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ABSTRACT

Learned cost models (LCMs) have recently gained traction as a
promising alternative to traditional cost estimation techniques
in data management, offering improved accuracy by capturing
complex interactions between queries, data, and runtime behav-
ior. While initially developed for batch systems, LCMs are now
increasingly applied to stream processing as well, where real-time
demands pose new challenges. This tutorial presents the first uni-
fied overview of LCMs across both batch and stream processing
systems, examining their role as essential components in modern
query optimizers. We explore key aspects of LCM design—including
input representations and model architectures—and highlight how
these models deal with query optimization tasks.
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1 INTRODUCTION

The rise of learned cost models. In recent years, learned cost
models (LCMs) have emerged as a powerful tool in data man-
agement, aiming to overcome the limitations of traditional, hand-
crafted cost estimation techniques. By leveraging machine learning
(ML), LCMs can learn complex relationships among a query plan,
data distribution, and runtime behavior, often achieving signifi-
cantly improved accuracy. While their initial application was largely
focused on batch processing systems, such as analytical databases
and data warehouses, the growing complexity and real-time de-
mands of modern applications have also spurred the development
of LCMs for stream processing systems.

LCM as a core component for query optimization. As cost
estimation is a core component of query optimization, LCMs are
increasingly seen as essential building blocks for learned query op-
timizers. They are being used to replace or augment traditional
cost models in critical optimization tasks—including plan enu-
meration and join ordering [8, 9, 33, 34, 50-52], operator place-
ment [13, 28, 32], and parallelism tuning [1, 2] . These models not
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only improve plan quality but also open up new possibilities for
optimization strategies that generalize across queries, datasets, and
even hardware [13, 17] or user-defined functions [47].

No unified overview of LCMs for query optimizers. Despite
rapid advances in this area, a clear gap remains: while previous
tutorials have explored LCMs within the scope of ML for databases,
there is no unified overview of how LCMs contribute to the various
components of query optimization—especially across both batch
and stream processing paradigms. This tutorial addresses that gap
by presenting a structured and comparative perspective on learned
cost modeling for both batch and stream processing systems. We
highlight the design goals, input representations, model architec-
tures, learning objectives, and use cases of existing approaches,
with a special focus on their integration into query optimizers.

Related tutorials. There have been numerous tutorials that dis-
cuss various aspects at the intersection of data systems and ML [10,
24-26] in the past years. In the past, some tutorials touch upon
the topic of learned query optimizers [20, 43, 56, 57], yet to the
best of our knowledge, this is the first tutorial to offer a focused
joint view of LCMs for both batch and stream processing. Existing
tutorials focus on how to incorporate ML into query optimization
for databases [24], the design of learned query optimizers [56, 57],
or robustness in learned query optimizers [20]. On the other hand,
our tutorial zooms in on the different types of LCMs and query
plan featurization methods while it provides an insightful overview
for both batch and streaming systems.

Targeted audience and required background. The tutorial tar-
gets researchers, developers, and system architects who are keen
to know the state-of-the-art LCMs in both batch and stream pro-
cessing scenarios. The tutorial requires the audience to have some
familiarity with basic data management and ML concepts.

2 TUTORIAL OUTLINE

The tutorial is intended for 3 hours with a survey-based format pro-
viding a unified overview of LCMs for query optimization in both
batch and stream processing systems. We structure it as follows:

e Part I: Motivation & Background: We motivate the need for
LCMs and provide a background on query optimization, both tradi-
tional and learned, as well as on foundational cost models.

o Part II: LCMs for Batch Data: In this part, we discuss works fo-
cusing on LCMs in general which can be applied to query optimiza-
tion as well as on LCMs proposed within learned query optimizers.
This part focuses on batch data systems.

o Part ITI: LCMs for Streaming Data: Similarly, we discuss works
for stream processing systems that propose LCMs in general which
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can be applied to query optimization as well as on LCMs proposed
for distributed query optimization which concerns the tasks of
operator placement and parallelism.

e PartIV: Open Problems and Future Directions: At the end
of the tutorial, we will highlight the open challenges and suggest
future directions for research.

2.1 Background

Query optimization is a core database process dating back many
years [19]. Given a query, there are many plans that a data system
can execute to get the results. All plans are equivalent in terms of
their output but not in terms of their cost, i.e., the time required
to compute the final results. Initially, query optimizers were rule-
based; they were relying solely on heuristics and rules that would
transform a logical plan to an execution one (e.g., push down selec-
tion predicates). Later on, cost-based optimization came to replace
or augment rule-based ones. Traditional cost-based query optimiz-
ers rely on analytical cost models (mathematical formulas) which
estimate the cost of an execution (sub)plan. In the beginning of
the tutorial we will revise the main analytical formulas introduced
for System R [41] and are still used in practice along with their
drawbacks and limitations.

Learned query optimization became recently the third approach
for query optimization after the rule- and cost-based ones. The first
ideas relied on replacing different components of the query opti-
mizer with ML models. For instance, first works proposed end-to-
end learned query optimizers which replaced the plan enumeration
with reinforcement learning and the cost model and cardinality
estimator with ML models [34]. Then, other works focused on one
part of the optimizer, for example, replacing join order enumeration
with reinforcement learning [52], replacing the cost model with
an ML model [12, 17, 21, 29, 35, 39, 42], or replacing cardinality
estimation analytical models with ML models [22]. While the first
approaches aimed at replacing parts or the entire traditional query
optimizer, later works aim at using the traditional query optimizer
and leverage ML to guide it via hints [33]. We will provide a quick
overview of these different approaches and show that regardless
the approach followed, in all of these works there is an LCM which
is used for estimating costs of the plans.

2.2 LCMs in Batch Systems

In this part, we introduce LCMs for query optimization in batch data
systems. There exist many studies on this topic [8, 9, 12, 16, 17, 22,
29, 33-35, 39, 40, 42, 48, 50-52, 54], among which most LCMs aim at
traditional databases and only few of them target cloud databases,
such as Amazon Redshift [40, 48], or cross-platform systems as
Apache Wayang [5, 6, 21]. Thus, in this tutorial, we mainly discuss
LCMs for traditional databases.

In traditional databases, LCMs aim to replace the heuristic or
formula-based cost models to help in the generation and selection
of better execution plans. Research revolving around this target
can be generally divided into two groups: LCM in general and
LCM in learned query optimizers. The former group formulated
their research problems as cost estimations and designed ML mod-
els to predict the costs of plans. Although these studies are not
directly targeted at query optimization tasks, their proposed cost
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estimation modes can be used for query optimization tasks to guide
plan selection or pruning. On the contrary, the latter group devise
their research problems into designing learned query optimizers
and in their frameworks they propose LCMs to evaluate the costs
of generated (sub)plans.

Next, we first present some typical LCM studies in each of the
two groups. Subsequently, we make a taxonomy of LCMs in both
groups in Table 1 according to their characteristics.

2.2.1 LCMs in general. In this group of LCM studies, the main pur-
pose is the design of an effective ML model to accurately predict the
costs of plans [12, 17, 22, 29, 35, 39, 42, 54]. For example, Ganapathi
et al. [12] represent the physical query plan as a fixed-size vector
with elements denoting the counts of query operator instances, and
leverage a regression tree model to predict the cost of a query plan.
Kipf et al. [22] propose a deep-set based neural network and encode
the SQL query instead of its physical query plan as the input of
the model. Though the model is originally designed for cardinality
estimation, it has also been used for cost estimation [17, 42, 49].
The study [42] encodes the plan structure using a tree-based neural
network while another study [35] also models the plan structure
but takes a more modular approach called neural units. Both have
shown boosting in the performance with plan structure modeling.
Moreover, Zhao et al. [54] propose a general query plan represen-
tation method based on a tree-structured transformer and it has
been tested on various tasks including cost estimation to show the
effectiveness of the representation method. Hilprecht et al. pro-
posed a database-agnostic model that only encodes transferable
features so that the model can generalize across databases. Also,
Liang et al. proposed another database-agnostic model that employs
self-attention and tree-structured attention mechanisms. Finally,
Rieger et al. proposed the most recent cost estimation model that
decomposes a query plan into pipelines and leverages a regression
tree to predict the execution time of each pipeline individually. To
better compare these proposed LCMs, we will present a taxonomy
of these LCMs in Section 2.2.3.

222 LCMs in learned query optimizers. Different from the above
group of studies which primarily focus on how to design effective
LCMs for accurate cost estimation, the studies in the current group
target the task of query optimization, and their main focus is to
devise effective query optimizers [8, 9, 33, 34, 50-52]. However, in
their proposed query optimizers, they usually design a cost model
based on ML to estimate the costs of (sub)plans to help the query
optimizer select better plans or subplans. For instance, Marcus et
al. [34] propose the first end-to-end query optimizer based on re-
inforcement learning. As the value network of their framework,
a tree convolution neural network (i.e., tree-CNN) is utilized to
predict the cost of plans. Also, Yu et al. [52] present a learned query
optimizer that uses reinforcement learning (short for RL) for join
order selection. It employs a tree-structured long short-term mem-
ory (i.e., tree-LSTM) network to estimate the cost of a join plan at a
specific join state. Marcus et al. [33] introduced an ML-aided query
optimizer that uses optimized hints to steer a traditional query
optimizer. Similar to [34], their framework also uses a tree-CNN to
estimate the cost of a query plan. However, more transferable fea-
tures such as cardinality and cost estimates are considered, which
enables this model to generalize across different database instances.



Table 1: Taxonomy of LCMs in Batch Data Systems.

Input Features

Model Query Plan Cardinality ~ DB Cost DB R Query 1:1&:1 A Alf.‘:detl DB_t. Ol;gn}:al
Encode Encode  Estimates Estimates  Statistics epresentation rehitecture agnostic as
Flat Vector [12] v v Flat Regression Tree Yes Cost Estimation
MSCN [22] v v Flat Deep Sets No Card./Cost Estimation
End-to-End [42] N v v Graph TreeNN No Cost Estimation
QPP-Net [35] v v v v Graph Neural Unit Tree No Cost Estimation
QueryFormer [54] v v v Graph Transformer No General Purpose
Zero-Shot [17] v v v Graph GNN Yes Cost Estimation
DACE [29] v v v Graph Transformer Yes Cost Estimation
T3 [39] v v Pipeline Regression Tree Yes Cost Estimation
NEO [34] v v v Graph Tree-CNN + RL No Query Optimizer
RTOS [52] N v Graph Tree-LSTM + RL No Join Order Selection
Bao [33] v v v Graph Tree-CNN + RL Yes Query Optimizer
Balsa [50] v v v Graph Tree-CNN + RL No Query Optimizer
HybridQo [51] v v v v Graph Tree-LSTM + MHPE No Query Optimizer
LEON [9] v v v v Graph Tree-CNN + LTR No Query Optimizer
LOGER [8] v v Graph Tree-LSTM + RL Yes Query Optimizer

In the study [50], the authors also leverage a tree-CNN to predict
the cost of a subplan but differing from previous studies they adopt
a two-step training strategy (i.e., bootstrapping and fine-tuning)
which makes their latency predictions more accurate. Also, Yu et
al. [51] combine tree-LSTM networks with a multi-head perfor-
mance estimator (short for MHPE) to predict the uncertainty-aware
costs of a query plan. Their cost model outputs both estimated costs
and variances that indicate the uncertainty of the predictions. Chen
et al. [9] propose a learning-to-rank (short for LTR)-based cost
model by which they predict a calibration coefficient that can be
multiplied by the cost estimates of traditional query optimizers to
obtain a better prediction of costs. In the proposed query optimizer
by Chen et al. [8], a cost model is built based on a state and action
network with a tree-LSTM network used for plan node represen-
tation. In the following, we will introduce a taxonomy of all the
LCMs we have discussed in batch data systems.

2.2.3  Taxonomy of LCMs in batch data systems. To more clearly
show the similarities and differences in the design of these LCMs in
batch data systems, we make a taxonomy from different dimensions
of these LCMs as shown in Table 1.

o Input Features. The input features may include information
from different aspects such as query (e.g., predicates encoding), plan
(e.g., physical operators encoding), cardinality estimates, DB cost
estimates, or DB statistics (e.g., histograms or bitmaps). Different
LCMs may choose subsets of these features as their input. It is
noteworthy that the query plan is always considered as an input
feature and is somehow encoded, except for the MSCN model which
takes the SQL query encoding instead of the plan encoding as its
input features. Also, cardinality estimates have been frequently
taken as input features given that this dimension of features can
enhance the performance of cost estimation considerably [16, 23].
e Query Plan Representation. The query plan is one of the input
features of most LCMs. However, the ways of representing the query
plans may differ among LCMs. For instance, earlier methods such
as Flat Vector [12] and MSCN [22] represent the query plan in a
flat way while most methods in Table 1 represent query plans as
graphs. This is due to the fact that the query plan is inherently tree-
structured. It is noteworthy that the latest work [39] represents
the query plan as pipelines which is demonstrated to improve the
accuracy of cost estimation.
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e Model Architecture. For the LCMs whose original tasks are
cost estimations, their model architectures differ significantly. They
cover different learning approaches such as regression trees, deep
sets, or transformers in order to enhance the performance of cost
estimation. However, for the LCMs that are embedded in the query
optimizers, Tree-CNN and Tree-LSTM networks are used more of-
ten. While most of them are combined with reinforcement learning
(RL), a few of them consider different frameworks such as learning
to rank (LTR) [9] or multi-head performance estimator (MHPE) [51].
o Database Agnostic. Whether an LCM is database agnostic de-
termines whether it can be generalized across different databases.
To design a database-agnostic LCM, those database specific features
should not be taken into account such as table identifiers or columns.
For instance, Bao [33] adopts a strategy of feature representation
that is agnostic to the underlying schemas. Also, transfer learning
techniques such as zero-shot learning [17] or pretraining [29] can
be considered in the meantime.

2.3 LCMs in Streaming Systems

Cost estimation is a cornerstone of query optimization not only in
batch data systems but also in stream processing systems. While
mature in traditional databases, cost models for data stream pro-
cessing systems (DSPS) remain underexplored [15, 38]. This is due
to the dynamic nature of data streams, the heuristic-driven meth-
ods readily becomes inaccurate under shifting workloads [3]. This
makes use of LCMs in streaming even more important such that
they can learn from complex behavior of streaming workloads and
better predict systems performance. Thus, in this tutorial we study
existing work that has proposed use of LCMs to predict query la-
tency, resource usage, and other execution costs, offering higher
accuracy and adaptability in DSPS as summarized in Table 2. With
regard to query optimization, this tutorial focuses on peer-reviewed
work that applies ML to cost modeling in streaming engines, includ-
ing its use cases of query optimization on operator placement and
parallelism tuning, the two main components of streaming engines.
Hence, we organize and discuss existing LCMs in DSPS in these
two main categories similarly to the one for traditional databases.

2.3.1 LCMs in general. In this category, we present existing LCMs
that predict performance metrics for DSPS such as processing times,



Table 2: Taxonomy of LCMs in Data Streaming Systems

Model Features Model Architecture Intended Task
Moira [11] Stream Statistics Support Vector Cost Estimation (resource,
Hardware Monitoring Machine latency and throughput)
. Hardware Characteristics Linear . .
Imai et al. [18] Hardware Utilization Regression Cost Estimation (throughput)
. Hardware Characteristics Support Vector -
Lietal. [27] Hardware Utilization Regression Cost Estimation (latency)
Query Plan,
- Graph Neural .
ZeroTune [2] | Stream Statistics raph Neura Operator Parallelism
Networks

Hardware Characteristics
Query Plan

Stream Statistics
Hardware Characteristics
Hardware Utilization

Graph Neural

COSTREAM [13] Networks

Operator Placement

Reinforcement

Lietal [28] Stream Characteristics Learning Operator Placement
. ; Hardware Utilization Reinforcement
Decima [32] Stream Statistics Learning Operator Placement
. Hardware Utilization Reinforcement
Ni et al. [37] . X Operator Placement
Stream Statistics Learning

throughput or classify backpressure [4, 11, 15, 18, 27]. For exam-
ple, Li et al. [27] propose a topology-aware method to predict the
average tuple processing time for a given scheduling of operators
based on the current topology and runtime statistics. Imai et al. [18]
present a model to predict the throughput of the system using lin-
ear regression while minimizing time and cost for model training.
Alnafessah et al. [4] use Bayesian optimization to find an optimal
system configuration in streaming. Foroni et al. [11] introduced
an incremental learning based approach for dynamically estimat-
ing costs of a query by taking into account the changes in the data
streams. Finally, the authors of this tutorial paper propose a general-
izable LCM to estimate costs of data streaming query such as latency
that can predict costs for unseen workloads out-of-the-box [15].

2.3.2 LCMs for query optimization (placement and parallelism). In
this category, we present approaches that apply costs derived from
an LCM for query optimization tasks of DSPS such as to identify an
optimal operator placement or parallelism level [1, 2, 13, 28, 31, 32,
37]. We have contributed to a major proportion of approaches in
this category [1, 2, 13] that leverages a zero-shot learning-based cost
model [15] for optimization decisions like placement [13] and paral-
lelism tuning [1, 2]. The main idea of the generalizable cost model is
to learn from a broad training dataset and the joint graph represen-
tation encoding in graph neural network that enables learning from
the placement and parallelism decisions. Furthermore, the authors
have proposed adaptive placement approaches previously [30, 31]
where ML-based cost derivation was used for placement approach
selection. The interest in generalizable placement has been also
identified by other authors from IBM [37] that propose graph-aware
encoder-decoder architecture using deep reinforcement learning to
find optimized solutions for placement for unseen queries. More-
over, the use of deep reinforcement learning for placement [28, 32]
and parallelism [53] has been motivated by several other authors.

2.4 Open Problems & Future Directions

Although there are already many proposed solutions for LCMs in
the literature, there are still many open problems that need to be
tackled. We highlight some of them in the following.

How to collect training data efficiently? A hurdle that comes
with ML models in general is the collection of training data. Al-
though unsupervised methods exist, many of the proposed tech-
niques are based on supervised learning models which require the
collection of ground-truth labels. These labels typically include
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the runtime of a large number of execution plans which shall be
both optimal and suboptimal. This can lead to prohibitively large
execution times. Although there have been initial efforts towards
this goal [44-46], there are still many open issues such as aligning
the label collection to the hardware of the production environment.

How to train LCMs for query optimization? Since the goal
in query optimization is to find a good plan, what really matters
in query optimization is the relative order of the execution plans
and not their estimated cost or runtime. Thus, there have been ini-
tial works that focus on learning-to-rank models and incorporate
them in query optimization [7, 55]. Still, there has not been done
a thorough study of how learning-to-rank models fit with current
plan enumeration algorithms or if new algorithms shall be devised.
Moreover, it has been recently shown that current LCMs are not re-
ally good at query optimization tasks like join ordering [16]. Better
LCMs are needed to meet the need of current query optimizers.

How to evaluate LCMs appropriately? Q-error [36] is often
used in the literature as the metric to evaluate whether an LCM is
performing well. While this metric makes sense if we aim at com-
paring the accuracy of LCMs, it is not representative for measuring
the impact of an LCM on query optimization. Hence there is a need
for defining new metrics tailored for query optimization [16].

How to make LCMs interpretable? Most of the existing LCMs
are based on neural models that are mainly black boxes and hence
cannot be easily debugged or trusted. So far there has been no work
on models for data systems. Thus another open research direction
is how to make LCMs more explainable and interpretable. One
possible way of doing that would be to combine learned models with
interpretable representations (e.g., symbolic models) to explain why
specific costs are predicted that way. Further, explainers specific to
the model architecture can be adapted to explain the predictions of
the specific data system [14].
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