
Machine Learning for Graph Data Management andQuery
Processing

Hanchen Wang
University of Technology Sydney

Sydney, Australia
hanchen.wang@uts.edu.au

Ying Zhang∗
Common Prosperity Visualization

and Policy Simulation Lab of Zhejiang
Gongshang University

Hangzhou, China
ying.zhang@zjgsu.edu.cn

Wenjie Zhang
University of New South Wales

Sydney, Australia
wenjie.zhang@unsw.edu.au

ABSTRACT
Machine learning techniques have been proposed to optimize the
performance of graph databases in recent years. Due to the NP-
hardness of graph database tasks and the complexity of graph
data, traditional exact solutions usually encounter efficiency issues,
while the performance of approximation solutions can be affected
by issues like sampling failure and local optimality. Empowered by
the inherent advantages of machine learning, the learning-based
techniques show the generalization ability and better performance
in many scenarios, including graph data management and graph
query processing. Despite the efficiency and accuracy brought by
machine learning techniques, machine learning for graph database
models still face several critical challenges, including scalability
and adaptability. In this tutorial, we first provide an in-depth survey
of learning-based graph data management and query processing
techniques published in recent database and data mining confer-
ences to sketch the frontier of the research of Machine Learning for
Graph Database. We also discuss the open challenges and provide
future directions.
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1 INTRODUCTION
Graph data management and query processing are fundamental
to modern data science and data engineering. Traditional graph
data management and query processing techniques often rely on
heuristics or manual tuning, which makes it challenging to adapt
to the dynamic requirements of real-life graph data management
and query processing, including evolving graph structures, diverse
query workloads, low data quality, high computational complexity,
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and real-time response requirements. Machine learning (ML) has
emerged as a powerful paradigm to address these challenges by
leveraging data-driven insights. For instance, ML models can accel-
erate query planning through reinforcement learning and provide
accurate cardinality estimation using deep learning. However, ap-
plying ML to graph databases introduces unique challenges, such
as scalability and adaptability. Existing techniques often lack scala-
bility for large graphs and fail to generalize across different tasks.
This tutorial systematically reviews recent advancements in ML for
graph databases, covering techniques for data management (e.g.,
data quality management and graph generation) and query pro-
cessing (e.g., subgraph isomorphism, graph similarity computation,
and community search and detection), while highlighting open
challenges and future directions.
Tutorial Overview. This tutorial will be an 1.5-hour for machine
learning for graph data management and query processing. The
program of this tutorial is as follows:
Background and Foundations (15 Minutes). We first introduce
the background and foundations for this tutorial. Specifically, we
will provide the background information about graph database,
introduce critical tasks in graph database, and highlight the mo-
tivation of utilizing machine learning techniques for graph data
management and query processing.
Machine Learning for Graph Data Management (25 Minutes).
We review the machine learning-based techniques for graph data
management in this section. Specifically, we include machine learn-
ing techniques for graph data quality management [3, 15, 24, 34, 41,
43, 44] and graph generation [7, 8, 16–18, 23, 25, 35].
Machine Learning for Graph Query Processing (30 Minutes).
Next, we summarize the machine learning-based techniques for
popular graph query processing tasks, including subgraph isomor-
phism [6, 27–29, 40], graph similarity computation [1, 9, 10, 14, 19–
21, 39, 46], and community detection and search [22, 30, 31].
Open Challenges and Future Directions (20 Minutes). This
section covers the open challenges and future directions of learning-
based graph data management and query processing. We will dis-
cuss the challenges of existing techniques, including the ability
to handle large-scale graphs and the capability of being applied
to various tasks. We also provide future directions with a discus-
sion about the utilization of foundation models, integrating graph
prompt learning methods, and combining database and machine
learning techniques to improve scalability.
Target audience and assumed background. This tutorial is pro-
posed for the audience, including VLDB attendees from both aca-
demic and industry communities who are interested in machine
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Table 1: Summary of Machine Learning for Graph Database Models

Objective Task Category Models

Graph Data Management

Graph Data Quality Management
Data quality assessment [3] [15] [43]

Data quality enhancement [24] [34] [41] [44]

Graph Generation
Embedding similarity-based models [7] [16] [18] [35]

Statistics-based models [17] [23] [25]

Graph Query Processing

Subgraph Isomorphism
Subgraph matching [29] [40]

Subgraph counting [6] [27]

Graph Similarity
Metric-agnostic models [1] [14] [20]

Metric-specific models [19] [21] [46] [10] [9]

Community Search
Community search [30] [31]

Overlapping community search [22]

learning for graph database, graph data management, and graph
query processing. This tutorial requires basic prior background
knowledge in graph computation and graph database.
Recent related tutorials. There are recent tutorials about machine
learning for database [2, 13]. However, these tutorials focus on re-
lational database and database systems, rather than graph database.
There are tutorials about machine learning for subgraph extrac-
tion [42] and graph generation [26]. This tutorial will cover broader
contents about machine learning for graph data management and
query processing. There are other tutorials that introduce the de-
velopment of machine learning techniques for database [12, 38, 45].
These tutorials offer comprehensive overviews of machine learning
applications in specific database tasks, whereas this one focuses on
presenting learning-based advancements in graph database areas.

2 TUTORIAL OUTLINE
This is a 1.5-hour tutorial designed for VLDB attendees who are in-
terested in machine learning for database, graph data management,
and graph query processing. Below is the outline of the tutorial.

2.1 Background and Introduction
We first give the background knowledge required for this tutorial.
First, the definitions of graph data management and query process-
ing will be introduced, and the major tasks covered in this tutorial,
including data quality management, graph data generation, and
graph query optimization, will be introduced. Next, traditional so-
lutions for graph data management and query processing will be
provided, alongwith themotivation of developingmachine learning
techniques.

In this tutorial, we comprehensively introduce machine learning
techniques for graph databases from two perspectives, i.e., graph
data management and graph query processing. We provide a the
categorization of the existing machine learning for graph database

techniques, and summarize them in Table 1. Following the back-
ground knowledge and brief introduction, we give the detailed
review of machine learning for graph database techniques.

2.2 Machine Learning for Graph Data
Management

Graph Data Quality Management. Due to various quality is-
sues, the graph data quality management is a crucial aspect of
graph data management. In this tutorial, we introduce the machine
learning-based graph data quality management techniques from
two perspectives, data quality assessment and data quality improve-
ment.

Data quality assessment.We focus on one major task, error de-
tection, for data quality assessment in this tutorial. Specifically, the
following representative works [3, 15, 43] for error detection on
graph data will be introduced.

Data quality improvement. We focus on a specific data quality
improvement task in this tutorial, i.e., missing data imputation. Be-
cause of the scarcity of real-life graph data, missing data imputation
plays an important role in graph data management. In this tutorial,
we introduce several advanced graph missing data imputation tech-
niques along with a comprehensive overview [37] of the research
in the area. Specifically, the learning-based models [24, 34, 41, 44]
designed for missing data imputation will be introduced. We also
introduce UnIMP, proposed in [32], which models the tabular data
as a hypergraph and jointly utilizes both the graph neural network
and LLM for imputation.
Graph Generation. Graph generation [4, 36], one of the most
fundamental problems in graph data management and analytics,
aims to generate new graphs from the approximate distribution of
observed graph data. In this tutorial, we focus on similarity-based
models which are optimized for structural and distributional fidelity
between synthesized graphs and their real-world counterparts. The
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similarities are measured through metrics comparing embedding
similarities and overall graph statistics.

Embedding similarity-based models. First, the graph generation
model based on embedding similarities will be discussed. The simi-
larity between the representations of the generated graph and the
actual graph will be used as a training objective. Several represen-
tative works for graph generation based on similarities in graph
embedding space will be introduced. The Variational Autoencoder
(VAE) [11], recognized as a prominent generative learning frame-
work, is extensively employed in graph generation [7, 16, 18, 35].

Statistics-based models. Numerous graph generation models also
incorporate statistical similarity measurements between graphs.
Recent advancements [17, 23, 25] have introduced novel metrics for
assessing the similarity between generated and real graphs. These
include maximum mean discrepancy (MMD), and Kullback-Leibler
divergence, among others. These metrics provide a more nuanced
evaluation of the generated graphs, considering both the global
structure and local node-level features.

2.3 Machine Learning for Graph Query
Processing

Subgraph Isomorphism. Subgraph isomorphism, a fundamental
graph query processing task, aims to find subgraphs of a data graph
that are isomorphic to the query graph. Due to the NP-completeness,
it is time consuming to find exact solutions to subgraph isomor-
phism, therefore, machine learning techniques are developed to
accelerate the computation and provide accurate approximations.
In this tutorial, we focus on two tasks, subgraph isomorphism
matching and subgraph isomorphism counting.

Subgraph isomorphism matching. Two recent learning-based sub-
graph matching models will be introduced. RL-QVO [29] is a rein-
forcement learning-based model for optimizing subgraph matching
by considering long-term rewards and generating optimal query
vertex orders. GNN-PE [40] proposes a novel Path Dominance Em-
bedding technique, where paths in the data graph are transformed
into high-dimensional embeddings that follow a strict dominance
relationship to ensure efficient candidate pruning.

Subgraph isomorphism counting. Subgraph isomorphism count-
ing determines the frequency of subgraphs of the data graph that
are isomorphic to the query graph. We discuss two works in this
tutorial. LearnSC [6] decomposes both query and data graphs. The
model employs a cross-graph learning model that embeds match-
ing node features and introduces loss functions based on Direction
Similarity and Projection Length. NeurSC [27] adaptively generates
representative substructures from the data graph for each query
graph, focusing only on relevant candidate structures. The inter-
and intra-graph relationships are captured by the neural networks.
FlowSC [5] simulates the candidate tree-based counting process us-
ing a bottom-up flow-learning approach, which explicitly captures
the relationship between the structure and the counts. Combined
with efficient candidate filtering, it achieves accurate subgraph
counting.
Graph Similarity. Recently, machine learning techniques have
been developed for the computation of graph similarity [39] to
alleviate the computational costs of this task. Most learning-based
models are designed for graph edit distance (GED) and maximum

common subgraph (MCS). In this tutorial, we categorize these meth-
ods into two classes, i.e.,metric-agnostic andmetric-specific. We will
present an overview of related research works.

Metric-agnostic models. SimGNN [1] pioneers a GNN-based ap-
proach for graph similarity computation, utilizing GCN as its foun-
dational architecture. GMN [14] modifies the conventional GNN
message-passing mechanism by incorporating cross-graph interac-
tions, enabling simultaneous information aggregation from both
input graphs. EGSC [20] introduces a layered processing frame-
work, where outputs from a multi-layer GCN are progressively
transformed through an Embedding Fusion Network (EFN) to inte-
grate node embeddings across graph pairs.

Metric-specific models.Most existing metric-specific methods pre-
dominantly focus on learning-based GED computation. GREED [21]
primarily considers several properties that GED as a metric is sup-
posed to possess with GIN as the backbone. ERIC [46] conducts an
in-depth analysis of the characteristics of GED and points out that
when a pair of input graphs is aligned according to certain rules,
GED can be derived based on the adjacency matrices and features
of the aligned graphs. GEDGNN [19] takes a different perspective
on GED computation by proposing the use of matching relation-
ships and cost matrices to estimate the similarity between input
graphs. DiffGED [10] leverages the diffusion model to generate a
transition matrix for graph edit distance computation. This method
provides an accurate estimation of GED with an associated GED
path. GEDRanker [9] provides a novel unsupervised solution for
GED approximation, which avoids the time-costly computation of
ground-truth GED values.
Community Search. Community search is a representative graph
processing task that identifies a specific community with a given
query. In this tutorial, we discuss the following learning-based
solutions.

Community search. CSGphormer [30] proposed a pre-trained
graph transformer-based community search framework that uses
zero label. Therefore, CSGphormer supports unsupervised commu-
nity search. ALICE [31] extracts a candidate subgraph to reduce
the search scope and subsequently predicts the community by the
Consistency-aware Net, termed ConNet. ALICE is able to be applied
on billion-scale graphs. EnMCS [33] is proposed for multilayer
community search, which first searches communities in each layer
without labels and then merges communities from different layers
by the expectation-maximization algorithm

Overlapping community search. In real-world graphs, every node
may belong to multiple communities, which motivates the de-
velopment of overlapping community search methods. Research
work [22] will be introduced, which proposed Sparse Subspace Fil-
ter (SSF) and Simplified Multi-hop Attention Networks (SMN) for
overlapping community search.

2.4 Open Challenges and Future Directions
Wewill discuss the challenges of current research and several future
research directions in learning-based graph data management and
query processing.
Challenges. We will focus on the following two major challenges.
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(1) Scalability. The scalability is a common challenge for machine
learning-based techniques, especially with the million- or billion-
scale real-life graphs.
(2) Adaptability. Adaptability poses a significant challenge when
applying machine learning techniques to real-world graph data
management systems. Most existing techniques are designed for a
specific task or a specific dataset, which has the limitation of being
adapted to dynamic graph data or various downstream tasks.
Future Directions. In conclusion to this tutorial, we introduce the
future direction for machine learning for graph data management
and query processing. We focus on three key directions promise to
further advance the field.
(1) Foundation models for graphs. As discussed previously, the task-
specific nature of current machine learning-basedmethods prevents
them from application in real-life graph data management systems.
Foundation models, which have great generalization ability, will
enable unified, adaptable solutions across diverse tasks. Unlike
task-specific models, these pretrained frameworks can generalize
across different graph data, varying workloads, and multiple tasks,
reducing the need for costly retraining.
(2) Integrating graph prompting frameworks. By unifying disparate
learning-based models under a flexible prompting interface, broader
applications can be supported by a single model. Meanwhile, adopt-
ing the graph prompting techniques can also minimize the cus-
tomization overhead, e.g., retraining of the model, for various graph-
related tasks.
(3) Combining database and machine learning techniques. Many ex-
isting techniques only rely on machine learning techniques to solve
a database task, eventually leading to the scalability issue. Combin-
ing database techniques, such as candidate filtering, pruning, and
sampling, is a promising future direction to improve the scalability
of learning-based solutions to graph data management.
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