 30 m 62.88 GB

Landsat8_Riverside 237.97 M 30 m 689.86 MB

Landsat8_SoCal 421 M 30 m 1205 MB

Landsat8_SoCal+Central 542 M 30 m 1551 MB

Landsat8_California 1.57 B 30 m 4.40 GB

Landsat8_US 52.53 B 30 m 146.78 GB

Landsat8_World 798.47 B 30 m 2.18 TB

Planet_US 2.46 T 3 m 6.7 TB

Figure 9: California and US Landsat8 Dataset Coverage

on-the-fly as needed. This approach benefits many operations, such

as convolution calculations.

4 EXPERIMENTS
This section provides an experimental evaluation that compares

RDPro to the distributed systems, Apache Sedona [56] and GeoTrel-

lis [18]. We did not compare RDPro with Google Earth Engine due

to its unsuitability for systematic and reproducible evaluations, as

it lacks hardware control and has unstable run times influenced

by user demand. Additionally, Rasdaman was excluded from the

comparison because its public version, running on a single machine,

does not offer a fair comparison with distributed systems.

4.1 Setup
We run RDPro, GeoTrellis, and Sedona on a Spark 3.1.2 cluster

with one head node and 12 worker nodes. The head node has 128

GB RAM, 2 × 8 core processors (Intel(R) Xeon(R) E5-2609 v4 @

1.70GHz), and each worker node has 64 GB RAM with 2 × 6 core

Xeon processors on CentOS Linux. We compare GeoTrellis-Spark

3.6.3 and Apache Sedona 1.5.0, running each experiment three times

and averaging the results. Experiments with GeoTrellis and Sedona

increase executor memory to 36GB, up from the default 16GB, to

help with their memory issues, while RDPro uses default settings.

Table 1 lists the datasets used in the experiments and their at-

tributes. All raster datasets except Planet Data are publicly available.

The CDL [38] and Landsat8 [46] dataset are made available by the

US Department of Agriculture (USDA) and US Geological Survey

(USGS), respectively. Planet_US is sourced from Planet Labs [47].

The size in bytes of each dataset reflects the number of bands and

data type of measurement values. In the Figure 9, we visualize

Landsat8 datasets to provide a clearer overview of the relationships

between the datasets.
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Figure 10: Load+write, Overlay on RDPro and baselines

4.2 Data Loading and Writing
This experiment loads each dataset and writes it back as a new

GeoTIFF file to test loading and writing performance. Figure 10(a)

shows the running time of both the loading and writing steps

combined for datasets that range from 700MB to 6.7TB. Comparing

baselines, first, RDPro is consistently faster than baselines with

up-to 3x speedup than GeoTrellis. Second, existing systems fail to

load and/or write large datasets as they tend to throw an out-of-

memory exception. In particular, Sedona is designed to load each

file as a single array and cannot partition large files. This fits its

proposed design to load small files that represent individual features

rather than processing large raster products [8]. On the other hand,

GeoTrellis raster writer needs to stitch all the data into a single

machine which causes failure even for moderately sized datsets, e.g.,

150 GB. Medium-scale data does not experience a dramatic speedup

because distributed systems perform better with large-scale data.

In medium-scale cases, not all resources may be fully utilized. For

instance, if the dataset is small, it may not be evenly distributed

across all machines, leading to parallelization overhead without

significant performance gains.

4.3 Overlay
This experiment evaluates the performance of the Overlay opera-

tion when combining two datasets: CDL with Landsat8 and CDL

with Planet. These results include the time of the reshape opera-

tion that modified Planet or Landsat8 to match the MapLocator of

CDL. Effectively, this adjusts the resolution, the CRS, and the tile

size to perfectly align the two datasets. Sedona is excluded from

this experiment due to the lack of a reproject function. To run this

operation in GeoTrellis, it needs to collect all metadata centrally on

a single machine to clip and align the two datasets which results in

its poor performance shown in Figure 10(b). RDPro is about three

times faster for small and medium datasets. As the data size grows,

RDPRo continues to scale while GeoTrellis starts to throw several

errors which shows its poor performance and lack of robustness.

4.4 Reshape Operation
This experiment evaluates the performance of the Reshape oper-

ation on RDPro and GeoTrellis in two scenarios, Reproject and
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Figure 11: Reproject and Rescale performance on Landsat8

Table 2: SlidingWindow running time in seconds on CDL

Data Size 201.09MB 5.33GB 62.88GB

RDPro 25.45 34.09 94.93

GeoTrellis 35.45 121.05 591.22

Rescale. In Reproject, we convert the CRS of Landsat8 datasets

to the commonly used EPSG:4326 CRS. Sedona does not support

this operation so it was excluded. We write the output to GeoTIFF

to ensure that the computation of the final raster is complete. Fig-

ure 11(a) shows the performance of the Reproject operation. RDPro

is almost twice as fast as GeoTrellis and can scale to the biggest

dataset while GeoTrellis encounters out-of-memory errors and fails

because it tries to load and decompress the raster tiles as an array

which is limited to 2GB in Java. We notice that RDPro still takes a

significant amount of time when processing large-scale data, and

this can be optimized by utilizing a tile wrapper approach similar

to the one employed in SlidingWindow. In Rescale, we reduce the
resolution of the Landsat8 dataset to produce a lower-resolution

version by reducing both width and height by a factor of 10, which

will return a 100 times smaller raster. We also write the output to

GeoTIFF to ensure all computations are complete. Similarly, for

the Rescale operation in Figure 11(b), RDPro scales seamlessly and

provides a better performance than GeoTrellis. The better perfor-

mance of RDPro is despite the fact that GeoTrellis ignores boundary

conditions and produces incorrect results as shown in Figure 2.

4.5 SlidingWindow (Convolution)
This experiment evaluates the performance of the SlidingWindow

operation in RDPro and GeoTrellis. Sedona does not support this

operation. We use a window of size one (𝑤 = 1) and calculate

the average of all the nine pixels in the window. This experiment

requires all tiles in the input dataset to have the same MapLocator.

To focus on the performance of the SlidingWindow function, we

only apply it on the CDL dataset because it ships as a single file. As

shown in Table 2, both RDPro and GeoTrellis can process all the

datasets but RDPro is up-to 6 times faster. This is an impressive

result, especially that GeoTrellis has an unfair advantage of ignoring

the difficult boundary cases as shown in Figure 2.

Table 3: Impact of SlidingWindow tile-wrapper on shuffle
and execution memory on CDL

RDPro

SlidingWindow

with

tile-wrapper

without

tile-wrapper

Data Size

Shuffle

Size (GB)

Peak Execution

Memory (GB)

Shuffle

Size (GB)

Peak Execution

Memory (GB)

201.09MB 0.028 0.33 0.039 11.54

5.33GB 0.65 12.37 1.11 258.5

62.88GB 9.41 77.51 17.28 777.29

Table 4: Impact of tile compression on shuffle and execution
memory on large scale dataset

FilterPixel +

Reshape

Compressed Decompressed

Data Size

Shuffle

Size (GB)

Peak Execution

Memory (GB)

Shuffle

Size (GB)

Peak Execution

Memory (GB)

146.78GB 0.41 9.11 1.17 9.26

2.18TB 4.56 150.41 13.22 153.94

6.7TB 40.12 706.48 98.25 725.31

4.6 RDPro Memory and Network Usage Study
This experiment evaluates the impact of the WindowTile approach

on the SlidingWindow operation. It demonstrates the effect of this

work in optimizing memory usage and shuffle size during complex

operations.We compare the operation using theWindowTile design

with a pixel level implementation. As shown in the Table 3, the eager

computation of the output inside the SlidingWindow tile-wrapper

significantly improves performance. It cuts the shuffle size in half

and reduces the peak memory usage by an order of magnitude. In

Table 4, we show the effect of automatic tile compression during the

shuffle operation. We first run FilterPixel and then call the Rescale

operation as described in subsection 4.4. The results show that

processing with compressed tiles along the network can reduce

shuffle size by more than 60% and peak execution memory by

around 2%. These optimizations significantly enhance performance

and enable RDPro to handle large scale datasets.

4.7 RDPro Scalability Study
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Figure 12: RDPro scalability study on Landsat8_USGS

To evaluate the scalability of RDPro, we vary the numbers of

worker nodes from 4 to 12 with 12 cores per node in Figure 12.

Our focus is on the Landsat8_USGS dataset, where we conduct
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load, write, and rescale operations. From the figure we make two

observations. First, RDPro scales linearly with the number of nodes

which indicates good load balancing. Second, even with four nodes,

RDPro is able to complete all experiments which is the result of the

Maplet design and the memory optimizations.

5 CASE STUDIES
This section presents three case studies, covering applications in

agriculture, visualization, and data preprocessing.

5.1 ET Model Calculation in Agriculture
This case study focuses on implementing the BAITSSS model [10,

11] to estimate the evapotranspiration (ET) from satellite andweather

data. This application has real-world applications to address water

shortage and promote water sustainability in agriculture.

The initial step harmonizes all datasets to match Landsat8 res-

olution, requiring the upsampling lower resolution rasters from

1000 m to 30 m. The model also performs hundreds of calculations,

straining Python scripts due to limited memory.Consequently, in-

termediate results are written to and read back from disk, which

complicates and slows down computations. Previous work [11] was

limited to small areas of interest, such as individual crop fields.

RDPro implements the ET-model and addresses memory limi-

tations using key operations: Reshape, Overlay, andMapPixel.
The process begins by reshaping all datasets for consistent reso-

lution, CRS and geographical extent. Then, all rasters are stacked

into a single RDD[Maplet] using the Overlay function, allowing

MapPixel to perform calculations directly. Each cycle builds on

previous results for time-series analysis, and the output is written

as a single GeoTIFF. RDPro can process extensive areas, such as the

entire California Central Valley farmlands for 24-hour analysis, in 4

hours. The current bottleneck is in the Reshape process. We plan to

optimize it using a tile-wrapper similar to WindowTile. In contrast,

the Python script takes 3.5 hours to upsample one raster, with the

full pipeline requiring at least 82 hours for one day of data.

5.2 Raster Dataset Visualization
We tackle the real-world scenario of providing data scientists with

a visualization or overview of a large dataset before downloading.

We introduce a thumbnail operation using the Reshape function to

create lower-resolution images. This approach combines all images

in the dataset into a single coherent GeoTIFF with the same CRS,

making it easily portable and quick to open in GIS software, e.g.,

QGIS. We import Landsat8_World data and compile it into a unified

GeoTIFF file with a 1000 m pixel resolution. RDpro completes in 11

minutes, much faster than parallelized GDAL, which takes 8 hours.

GeoTrellis encounters errors when reshaping to a customized pixel

resolution. RDPro also complete Planet_US data in 58 minutes.

5.3 Data Preprocessing for ML/DL Pipeline
This case study explores the application of machine learning and

deep learningmodels to satellite images, such as using SAM segmen-

tation on agricultural imagery [24]. The model require cleaned-up

satellite images, and as noted in the work [63], enhancing image

quality is necessary due to differences between traditional visual

and remote sensing imagery.

(a) Cleaned-up CDL (b) Original CDL

Figure 13: Cleaned-up and original CDL

We use CDL_California in this case study, applying a Sliding-
Window function to smooth the data by assigning the majority

value from a 9 element array to the center value. The comparison

between cleaned-up CDL and the original one is shown in Figure 13.

Subsequently, we write the output as a GeoTIFF file for further anal-

ysis. RDPro completes this process in 270 seconds. GeoTrellis lacks

support for custom window functions, and Kernel or convolution

calculations are unsuitable for categorical crop data.

This case study also extends to the query pipeline described in

Figure 1. RDPro completes the query pipeline for the California

region in 498 seconds and finishes the Riverside area in 22 seconds.

In contrast, a Python script using rasterio package takes signifi-

cantly longer and must write intermediate results to disk after each

operation. The Python script completes the Riverside area in 1,458

seconds. Additionally, the Python script requires merging all files

into a single image before feeding it into the pipeline, which further

slows down the process. Finally, we use the overlay operation to

combine the smoothed CDL with NDVI time series obtained from

Sentinel-2 satellites [24]. The final data that we feed into the ML

pipeline contains the crop at each pixel along with the NDVI time

series for an entire growing season, e.g., one year.

6 CONCLUSION
This paper described RDPro, a distributed system for efficiently

processing large raster data in data science applications. RDPro fea-

tures the RDD[Maplet] data model, improving data loading, spatial

queries, and file writing. Experiments confirm its scalability over

GeoTrellis and Apache Sedona, with case studies demonstrating

its effectiveness and pratical value. Future work will focus on im-

plementing new features. Currently, RDPro only supports nearest

neighbor and average interpolations, but it aims to include bilinear

and bicubic methods in the future which are challenging as they

require processing more input pixels for each output pixel. Addi-

tionally, RDPro is looking to improve upsampling, rescaling, and

reprojection operations using a similar tile-wrapper approach used

in sliding window and convolution.
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