
Still Asking: How Good AreQuery Optimizers, Really?
Viktor Leis

Technische Universität München
Germany

leis@in.tum.de

Andrey Gubichev
Databricks

USA
andrey.gubichev@databricks.com

Atanas Mirchev
Volkswagen Group

Germany
atanas.mirchev@volkswagen.de

Peter Boncz
CWI

Netherlands
p.boncz@cwi.nl

Alfons Kemper
Technische Universität München

Germany
kemper@in.tum.de

Thomas Neumann
Technische Universität München

Germany
neumann@in.tum.de

ABSTRACT
This retrospective revisits our 2015 PVLDB paper How Good Are
Query Optimizers, Really?, which challenged the prevailing notion
that query optimization was a solved problem. By designing the
Join Order Benchmark (JOB) and conducting a series of system-
atic experiments, we empirically disentangled the contributions of
plan enumeration, cost modeling, and cardinality estimation. Our
findings showed that cardinality estimation errors are widespread
and often the dominant factor behind poor query plans, while cost
models and enumeration strategies matter comparatively less. The
benchmark and methodology helped refocus the community’s at-
tention on cardinality estimation and led to a resurgence of research
in this area, including learned and AI-based approaches. We reflect
on the role of experiments and benchmarking in database research,
survey developments in query optimization over the past decade,
and discuss open challenges around robustness, adaptive execution,
and realistic workloads.

PVLDB Reference Format:
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. Still Asking: How Good Are Query
Optimizers, Really?. PVLDB, 18(12): 5531 - 5536, 2025.
doi:10.14778/3750601.3760521

1 INTRODUCTION

Is query optimizationmagic? Compared to other critical internal
components – such as the query executor, storage manager, and
transaction manager – the query optimizer is often seen as mysteri-
ous, even esoteric. It has a reputation as a kind of black art, typically
mastered only by those who have spent decades working on it. The
optimizer’s primary goal is to select an efficient execution plan for
a query expressed in a declarative language like SQL. While the
basic ideas behind cost-based, Selinger-style [4, 32] optimizers are
easy enough to understand, real-world optimizers rely on a broad
range of techniques, including advanced plan enumeration and
optimization algorithms, rule-based transformations, sophisticated
cost models, statistical information about the data, and even crude

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3760521

heuristics. The complex interplay among these techniques makes
it difficult to predict the impact of any single change on the overall
behavior of the optimizer.

Query optimization solved? Our goal with the 2015 PVLDB pa-
per How Good Are Query Optimizers, Really? was to try to demystify
query optimization and to empirically disentangle the interactions
among plan enumeration, cost models, and cardinality estimation.
At that time, query optimization research had become somewhat
of a niche area within the database research community. While
interesting papers were still being published, the area as a whole
appeared somewhat stagnant – and from the prevailing topics at
the time one might have (incorrectly) inferred that in its core, query
optimization was a solved problem. The few new papers that did
appear focused primarily on optimization algorithms for very large
join queries. Most of these sophisticated algorithms guarantee opti-
mality in the sense that, if the cost model and cardinality estimates
were correct, the algorithm will find the cheapest plan. However,
this raises a more practical question: how large is the benefit of
fully exploring the plan space, and how accurate are the cost model
and cardinality estimates in practice?

The Achilles Heel. In 2014, toward the end of his long and suc-
cessful career in query optimization at IBM, Guy Lohman wrote:

“The root of all evil, the Achilles Heel of query opti-
mization, is the estimation of the size of intermediate
results, known as cardinalities. Everything in cost
estimation depends upon how many rows will be pro-
cessed, so the entire cost model is predicated upon the
cardinality model. In my experience, the cost model
may introduce errors of at most 30% for a given car-
dinality, but the cardinality model can quite easily
introduce errors of many orders of magnitude!” [20]

So there seemed to be a disconnect between the academic commu-
nity and industry on the state of query optimization, and specifically,
cardinality estimation. In industry, DBMS development teams get
confronted with a continuous stream of bugs and issues filed by
users, often the result of sub-optimal optimization of SQL queries
running on real-life customer datasets. In contrast, in academia,
before the JOB paper, workloads would be evaluated on the TPC

5531

https://doi.org/10.14778/3750601.3760521
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3760521


benchmarks, which use data that is synthetically-generated and de-
void of correlation or heavy skew. On these synthetic benchmarks,
query optimization is a much less pressing problem.

Join Order Benchmark. The biggest hurdle in our study there-
fore was designing a suitable workload. We realized that standard
benchmarks such as TPC-H and TPC-DS – though highly successful
for evaluating query execution – are not well-suited for assessing
query optimization. Ideally, we would have had access to a real-
world dataset paired with real-world queries. Instead, we settled
for a real-world dataset (IMDB) and 113 manually crafted queries.
We intentionally kept the query structure very simple: each query
consisted of a single Select-Project-Join block, such as to focus on
the join ordering problem, which we considered the core problem
for query optimization. The resulting workload is called the Join
Order Benchmark (JOB).

Real systems have large cardinality errors. Answering our
research questions required not only a suitable benchmark, but
also several methodological innovations. To compare the quality
of cardinality estimation across different systems, we developed a
setup to extract cardinality estimates from several relational data-
base systems. By obtaining estimates for all intermediate results in
JOB, and comparing them to the true cardinalities obtained through
execution, we showed that estimation errors are large and grow
rapidly with query complexity. Significant errors – often one or-
der of magnitude or more for larger expressions – occur routinely
across all systems.

Cardinality errors cause large slowdowns. The next step was to
determine the impact of these estimation errors on query execution
times. To do this, we modified PostgreSQL to allow the injection
of cardinalities into its optimizer. We found that, while true car-
dinalities do not significantly affect runtimes for most queries, a
substantial fraction benefit dramatically. In fact, in PostgreSQL 9.4,
roughly 10% of the JOB queries failed to complete in any reason-
able time frame due to cardinality estimation errors. Our results
also showed that the performance degradation caused by misesti-
mation is more pronounced when more indexes are available – a
finding confirmed in a recent experimental study using Microsoft
SQL Server [17].

The cost model does notmattermuch. To investigate the impact
of the cost model, we compared PostgreSQL’s default cost model
with both a tuned version and a trivial one. Overall, we found that
the impact of the cost model is dwarfed by errors in cardinality
estimation.

Join enumeration space size matters (somewhat). Finally, we
investigated the impact of join enumeration space size on query per-
formance. Unsurprisingly, we found that a larger search space (e.g.,
including bushy trees) improves performance compared to more
restricted spaces (e.g., only left-deep trees), and that full enumera-
tion via dynamic programming outperforms heuristic approaches
such as greedy operator ordering. However, we again observed
that these benefits are much smaller than the improvements gained
from more accurate cardinality estimates. Note that the results
reported in the conference version of the paper were incorrect

due to a data-handling issue; they were corrected in the journal
version [19].

Impact. We are pleased that our paper has contributed to the
growth of research in query optimization and cardinality estima-
tion. Anecdotally, junior researchers have told us that the paper
served as their introduction to the area and motivated them to pur-
sue research in query optimization. According to Google Scholar,
the yearly number of citations for the conference version of the pa-
per increased from 35 in 2017 to 176 in 2024. This humbling number
reflects a growing interest in query optimization, particularly in
learned and AI-based approaches. Today, the conference paper [18]
and its extended journal version [19] are usually cited either to
motivate the need for better cardinality estimates and robust query
execution strategies, or because JOB is used as a benchmark. The
paper and JOB helped operationalize the problem of cardinality es-
timation – transforming it from a vague concern into a measurable
and actionable optimization target.

Outline. In this retrospective, we first reflect on the role of experi-
ments and benchmarking in the database research community. We
then survey key developments in query optimization over the past
decade. Finally, we conclude with a discussion of open questions
and promising research directions.

2 THE STORY OF THE JOIN ORDER
BENCHMARK

Ahappy accident.Much of the impact of our paper stems from the
wide adoption of the Join Order Benchmark – despite the fact that
we did not initially set out to propose a new benchmark. Instead,
designing a custom workload was simply a necessity to answer
the research questions we had posed. It was only relatively late
in the project that we realized that packaging and promoting our
workload as a benchmark could benefit other researchers. This
turned out to be a fortunate decision: the paper provided both a
compelling motivation (via experimental evidence) and a practical
tool (via the JOB artifact) for advancing research in cardinality
estimation.

Synthetic data generators are too easy. Standard benchmarks
such as TPC-H, TPC-DS, and the Star Schema Benchmark include
synthetic data generators. To enable scalability without altering
query behavior, these generators rely on relatively simple data
distributions and assumptions. For example, in TPC-H, each or-
der contains between 1 and 7 lineitems, with the number chosen
uniformly at random. In contrast, real-world data often exhibits
skewed distributions, long tails, and is dominated by strings [37]. In
real-world datasets one observes value, frequency and join-hit-rate
skew, as well as correlations between values in different columns
and even tables. For instance, the amount of tuples selected by a
(column=constant) can differ by orders of magnitude, depending on
the constant. A conjunction of predicates can even be completely
correlated, e.g., in model=’accord’ AND make=’honda’ the second
predicate adds nothing [24]. Correlations also span connected ta-
bles, e.g., the join hit ratio between movies produced in France
and actors born in Paris is much higher than on average. Overall,
synthetic data generators are overly sanitized and tend to “bake in”

5532



many of the assumptions – such as uniformity, independence, and
the principle of inclusion – that cardinality estimators themselves
rely on. This makes synthetic benchmarks significantly easier than
real-world workloads.

Dataset. To make cardinality estimation a challenging and mean-
ingful task, we needed a real-world dataset. Although many inter-
esting datasets are available online, most are denormalized. Because
our goal was to study join ordering, we required a relational, nor-
malized schema with multiple tables that would yield non-trivial
join queries. We also wanted the dataset to be of reasonable size to
support meaningful runtime experiments. Eventually, we settled on
the IMDB database. After transforming it using the imdbpy package,
we obtained a schema with 21 relations.

Queries. In addition to the dataset, we needed queries – which
proved even more challenging to obtain. One of the authors, then
an undergraduate student, was tasked with manually creating them.
The final workload consists of 113 queries based on 33 query tem-
plates that differ in their base table predicates. A small number of
queries are intentionally designed to return empty results, reflecting
a common occurrence in real workloads but one rarely seen in syn-
thetic benchmarks. All attributes in the SELECT clause are wrapped
in a MIN aggregate to avoid copying large result sets to the client,
which could otherwise become a performance bottleneck [30].

Is JOB realistic? Given the origins of the JOB queries, we do not
claim that the benchmark is “realistic” or representative of real-
world workloads. However, we would argue that the workload
is reasonable, and there is no compelling reason why a database
system should perform poorly on it.

Why JOB was widely adopted. JOB was explicitly designed to
evaluate cardinality estimation, cost models, and join enumeration.
Its query structure is deliberately simple, consisting solely of inner
joins and base table selections. All joins are on PK/FK or FK/FK
integer attributes. This simplicity – combined with its manageable
size – makes JOB easy to implement in prototype systems and
well-suited for exploring and comparing different optimization
approaches.

Limitations of JOB. The very features that make JOB appeal-
ing – its basis in a real-world dataset and the structural simplicity
of its queries – also constitute its primary limitations. Unlike syn-
thetic benchmarks, which can be scaled to arbitrary sizes, the IMDB
dataset is simply too small to serve as a meaningful benchmark
for large-scale, distributed query processing systems. Moreover,
JOB lacks many common and challenging SQL features, such as
GROUP BY, outer joins, subqueries, and complex expressions1. Fi-
nally, the specific way in which the JOB queries were constructed
may also influence some of the findings reported in our paper. For
example, we recently observed that while query optimizers tend
to underestimate cardinalities as the number of joins increases on
JOB, the opposite trend (overestimation) occurs on the SQLStorm
benchmark [31].

1We were fortunate that one of the VLDB reviewers rightly criticized the name we
had originally chosen, Query Optimizer Benchmark, which prompted us to adopt the
more appropriate name Join Order Benchmark.

3 ON EXPERIMENTS, ANALYSES, AND
BENCHMARKS

We submitted our paper to the Experiments and Analyses (E&A)
track of PVLDB 2015. A Test of Time Award for an E&A paper is
a fitting opportunity to reflect on the history and future of experi-
mental science in the database community.

History of the E&A track.The E&A track has its roots in a “special
topic” experiment at VLDB 2008, which aimed to “meet needs for
consolidation of a maturing research area by providing a prestigious
forum for in-depth analytical or empirical studies and comparisons
of existing techniques” [1]. The driving force behind this initiative –
and chair of the first two iterations – was Volker Markl. Originally,
E&A papers were reviewed by a separate program committee and
presented in a dedicated session of the conference. Today, they are
reviewed by the general VLDB program committee and integrated
into the main conference program. During the review process, E&A
papers are marked, and program committee members are instructed
to evaluate them using appropriate, special criteria.

E&A impact.We believe the E&A initiative has been highly suc-
cessful and has significantly enriched the database literature. Similar
initiatives have been adopted by EDBT (since 2022) and SIGMOD
(2026). While experimental papers were occasionally published at
prestigious database venues even before the introduction of explicit
E&A categories, it is likely that many influential papers – including
our own – would not have been written without this dedicated
paper type. This success has also been supported by making E&A
papers as visible and prestigious as regular VLDB papers. Compar-
ing existing algorithms, designing meaningful benchmarks, and
carefully analyzing experimental results often requires an inordi-
nate amount of effort – but this work benefits the entire community.
It is encouraging that the database community has found a way to
properly incentivize this kind of contribution. Other community-
wide efforts, such as vision papers, reproducibility initiatives, and a
stronger emphasis on encouraging authors to publish source code,
are also promising.

EA&B. It is altogether fitting and proper that, starting with VLDB
2021, the E&A category was renamed to Experiments, Analysis
& Benchmarks (EA&B). After all, good experiments require well-
designed and meaningful benchmarks, and many E&A papers begin
with the design of such benchmarks. For better or worse, bench-
marks shape the research landscape. Good benchmarks can drive
progress by providing objective targets and can thus contribute
to the development of better systems. Unrealistic benchmarks, on
the other hand, can hinder progress by misleading researchers
and encouraging work on irrelevant aspects of a problem. While
there is value in having a small number of established and well-
understood benchmarks such as TPC-C and TPC-H these should
not be the sole gold standard for determining whether a research
idea is worthwhile. After all, benchmarks are never perfect – JOB
certainly has many weaknesses – and should therefore be updated,
revised, or superseded, based on lessons learned from their adoption
and emerging real-world challenges.

5533



4 2015-2025: A DECADE OF QUERY
OPTIMIZATION RESEARCH

Over the past ten years, we have witnessed a resurgence in query
optimization research. Notably, two monographs on query opti-
mizer implementation have been published: one by Ding et al. [7],
and another by Moerkotte [26]. While not exhaustive, this section
provides a brief overview of the major research themes, highlight-
ing representative papers.

4.1 Learning-Based Approaches
Since 2015, deep learning has disrupted an increasing number of
areas within Computer Science. Unsurprisingly, learning-based
techniques have also played a prominent role in recent query opti-
mization research.

Learning cardinalities. Cardinality estimation is a natural fit
for statistical learning methods: it is a data-driven, inherently un-
certain problem with a clear optimization objective – yet one for
which we still lack a robust solution. Two main approaches can
be distinguished: query-driven cardinality estimation (supervised
learning) and data-driven techniques (unsupervised learning). As
the names suggest, the former learns a statistical mapping from
queries observed in a particular workload to cardinality estimates,
while the latter models the data distribution directly. MSCN [16] is
an example of a query-driven approach. In contrast, DeepDB [12]
and NeuroCard [46] exemplify data-driven approaches, modeling
the joint probability distribution of a relation or database. There
are also hybrid methods, such as UAE [42].

Learning to find better plans. Rather than merely improving car-
dinality estimation through statistical methods and feeding these
estimates into traditional optimizers, one can also learn query plans
directly. Neo [22] uses an existing optimizer to bootstrap a model
that generates full-fledged execution plans. Bao [21] and FAST-
gres [41] steer an existing optimizer through optimizer hints by
learning how these affect the performance of specific queries. Skin-
nerDB [35] employs reinforcement learning during query execution
to explore different join orders.

Learned approaches have not yet been widely adopted. Sev-
eral independent experimental studies [11, 15, 38] confirm that
learning-based methods can improve estimation quality (e.g., q-
error) over traditional approaches on benchmarks such as JOB.
However, these methods also present notable drawbacks, including
high training and inference costs, difficulty adapting to dynamic en-
vironments, challenges in obtaining high-quality training data, and
unpredictability due to their black-box nature [38]. For a Bao-style
plan-based approach, Microsoft reported limited performance gains
in production and cited challenges such as noisy and expensive
performance measurements [13]. Thus, despite promising experi-
mental results in academic settings, learning-based techniques have
yet to see widespread adoption in industry.

4.2 Theory to the Rescue?

Worst-case bounds. An alternative paradigm in cardinality esti-
mation relies on theoretical worst-case bounds derived from data
statistics, as exemplified by SafeBound [5] and LpBound [48]. A

key challenge, however, is that practical heuristics often yield esti-
mates that are closer to the true cardinality than these worst-case
bounds. Despite this, recent theoretical work is making progress
toward significantly tightening such bounds. Looking ahead, these
approaches could inspire new sketching techniques or be combined
with traditional or learned estimators – for example, to limit the
impact of large estimation errors (outliers) when other methods
fail.

Worst-case optimal joins. The theory community successfully
developed Worst-Case Optimal Join (WCOJ) algorithms [28, 29],
and these have also been adopted in some systems [9, 36]. WCOJ
algorithms achieve run-time complexity superior to traditional bi-
nary joins (that join two relations at-a-time) on “diamond shaped
join” plans [3]. In such plans, the inputs and final query result are
much smaller than the intermediate results generated by traditional
joins. Examples of such query plans are cyclic join patterns over
many-to-many (n:m) relationships, as found in graph exploration,
e.g., triangle queries. An advantage of WCOJs is that it makes de-
termining a join order less relevant, since they execute multiple
joins at once. However, the cost of constructing the – typically
– trie-shaped data structures needed for WCOJs, which requires
materialization of all inputs, mean that such algorithms can be
slower when the query does not have strong diamond character-
istics, which is the case in JOB, and when the inputs do not fit in
memory [39]. Therefore, a query optimizer still needs to decide
when to use a WCOJ or not [25], but estimating the cost of such
explosive/graph joins is an area where cardinality estimation is still
weak.

4.3 Better Benchmarks
While many of the papers discussed above use JOB for evaluation,
several new benchmark proposals have also emerged.

Synthetic benchmarks. LDBC created the Social Network Bench-
mark (SNB) with two workloads: Interactive [8] and Business In-
telligence [34]. Both operate on a synthetically generated graph
dataset, which, when represented relationally, features “growing”
many-to-many (n:m) joins. The dataset is further enriched with
structural and value correlations, and the benchmark queries are
parameterized to explicitly exploit these correlations [10].

Manually-crafted workloads. Despite the relatively simple struc-
ture of the JOB benchmark, many early learning-based approaches
used JOB-light, an even more simplified variant introduced in
the MSCN paper [16]. At the opposite end of the spectrum, JOB-
complex [40] was recently proposed to increase the benchmark’s
difficulty, for example, by introducing joins on non-PK/FK and
string attributes. The Cardinality Estimation Benchmark (CEB),
introduced in the Flow-Loss [27] paper, programmatically gener-
ates a large number of queries on the IMDB and Stack Exchange
datasets. Another benchmark based on the Stack Exchange dataset
is STATS-CEB [11], which consists of 146 hand-curated queries.

4.4 Runtime Approaches

Runtime feedback. Since decades of work on cardinality esti-
mation failed to result in a decisive breakthrough, an alternative

5534



avenue is to learn cardinalities during run-time, e.g., by observing
the intermediate result sizes of queries as they get executed. This
had been proposed long before JOB, specifically in IBM’s Learn-
ing Optimizer (LEO) project [33]. An important lesson from this
approach was that having exact knowledge on the cost of some
query plans does not necessary lead to improved decision making.
Specifically, if the cost model underestimates the size of alternative
(not yet executed) plans, these will appear to be very attractive
compared to the real cardinality of the executed plan. This can
lead to poor decisions and is called “fleeing from knowledge to
ignorance” [24]. The discovery of this phenomenon led to the iden-
tification of the wider problem of how to combine estimates that
come from different estimators, in a probabilistically consistent way.
Maximum Entropy [23] is a solution to this problem, but it is com-
putationally very expensive and difficult to apply to arbitrary join
queries, limiting its practical use. We suspect that issues similar to
“fleeing from knowledge to ignorance” haunt many learning-based
approaches as well.

Limited runtime adaptivity. There also exist more limited, but
practical, forms of runtime feedback. One is to dynamically reorder
certain kinds of joins in a query pipeline based on observed runtime
behavior [14, 51]. Another approach is to dynamically adapt the
distributed joins between broadcasting and shuffling [43]. These
techniques operate at the level of physical operators and have
become increasingly widespread, improving system robustness
without relying on cardinality estimates.

5 LESSONS, CHALLENGES, AND FUTURE
DIRECTIONS

Overfitting. JOB has been used in a wide array of (mostly) learning-
based inspired approaches to query optimization. While of lot of
these research efforts have reported positive results, we note that
learned query optimization is vulnerable to overfitting. This cer-
tainly is a danger in JOB, because of its small dataset and lim-
ited query workload. To guard against this, benchmarks on large
real-life datasets and diverse query workloads are needed. In this
VLDB conference, we introduce the SQLStorm benchmark [31],
which leverages LLMs to generate large and complex workloads. Its
methodology enables workload scales far beyond JOB and improves
robustness against overfitting. We believe that there is significant
opportunity for further research in this space, e.g., into targeted
benchmark development that model real-world query logs [6]. It
could also be the case that such large-scale benchmarking efforts
eventually will show limits of learned query optimization. As men-
tioned, in real-world systems learned methods have not replaced
classical methods yet.

Regressions can prevent innovation.We should acknowledge
that even traditional query optimizers in many cases already work
so well that even limited overheads become show-stoppers. Per-
formance regressions are the bane of industry efforts in query
optimization: even if a particular technique noticeably improves
the average performance of a large workload, the presence of re-
gressions can prevent its adoption. In practice, users rarely notice
queries that become faster, but are quick to report regressions when

queries slow down. As a result, a central challenge in query opti-
mization is to identify and improve the negative outliers without
degrading performance for queries that are already well-optimized.

Yannakakis revival. In recent years, there has been a revival of
run-time techniques for executing complex queries. Specifically,
the idea to make the Yannakakis algorithm [47] practical, is now
spurring a lot of research, in which JOB and other query optimiza-
tion benchmarks get used. The Yannakakis join processing algo-
rithm has complexity that is linear in the input tables and query
result, and hence is optimal. It uses semi-joins to first reduce all
input tables to those subsets of rows that actually participate in the
query result. However, in doing so it reads the input twice, which
in practice makes it slower on many queries than a traditional join
plan with correct join order. The new approaches [2, 44, 45, 49, 50]
optimize its semi-join reduction strategy using cost models, heuris-
tics, or run-time feedback, and enhance its raw speed by replacing
semi-joins with probabilistic filters and adaptive query execution.
This wave of work could be seen as an alternative path forward,
partially by-passing the limitations of cardinality estimation errors.

Data lake challenges. While run-time techniques can dampen
the effects of wrong join orders [50], they still obtain best results if
the join order is optimal. We note that the availability of meta-data
has become scarcer – even just key constraints, let alone statistics
or sketches – in modern cloud-based environments, compared to
classical on-premise data warehouses, common at the start of the
millennium. Run-time techniques rely less on models and statistics,
and thus are at an advantage in such environments. But, efforts to
enhance Data Lakes by introducing semantic layers/views, which
add meta-data beyond the realm of traditional database schemata,
could also start playing a role in enhancing query optimization.

Conclusion. Overall, we foresee a future where combination of
static and run-time optimization is used, enhanced by novel kinds
of metadata and where robust benchmarking will remain a crucial
technique to evaluate the progress of this field.

REFERENCES
[1] 2008. 34th International Conference on Very Large Data: Calls. https://www.cs.

auckland.ac.nz/research/conferences/vldb_site/calls.html#125
[2] Liese Bekkers, Frank Neven, Stijn Vansummeren, and Yisu Remy Wang. 2024.

Instance-Optimal Acyclic Join Processing Without Regret: Engineering the Yan-
nakakis Algorithm in Column Stores. CoRR abs/2411.04042 (2024).

[3] Altan Birler, Alfons Kemper, and Thomas Neumann. 2024. Robust Join Processing
with Diamond Hardened Joins. Proc. VLDB Endow. 17, 11 (2024), 3215–3228.

[4] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In PODS. 34–43.

[5] Kyle B. Deeds, Dan Suciu, and Magdalena Balazinska. 2023. SafeBound: A
Practical System for Generating Cardinality Bounds. Proc. ACM Manag. Data 1,
1 (2023), 53:1–53:26.

[6] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeffrey F. Naughton,
and Stratis Viglas. 2022. DIAMETRICS: benchmarking query engines at scale.
Commun. ACM 65, 12 (2022), 105–112.

[7] Bailu Ding, Vivek R. Narasayya, and Surajit Chaudhuri. 2024. Extensible Query
Optimizers in Practice. Found. Trends Databases 14, 3-4 (2024), 186–402.

[8] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In Proc. SIGMOD Conference.
ACM, 619–630.

[9] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational
Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891–1904.

[10] Andrey Gubichev and Peter A. Boncz. 2014. Parameter Curation for Benchmark
Queries. In Proc. TPCTC (LNCS, Vol. 8904). Springer, 113–129.

5535

https://www.cs.auckland.ac.nz/research/conferences/vldb_site/calls.html#125
https://www.cs.auckland.ac.nz/research/conferences/vldb_site/calls.html#125


[11] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–
765.

[12] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[13] Matteo Interlandi. 2024. Running a Query Optimizer Advisor in Production:
What we Learned (and What the Model didn’t). https://hpts.ws/papers/2024/
2024_session9_interlandi.pdf

[14] David Justen, Daniel Ritter, Campbell Fraser, Andrew Lamb, Nga Tran, Allison
Lee, Thomas Bodner, Mhd Yamen Haddad, Steffen Zeuch, Volker Markl, and
Matthias Boehm. 2024. POLAR: Adaptive and Non-invasive Join Order Selection
via Plans of Least Resistance. Proc. VLDB Endow. 17, 6 (2024), 1350–1363.

[15] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study. In
SIGMOD Conference. 1214–1227.

[16] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[17] Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023.
Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft
SQL Server. Proc. VLDB Endow. 16, 11 (2023), 2871–2883.

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[19] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668.

[20] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? https://wp.
sigmod.org/?p=1075

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD Conference. 1275–1288.

[22] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[23] Volker Markl, Peter J. Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Srivastava,
and Tam Minh Tran. 2007. Consistent selectivity estimation via maximum
entropy. VLDB J. 16, 1 (2007), 55–76.

[24] VolkerMarkl, NimrodMegiddo,Marcel Kutsch, TamMinh Tran, Peter J. Haas, and
Utkarsh Srivastava. 2005. Consistently Estimating the Selectivity of Conjuncts
of Predicates. In VLDB. 373–384.

[25] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by
Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11
(2019), 1692–1704.

[26] Guido Moerkotte. 2023. Building Query Compilers (Draft / Under Construction).
[27] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim

Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality Esti-
mates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032.

[28] Hung Q. Ngo. 2018. Worst-Case Optimal Join Algorithms: Techniques, Results,
and Open Problems. In PODS, Jan Van den Bussche and Marcelo Arenas (Eds.).
ACM, 111–124.

[29] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. J. ACM 65, 3 (2018), 16:1–16:40.

[30] Mark Raasveldt and Hannes Mühleisen. 2017. Don’t Hold My Data Hostage - A
Case For Client Protocol Redesign. Proc. VLDB Endow. 10, 10 (2017), 1022–1033.

[31] Tobias Schmidt, Viktor Leis, Peter Boncz, and Thomas Neumann. 2025. SQLStorm:
Taking Database Benchmarking into the LLM Era. Proc. VLDB Endow. 18, 11
(2025).

[32] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In SIGMOD Conference. 23–34.

[33] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB. 19–28.

[34] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. 2022. The LDBC Social Network
Benchmark: Business Intelligence Workload. Proc. VLDB Endow. 16, 4 (2022),
877–890.

[35] Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and Joseph
Antonakakis. 2018. SkinnerDB: Regret-Bounded Query Evaluation via Reinforce-
ment Learning. Proc. VLDB Endow. 11, 12 (2018), 2074–2077.

[36] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm.
CoRR abs/1210.0481 (2012). http://arxiv.org/abs/1210.0481

[37] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD. 1:1–1:6.

[38] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654.

[39] Yisu Remy Wang, Max Willsey, and Dan Suciu. 2024. From Binary Join to Free
Join. SIGMOD Rec. 53, 1 (2024), 25–31.

[40] Johannes Wehrstein, Timo Eckmann, Roman Heinrich, and Carsten Binnig.
2025. JOB-Complex: A Challenging Benchmark for Traditional & Learned Query
Optimization. CoRR abs/2507.07471 (2025).

[41] Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2023. FASTgres: Making LearnedQuery Optimizer Hinting Effective.
Proc. VLDB Endow. 16, 11 (2023), 3310–3322.

[42] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In SIGMOD Conference. 2009–2022.

[43] Maryann Xue, Yingyi Bu, Abhishek Somani, Wenchen Fan, Ziqi Liu, Steven Chen,
Herman Van Hovell, Bart Samwel, Mostafa Mokhtar, Rk Korlapati, Andy Lam,
Yunxiao Ma, Vuk Ercegovac, Jiexing Li, Alexander Behm, Yuanjian Li, Xiao Li,
Sriram Krishnamurthy, Amit Shukla, Michalis Petropoulos, Sameer Paranjpye,
Reynold Xin, and Matei Zaharia. 2024. Adaptive and Robust Query Execution
for Lakehouses At Scale. Proc. VLDB Endow. 17, 12 (2024), 3947–3959.

[44] Yifei Yang and Xiangyao Yu. 2025. Accelerate Distributed Joins with Predicate
Transfer. Proc. ACM Manag. Data 3, 3 (2025), 122:1–122:27.

[45] Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. 2024. Predicate
Transfer: Efficient Pre-Filtering on Multi-Join Queries. In CIDR.

[46] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73.

[47] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc.
VLDB Conference. VLDB Endowment, 82–94.

[48] Haozhe Zhang, Christoph Mayer, Mahmoud Abo Khamis, Dan Olteanu, and Dan
Suciu. 2025. LpBound: Pessimistic Cardinality Estimation Using 𝓁p-Norms of
Degree Sequences. Proc. ACM Manag. Data 3, 3 (2025), 184:1–184:27.

[49] Yunjia Zhang, Yannis Chronis, Jignesh M. Patel, and Theodoros Rekatsinas. 2023.
Simple Adaptive Query Processing vs. Learned Query Optimizers: Observations
and Analysis. Proc. VLDB Endow. 16, 11 (2023), 2962–2975.

[50] Junyi Zhao, Kai Su, Yifei Yang, Xiangyao Yu, Paraschos Koutris, and Huanchen
Zhang. 2025. Debunking the Myth of Join Ordering: Toward Robust SQL Analyt-
ics. Proc. ACM Manag. Data 3, 3 (2025), 146:1–146:28.

[51] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
Ahead Makes Query Plans Robust. Proc. VLDB Endow. 10, 8 (2017), 889–900.

5536

https://hpts.ws/papers/2024/2024_session9_interlandi.pdf
https://hpts.ws/papers/2024/2024_session9_interlandi.pdf
https://wp.sigmod.org/?p=1075
https://wp.sigmod.org/?p=1075
http://arxiv.org/abs/1210.0481

	Abstract
	1 Introduction
	2 The Story of the Join Order Benchmark
	3 On Experiments, Analyses, and Benchmarks
	4 2015-2025: A Decade of Query Optimization Research
	4.1 Learning-Based Approaches
	4.2 Theory to the Rescue?
	4.3 Better Benchmarks
	4.4 Runtime Approaches

	5 Lessons, Challenges, and Future Directions
	References

