
Filtered Vector Search: State-of-the-art and Research
Opportunities

Yannis Chronis
ETH Zurich

chronis@ethz.ch

Helena Caminal
Systems Research Group, Google

hcaminal@google.com

Yannis Papakonstantinou
Google Cloud

yannispap@google.com

Fatma Özcan
Systems Research Group, Google

fozcan@google.com

Anastasia Ailamaki
EPFL

anastasia.ailamaki@epfl.ch

ABSTRACT
This tutorial provides a comprehensive overview of filtered vector
search (fvs). Fvs queries combine vector search with relational op-
erators. The tutorial explores the challenges of integrating vector
search into database engines and emphasizes the need for new op-
timization techniques. It explains the three primary filtered search
methods for fvs queries over generic tree-based and graph-based in-
dices and examines the factors influencing the selection of the most
efficient method. A key objective is to highlight the importance of
achieving stable recall, ideally in a declarative manner, ensuring
consistent recall across queries. The tutorial then discusses recent
filter-optimized vector indices and concludes by identifying open
research challenges in the field of fvs, aiming to inspire further
research and development.

PVLDB Reference Format:
Yannis Chronis, Helena Caminal, Yannis Papakonstantinou, Fatma Özcan,
and Anastasia Ailamaki. Filtered Vector Search: State-of-the-art and
Research Opportunities. PVLDB, 18(12): 5488 - 5492, 2025.
doi:10.14778/3750601.3750700

1 INTRODUCTION
The advancements of embedding models [10, 21, 24], the power of
semantic search [11, 16], and the importance of RAG for improv-
ing and grounding LLM responses [1, 15] drive the integration of
vector search into database engines. Storing and searching vectors
in databases enables the combined querying of unstructured data
(represented as vector embeddings) and the structured data that are
already stored in databases. New optimization techniques, execu-
tion methods and data structures are needed to achieve high perfor-
mance with high accuracy. Today, numerous commercial database
systems have added support for vector search [6, 13, 29, 35, 40, 43],
specialized vector databases have been introduced [4, 8, 38], and
there is also significant interest from the academic and open source
communities [2, 7, 20, 23, 25, 27, 31, 36, 39].

This tutorial elaborates on filtered vector search (fvs), the build-
ing block of queries that combine vector search with relational

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750700

operators [20, 31, 40]. In filtered vector search, relational operators
(or filters) on structured data restrict the database rows considered
by the vector search. For example, an e-commerce search may allow
filtering by the brand or price range while searching for similar
products to a user provided description.

Vector search is commonly accelerated by vector indices [5, 25,
27, 36, 37] that perform approximate near neighbor search (ANN).
ANN search trades-off latency for recall by reducing the number of
vectors that are visited during each index traversal. The alternative
is to calculate the similarity of every vector with the query vector
and sort them (i.e. K nearest neighbor search or KNN). Vector indices
can achieve substantial latency savings while achieving high recall
but require careful tuning of the index creation and search [27, 37].

A vector search execution method tuned for unfiltered queries
will fail to achieve high recall when filters are added [38, 40, 44].
Filters change the size and distribution of qualified data by eliminat-
ing vectors and, in certain cases, introducing correlation between
the filter predicates and the vector space [31]. Filtered vector search
algorithms should offer stable recall, namely achieve the same recall
for all queries regardless of the filter predicates. Ideally, from the
user’s perspective the tuning should be declarative. In other words,
the user specifies the target recall and not how to tune the execution
to achieve it (i.e. how many leaves of a tree vector index to search
[37]). Naturally these goals should be achieved with performance
(latency and resource usage are low). To this end, innovation is
needed in two areas: a) query optimization and b) filter-optimized
vector indices.

Filter-optimized vector indices aim to approximate an index built
exclusively from the vectors that satisfy the filters [20, 39–41]. An
index built only for the vectors that satisfy each filter would mini-
mize the search effort and avoid low recall results [30, 31], but is
infeasible to build in practice, unless the queries always feature a
very special filter type. For example, if all queries feature an equal-
ity condition on a categorical attribute, then the optimum strategy
is to have a partitioned index, i.e., one index for each value of the
categorical attribute. Proposed solutions trade-off latency, space
or generality to improve the latency to recall balance they achieve.
There are three components that can be changed to optimize an in-
dex for filters: the search algorithm [31], the construction [20, 40] or
the similarity metric [39, 41]. The requirements of database work-
loads and information retrieval use cases are not the same. We
categorize the proposed indices, which are motivated by informa-
tion retrieval use cases, based on the types of filter predicates, the
size of the filter results, and the number of structured attributes

5488

https://doi.org/10.14778/3750601.3750700
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750700


Yannis Chronis, Helena Caminal, Yannis Papakonstantinou, Fatma Özcan, and Anastasia Ailamaki

they support [20, 31]. More recent approaches achieve competitive
performance while being filter agnostic [31].

This tutorial covers filtered vector search, discusses the use cases
that make a timely research area, provides a classification of exist-
ing approaches and discusses their trade-offs, and sets the goals for
future solutions.

Tutorial Overview This tutorial is organized in five parts and the
intended length is 1.5 hours.

(a) Brief Background: Why and how do we search vec-
tors?
(i) Essentials of vector approximate nearest neighbor search
(ii) How do Vector Indices accelerate vector search?

(1) Classification (Tree, Graph, Hashing)
(iii) Quantization

(b) Introduction to Filtered Vector Search
(i) Searching structured data + vectors
(ii) Categorization of approaches

(c) Filtered Vector Search using Conventional Indices
(i) Execution methods
(ii) Recall Challenge

(1) When to stop searching to achieve a target re-
call?

(2) Selectivity, Correlation: How do they affect vec-
tor search?

(iii) Performance Challenge
(iv) Navigability Challenge in graphs indices

(d) Filter Vector Search using Specialized Indices
(i) Specialized Index Structures

(1) Predicate agnostic
(2) Predicate aware

(ii) Special Distance Functions
(e) Stable/Declarative Recall, Ease of Use
(f) Query Optimization and Planning

(1) Vector Search stopping conditions
(2) Choice of vector search execution and filter evaluation

method
(g) Research Challenges

Target Audience, Assumed Background, Related Tutorials
This tutorial is intended a) for database researchers and practi-
tioners interested in understanding and advancing the state-of-art
techniques for filtered vector search and b) for PhD students who
are seeking a high-impact research topic in this area.

There are no prerequisites beyond a basic understanding of data-
base concepts, embeddings and brute-force vector search (KNN).
The goal of this tutorial is threefold: (i) First, to introduce the dif-
ferent challenges of achieving high recall with good performance
for database filtered vector search queries (ii) Present and classify
the state-of-the-art in filtered vector search indices and execution
methods (iii) Present open research opportunities.

There is active interest in the research community for vector
search [12, 19, 34, 42, 45]. In the past five years, there have been
tutorials on similarity search techniques [17, 18, 32], vector search
for LLM RAG [9], and vector DB management techniques and
systems [30]. Our tutorial aims to complement these tutorials by

focusing on filtered vector search queries and inspire the design of
filter-optimized vector search methods indinces.

2 THE TUTORIAL
2.1 Vector Search Background
The first part of the tutorial covers relevant background: a) defini-
tion of vector search, b) presentation of motivating use cases (RAG
[1, 15], Semantic Search [11, 16], Recommendation Systems [16]),
b) exact and approximate algorithms (KNN and ANN) [30]), c) clas-
sification and comparison of vector index structures (Tree-based
indices [14, 22, 33], Graph-based Indices [27, 36, 39]), Hash-based
indices [25] d) quantization techniques [28].

Vector search ranks vectors based on their distance from a query
vector (most often returns the top-k vectors)1. The result can be
exact or approximate, depending on whether a K nearest neighbor
(KNN) or an approximate nearest neighbor (ANN) search is used
[30]. Vector indices are used to perform ANN search and trade-off
latency for recall by reducing the number of vectors considered
during each search. This trade-off is controlled directly or indirectly
by a set of index specific tuning knobs [20, 22, 27, 31].

2.2 Filtered Vector Search
Filtered vector search (fvs) queries restrict the database rows that
are considered by the vector search. In the simplest case, the filters
are atomic. In the richer case, they may also be nested subqueries.
Expanding to joins with conditions on “dimension” tables funda-
mentally reduces to the nested subquery case.
Execution methods There are three main execution methods for
executing filtered vector search queries depending on the order of
operations (filter and vector search) and the vector search type. Pre-
filtering, where data is filtered and then KNN search is performed
on the result of the filter. This method is preferred when the filter
result is small [30]. The remaining two execution methods use a
vector index to perform ANN vector search. Post-filtering, where
the filters are evaluated on the vector index search result [40]. For
inline-filtering, searching and filtering are combined, and the filters
can be evaluated before the vector search starts (and stored in a
bitmap) or evaluated during the vector index search.

Unsurprisingly, the three methods differ in terms of performance,
and in practice also in terms of recall. Tuning the vector index
search to achieve the same recall for the same query across all
methods is challenging. For instance, post-filtering, in simplified
approaches to filtered search, requires the approximate nearest
neighbor (ANN) search to yield a multiple of K results to ensure
at least K vectors remain after filtering [40], which complicates
achieving high recall. This introduces an extra tuning parameter
compared to inline filtering
Impact of Filters Filters modify data size and distribution by re-
moving vectors and potentially introducing correlation between
the filter and the vectors [31]. This impacts the number of vectors
needed for a vector index search to reach a specific recall level
compared to an unfiltered search. For instance, with a positive cor-
relation, nearby vectors are more likely to pass the filter, reducing
the number of vectors that need to be visited by a vector index

1A threshold on the maximum similarity distance can be additionally set.

5489



Filtered Vector Search: State-of-the-art and Research Opportunities

search for high recall. Conversely, a negative correlation increases
this number. Selective filters also increase the search effort [20, 39].
The optimal execution method depends on the relative costs of
filtering, ANN vector index search, and KNN search. These costs
are influenced by data and query characteristics such as selectivity,
correlation, k, and data distribution [31, 40].
Stable and Declarative Recall Performance stability and a declar-
ative interface have been at the core of database design. Stable and
declarative recall, extend these concepts to vector search.

In the absence of filters, basic heuristics have been employed to
tune vector index searching [37]. Since filters make the optimiza-
tion of an execution method more complex, designing systems and
algorithms that ensure stable recall is crucial. Stable recall: achieve
consistent recall across queries, regardless of filter conditions or the
execution method. The challenge lies in the fact that filter selectiv-
ity and correlation are notoriously difficult to predict during query
optimization, yet these factors ultimately determine the necessary
search effort [26]. Recently PostgreSQL proposed an adaptive ap-
proach to decide at runtime when the vector search should stop2.
AlloyDB [6] also follows an adaptive approach.

Ideally, a user should simply declare their desired target recall,
and let the database configure all the parameters to achieve it [3].
This approach eliminates the need for users to understand the
intricacies of the data and queries, and the complexities of vector
index tuning.

2.3 Filter-Optimized Vector Search Indices
The efficacy of vector indices depends on their ability to minimize
the number of vectors that need to be searched to achieve a specific
recall while applying the filters. The ideal index is one that is built
only for the database rows that satisfy a set of filters. Building
indices for all possible attribute values is infeasible, and existing
approaches try to approximate this goal by creating value-induced
neighborhoods, where vectors with the same (or similar) struc-
tured attribute values are connected3. Thus, during a vector search,
the effort to find all vectors that satisfy a filter is small and the
probability of low recall because of not reaching enough number
vectors that satisfy the filters is smal. FilteredDiskANN [20] creates
multiple graphs and merges them significantly modifying the in-
dex build step. NHQ incorporates the structured attributes in the
vector similarity and requires less changes to the build or search
algorithms [39, 41]. On the other hand, ACORN is designed to be
filter-agnostic where it physically or virtually augments the HSNW
index construction to guarantee navigability when filters eliminate
graph nodes [31].

Proposed approaches can also be classified by their filter sup-
port. Some support only equality predicates [20, 39, 41] while [46]
supports range predicates. Further, some approaches impose limits
on the number of structured attributes each datapoint can have
[39, 41] or the filter result cardinality [20]. A number of existing
approaches get inspiration from from the information retrieval
space, where the number of structured attributes and the number
of unique values is limited. Notably, to the best of our knowledge,

2https://github.com/pgvector/pgvector/issues/678
3Orthogonally, one may create a partitioned index if a categorical filter is known in
advance.

all fvs targeted optimizations that change the structure of an index
for a set of filter attribute values are for graph indices.

2.4 Research Opportunities
In addition to the stable and declarative recall challenges discussed
in 2, there aremany open challenges at the intersection of structured
data, vector search and, more broadly, search. We highlight here a
subset of them.
Benchmarks Pure vector search has benefited greatly from well-
adopted vector search benchmarks. It is imperative that respective
benchmarks emerge for filtered vector search.
Hybrid Search Semantic search is often combined with classic
full text search. The combination remains relevant when semantic
search is filtered vector search. Then, interesting opportunities
emerge by exploiting the full text search for providing a “soft"
alternative to filtering for certain subsets of filter conditions. For
example, the full text search index is often expanded to include
structured data, allowing filtered searches to be reduced to “boosted"
text searches or even proper filtered searches, thus providing an
alternate path towards specialized indexing.
Auto Configuration Many of the options we presented in this tu-
torial will eventually be incorporated in databases featuring vector
search, as well as in purpose-built vector databases. This, in turn,
will create a usability problem: What index should be used and how
to tune its parameters? What execution method is best? The data-
base community, with its long tradition of automated optimization,
can create important innovations.

3 PRESENTERS
Yannis Chronis is a Researcher at the Systems Research@Google.
He currently works on efficient filtered vector search architectures
for Google’s database products. Yannis will be joining ETH Zurich
in the summer of 2025 as an assistant professor; he received his
PhD from the University of Wisconsin-Madison.
Helena Caminal is a Researcher at the Systems Research@Google.
She is interested in problems at the intersection of database, ML, and
hardware. Helena has worked on leveraging Associative Processing
from the 1970s to design SRAM-based parallel processors used to
accelerate database analytics. Helena received a PhD from Cornell
University in 2022.
Anastasia Ailamaki is a Professor of Computer and Communi-
cation Sciences at EPFL, and a visiting researcher at Google. A
recipient of the 2019 ACM SIGMOD Edgar F. Codd Innovations
Award and the 2020 VLDB Women in Database Research Award,
she earned her Ph.D. in Computer Science from the University of
Wisconsin-Madison in 2000. She is an ACM fellow, an IEEE fellow,
a member of the Academia Europaea, and an elected member of
several National Research Councils.
Fatma Özcan is a Principal Engineer at Systems Research@Google.
Her current research focuses on LLMs andML for databases, text2SQL
and conversational interfaces to data, platforms and infrastructure
for large-scale data analysis. Dr Özcan got her PhD from University
of Maryland, College Park and has over 23 years of experience in
industrial research. She received the VLDB Women in Database
Research Award in 2022. She is an ACM Fellow, and the vice chair
of ACM SIGMOD.

5490



Yannis Chronis, Helena Caminal, Yannis Papakonstantinou, Fatma Özcan, and Anastasia Ailamaki

Yannis Papakonstantinou is a Distinguished Engineer, working
on Query Processing and GenAI, at Google Cloud. He is also an
Adjunct Professor of Computer Science and Engineering at the
University of California, San Diego, following many years of having
been a UCSD regular facultymember. Previously hewas an architect
in query processing & ETL at Databricks. Earlier, he was a Senior
Principal Scientist at Amazon Web Services from 2018-2021 and
was a consultant for AWS since 2016. He has published over one
hundred twenty research articles that have received over 21,000
citations. Yannis holds a Diploma of Electrical Engineering from the
National Technical University of Athens, MS and Ph.D. in Computer
Science from Stanford University (1997).

REFERENCES
[1] 2023. Brie Wolfson. Building chat langchain. https://blog.langchain.dev/

buildingchat-langchain-2/)).
[2] 2025. Facebook FAISS. https://github.com/facebookresearch/faiss.
[3] 2025. Oracle Vector Search Manual,. https://docs.oracle.com/en/database/oracle/

oracle-database/23/vecse/ai-vector-search-users-guide.pdf.
[4] 2025. Pinecone. https://www.pinecone.io/.
[5] 2025. ScaNN. github.com/google-research/google-research/tree/master/scann.
[6] 2025. ScaNN for AlloyDB,. https://services.google.com/fh/files/misc/scann_for_

alloydb_whitepaper.pdf.
[7] 2025. SPTAG: A Library for Fast Approximate Nearest Neighbor Search. https:

//github.com/Microsoft/SPTAG.
[8] 2025. Weviate. https://weaviate.io/.
[9] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based

language models and applications. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts).
41–46.

[10] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding
for collaborative filtering. In 2016 IEEE 26th international workshop on machine
learning for signal processing (MLSP). IEEE, 1–6.

[11] Fedor Borisyuk, Siddarth Malreddy, Jun Mei, Yiqun Liu, Xiaoyi Liu, Piyush Ma-
heshwari, Anthony Bell, and Kaushik Rangadurai. 2021. VisRel: Media search at
scale. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining. 2584–2592.

[12] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu, Szu-
Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang. 2024.
SingleStore-V: An Integrated Vector Database System in SingleStore. Proc. VLDB
Endow. 17, 12 (Aug. 2024), 3772–3785. https://doi.org/10.14778/3685800.3685805

[13] James C. Corbett and et. al. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages.
https://doi.org/10.1145/2491245

[14] Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low
dimensional manifolds. In Proceedings of the fortieth annual ACM symposium on
Theory of computing. 537–546.

[15] Xin Luna Dong. 2024. The Journey to a Knowledgeable Assistant with Retrieval-
Augmented Generation (RAG) (SIGMOD/PODS ’24). Association for Computing
Machinery, New York, NY, USA, 3. https://doi.org/10.1145/3626246.3655999

[16] Ming Du, Arnau Ramisa, Amit Kumar KC, Sampath Chanda, Mengjiao Wang,
Neelakandan Rajesh, Shasha Li, Yingchuan Hu, Tao Zhou, Nagashri Lakshmi-
narayana, et al. 2022. Amazon shop the look: A visual search system for fashion
and home. In Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining. 2822–2830.

[17] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New trends
in high-D vector similarity search: al-driven, progressive, and distributed. Proc.
VLDB Endow. 14, 12 (July 2021), 3198–3201. https://doi.org/10.14778/3476311.
3476407

[18] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New trends
in high-d vector similarity search: al-driven, progressive, and distributed. Pro-
ceedings of the VLDB Endowment 14, 12 (2021), 3198–3201.

[19] Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Raymond
Chi-Wing Wong. 2024. Practical and Asymptotically Optimal Quantization of
High-Dimensional Vectors in Euclidean Space for Approximate Nearest Neighbor
Search. arXiv:2409.09913 [cs.DB] https://arxiv.org/abs/2409.09913

[20] Siddharth Gollapudi and et. al. 2023. Filtered-DiskANN: Graph Algorithms for
Approximate Nearest Neighbor Search with Filters. InWWW ’23 (Austin, TX,
USA). Association for Computing Machinery, New York, NY, USA, 3406–3416.
https://doi.org/10.1145/3543507.3583552

[21] Martin Grohe. 2020. word2vec, node2vec, graph2vec, x2vec: Towards a theory of
vector embeddings of structured data. In proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI symposium on principles of database systems. 1–16.

[22] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. In International Conference on Machine Learning. https:
//arxiv.org/abs/1908.10396

[23] Jiawei Han, Xifeng Yan, and Philip S. Yu. 2006. Mining, Indexing, and Similarity
Search in Graphs and Complex Structures. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE ’06). IEEE Computer Society, USA, 106.
https://doi.org/10.1109/ICDE.2006.99

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[25] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[27] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (April 2020), 824–836. https://doi.
org/10.1109/TPAMI.2018.2889473

[28] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. A survey
of product quantization. ITE Transactions on Media Technology and Applications
6, 1 (2018), 2–10.

[29] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: a decade of interactive
SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3461–3472.
https://doi.org/10.14778/3415478.3415568

[30] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. The VLDB Journal 33, 5 (July 2024), 1591–1615. https:
//doi.org/10.1007/s00778-024-00864-x

[31] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN:
Performant and Predicate-Agnostic Search Over Vector Embeddings and Struc-
tured Data. Proc. ACM Manag. Data 2, 3, Article 120 (May 2024), 27 pages.
https://doi.org/10.1145/3654923

[32] Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang, and Yaoshu Wang. 2021. High-
dimensional similarity query processing for data science. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 4062–
4063.

[33] Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for nearest neighbor
search. In Proceedings of the 25th acm sigkdd international conference on knowledge
discovery & data mining. 1378–1388.

[34] Patrick Schäfer, Jakob Brand, Ulf Leser, Botao Peng, and Themis Palpanas. 2024.
Fast and Exact Similarity Search in less than a Blink of an Eye. arXiv preprint
arXiv:2411.17483 (2024).

[35] Michael Stonebraker and Greg Kemnitz. 1991. The POSTGRES next generation
database management system. Commun. ACM 34, 10 (Oct. 1991), 78–92. https:
//doi.org/10.1145/125223.125262

[36] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Kr-
ishaswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: fast accurate billion-
point nearest neighbor search on a single node. Curran Associates Inc., Red Hook,
NY, USA.

[37] Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. 2023.
SOAR: Improved Indexing for Approximate Nearest Neighbor Search. In Neural
Information Processing Systems. https://arxiv.org/abs/2404.00774

[38] JianguoWang and et. al. 2021. Milvus: A Purpose-Built Vector Data Management
System. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMachinery,
New York, NY, USA, 2614–2627. https://doi.org/10.1145/3448016.3457550

[39] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2023. An efficient and robust framework for approximate nearest
neighbor search with attribute constraint. In NIPS ’23 (New Orleans, LA, USA).
Curran Associates Inc., Red Hook, NY, USA, Article 692, 14 pages.

[40] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. Analyticdb-v: A hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[41] Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN:
Efficient and robust similarity search for hybrid queries with structured and
unstructured constraints. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. 4580–4584.

[42] Qian Xu, Juan Yang, Feng Zhang, Junda Pan, Kang Chen, Youren Shen, Amelie Chi
Zhou, and Xiaoyong Du. 2025. Tribase: A Vector Data Query Engine for Reliable
and Lossless Pruning Compression using Triangle Inequalities. Proc. ACMManag.
Data 3, 1, Article 82 (Feb. 2025), 28 pages. https://doi.org/10.1145/3709743

5491

https://blog.langchain.dev/buildingchat-langchain-2/))
https://blog.langchain.dev/buildingchat-langchain-2/))
https://github.com/facebookresearch/faiss
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/ai-vector-search-users-guide.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/ai-vector-search-users-guide.pdf
https://www.pinecone.io/
github.com/google-research/google-research/tree/master/scann
https://services.google.com/fh/files/misc/scann_for_alloydb_whitepaper.pdf
https://services.google.com/fh/files/misc/scann_for_alloydb_whitepaper.pdf
https://github.com/Microsoft/SPTAG
https://github.com/Microsoft/SPTAG
https://weaviate.io/
https://doi.org/10.14778/3685800.3685805
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3626246.3655999
https://doi.org/10.14778/3476311.3476407
https://doi.org/10.14778/3476311.3476407
https://arxiv.org/abs/2409.09913
https://arxiv.org/abs/2409.09913
https://doi.org/10.1145/3543507.3583552
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
https://doi.org/10.1109/ICDE.2006.99
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.1007/s00778-024-00864-x
https://doi.org/10.1007/s00778-024-00864-x
https://doi.org/10.1145/3654923
https://doi.org/10.1145/125223.125262
https://doi.org/10.1145/125223.125262
https://arxiv.org/abs/2404.00774
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3709743


Filtered Vector Search: State-of-the-art and Research Opportunities

[43] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-
dimensional approximate nearest neighbor search extension. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 2241–2253.

[44] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. {VBASE}: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377–395.

[45] Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, Yexuan Shi, Yi Xu, Mengmeng Zhou, and
Jin Dong. 2024. FedSQ: A Secure System for Federated Vector Similarity Queries.
Proc. VLDB Endow. 17, 12 (Aug. 2024), 4441–4444. https://doi.org/10.14778/
3685800.3685895

[46] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF:
Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. Proc.
ACM Manag. Data 2, 1, Article 69 (March 2024), 26 pages.

5492

https://doi.org/10.14778/3685800.3685895
https://doi.org/10.14778/3685800.3685895

	Abstract
	1 Introduction
	2 The Tutorial
	2.1 Vector Search Background
	2.2 Filtered Vector Search
	2.3 Filter-Optimized Vector Search Indices
	2.4 Research Opportunities

	3 Presenters
	References

