Versatile Property Graph Transformations

Angela Bonifati
Lyon1 University, CNRS Liris & IUF
Lyon, France
angela.bonifati@univ-lyon1.fr

ABSTRACT

Property graphs are key components of modern graph database
systems as well as graph analytical systems. They support highly
expressive data models consisting of multi-labeled nodes and edges,
along with properties represented as key/value pairs. Property
graphs serve as versatile data integration paradigms, enabling data
in any format to be seamlessly transformed into this model. More-
over, they are at the core of an active standardization effort led by
ISO/IEC, which aims to establish standardized declarative graph
query languages such as GQL and SQL/PGQ. In addition to these
standards for data manipulation languages, other languages have
emerged for property graph schemas and constraints as part of fu-
ture data definition languages.

In this paper, we introduce a new declarative paradigm for ex-
pressing property graph transformations, supporting both graph
data integration and data cleaning tasks. We discuss the properties
of these transformations, along with algorithmic issues and consid-
erations for efficiency and scalability. Furthermore, we showcase
the utility of property graph transformations for causal analysis
and elaborate on a research agenda aimed at designing analytical
extensions of graph languages to support property graph transfor-
mations for advanced analytical workloads on heterogeneous data.

PVLDB Reference Format:

Angela Bonifati. Versatile Property Graph Transformations. PVLDB, 18(12):
5516-5526, 2025.

doi:10.14778/3750601.3760517

1 INTRODUCTION

Property graphs (PGs) are highly expressive graph data models un-
derlying commercial and open-source native graph database sys-
tems and providing graph extensions of relational engines. Sys-
tems such as Neo4j [3], Amazon Neptune [1], Oracle PGX [4], SAP
Hana Graph [6], RedisGraph [5], Sparksee [7], Kuzu [2], Google
Cloud’s Spanner Graph [32], MilleniumDB [80] and others have
been flourishing in the last few years, leading to the need of uni-
fication and standardization of graph query languages and data
models. This unification was urgently needed to pave the way to
Big Graph ecosystems integrating different data model abstractions
[70]. Standardization efforts led by ISO/IEC have worked on key
graph data models and query language standards, such as GQL and
SQL/PGQ [11, 34, 43], respectively providing standardized native

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3760517

5516

and SQL-based graph query languages. As additional endeavors,
schema and constraint languages for property graphs have been
studied and formalized, including PG-Schema [9], a schema lan-
guage for property graphs, whose constructs have influenced the
standard query language schema support. The design of these lan-
guages started from a set of possible desiderata, on which both
academia and industry agreed [10], spanning from property graph
types (node types, edge types and property types) to constraints
(PG-keys and PG-constraints such as participation constraints and
node hierarchies), along with flexibility (such as compositionality
and evolution support), and usability (property graph schema gen-
eration, efficient schema constraint validation, well-defined syntax
and semantics).

PG-Schema and PG-Constraints anticipate the need of data in-
tegration and quality enforcement for property graphs. Data in-
tegration [16, 36, 56, 61, 77] is a workhorse of data management
research with several influential papers on the topic. Integrating
property graphs poses new challenges due to the fact that query
discovery [61] leads to graph transformations that are more com-
plex than relational data. In particular, in order to transform in-
put data in any format (e.g. in relational format—see Example 1.1)
into an output property graph, node, edge and subgraph creation is
needed to encode the query behind the transformation itself. There
are plenty of relevant applications, which require a graph view on
top of both structured and unstructured data, such as for instance
lakehouses and graph retrieval augmented generation (RAG) to en-
hance the accuracy of Large Language Models (LLMs). However,
the graph transformation process can be harnessed by conflicting
values thus showing the need of precise conflict detection mecha-
nisms. Furthermore, property graph transformations can be seen as
a mechanism to define declarative graph views, which is an opera-
tion lacking in current standardized graph query languages. Graph
views are essential for the efficient evaluation of graph queries and
for enabling data integration scenarios in the graph world [24, 47].

A further usage of property graph transformations is in the han-
dling of violations of graph constraints. Graph constraints can be
expressed declaratively as PG-Keys and as graph denial constraints.
In both cases, repairs to violation are derived based on some crite-
ria, such as cost or user input. Previous approaches have leveraged
preferred repairs [76] or user-centric repairs [63, 64] (see Example
1.2 for the latter). Depending on the repair model utilizing inser-
tions and/or deletions of properties, nodes, edges and subgraphs, or
relabelings of nodes, the output of a repair can be seen as a graph
transformation in which the violations are fixed.

https://doi.org/10.14778/3750601.3760517
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3760517

©

Ingredient_Raw

name: Alice pid: 1234 pid: 1234

pid: 1234 ingredientName: Paracetamol drugName: Dolinol
ingredientCode: frt12X drugCode: FR-PAR

Ingredient_Raw

name: Elliot pid: 1235 pid: 1235

pid: 1235 ingredientName: Paracetamol drugName: Paracetamol

ingredientCode: frt12X drugCode: US-PAR

(i) Input property graph G containing ingested relational data.

1 MATCH (p_raw:PatientRaw)

2 MATCH (i_raw:IngredientRaw) WHERE i_raw.pid = p_raw.pid
3 MATCH (d_raw:DrugRaw) WHERE d_raw.pid = p_raw.pid
4 WITH p_raw, collect(i_raw) AS Ingredients,

5 collect(d_raw) AS Drugs

6 CREATE (p:Person)

7 SET p.name = p_raw.name

8 WITH p, i_raw

9 UNWIND i_raw.ingredients AS ingredientData

MERGE (i:Ingredient {name: ingredientData.name})
SET i.code = ingredientData.code

MERGE (p)-[:IS_PRESCRIBED]->(i)

WITH p, d_raw

UNWIND d_raw.drugs AS drugData

MERGE (d:Drug {name: drugData.name})

SET d.code = drugData.code

MERGE (p)-[:TAKES]->(d)

(ii) Ad-hoc transformation script in openCypher.

>

dr1

name: Dolinol
code: FR-PAR

®

Person

name: Alice

Is_Prescribed

Ingredient
name: Paracetamol

code: frt12X
Takes > dr2
)
name: Paracetamol
name: Elliot

code: US-ASP
(iii) Resulting output property graph H.

Figure 1: Ad-hoc transformation of raw ingested data.

1.1 Property Graph Transformations for Versatile Data Ma-
nipulation

In this paper, we introduce a new data manipulation paradigm
based on declarative property graph transformations for data in-
tegration and data cleaning. We discuss the declarative nature of
these transformations as well as the algorithmic issues along with
the efficiency and scalability desiderata. We will not assume that
all the data is already encoded as property graphs as we show that
graph transformations can be used across different data models

5517

(e.g. from relational to graphs). Our work also shows that graph
transformations are versatile and can be used in other data science
applications, for instance to express data manipulation operations
on causal artifacts represented as causal DAGs (Directed Acyclic
Graphs). Causal analysis is one of the future endeavors in Artifi-
cial Intelligence where graph transformations are useful to encode
causal interventions. Intervening on a variable means forcing all
the units of the population to take a specific value for that variable,
independently on its true causes, and observing the changes in the
other variables accordingly. If causal DAGs are treated as database
objects, these causal operations can be modeled as graph transfor-
mations. In the following, we present two examples of applications
of graph transformations in the medical domain. The first example
shows property graph transformations at work when restructur-
ing medical data across different formats. The second deals with
property graph transformations induced by repairing violations in
a medical property graph.

1.2 Graph Transformation Examples

Example 1.1. Figure 1 illustrates a graph transformation scenario,
in which a user has imported relational data into a graph database
and would like to reshape it into a semantically meaningful property
graph instance, to facilitate navigational querying aimed at in-depth
relationship analysis The relational data consists of three tables,

Patient_Raw(name, pid),
Ingredient_Raw(pid, ingredient Name, ingredientCode) ,
Drug_Raw(pid, drugName, drugCode) ,

with primary keys consisting of the underlined attributes, and
having two foreign keys: pid in Patient references pid in Ingredient
and pid in Drug.

Figure 1(i) shows a straightforward property graph obtained
after importing relational data, using a generic ingestion method,
such as Cypher’s LOAD CSV clause. In the resulting property graph,
each node represents a single tuple of the relational instance, with
the relation’s name represented as the label, and the attributes
stored in the node’s properties. Note that there are no edges in
this property graph: relationships between patients, ingredients,
and drugs are represented by way of foreign keys, just like in the
original relational instance. Needless to say, this is not an ideal
translation of a relational instance into a property graph.

The user now wants to transform the instance in Figure 1(i) into
one that makes better use of the property graph data model by facil-
itating navigational operations in queries like “Which people have
been prescribed the same ingredient as Alice?”. The user intends to
create a node for each patient, ingredient, and drug, and replace for-
eign key references with explicit relationships. Notice that the de-
sired property graph transformation must produce a unique output
property graph, integrating the three input relational tables shown
above. Figure 1(ii) shows an implementation of this transforma-
tion in openCypher, a popular graph query language used in graph
databases, whose recent versions incorporate novel features from
standard languages such as GQL [51]. The reader will notice how
difficult it is to relate the constructs of this query to the informal
specification above. Even just making sense of the MERGE clauses
interleaved with implicit grouping and list manipulations (UNWIND

and collect) is a daunting task for an unacquainted user. But the
query leverages other advanced idioms too. For instance, in Line 6,
the script creates as many nodes of type Person as there are rows
output by the previous WITH clause: one for each r, due to implicit
grouping. In line 10, the script generates one Ingredient node for
each distinct value found in property ingredientName across all
i’s; this is because the property name is specified as d. ingredient
in the MERGE clause. Similarly, in line 15, a single Drug node is cre-
ated for each distinct value found in property drugName.

Figure 1(iii) shows the output property graph obtained by run-
ning the script on the input property graph from Figure 1(i). It re-
veals that the ad-hoc transformation fails to account for the fact
that ingredients are weak entities that cannot be identified by their
name alone, and conflates the two ingredients into one despite the
fact that they refer to different drugs with different drug codes. De-
tecting such errors is hard because openCypher lacks a transparent
mechanism for specifying identities of created elements.

Example 1.2. The property graph depicted in Figure 2 is a slightly
different property graph that exemplifies the problem of repairing
data about patients and their treatments, represented with property
and edge labels (such as :Person and :hasAllergyTo) and properties
as key-value pairs (name=Aspirin). The property graph reflects a
possible real-world state of a database containing patients, Markus,
who is allergic to Paracetamol, and Irine who takes Tachipirine500.
Plausible property graph denial constraints ¢; and ¢z in this ex-
ample state that 1) patients cannot be treated with a drug they are
allergic to, and 2) a patient cannot be treated with a drug if they
are younger than the minimum age allowed for the ingredient of
the drug. We show how the application of these constraints can be
handled by using property graph transformations.

The subgraphs highlighted in green and orange showcase respec-
tively two violations of the above constraints, namely (1) Markus is
taking Tachipirine100 that contains Paracetamol while being allergic
to it, and (2) Ali taking Oki that contains Paracetamol while being
too young. These two violations can be fixed applying four differ-
ent graph transformations: (a) one can modify the node with name
Tachipirine100 with the one of another Drug (and consequentially
change the ingredient)—corresponding to a property update—(b)
the edge between patient and medication can be deleted, (c) the edge
between the drug and the ingredient can be removed (for instance,
Oki does not contain Paracetamol but contains Ibuprofene), (d) or the
edge hasAllergyTo can be suppressed because the patient was not al-
lergic to Paracetamol. As opposed to Examplel.1, we can observe the
multiplicity of solutions produced by different graph transforma-
tions, along with the use of denial constraints to operate the results
of the transformations. The actual choice of which transformations
to use can be guided by suitable properties of the transformations
and guided by the users, as discussed in the remainder of the paper.

The paper is organized as follows. Section 2 provides an overview
of standardized property graph languages. Section 3 presents the ba-
sic ingredients of property graph logic-based transformation rules
and discusses their formalization and implementation. Section 4 fo-
cuses on an application of graph transformations to user-centric
property graph repairs. Section 5 focuses on property graph trans-
formations and graph views for causal analysis. Each of the sec-
tions 3, 4 and 5 exposes the problem and its solution along with a

5518

3 :Drug

name:Tachipirine100
© 3 84 1 :Person

.po“\a\ o5 name:Markus
e 1) Age:15
p\\\erg‘!To
9 .x\as
2 :Ingredient 10 :takes 4 :Person
name:Paracetamol (2 5 4) name:Ali
minAge:6 4 14:contains "5 .np g Age:5
name:Oki

6 :Person
name:lrine
Age:8

7 :Drug
name:Tachipirine500

Q1(x1, Y1, 21, 22) < : hasAllergyTo(x1,z2) A : takes(xy, y1)
A : hasIngredients(y, z1)
$1 = (Q1(x1, y1, 21, 22), id(21) = id(2z2) — 1)
Qo (x1, y1,21) « : takes(x1, y1)A : contains(y, z1)
@2 = (Q2(x1, Y1, 21), x1.a9e < z.minAge — L)

Figure 2: A property graph depicting two violations in green
and yellow.

concise discussion of past work on the topic. Section 6 concludes
the paper and discusses open research challenges in the area.

2 EVOLUTION OF PROPERTY GRAPH
STANDARDS
2.1 DML for Property Graphs

A Data Manipulation Language is a part of the database query
language standards dedicated to retrieval and update operations.
Compared to the relational model, property graph queries have
richer expressive power as they allow to perform concise graph
pattern matching and navigational operations. Such graph traversal
operations would require as many joins as the number of nodes
traversed in each path. As a further complication, in recursive path
traversal, the number of joins is unbounded.

Cypher [41] was introduced by Neo4j and later open-sourced as
openCypher. It quickly became popular, due to its declarative nature
and very intuitive ASCII-based syntax, allowing even non-expert
users, who do not (want/need to) know about graph traversals, to
easily form their queries. Cypher also supports CRUD operations
(Create, Read, Update, and Delete) and is at the heart of a widely
used rich property graph analytics ecosystem.

SQL/PGQ! is the first ISO standard property graph query lan-
guage defined in late 2023 to include property graph queries in
SQL. It allows read-only graph views of relational data, allowing
graph query functionality (e.g., path expressions and graph traver-
sals) within the context of SQL queries. As such, it fosters backward
compatibility with relational SQL.

GQL?, is the second ISO standard property graph query language
defined at the beginning of 2024, stemming from the unification of
native graph query languages, such as G-CORE [8] and openCypher.
GQL supports a superset of the features offered by SQL/PGQ and is
designed to offer a declarative approach to graph querying, allowing

!https://www.iso.org/standard/79473.html

https://www.gqlstandards.org/,https:/jtclinfo.org/slug/gql-database-language/

https://www.iso.org/standard/79473.html
https://www.gqlstandards.org/
https://jtc1info.org/slug/gql-database-language/

users to express complex graph patterns, path queries, and data
transformations in a concise and intuitive manner.

All the above languages, including the first versions of the stan-
dards GQL and SQL/PGQ [11, 34, 43] focus on returning relational
tuples instead of returning property graphs. More details about
these languages can be found in a recent tutorial [55].

Future versions are expected to have compositionality and to
support outputs as property graphs. As such, all these languages
are not yet ready to express graph transformations returning prop-
erty graphs, as we further discuss in Section 3. Path-based algebraic
operators leading to return paths instead of plain relational tuples
along with the needed standard graph query language extensions
are discussed in [11]. These operators will be of key importance
to study optimization opportunities and compositionality require-
ments of future graph query languages.

2.2 DDL for Property Graphs

A Data Definition Language (DDL) is the part of the standard
dedicated to enforce data integrity rules. In parallel with DML
standards for property graphs, DDL schema design has been carried
out. For the time being, some of the features of the proposed DDL
are incorporated in the DML standards, but there is not yet a part
of the standardized GQL and SQL/PGQ dedicated to DML.

In this area, the following approaches have been developed:

A DDL for Cypher [23] was the first extension of Cypher to
include schema constraints, focusing on node types, edge types and
property types in Cypher-like syntax.

PG-Keys [10] emerged from a collaborative community effort
in LDBC (Linked Data Benchmark Council) and introduced flexible
key constraints with different modes (combinations of exclusive,
mandatory, and singleton restrictions) that can be applied to nodes,
edges, and properties.

PG-Schema [9] was developed in LDBC as a comprehensive
schema formalism that combines flexible type definitions support-
ing multi-inheritance with expressive constraints based on the PG-
Keys framework.

These developments are expected to influence the second ver-
sion of the GQL standard, which is expected to include a rich DDL,
making graph database systems more useful, powerful, and expres-
sive while ensuring proper data integrity and object identification
capabilities.

3 DECLARATIVE PROPERTY GRAPH
TRANSFORMATIONS

We present a declarative formalism for specifying property graph
transformations. Transformations are encoded by means of prop-
erty graph transformation rules. Each rule collects data from the
input graph with Graph Pattern Calculus (GPC) pattern [39] on the
left of =, and specifies elements of the input graph using content
constructors on the right. This expression resembles a GPC pattern,
but it has specifications of the element’s property values instead of
filters and specifications of element identifiers instead of variables
to be matched (new variables will reappear on the right-hand side, in
a slightly different role). New identifiers are generated using Skolem
functions and how identifiers, labels, and properties of output ele-
ments are specified using content constructors. A precise semantics

5519

is defined for the transformation rules in terms of a procedure that
generates an output property graph given an input property graph.

3.1 Past Approaches

Specifying the relationship between two relational (or XML)
schemas using a set of declarative assertions is a schema mapping
task [16, 36, 54]. This relation, is usually non functional, i.e. given
an input instance I, several target instances satisfying the mapping
constraints exist. Executable SQL scripts for relational schema map-
pings along with scalable and efficient in producing target solutions
have been studied [17]. This solution is not directly applicable to
property graphs, due to the inherent differences of DML languages.

Schema mappings and data exchange have also been studied
in [13, 42] for graph databases. The mapping languages are based on
classical graph database queries such as regular path queries [14],
limited in their expressivity by not supporting data values.

Graph generating dependencies have been introduced and stud-
iedin [72, 73]. They help specify the creation of new graph elements,
hence could lead to a semantics for specifying exchange of graph
data. Nevertheless, this would still provide a non functional ap-
proach, much like the above-mentioned data exchange framework.

Graph database transformations based on acyclic conjunctive
two-way RPQs have been investigated in [21]. The graph database
model they consider does not have data values. Moreover, this
approach is too rigid to work with multiple labels.

Although RDF, RDF-star and the property graph data model
share striking similarities, both being based on elementary graph
concepts, like nodes and edges, intricate interoperability issues arise
when attempting to exchange data between them. A compelling
cross-model graph transformation approach [68] has leveraged
SHACL to PG-Schema conversion to guide the transformation from
RDF to property graphs.

Network alignment is a technique for finding node correspon-
dences between two or more networks. It can be used, for example,
to associate nodes from different social networks with the same
user [85]. Nodes are identified based on their similarities with re-
spect to both their features (i.e., their properties) and their neigh-
borhood. While these methods are not part of graph transformation
formalisms, they can be used to guide the construction of graph
transformations. In our work [24], the results of network alignment
has been showcased for the Offshore Leaks Database [62], a popu-
lar property graph dataset, in order to better integrate data coming
from multiple leaks based on the similarity of the edges.

3.2 Property Graph Transformation Rules

In this subsection, we formalize property graph transformation
rules starting with the definition of content constructors, which
are key components of graph transformations. A property graph
transformation must be able to specify not only the identifiers
of output elements, but also their labels and properties. For this
purpose, we use content constructors. A content constructor is an
expression of the form:

Cx) = {
1d: (al, ..
Labels: L

.,ak)

Properties: (k1 = v1,...,kn =0vp) }

where x is a tuple of variables, L is a finite set of labels; each k; is
a property name from K each v; is either a data value ¢ € Const,
or an expression of the form x.a for x € x and a € K; and each a;
is either a constant ¢ € Const, or a label £ € L, or an expression
of the form x.a or x for x € x and a € K. The field Id specifies
the identity of the node by listing the arguments to be fed to the
Skolem function. The fields Labels and Properties specify labels
and properties present in an element. Importantly, they do not
forbid additional labels and properties, which will allow the user
to split the description of an element across multiple rules, if the
user so desires. We write C.Id for the content of the Id field of C,
and similarly for other fields. When x is clear from the context, we
simply write C instead of C(x).

In the first rule in Figure 3, new Ingredient nodes are described
using the following content constructor:

Ci(r,a,d) ={
Id: (d.ingredientName)
Labels: {Ingredient}

Properties: (name = d.ingredientName, code = d.ingredientCode)

It specifies the identities and the values of properties name and
code of new Ingredient nodes in terms of the values of properties
ingredientName and ingredientCode retrieved from elements to
which variable d is bound in the input graph. Rather then using the
abstract syntax introduced above, the rule in Figure 3 presents Ct
in GPC-like syntax [40] as
((d.ingredientName) : Ingredient)
(name=d.ingredientName, code=d.ingredientCode)

A property graph transformation is a finite set of property graph
transformation rules. Each rule brings together the data retrieved
from the input property graph by a GPC pattern and a description
of output elements expressed with content constructors.

The semantics of GPC is defined such that a query returns tuples
in line with concrete graph query languages, such as GQL, open-
Cypher and SQL/PGQ. Each tuple represents a binding of singleton
variables in that query to elements of the property graph.

We have two kinds of property graph transformation rules: node
rules and edge rules. A node rule is an expression of the form:

P(x) = (C(x))

where P(x) is a GPC query with singleton variables X and C(%) is
a content constructor. An edge rule is an expression of the form:

P() = (C(0) —h (@)

where P (%) is a GPC query with singleton variables x and Cs (%), C(x)
and Ci(x) are content constructors. Node rules and edge rules can
be composed to form rules that create subgraphs of arbitrary com-
plexity. An example of property graph transformation is shown
in Figure 3 consisting of two transformation rules. The first rule
is generating Person and Drug nodes connected by edges labelled
with Takes, while the second generates Ingredient nodes. The iden-
tifiers of the Drug nodes and the Ingredient can be controlled by
means of Skolem functions accepting as arguments the values of
the properties drugName and ingredientName, respectively. The
transformation might then conflate the nodes Ingredient and the

).

5520

node Drug when the property value is “Paracetamol” producing
an unexpected output. Detecting the modelling error in the rules
in Figure 3 requires human expertise. On the other hand, setting
an output property to conflicting values can be detected automati-
cally. In our work [25], we focus on detecting conflicts statically,
by analysing a set of transformation rules to check if it can exhibit
this pathological behavior on some input. We also study how to
detect conflicts at runtime when static analysis is not feasible.

3.3 Executable Property Graph Transformations

The semantics of the above property graph transformation rules
can then be defined and the algorithmic details can be found in [24].
The semantics specification can be seen as an abstraction of a trans-
formation engine: it takes a transformation and an input property
graph, and produces an output property graph. Then, one can show
to compile a transformation to an openCypher script that can be
directly executed in any openCypher engine. Suitable extensions
to the graph query language itself, such as the introduction of a
GENERATE clause, is also desirable [26].

The total time taken by the naive implementation of the algo-
rithmic procedure for property graph transformations is quadratic
in the size of the property graphs, which makes it unpractical for
large input graph instances. However, the time complexity heavily
depends on the implementation of set-theoretic unions.

Cypher’s built-in elementId primitive provides access to the
identifier of an element, which is unique among all elements in
the database. It plays a crucial role in our implementation as we
actively use these identifiers as arguments to the Skolem function
generating output identifiers. To the best of our knowledge, there is
no explicit control of the creation of new identifiers in Neo4j, which
has been used for our implementation. Hence, we equip nodes and
edges in the output graph with a special property_id that plays the
role of controllable element identifier.

Efficient ways of running these transformation scripts have
been cross-compared using off-the-shelf indexes or uniqueness
constraints and their efficiency and scalability have been studied.
An index permits to retrieve efficiently nodes with a given label
that have a specific value at a given property. In practical graph
data management systems, indexes are implemented using B-trees,
which means that the cost of testing if an index with n elements
contains a given key is O(log n), thus improving the the worst-case
complexity of the transformation algorithm.

When we know in advance that all values of the properties are
unique, we can make further use of uniqueness constraints.

The experimental results show interesting trends that can in-
spire future graph transformation implementations to be combined
with modern graph query processing techniques [60]. We have com-
pared the pros and cons of using uniqueness constraints on nodes
and indexes on nodes and edges. The results show that for large
transformation scenarios indexes tend to outperform uniqueness
constraints. Using indexes only on nodes is more efficient than us-
ing a combination of indexes on nodes and relationships, which
is in turn more efficient than using indexes only on relationships
or using no index at all. The key reason of this behavior is that
indexes on nodes already allow accessing the endpoints of edges,
along with the edges themselves, efficiently. Additional indexes on
edges do not help and incur additional overhead.

(r : Patient), (a : Ingredient), (d
(r.pid=a.pid, r.pid=d.pid)

(r : Patient), (a : Ingredient), (d
(r.pid=a.pid, r.pid=d.pid)

: Takes
:Drug) = ((r) : Person) —
(name=r.name)

: Drug) = ((r) : Person)

(name=r.name)

((d.drugName) : Drug) (1)
(name=d.drugName, code=d.drugCode)
:1s_Prescribed .
((a.ingredientName) : Ingredient) (2)
(name=a.ingredientName, code=a.ingredientCode)
(©)

Figure 3: Transformation T given as a set of rules.

The lesson learned is that one does not have to tune the imple-
mentation depending on the particular case since using indexes
only on nodes is consistently the best approach to use.

4 PROPERTY GRAPH TRANSFORMATIONS
FOR GRAPH REPAIRS

Given a property graph G and a violation I, the repair G’ of G is
a graph transformation in which the violation I has been fixed.
Compared to other data models, repairing a violation in a property
graph G might trigger new violations (e.g., in the presence of mul-
tiple labels); (ii) the same errors can be fixed in several different
ways, considering that a property graph includes labels and proper-
ties on both nodes and edges (e.g., a repair on an edge property X
is different from a repair on a node property with the same name).

We need to detect all the graph patterns that cause violations. As
exemplified in Figure 2, the graph pattern Q; and Q3 have different
matches in the property graph (highlighted in green and orange).
To reach this goal, we need to map the constraints into queries in
order to retrieve all the violations as subgraphs.

4.1 Past Approaches

Graph repairs include various methods for cleaning data that
violate integrity constraints. Multiple constraints have been pro-
posed with different expressivity, including Graph Functional De-
pendencies [38], Graph Entity Dependencies and Graph Denial Con-
straints [37]. For what concerns the repairs, the deletion model [29]
has been proposed to remove erroneous data, while the update
model [82] applies transformations to rectify data and ensure com-
pliance with constraints. In this work, we employ a hybrid approach,
combining both deletion and update models. Graph database repair
spans across different dependency classes [22, 37, 57]. In a prior
work [75], repairs involve both deletion and update operations for
neighborhood constraints, addressing conflicts through relabeling
(update) and edge deletion. However, this work does not study in-
teractive property graph repairing techniques with graph denial
constraints and is limited to a special class of constraints. Other
works used rules [28] to repair graphs, but they assume that the
rules are known in advance, or are derived from a graph that is al-
ready error-free.

Human-in-the-loop approaches have been applied to data clean-
ing [30, 48, 84] to ensure better quality fixes with respect to auto-
mated repairs, or to discover constraints from dirty datasets [74, 79]
Interactive graph repairing has also found application in prior
work [52], particularly in the context of repairing labeled graph un-
der neighborhood constraints. In this paper, our focus is on more
expressive graph data models and constraints (i.e. property graphs

5521

and denial constraints). Moreover, for the first time, we study a user
interaction model targeting multiple users.

4.2 Repairs as Property Graph Transformations

Given a property graph G and a denial constraint ¢ with graph
pattern Q, such as the ones depicted in Figure 2 a subgraph I satisfies
¢ if there does not exist a match h(I) homomorphic to I of the
graph pattern Q in G. Otherwise, I is a violation of the constraint
¢. Interpreting denial constraints as queries has been done before
in the vast literature on data cleaning [50]. The caveat here is to
consider graph queries that probe edges and nodes with multiple
labels along with property values.

Given a property graph instance G and a violation I, a repair r
is a sequence of property graph transformations (7y, ..., 7m) with
m > 0 returning a property graph G = (V,E, ry', A',v') with no
match h(I) of I in G.

In this work, we have considered three types of property graph
transformations, namely:

(i) edge-deletion iff the edge set E CE;
(ii) relabeling iff A # A;

(iif) property-update iff v # V.

We introduce the Graph Repair Dependency Graph (GRDG), a
Hypervertex Labeled Property Graph, which models an overlay of
graph violations.

It serves the need of mapping the results of graph pattern match-
ing for inconsistency detection into a dependency graph. Each hy-
pervertex in the GRDG represents a detected violation in the graph
instance. The set of hypervertices H is defined as the union of the
results of all constraint queries:

H = {resultscg, | VCQ; € C}

Two hypervertices are connected by an undirected edge if they
share any nodes in their respective subgraphs. The edge set F
includes all such pairs:

(hi,hj) € F &= Vp, NVy #0

Each hypervertex overlays a subgraph corresponding to a viola-
tion, forming a layered view over the instance property graph. Vi-
olations are considered independent if their corresponding hyper-
vertices do not share any node. This means changes in one can be
made without affecting the other. However, shared nodes may cre-
ate repair conflicts when multiple users act simultaneously. To con-
struct the GRDG, we design an algorithm that processes the results
of constraint queries. It first creates a hypervertex for each detected
violation. To detect overlapping violations, a graph query identi-
fies shared nodes across subgraphs. This avoids nested loops and
improves efficiency. Edges are then added between hypervertices

with overlapping nodes. The resulting GRDG helps in managing
and visualizing dependencies between inconsistencies.

4.3 User-Centric Property Graph Repairs

The GDRG is a flexible data structure that can guide the ap-
plication of constraints. In our work, we consider a collaborative
approach in which multiple users are requested to fix the viola-
tions [63, 64]. The process starts with the users being assigned to
independent violations and continues after they choose their pre-
ferred repair. The CDRG also facilitates the verification of repair
properties, such as safety, to check whether the repair introduces
new violations. If the repair is not safe, the repair is rejected and
the user needs to choose another one.

Then, before proceeding to a new repair iteration, the effect of
the repair is propagated to the GDRG. First, it checks if additional
violations are solved or, on the contrary—if the framework allows
unsafe repair—if new violations are introduced. To avoid conflicts
due to the propagation of repairs, we need to assign independent
hypervertices to different users. To do so, we assign violations to
users, only if the sets of neighbors of the respective hypernodes on
the GRDG are disjoint.

This problem is similar to the independent set problem [83],
where the goal is to find a set of vertices in a graph, none of which
are adjacent. However, in our context, we need to extend this con-
cept to account for the neighbors as well. Specifically, we need to
ensure that not only are the selected hypervertices independent,
but also that their neighbors do not overlap with any other selected
hypervertices or their respective neighbors.

The greedy approach instead, although not guaranteeing an op-
timal solution, offers a practical trade-off by significantly reducing
the complexity for each assignment iteration and providing a fast
response to users. For this reason, we choose the Greedy Algorithm
approach [45], extending it to account for independent neighbors.
The greedy algorithm recursively selects the next node to add to
the independent set based on the nodes’ degrees, starting with the
one of the lowest degree.

Since graph violations are interdependent and graph data might
be large, it is important to ensure accuracy, efficiency and scalabil-
ity of the underlying system. We evaluate our approach on real-
world property graph data with both injected and real-world incon-
sistencies. We consider user simulations with different user exper-
tise (e.g, from oracles to random users and their variants thereof)
against both interactive and non interactive baselines. We have
also performed a user study to assess how humans perform in the
graph repairs. The results show that our approach outperforms the
baselines for different sets of constraints by 30% on average repair
quality even without oracle users. Moreover, our algorithms grace-
fully scale with respect to dataset size and number of users.

5 PROPERTY GRAPH TRANSFORMATIONS
FOR CAUSAL ANALYSIS

Property graph transformations are not only instrumental for data
management tasks, such as data integration and data cleaning, but
they can serve as data model paradigms for Artificial Intelligence
tasks, such as causal analysis and inference. Currently, these two

5522

paradigms, namely causality and graph data management, are de-
veloped by entirely separate communities with different motiva-
tions: one is interested in causal analysis and inference, realized
by means of ad-hoc programs and scripts on empirically validated
causal graphs, while the other is interested in collecting, validat-
ing, integrating and querying graph data by means of declarative
languages. These two areas are investigated in isolation although
combining them creates exciting possibilities. In our work, we have
developed a vision behind the interplay of these two areas [65].

One of the most established theory of causality is represented
by structural causal models (SCMs). SCMs consist of a causal graph
and structural equations. Formally, a causal graph G = (V, &) is
a directed graph where V is the node set and & is the edge set.
Each node in V represents a random variable while an edge x — y
represents a causal effect between two variables x,y € V. Given
an edge x — y we call x the exposure and y the outcome. The
node set “V contains also all the observed and unobserved variables.
In particular, we consider causal directed acyclic graphs (DAGs)
introduced in [33].

5.1 Past Approaches

Domain experts are oftentimes compelled to figure out the causal
relationships before actually collecting any observational data. The
latter data is sampled from a population of homogeneous units,
thus boiling down to the unit homogeneity assumption [49]. Causal
graphs are manually designed and scattered around notebooks
created on an ad-hoc basis with external libraries, such as CDT
[53], Py-Causal and Do-Why [20], and never stored, tracked and
versioned in a database.

However, observational data is inherently complex, large and
hides several dimensions, that are scattered around multiple hetero-
geneous units and that have semantic links among units (e.g. vari-
ables about a patient concerning diseases, comorbidities, diet, age,
physical and mental conditions are scattered around multiple het-
erogeneous units). This observation makes knowledge graphs and,
in particular, expressive property graphs [12, 27, 81] a perfectly suit-
able data model for the underlying observational data in order to be
able to extract and mine candidate causal graphs. Property graph
pattern matching techniques and queries represent a breakthrough
for efficient causal property graph representation and extraction
in graph databases. Indeed, existing libraries in Python, such as
PyWhy-Graphs [44] integrated with NetworkX API, present sev-
eral limitations as they only implement subsets of causal graphs or
focus on edge directions as the main feature [31, 67, 86].

Early work focusing on a relational database framework [58,
71] studied how multiple relational units are collapsed in one
unit using embeddings and aggregation, thus focusing on simple
boolean queries, involving one causal effect at a time. The compu-
tational complexity of causality computation for relational queries
is tractable, and, precisely, doable in polynomial time [59], con-
trarily to the general causality problem, which is set to be NP-
complete [35]. The relationship among actual causes (of a given
relational tuple t) of query results with preferred repairs on de-
nial constraints and preference-based semantics has been investi-
gated in previous work mainly for query and constraint explain-
ability [18, 19].

Causal inference leads to estimations of causes and counterfac-
tuals, sensitivity analysis from cause-effects and learning proba-
bilities of causation from domain-specific populations. However,
these tasks lack a data-driven approach in which causal artifacts
are aligned with observational data and stored, efficiently queried,
updated and analyzed in the same database system.

5.2 Causal Property Graph Transformations

Figure 4(a) shows an example of a property graph transformation
from a property graph to causal DAGs in Figure 4(b). It models a
person named Ali who smokes and drinks some alcohol and has
two diseases (COPD and Stress), and a person named Kate suffering
from the same COPD condition, but having also a job as an engineer.

To perform causal analysis, we need to extract causal variables
from the PG and the relationships between them. Moreover, in or-
der to apply interventions and perform causal analysis, we need to
maintain a mapping between the PG instances and the causal vari-
ables in the causal DAG. It is seldom the case that one variable in
a causal DAG is mapped to a single vertex in a property graph. In
several cases, this mapping is not only one-to-many but also com-
positional. Hence, it can be encoded as a property graph transfor-
mation, as presented in Section 2.

Representing causal DAGs as property graphs offers several key
advantages. First, it enables the causal DAG and the associated ob-
servational data to coexist within a unified data artifact, allowing
them to be queried and analyzed jointly. Second, this representa-
tion makes it possible to leverage well-established techniques from
graph data management—such as PG-Schema [9], PG-keys [10],
and graph views [24, 46]—as well as powerful declarative query
languages like Cypher, GQL, or SQL/PGQ for expressive and effi-
cient analysis. We argue that causal analysis is fundamentally navi-
gational, as causal relationships are naturally encoded as edges in
a graph. The property graph model is therefore particularly well-
suited since graph query languages are designed precisely to sup-
port such navigational reasoning. From the above definition, it is
clear that hypernodes need to be extracted from the underlying
property graphs. An example of declarative property graph trans-
formation merging Smoking and COPD in a causal DAG is the fol-
lowing Cypher query, where a new relationship is generated when
a condition is met (the matched pattern):

MATCH (p:Person)-[:HAS_HABIT]->(h:Habit),
(p)-L:HAS_CONDITION]->(c:Condition)

WHERE c.name = "COPD" AND h.type="Cigarettes" WITH h,c

MERGE (h)-[:BELONGS]->(x: SMOKING)-->(y: COPD)<-[:BELONGS]-(c)

However, this query produces a node (variable) for each matched
path. In Figure 4(b), for example, a variable (SMOKING) is extracted
twice from the property graph instance. To deal with duplicates, we
should merge the generated nodes that have the same label. This is
possible in concrete graph query languages but requires multiple
complex queries. The first step of our vision consists of extending
the GQL syntax with a new operator EXTRACT, that allows us to
easily express the causal variable extraction by abstracting out the
details of hypernodes and graph transformations:

MATCH (p:Person)-[:HAS_HABIT]->(h:Habit),
(p)-[:HAS_CONDITION]->(c:Condition)

WHERE c.name = "COPD" AND h.type="Cigarettes"

EXTRACT (x:SMOKING)-->(y:COPD)

5523

After extracting the variables from the property graph instance, the
causal DAG is not yet complete as it needs to be enriched with the
probability distributions to the edges as properties.

Figure 4(b) shows an example of causal DAG extracted from
a property graph (the colors indicate the mapping between the
observational data in the property graph and the causal variables).
We can see how different paths in the property graph are mapped
to the causal DAG, specifically the query listed above created the
path (SMOKING)-->(copD) from the path including Person and Habit.

Figure 4(c) shows potential results of graph queries computing
key components of causal path analysis: i) (INCOME LEVEL)-->(STRESS)-->
(SMOKING) is a causal path representing an indirect effect of INCOME
LEVEL on SMOKING through STRESS as mediator variable. ii) The path
(SMOKING) <--(AGE)-->(CoPD) is a confounding path with AGE as a con-
founder (e.g. having effect on both SMOKING and COPD). iii) The path
(STRESS)-->(COPD) <--(SMOKING) is a collider path with COPD as collider.

6 CONCLUSION AND OPEN CHALLENGES

Our work focuses on property graph transformations as a novel,
versatile and practical paradigm for unifying data across multiple
formats and yielding a conflict-free and consistent graph view on
top of these formats. We have shown the utility and effectiveness
of this paradigm in data integration and data cleaning. The lat-
ter areas have achieved a great level of maturity on relational and
XML data models but have been less studied for expressive prop-
erty graphs. Declarative graph transformations leveraging prop-
erty values for identity creation and generating complex structures,
such as nodes, edges and whole subgraphs, can be expressed in cur-
rent standard graph query languages with suitable extensions. Sim-
ilarly, graph repairs fixing graph denial constraints for property
graphs can be formalized as graph transformations. Strategies to
repair graph data glitches using deletions and label/property value
updates use an hypergraph overlay in order to prioritize repairs
based on their respective overlap. We also showed that property
graph transformations are compatible with causal analysis artifacts
and, in particular, with causal DAGs from the theory of causation.
Mappings between the underlying observational data and causal
DAGs can be elegantly encoded as unique property graph trans-
formations and used for a variety of causal analysis tasks, such as
mediator analysis, interventions and counterfactuals analysis.

This work paves the way to several future directions of investi-
gations, that we discuss in the remainder of this section.
Optimization of Property Graph Transformations. While we
have shown efficient and executable property graph transforma-
tions on top of graph query engines, several problems on optimiz-
ing these transformations remain to be studied, especially with
transformations manipulating paths and subgraphs [11]. Concern-
ing property graph transformations, issues such as better scalabil-
ity dealing with large-scale data are still open along with the design
of benchmarks for property graph transformations, encompassing
real-world use cases. While we have already shown property graph
transformation at work with relational data, defining these opera-
tions for heterogeneous temporal data, unifying property graphs
and time series and studying the algorithmic aspect of their evalua-
tion are also interesting future endeavors.

//’i’\ —
type: Cigarettes R g —
f’eq“e“cy: 10/day . STTTTRTTTTUO > / STRESS MEDIATORS? (/STRESS)
HAS_HABIT R A \\ \7/
| : e "\\) : L . 1
" name:Al FAS_CONDITION->{ Condtion 2:\’/‘;@‘;9;2 P SMOKING
- age: 55 Person K= : J/ : .
o sex:M . -
VISITS Ny Presbylam CONFOUNDERS? AGE
"""" SMOKING —
~
(sTREss)
............ visiTs /
: | - INTERVENTION do(stress=10)
:'name: Kate N . .
-'age: 31 Person H_HAS JOB. ') Job type:Engineer ;|
lsex: F : - : salary:100k -
S COUNTERFACTUAL do(cigarettes=0)
HAS_HABIT
type: Cigarettes = ..o v s
frequency: 15/day
(@) (b) (©

Figure 4: Example of a Causal Directed Acyclic Hypergraph model including the observational data (a), their mapping to the
causal variables in the causal DAG (b), and the results of different causal queries (c).

Property graph cleaning. Data cleaning for property graphs is
also a broad research area, which deserves much attention. While
we have studied interactive algorithms involving several users,
future work should be devoted to combine automated approaches
and user-centric approaches in order to decrease the user’s burden.
Automated approaches for property graphs can leverage Al-centric
methods, such as Graph Neural Networks (GNN), Large Language
Models (LLMs) and Graph RAG (Retrieval Augmented Generation)
to help classify the graph-based data glitches [66, 78]. Handling
complex constraints, encompassing recursive property graph rules,
is also an important challenge, since these rules span parts of the
property graph that needs to be inspected at runtime due to paths
of arbitrary length possibly with cycles. The efficiency of all these
methods and their scalability should also be at the core of our
investigation.

Unifying Graph Databases and Causal Analysis. Last but not
least, several causal graph analysis problems remain to be studied
by means of graph transformations. The evolution of causal DAGs
mapped to the underlying observational data and relating to data
fusion and transportability of causal DAGs [15] in the causality
community are certainly worth investigating. They model data col-
lection conditions, but disregard the other steps of data manage-
ment, such as data integration, consistency and evolution, which
can be encoded by means of metadata naturally exposed by property
graphs. Notions of validity and consistency of structural equation
models (SEMs) [69] in order to characterize exact transformations
between causal models need to be redefined from a data manage-
ment perspective and using quality-driven transformations of prop-
erty graphs [24]. Last but not least, d-separation is a criterion used
in causal analysis for deciding, from a given a causal graph, whether
a set X of variables is independent of another set Y, given a third
set of variables Z. As such, d-separation is a pure graph-theoretic
notion that associates dependence of causal variables with connec-
tivity in a graph. Hence, d-separated sets in causal DAGs can be

5524

interpreted as a series of powerful property graph transformation
operations, creating property graph views to encode d-separation.

ACKNOWLEDGMENTS

I am grateful to Stefano Ceri and Chao Zhang for their insightful
comments and suggestions on an early draft of this paper. I would
like to thank all my co-authors and PhD students for this line
of work, and, in particular, Andrea Mauri, Filip Murlak, Amedeo
Pachera, Mattia Palmiotto and Yann Ramusat. Last but not least, [am
thankful to Renee Miller for her 2018 Award paper, whose structure
and organization inspired mine. This work was supported by the
French National Research Agency (ANR-21-CE48-0015 VeriGraph)
and by AAP Etoiles 2023 Lyon 1.

REFERENCES

[9

=

[10

[11

[12

[13]

[14

[16]

[17

(18]

[19

[20

[21]

[23]

[24]

[25

[26]

[27

2024. Amazon Neptune. https://aws.amazon.com/neptune/ Accessed: 2024-12-
04.

2024. Kuzu Graph Database. https://kuzudb.com/ Accessed: 2024-12-04.

2024. Neo4j Graph Database Platform. https://neo4j.com/ Accessed: 2024-12-04.
2024. Oracle PGX: Parallel Graph AnalytiX. https://www.oracle.com/database/
technologies/graph-analytics/ Accessed: 2024-12-04.

2024. RedisGraph Module. https://redis.io/docs/stack/graph/ Accessed: 2024-
12-04.

2024. SAP HANA Graph. https://help.sap.com/viewer/product/SAP_HANA _
GRAPH/ Accessed: 2024-12-04.

2024. Sparksee Graph Database. https://sparsity-technologies.com/sparksee/
Accessed: 2024-12-04.

Renzo Angles, Marcelo Arenas, Pablo Barceld, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plan-
tikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A
Core for Future Graph Query Languages. In SIGMOD, Gautam Das, Christo-
pher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 1421-1432. https:
//doi.org/10.1145/3183713.3190654

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi
Wu, and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs. Proc.
ACM Manag. Data 1, 2 (2023), 198:1-198:25. https://doi.org/10.1145/3589778
Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak,
Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek
Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property Graphs.
In SIGMOD °21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021. 2423-2436. https://doi.org/10.1145/3448016.3457561
Renzo Angles, Angela Bonifati, Roberto Garcia, and Domagoj Vrgoc. 2025. Path-
based Algebraic Foundations of Graph Query Languages. In Proceedings 28th In-
ternational Conference on Extending Database Technology, EDBT 2025, Barcelona,
Spain, March 25-28, 2025. 783-795. https://doi.org/10.48786/EDBT.2025.63
Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models.
ACM Comput. Surv. 40, 1 (2008), 1:1-1:39.

Pablo Barceld, Jorge Pérez, and Juan Reutter. 2013. Schema Mappings and Data
Exchange for Graph Databases. In ICDT. 189-200.

Pablo Barceld, Jorge Pérez, and Juan L. Reutter. 2012. Relative Expressiveness of
Nested Regular Expressions. In AMW. 180-195.

Elias Bareinboim and Judea Pearl. 2016. Causal inference and the data-fusion
problem. Proc. Natl. Acad. Sci. USA 113, 27 (2016), 7345-7352.

Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). 2011. Schema Match-
ing and Mapping. Springer.

Philip A. Bernstein and Sergey Melnik. 2007. Model Management 2.0: Manipu-
lating Richer Mappings. In SIGMOD. 1-12.

Leopoldo E. Bertossi and Babak Salimi. 2017. Causes for query answers from
databases: Datalog abduction, view-updates, and integrity constraints. Int. J.
Approx. Reason. 90 (2017), 226-252.

Leopoldo E. Bertossi and Babak Salimi. 2017. From Causes for Database Queries
to Repairs and Model-Based Diagnosis and Back. Theory Comput. Syst. 61, 1
(2017), 191-232.

Patrick Blébaum, Peter Gotz, Kailash Budhathoki, Atalanti A. Mastakouri, and
Dominik Janzing. 2022. DoWhy-GCM: An extension of DoWhy for causal infer-
ence in graphical causal models. arXiv preprint arXiv:2206.06821 (2022).

Tovka Boneva, Benoit Groz, Jan Hidders, Filip Murlak, and Slawek Staworko.
2023. Static Analysis of Graph Database Transformations. In PODS. 251-261.
Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.
2018. Querying Graphs. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00873ED1V01Y201808DTMO051

Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
and Hannes Voigt. 2019. Schema Validation and Evolution for Graph Databases.
In Conceptual Modeling - 38th International Conference, ER 2019, Salvador, Brazil,
November 4-7, 2019, Proceedings. 448-456.

Angela Bonifati, Filip Murlak, and Yann Ramusat. 2024. Transforming Property
Graphs. Proc. VLDB Endow. 17, 11 (2024), 2906-2918. https://www.vldb.org/
pvldb/vol17/p2906-ramusat.pdf

Angela Bonifati, Filip Murlak, and Yann Ramusat. 2024. Transforming Property
Graphs. arXiv:2406.13062 [cs.DB] https://arxiv.org/abs/2406.13062

Angela Bonifati, Yann Ramusat, Filip Murlak, Amela Fejza, and Rachid Echahed.
2024. DTGraph: Declarative Transformations of Property Graphs. Proc. VLDB
Endow. 17, 12 (2024), 4265-4268.

Vinay K. Chaudhri, Chaitanya K. Baru, Naren Chittar, Xin Luna Dong, Michael R.
Genesereth, James A. Hendler, Aditya Kalyanpur, Douglas B. Lenat, Juan Se-
queda, Denny Vrandecic, and Kuansan Wang. 2022. Knowledge Graphs: Intro-
duction, History and, Perspectives. AI Mag. 43, 1 (2022), 17-29.

5525

[28

[29

[30

(31]

(33]

[34

[35

[36

(37]

(38]

[40]

[41]

[43

[44]

[45

[46]

[49

[50

Yurong Cheng, Lei Chen, Ye Yuan, and Guoren Wang. 2018. Rule-Based Graph
Repairing: Semantic and Efficient Repairing Methods. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE
Computer Society, 773-784. https://doi.org/10.1109/ICDE.2018.00075

Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity mainte-
nance using tuple deletions. Information and Computation 197, 1-2 (2005), 90-121.
Xu Chu, Thab F Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In 2013 IEEE 29th International Conference on Data Engi-
neering (ICDE). IEEE, 458-469.

Diego Colombo and Marloes H. Maathuis. 2014. Order-independent constraint-
based causal structure learning. J. Mach. Learn. Res. 15, 1 (2014), 3741-3782.
James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed
Database. In 10th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 251-264.

Rina Dechter and Judea Pearl. 1991. Directed Constraint Networks: A Relational
Framework for Causal Modeling. In Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991. 1164-1170.
Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,
Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vr-
goc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and
SQL/PGQ. In SIGMOD, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 2246-2258. https://doi.org/10.1145/3514221.3526057

Thomas Eiter and Thomas Lukasiewicz. 2004. Complexity results for explanations
in the structural-model approach. Artificial Intelligence 154, 1 (2004), 145-198.
Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data
Exchange: Semantics and Query Answering. TCS 336, 1 (2005), 89-124.

Wenfei Fan and Ping Lu. 2017. Dependencies for Graphs. In Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(Chicago, Illinois, USA) (PODS ’17). Association for Computing Machinery, New
York, NY, USA, 403-416. https://doi.org/10.1145/3034786.3056114

Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for
Graphs. In Proceedings of the 2016 International Conference on Management of
Data (San Francisco, California, USA) (SIGMOD °16). Association for Computing
Machinery, New York, NY, USA, 1843-1857. https://doi.org/10.1145/2882903.
2915232

Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and
Domagoj Vrgoc. 2022. GPC: A Pattern Calculus for Property Graphs. CoRR
abs/2210.16580 (2022).

Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and
Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In PODS.
241-250.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In
SIGMOD, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.).
ACM. https://doi.org/10.1145/3183713.3190657

Nadime Francis and Leonid Libkin. 2017. Schema Mappings for Data Graphs. In
PODS’17. 389-401.

Amélie Gheerbrant, Leonid Libkin, Liat Peterfreund, and Alexandra Rogova.
2024. GQL and SQL/PGQ: Theoretical Models and Expressive Power. CoRR
abs/2409.01102 (2024). https://doi.org/10.48550/arXiv.2409.01102

Py-Why Graphs. 2024. Py-Why-Graphs. https://github.com/py-why/pywhy-
graphs. [Online; accessed 17-August-2024].

Magnus Halldérsson and Jaikumar Radhakrishnan. 1994. Greed is good: Approx-
imating independent sets in sparse and bounded-degree graphs. In Proceedings
of the twenty-sixth annual ACM symposium on Theory of computing. 439-448.
Soonbo Han and Zachary G. Ives. 2024. Implementation Strategies for Views
over Property Graphs. Proc. ACM Manag. Data 2, 3, Article 146 (May 2024),
26 pages. https://doi.org/10.1145/3654949

Soonbo Han and Zachary G. Ives. 2025. Implementing Views for Property Graphs.
SIGMOD Rec. 54, 1 (2025), 59-68.

Jian He, Enzo Veltri, Donatello Santoro, Guoliang Li, Giansalvatore Mecca, Paolo
Papotti, and Nan Tang. 2016. Interactive and Deterministic Data Cleaning. In
Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machin-
ery, New York, NY, USA, 893-907. https://doi.org/10.1145/2882903.2915242
Paul W. Holland. 1986. Statistics and causal inference. J. Amer. Statist. Assoc. 81,
396 (1986), 945-960.

Thab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM Books, Vol. 28. ACM.
https://doi.org/10.1145/3310205

https://aws.amazon.com/neptune/
https://kuzudb.com/
https://neo4j.com/
https://www.oracle.com/database/technologies/graph-analytics/
https://www.oracle.com/database/technologies/graph-analytics/
https://redis.io/docs/stack/graph/
https://help.sap.com/viewer/product/SAP_HANA_GRAPH/
https://help.sap.com/viewer/product/SAP_HANA_GRAPH/
https://sparsity-technologies.com/sparksee/
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3589778
https://doi.org/10.1145/3448016.3457561
https://doi.org/10.48786/EDBT.2025.63
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://www.vldb.org/pvldb/vol17/p2906-ramusat.pdf
https://www.vldb.org/pvldb/vol17/p2906-ramusat.pdf
https://arxiv.org/abs/2406.13062
https://arxiv.org/abs/2406.13062
https://doi.org/10.1109/ICDE.2018.00075
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1145/2882903.2915232
https://doi.org/10.1145/2882903.2915232
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.48550/arXiv.2409.01102
https://github.com/py-why/pywhy-graphs
https://github.com/py-why/pywhy-graphs
https://doi.org/10.1145/3654949
https://doi.org/10.1145/2882903.2915242
https://doi.org/10.1145/3310205

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[64]

[65]

[66]

[67]

[68]

[69]

1SO. 2024. ISO/IEC 39075:2024 Information technology — Database languages —
GOQL. https://www.iso.org/standard/76120.html.

Paul Juillard, Angela Bonifati, and Andrea Mauri. 2024. Interactive Graph Re-
pairs for Neighborhood Constraints. In Proceedings 27th International Conference
on Extending Database Technology (EDBT 2024) Paestum, Italy, March 25 - March
28. OpenProceedings.org, 2:175-2:187.

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. 2020. Causal Discovery
Toolbox: Uncovering causal relationships in Python. 7. Mach. Learn. Res. 21
(2020), 37:1-37:5

Phokion G. Kolaitis. 2005. Schema Mappings, Data Exchange, and Metadata
Management. In PODS. 61-75.

Haridimos Kondylakis, Stefania Dumbrava, Matteo Lissandrini, Nokolay
Yakovets, Angela Bonifati, Vasilis Efthymiou, George Fletcher, Dimitris Plex-
ousakis, Riccardo Tommasini, Georgia Troullinou, and Elisjana Ymeralli. 2025.
Property Graph Standards: State of the Art & Open Challenges. Proc. VLDB En-
dow. 18, 12 (2025), 5477-5481.

Maurizio Lenzerini. 2002. Data integration: a theoretical perspective. In Proceed-
ings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (Madison, Wisconsin) (PODS *02). Association for Computing
Machinery, New York, NY, USA, 233-246. https://doi.org/10.1145/543613.543644
Peng Lin, Qi Song, Yinghui Wu, and Jiaxing Pi. 2020. Repairing entities using
star constraints in multirelational graphs. In 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE). IEEE, 229-240.

Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph Koch,
Katherine F. Moore, and Dan Suciu. 2010. Causality in Databases. IEEE Data Eng.
Bull. 33, 3 (2010), 59-67. http://sites.computer.org/debull/A10sept/suciu.pdf
Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. The Complexity of Causality and Responsibility for Query Answers and
non-Answers. Proc. VLDB Endow. 4, 1 (2010), 34-45. https://doi.org/10.14778/
1880172.1880176

Amine Mhedhbi, Amol Deshpande, and Semih Salihoglu. 2024. Modern Tech-
niques For Querying Graph-structured Databases. Found. Trends Databases 14, 2
(2024), 72-185. https://doi.org/10.1561/1900000090

Renée J. Miller, Laura M. Haas, and Mauricio A. Hernandez. 2000. Schema Map-
ping as Query Discovery. In VLDB 2000, Proceedings of 26th International Confer-
ence on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt. 77-88.

Inc. Neodj. [n.d.]. ICIJ offshore leaks. Retrieved October 2, 2024 from https:
//github.com/neo4;j- graph-examples/icij- offshoreleaks

Amedeo Pachera, Angela Bonifati, and Andrea Mauri. 2025. Grafixer: Enabling
User-Centric Repairs for Property Graphs. In Companion of the 2025 Interna-
tional Conference on Management of Data, SSIGMOD/PODS 2025, Berlin, Germany,
Fune 22-27, 2025. 199-202.

Amedeo Pachera, Angela Bonifati, and Andrea Mauri. 2025. User-Centric Prop-
erty Graph Repairs. Proc. ACM Manag. Data 3, 1 (2025), 85:1-85:27.

Amedeo Pachera, Mattia Palmiotto, Angela Bonifati, and Andrea Mauri. 2025.
What If: Causal Analysis with Graph Databases. Proc. VLDB Endow. 18, 11 (2025),
4009-4016.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan
Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro
Dragoni, and Damien Graux. 2023. Large Language Models and Knowledge
Graphs: Opportunities and Challenges. TGDK 1, 1 (2023), 2:1-2:38.

Jonas Peters, Dominik Janzing, Arthur Gretton, and Bernhard Scholkopf. 2009.
Detecting the direction of causal time series. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009 (ACM International Conference Proceeding Series), An-
drea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman (Eds.), Vol. 382.
ACM, 801-808.

Kashif Rabbani, Matteo Lissandrini, Angela Bonifati, and Katja Hose. 2025. Trans-
forming RDF Graphs to Property Graphs using Standardized Schemas (To ap-
pear). Proc. ACM Manag. Data 3 (2025), 198:1-198:25.

Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Do-
minik Janzing, Moritz Grosse-Wentrup, and Bernhard Scholkopf. 2017. Causal
Consistency of Structural Equation Models. In Proceedings of the Thirty-Third

5526

[70

71

[72

[73

[74

k=
2

[76

[77

(78

[79]

(80

[81

(82]

[84

[85

[86

Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia,
August 11-15, 2017.

Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuza-
ima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard
Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki
Kalavri, Hugo Kapp, Wim Martens, M. Tamer Ozsu, Eric Peukert, Stefan Plan-
tikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz,
Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gabor Szarnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The Future is Big Graphs:
A Community View on Graph Processing Systems. Commun. ACM 64, 9 (aug
2021), 62-71. https://doi.org/10.1145/3434642

Babak Salimi, Harsh Parikh, Moe Kayali, Lise Getoor, Sudeepa Roy, and Dan Su-
ciu. 2020. Causal Relational Learning. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 241-256.
Larissa C. Shimomura, George Fletcher, and Nikolay Yakovets. 2020. GGDs:
Graph Generating Dependencies. In CIKM. 2217-2220.

Larissa C. Shimomura, Nikolay Yakovets, and George Fletcher. 2022.
Reasoning on Property Graphs with Graph Generating Dependencies.
arXiv:2211.00387 [cs.DB] https://arxiv.org/abs/2211.00387

Rajesh Shrestha, Omeed Habibelahian, Arash Termehchy, and Paolo Papotti.
2023. Exploratory Training: When Annonators Learn About Data. Proceedings
of the ACM on Management of Data 1, 2 (2023), 1-25.

Shaoxu Song, Boge Liu, Hong Cheng, Jeffrey Xu Yu, and Lei Chen. 2017. Graph re-
pairing under neighborhood constraints. The VLDB Journal 26,5 (2017), 611-635.
Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. 2012. Prioritized re-
pairing and consistent query answering in relational databases. Ann. Math. Artif.
Intell. 64, 2-3 (2012), 209-246. https://doi.org/10.1007/s10472-012-9288-8
Michael Stonebraker and Ihab F. Ilyas. 2018. Data Integration: The Current Sta-
tus and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3-9.

Hrishikesh Terdalkar, Angela Bonifati, and Andrea Mauri. 2025. Graph Repairs
with Large Language Models: An Empirical Study. In Proceedings of the 8th Joint
Workshop on Graph Data Management Experiences & Systems (GRADES) and Net-
work Data Analytics (NDA), Berlin, Germany, June 22-27, 2025. 9:1-9:10.
Saravanan Thirumuruganathan, Laure Berti-Equille, Mourad Ouzzani, Jorge-
Arnulfo Quiane-Ruiz, and Nan Tang. 2017. UGuide: User-Guided Discovery of
FD-Detectable Errors. In Proceedings of the 2017 ACM International Conference
on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for
Computing Machinery, New York, NY, USA, 1385-1397. https://doi.org/10.1145/
3035918.3064024

Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Vicente Cal-
isto, Benjamin Farias, Sebastian Ferrada, Tristan Heuer, Aidan Hogan, Gonzalo
Navarro, Alexander Pinto, Juan L. Reutter, Henry Rosales-Méndez, and Etienne
Toussaint. 2024. MillenniumDB: A Multi-modal, Multi-model Graph Database.
In Companion of the 2024 International Conference on Management of Data, SIG-
MOD/PODS 2024, Santiago, Chile, June 9-15, 2024. 496-499.

Gerhard Weikum. 2021. Knowledge Graphs 2021: A Data Odyssey. Proc. VLDB
Endow. 14, 12 (2021), 3233-3238.

Jef Wijsen. 2005. Database repairing using updates. ACM Transactions on Data-
base Systems (TODS) 30, 3 (2005), 722-768.

Mingyu Xiao and Hiroshi Nagamochi. 2017. Exact algorithms for maximum in-
dependent set. Information and Computation 255 (2017), 126—146.

Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani,
and Thab F. Ilyas. 2011. Guided data repair. Proc. VLDB Endow. 4, 5 (feb 2011),
279-289. https://doi.org/10.14778/1952376.1952378

Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and
Future Directions. In CIKM. 3521-3522.

Boxiang Zhao, Shuliang Wang, Lianhua Chi, Qi Li, Xiaojia Liu, and Jing Geng.
2023. Causal Discovery via Causal Star Graphs. ACM Trans. Knowl. Discov. Data
17,7, Article 98 (apr 2023), 24 pages.

https://doi.org/10.1145/543613.543644
http://sites.computer.org/debull/A10sept/suciu.pdf
https://doi.org/10.14778/1880172.1880176
https://doi.org/10.14778/1880172.1880176
https://doi.org/10.1561/1900000090
https://github.com/neo4j-graph-examples/icij-offshoreleaks
https://github.com/neo4j-graph-examples/icij-offshoreleaks
https://doi.org/10.1145/3434642
https://arxiv.org/abs/2211.00387
https://arxiv.org/abs/2211.00387
https://doi.org/10.1007/s10472-012-9288-8
https://doi.org/10.1145/3035918.3064024
https://doi.org/10.1145/3035918.3064024
https://doi.org/10.14778/1952376.1952378

	Abstract
	1 Introduction
	1.1 Property Graph Transformations for Versatile Data Manipulation
	1.2 Graph Transformation Examples

	2 Evolution of Property Graph Standards
	2.1 DML for Property Graphs
	2.2 DDL for Property Graphs

	3 Declarative Property Graph Transformations
	3.1 Past Approaches
	3.2 Property Graph Transformation Rules
	3.3 Executable Property Graph Transformations

	4 Property Graph Transformations for Graph Repairs
	4.1 Past Approaches
	4.2 Repairs as Property Graph Transformations
	4.3 User-Centric Property Graph Repairs

	5 Property Graph Transformations for Causal Analysis
	5.1 Past Approaches
	5.2 Causal Property Graph Transformations

	6 Conclusion and Open Challenges
	Acknowledgments
	References

