
Systems for Scalable Graph Analytics and Machine Learning:
Trends and Methods

Da Yan
Indiana University Bloomington

yanda@iu.edu

Lyuheng Yuan
Indiana University Bloomington

lyyuan@iu.edu

Akhlaque Ahmad
Indiana University Bloomington

akahmad@iu.edu

Saugat Adhikari
Indiana University Bloomington

adhiksa@iu.edu

ABSTRACT
Graph-theoretic algorithms and graph machine learning models
are essential tools for addressing many real-life problems, such
as social network analysis and bioinformatics. To support large-
scale graph analytics, graph-parallel systems have been actively
developed for over one decade, such as Google’s Pregel and Spark’s
GraphX, which (i) promote a think-like-a-vertex computing model
and target (ii) iterative algorithms and (iii) those problems that
output a value for each vertex. However, this model is too restricted
for supporting the rich set of heterogeneous operations for graph
analytics and machine learning that many real applications demand.

In recent years, two new trends emerge in graph-parallel systems
research: (1) a novel think-like-a-task computing model that can
efficiently support the various computationally expensive problems
of subgraph search; and (2) scalable systems for learning graph neu-
ral networks. These systems effectively complement the diversity
needs of graph-parallel tools that can flexibly work together in a
comprehensive graph processing pipeline for real applications, with
the capability of capturing structural features. This tutorial will pro-
vide an effective categorization of the recent systems in these two
directions based on their computingmodels and adopted techniques,
and will review the key design ideas of these systems. Slides are
available at https://github.com/akhlaqueak/VLDB-2025-Tutorial.
PVLDB Reference Format:
Da Yan, Lyuheng Yuan, Akhlaque Ahmad, and Saugat Adhikari. Systems
for Scalable Graph Analytics and Machine Learning: Trends and Methods.
PVLDB, 18(12): 5460 - 5465, 2025.
doi:10.14778/3750601.3750695

1 INTRODUCTION
Background and Motivation. Pioneered by Google’s Pregel, a
lot of graph-parallel systems have been developed that adopt a
think-like-a-vertex (TLAV) programming model and iterative com-
putation model. However, TLAV systems are dedicated to scaling
those graph problems that output a value for each vertex, such as
random walks and graph traversal, while many real problems care
about subgraph structures, such as finding functional groups in
bioinformatics, and finding social communities [14].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750695

Graph
Analytics

Vertex Scores

Vertex Embeddings
Graph Embeddings

Graph Structures Biological Functional Groups,
Community Detection, …

Entity Ranking and Top-kQueries,
Subgraph Extraction, …

Machine
Learning

Vertex Classification/Regression
Graph Classification/Regression
Link Prediction
… …

Figure 1: Pipeline for Graph Analytics and Learning

Figure 1 summarizes a typical pipeline for graph processing, con-
sisting of a graph analytics phase and an optional graph machine
learning (ML) phase. The analytic tasks either concern individual
vertices (e.g., node scoring or classification), or concern substruc-
tures or even an entire graph (e.g., dense/frequent subgraph mining,
graph classification). There are four analytics paths in the pipeline:
(1) Vertex Analytics, which outputs a score for each vertex,

useful for applications such as biomolecule prioritization in
network biology, or object ranking in recommender systems.

(2) Vertex Analytics + ML, where the analytics stage outputs
vertex embeddings for downstream ML tasks. Vertex embed-
dings can be learned from the graph topology as in DeepWalk
and node2vec, or the vertex features may come directly from
the applications or be computed based on the graph topology
(e.g., in- and out-degrees, clustering coefficient).

(3) Structure Analytics, which outputs subgraph structures (pat-
terns or instances), useful for finding functional groups in
network biology, and community detection.

(4) Structure Analytics + ML, where informative structures are
extracted as features for graph classification/regression.

TLAV systems mainly address the scalability issue of vertex
analytics (+ ML), with many killer applications in recommender
systems and bioinformatics. However, many real problems concern
subgraph structures, and they are actually more computationally
challenging due to the exponential search space of subgraphs in
a graph, but cannot be effectively accelerated by TLAV systems.
For example, Chu and Cheng [9] noticed that for triangle counting,
the state-of-the-art MapReduce algorithm takes 5.33 minutes using
1636 machines, while their serial external-memory algorithm takes
only 0.5 minute. In fact, given an input graph 𝐺 = (𝑉 , 𝐸), TLAV
systems are only efficient for iterative computations where each
iteration has 𝑂 (|𝑉 | + |𝐸 |) cost and there are 𝑂 (log |𝑉 |) iterations,
giving a time complexity upper bound of𝑂

(
(|𝑉 | + |𝐸 |) log |𝑉 |

)
[52].

In recent years, two new trends emerge in graph-parallel systems
research: (1) a lot of novel systems have been recently developed
targeting the more compute-intensive subgraph search problems,
which all adopt a subgraph-centric programming model (in contrast
to vertex-centric); (2) graph neural networks (GNN) have boomed
in various applications, and a number of scalable GNN systems

5460

https://github.com/akhlaqueak/VLDB-2025-Tutorial
https://doi.org/10.14778/3750601.3750695
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750695

have been developed. These two directions well cover the “Graph
Structures” and “ML” components of the pipeline shown in Figure 1,
but there currently lacks a comprehensive tutorial to survey and
introduce these exciting new system advancements.

This tutorial aims to fill this gap. We offered a tutorial on graph-
parallel systems in SIGMOD 2016 [47] but it mainly focused on
TLAV systems. There were tutorials on GNNs [2] that focused on
model design in real applications rather than GNN system design.
There was also a tutorial on training GNNs [32] in VLDB 2024 but
the focus is more on algorithmic techniques as well as the handling
of dynamic and temporal GNNs, while our tutorial component on
GNN systems will also cover other system-related techniques such
as how to effectively utilize new hardware and cloud platforms (e.g.,
NVLink, serverless computing) as well as more recent techniques
such as utilizing lossy quantization for message compression. Be-
sides, the other important and timely component on systems for
structure analytics is new and not covered by those tutorials.

We remark that the two topics we cover here are related and
important in order to fully explore the potential of various graph
analytics tools in a real application pipeline. For example, frequent
subgraph structural patterns have been found informative in con-
ventional models for graph classification and regression [28, 31]. ML
applications benefiting from having structural features include bio-
chemistry [28], bioinformatics [29], and community detection [35],
where structural features are found to outperform neural graph
embedding methods. There are also works applying GNNs for ap-
proximate subgraph search, such as neural subgraph matching [61]
and neural subgraph counting [40], where considering subgraph
structures were found essential for good performance. Finally, Sub-
graph GNNs [5, 12] which model graphs as collections of subgraphs
are found to be more expressive than regular GNNs.

2 SYSTEMS FOR STRUCTURE ANALYTICS
Programmability is important for a graph-parallel system: the sys-
tem should make it easy to implement a broad range of advanced
parallel/distributed analytics, not much more difficult (if not easier)
than their serial algorithm counterparts. TLAV systems are a good
example, where the user-specified programs are often easier to
implement than a serial algorithm from scratch.

However, TLAV systems are not suitable for subgraph search,
since computations are at individual vertices rather than subgraphs,
and TLAV systems are for iterative computations with a time com-
plexity of 𝑂

(
(|𝑉 | + |𝐸 |) log |𝑉 |

)
[52].

In this tutorial, we will review a series of new systems proposed
recently for subgraph search, which is a broad topic covering many
problems such as subgraph enumeration/matching/counting, max-
imal/maximum clique finding, and frequent subgraph pattern
mining (FSM). Notably, FSM is different from the other problems,
since FSM summarizes pattern graphs from the data graph(s), while
all the other problems find valid subgraph instances of a data graph,
which we call collectively as subgraph finding (SF).

Different from TLAV systems, the systems for subgraph search
adopt a think-like-a-graph (TLAG) computingmodel, which extends
valid small graph structures by one edge (or vertex) at a time to
grow larger valid graph structures. However, in order to support
SF and FSM under a unified programming model, most of these
systems such as Arabesque [38], RStream [41] and Pangolin [8]

Table 1: Systems for Subgraph Search: Summary of Features

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓ EG

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

SE/SM ✓

SE/SM ✓

SE/SM ✓ EG

SE/SM ✓ EG

SE/SM ✓ PT

✓ ✓ PT

✓ ✓

✓ ✓

✓ ✓

✓ ✓

Arabesque

G-Miner

RStream

G-thinker

(Pattern-to-Instance) (Instance-to-Pattern)

Problem Type Search Approach

* SE/SM = Subgraph Enumeration/Matching

Fractal

Pangolin
Peregrine

* EG = Entire Graph (Loaded to GPU)

* PT = A Partition of a Graph
(Loaded to GPU) Each Time

AutoMine

GraphPi
GraphZero

Single Machine / Distributed
Single-GPU / Multi-GPU
SE / SM / SE+SM, symmetry?
Approx? Correct?

GSI, cuTS,
STMatch, EGSM

PBE, VSGM,
SGSI

ScaleMine
DistGraph

T-FSM
PrefixFPM

G2-AIMD

T-DFS

G-thinkerQ

adopt a breadth-first subgraph extension approachwhere subgraphs
of size (𝑖 + 1) cannot start their generation until all subgraphs
with size 𝑖 have been generated, which creates a lot of subgraph
materialization cost and restricts scalability since the number of
subgraph instances grows exponentially with the input graph size.

Some recent systems such as G-thinker [53, 54], G-Miner [7]
and Fractal [10] resolve this issue by allowing depth-first subgraph-
instance backtracking without actually materializing the instances.
While these systems target one-time offline analytics, G-thinkerQ [63]
efficiently supports interactive online querying where users contin-
ually submit subgraph queries with different query contents. Au-
toMine [26], GraphPi [33] and GraphZero [25] focus on subgraph
enumeration/matching where different vertex matching order leads
to different costs, and they adopt a compilation-based approach
to generate subgraph enumeration code with a favorable vertex
matching order. Among them, G-thinker, G-Miner, and G-thinkerQ
only supports SF but not FSM, while GraphPi and GraphZero are
dedicated to subgraph enumeration/matching. There are also sys-
tems dedicated to FSM in a single big graph, such as ScaleMine [3],
DistGraph [37] and T-FSM [65], with T-FSM being the most efficient
which decomposes the problem of pattern support evaluation into
subgraph-matching tasks for parallel computation by backtracking
search, and which supports all pruning techniques of the FSM algo-
rithm GraMi [11]. For FSM from a database of graph transactions
(rather than a big graph), PrefixFPM [56, 57] provides an efficient
parallel solution by depth-first pattern extension.

Recently, some systems begin to explore the use of GPUs to
further accelerate subgraph enumeration/matching. Since back-
tracking was deemed not beneficial on GPUs [17], most current
solutions such as GSI [67] and cuTS [45] maintain and grow the in-
termediately matched subgraphs in a BFS manner (in the subgraph
extension search tree) to allow coalesced memory access. Since

5461

Table 2: Techniques of Distributed GNN Training Systems

✓
✓

✓
✓
✓ ✓ ✓

✓
✓ ✓
✓ ✓
✓ ✓

✓ ✓
✓ ✓ ✓

✓ ✓
✓ ✓

Euler

DGCL

AliGraph

Graph Data

Communication

ByteGNN

P3

DistDGL
AGL

NeutronStar

BGL
Sancus

Single Machine / Distributed
Single-GPU / Multi-GPU
SE / SM / SE+SM, symmetry?
Approx? Correct?

Dorylus

OptimizationsSystems

Operators Scheduling

Model Computation

and Synchronization

Other Optimizations

Full-Graph GNN

DistGNN
HongTu

GPU global memory has a limited space, PBE [15], VSGM [18] and
SGSI [66] explore methods to partition a large input graph so that
only a partition needs to be loaded to a GPU for processing at each
time. G2-AIMD [62] supports general SF by BFS-based subgraph
extension, and it avoids intermediate subgraph-size explosion with
novel system designs such as adaptive chunk-size adjustment and
host-memory subgraph buffering.

More recently, DFS solutions are explored on GPUs such as
STMatch [44], T-DFS [64] and EGSM [36], where each warp con-
ducts DFS on a chunk of independent subtrees of the subgraph
extension search tree (as tasks) by maintaining its own stack, and
load balancing is achieved bywork stealing which splits heavy tasks.
While STMatch and T-DFS are pure DFS solutions, EGSM advocates
a BFS-DFS hybrid solution where the more efficient BFS is used
when device memory permits, and if memory becomes insufficient,
it falls back to DFS to match the remaining query vertices.

Table 1 summarizes the key features of existing TLAG systems
that we will cover in this tutorial.

3 SYSTEMS FOR GNN TRAINING
Graph classification and regression have been conventionally solved
by shallow-learningmodels such as support vector machines [28, 29,
31]. Recent advancement in deep learning has made graph neural
networks (GNNs) (e.g., GCN, GAT) popular as downstream mod-
els for graph machine learning. GNNs operate by collecting the
features of neighboring vertices and connected edges, and recur-
sively aggregating them and transforming them into new vertex
features. Taking the GraphSAGE model [16] as an example, where
each graph convolution layer can be expressed as follows:

h(𝑘)N(𝑣) ← AGGREGATE𝑘
(
{h(𝑘−1)𝑢 | ∀𝑢 ⊆ N(𝑣)}

)
,

h(𝑘)𝑣 ← 𝜎

(
W(𝑘) · CONCAT

(
h(𝑘−1)𝑣 , h(𝑘)N(𝑣)

))
,

whereN(𝑣) denotes the set of 𝑣 ’s neighboring vertices, superscript
(𝑘) denotes the GNN layer number. We can see the each layer of
GNN has two stages: Graph Data Retrieving (every vertex obtains
the feature vectors of its neighbors from the previous layer for
aggregation), and Model Computation and Synchronization.

A large number of GNN training systems have been proposed in
recent years. However, most of them are single-GPU systems, which

cannot scale to industrial-scale large graphs. In this tutorial, we will
focus on distributed GNN training systems. We will first present
the challenges and then introduce a range of representative GNN
systems with a variety of techniques designed to address the key
performance bottlenecks. These systems are from both academic
and industrial contexts, providing a comprehensive coverage.

Distributed GNN training presents unique challenges different
from traditional machine learning tasks. Unlike training tasks in
computer vision or natural language, GNN training requires ac-
cess to neighborhood information that is not independent across
training samples. As a result, the first challenge in distributed GNN
training is the need for efficient (1) Graph Data Communication.
Another challenge is (2) Operator Scheduling which needs to bal-
ance tasks among computing nodes, including subgraph sampling,
neighborhood feature aggregation, and model learning operations
such as loss computation, gradient calculation and parameter up-
dating, while making optimal use of available resources. The third
task is (3)Model Computation and Synchronization, where fre-
quent synchronizations between nodes during training are needed
to ensure consistency in model parameters, which often results in
increased synchronization delay and communication overhead.

To tackle the aforementioned major challenges, many techniques
have been proposed in recent years, which we review next.
Graph Data Communications. Several techniques have been
proposed to effectively manage the significant volumes of graph
data communications. Neighborhood sampling is one of the most
commonly employed techniques, as it limits the number of neigh-
bors of each node used for training. This technique has been widely
adopted in industrial GNN systems such as Alibaba’s Euler [4] and
AliGraph [73], and ByteGNN [71]. Graph partitioning has also been
employed to enhance the efficiency of graph data communications.
DistDGL [72] and DGCL [6] use traditional graph partitioning algo-
rithms such as METIS [19] to minimize cross-machine data commu-
nication. However, since not every vertex in the graph is used for
GNN training (GNN workload usually involves the neighborhood
of training vertices within only a few hops), a global minimum
edge-cut may not be the optimal choice for GNN training. To ad-
dress this issue, ByteGNN [71] and BGL [22] propose heuristic
algorithms to over-partition a graph into small blocks by perform-
ing BFS from train/validation/test seed vertices, till the BFS’s meet
(i.e., computing the graph Voronoi diagram of seed vertices), and
then assign these blocks to workers in a streaming style. P3’s [13]
method focuses primarily on dividing input data according to ver-
tex feature rather than graph topology, aligning with its unique
training technique that fuses model and data parallelism. Finally,
AGL [68] employs the established infrastructure, MapReduce, to
materialize the 𝑘-hop subgraphs for all training nodes before the
actual training process, which eliminates the need for graph data
communication during the training itself.
Operator Scheduling. Various systems utilize different execution
scheduling policies and adopt the pipeline mechanism to mak-
ing optimal use of available resources. Specifically, Euler [4], Ali-
Graph [73] and ByteGNN [71] leverage operator abstraction to
enable higher parallelism. ByteGNN further proposes a two-level
scheduling scheme to control operator execution within and be-
tween iterations. NeutronStar [43] offers a flexible auto-differentiation

5462

strategy by separating dependency management from graph op-
eration and neural network functions. BGL [22], P3 [13] and Do-
rylus [39] implement pipeline mechanisms but they differ in their
underlying task units or computing units. BGL uses a factored par-
adigm where different tasks are processed on different types of
executors. In contrast, task units in Dorylus are processed by sev-
eral Serverless Threads. P3 follows a similar model training pipeline
as traditional deep learning training, but it splits the forward (and
backward) process into two phases for model and data parallelism.
Model Computation. GNN models are relatively small compared
to DNN models, and model computation only needs to be carried
out on densely packed vectors. However, sampling a large graph
involves accessing a large amount of data from random (includ-
ing remote) locations to construct the neighborhood subgraph for
each sampled seed vertex. Several systems have been developed on
CPU clusters such as Euler [4], DistDGL [72], AliGraph [73] and
ByteGNN [71]. The training well overlaps graph data retrieving
and GNN computation by fine-grained task assignment. In con-
trast, DistGNN [27] targets full-graph training on CPU clusters, via
an efficient shared memory implementation, communication re-
duction using a minimum vertex-cut graph partitioning algorithm
and communication avoidance using a family of delayed-update
algorithms. When models become larger, GPU computing power
becomes indispensable and thus more recently GPU distributed
GNN systems have been proposed. As an example, P3 [13] proposes
a unique approach for computation, referred to as the push-pull
strategy, which combines the intra-layer model parallelism and
data parallelism on GPUs. In contrast, HongTu [42] targets full-
graph training on multiple GPUs, which stores vertex data in CPU
memory and offloads training to GPUs.
Model Synchronization. To reduce the model synchronization
overhead, several alternative asynchronous training paradigms
have been developed. One of these paradigms is the bounded stal-
eness approach, which is adopted in Dorylus [39] and P3 [13].
Bounded staleness is an asynchronous communication paradigm
that limits the use of outdated model weights in the training process.
By doing so, it allows pipelining to be fully exploited while ensur-
ing the convergence of the final model. To avoid static bounded
staleness, Sancus [30] proposes a staleness-aware communication
algorithm that dynamically adjusts the staleness based on variations
in embeddings or gradients. This approach enables more efficient
and effective asynchronous communication in the training process.
Other Techniques. Besides the aforementioned techniques, other
optimizations can be employed to effectively train distributed GNN
models. DGCL leverages high-bandwidth NVLINK hardware be-
tween GPUs to accelerate the speed of GNN training, through the
use of special communication plans that are generated based on
high link speed and topology. Dorylus [39] utilizes Lambda threads
(serverless) service offered by cloud providers for computation.
According to [39], the utilization of CPU servers and serverless
function calls from clouds is a more cost-effective option than
using GPUs. This feature allows for better scalability and cost-
effectiveness for users, demonstrating that using cloud computing
is an affordable way to achieve high-performance GNN training.

We will also introduce recent works for compressed GNN train-
ing using various quantization techniques, such as EC-Graph [34],
EXACT [23], F2CGT [24] and Sylvie [69].

4 TARGET AUDIENCE AND PREREQUISITES
The target audience for this tutorial includes anyone who are inter-
ested in large-scale graph analytics and machine learning, such as
(1) researchers and practitioners who would like to understand how
to choose the proper systems for their graph-related applications at
hand, and (2) system developers who want to learn how to design
graph-parallel systems. Our tutorial will be self-explanatory with
minimal prerequisites, including a basic understanding of graph
theory and some familiarity with GNNs.

5 PRIOR TUTORIALS AND DIFFERENCES
We have delivered this tutorial at IJCAI 2024, KDD 2024 [60], CIKM
2024 [59], and EDBT 2025 [59]. The audience is mainly from the data
mining community currently, as well as the database community
in Europe, so presenting at VLDB 2025 would expose this tutorial
to a broader audience in the database community. This tutorial will
cover more up-to-date systems not covered in previous tutorials.

6 FORMAT AND TUTORIAL LENGTH
Our tutorial will be in lecture-style format. We would like to re-
quest for two sessions (3 hours) so that we can cover each of the
two system topics (structural analytics, and GNN) in one session.
However, we are happy to reduce the scope of works covered to fit
the two topics into one session (1.5 hours).

7 PRESENTERS AND THEIR EXPERTISE
This tutorial will be delivered by Dr. Da Yan from the Depart-
ment of Computer Science at Indiana University Bloomington, and
his graph systems team members Lyuheng Yuan, Akhlaque Ah-
mad and Saugat Adhikari. Dr. Yan and his team have developed
graph-analytics systems including G-thinker [14, 20, 53, 54], G-
thinkerQ [63], PrefixFPM [56, 57], T-FSM [21, 65], G2-AIMD [62]
and T-DFS [64], and are the pioneers of the think-like-a-task com-
puting model T-thinker. Dr. Yan also has extensive experience in
developing think-like-a-vertex (TLAV) graph systems and GNN. Dr.
Yan and his team have a long history of developing graph-parallel
systems, with dozens of related publications in top conferences
such as SIGMOD, VLDB, KDD, ICDE, and top journals such as
ACM TODS, VLDB Journal, IEEE TPDS and IEEE TKDE. Dr. Yan led
the development of the BigGraph@CUHK platform [1] with many
well-known systems following the TLAV model such as Blogel [49],
Pregel+ [50], Quegel [51, 70], GraphD [55] and LWCP [48]. He has
also delivered a tutorial on TLAV systems in SIGMOD 2016 [47], and
published books on this topic with prestigious publishers [46, 58].
Dr. Yan is the sole winner of Hong Kong 2015 Young Scientist Award
in Physical/Mathematical science, and his graph systems research
was funded by the DOE Early Career Research Program in 2023.

ACKNOWLEDGMENTS
This work was supported by DOE ECRP Award DE-SC0025228, NSF
OAC-2414474, NSF OAC-2414185 and 2024–2025 Luddy Faculty
Fellow Award from Indiana University Bloomington.

5463

REFERENCES
[1] [n.d.]. BigGraph@CUHK. http://www.cse.cuhk.edu.hk/systems/graph/.
[2] [n.d.]. GNN Tutorials. https://graph-neural-networks.github.io/.
[3] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad T.

Jamour. 2016. Scalemine: scalable parallel frequent subgraph mining in a single
large graph. In SC. 716–727.

[4] Alibaba. 2020. Euler. https://github.com/alibaba/euler.
[5] Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, and Marinka Zitnik. 2020.

Subgraph Neural Networks. In NeurIPS.
[6] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.

DGCL: an efficient communication library for distributed GNN training. In
EuroSys ’21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021. ACM, 130–144. https://doi.org/10.1145/
3447786.3456233

[7] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
2018. G-Miner: an efficient task-oriented graph mining system. In EuroSys. ACM,
32:1–32:12.

[8] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2020. Pan-
golin: An Efficient and Flexible Graph Mining System on CPU and GPU. Proc.
VLDB Endow. 13, 8 (2020), 1190–1205.

[9] Shumo Chu and James Cheng. 2012. Triangle listing in massive networks. ACM
Trans. Knowl. Discov. Data 6, 4 (2012), 17:1–17:32.

[10] Vinícius Vitor dos Santos Dias, Carlos H. C. Teixeira, Dorgival O. Guedes, Wag-
ner Meira Jr., and Srinivasan Parthasarathy. 2019. Fractal: A General-Purpose
Graph Pattern Mining System. In SIGMOD Conference 2019. ACM, 1357–1374.

[11] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
2014. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph.
Proc. VLDB Endow. 7, 7 (2014), 517–528.

[12] Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron.
2022. Understanding and Extending Subgraph GNNs by Rethinking Their Sym-
metries. In NeurIPS.

[13] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2021, July 14-16, 2021. USENIX Association, 551–568.
https://www.usenix.org/conference/osdi21/presentation/gandhi

[14] Guimu Guo, Da Yan, M. Tamer Özsu, Zhe Jiang, and Jalal Khalil. 2020. Scalable
Mining of Maximal Quasi-Cliques: An Algorithm-System Codesign Approach.
Proc. VLDB Endow. 14, 4 (2020), 573–585.

[15] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee
Tan. 2020. GPU-Accelerated Subgraph Enumeration on Partitioned Graphs. In
SIGMOD. ACM, 1067–1082.

[16] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA. 1024–1034. https://proceedings.neurips.
cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[17] John Jenkins, Isha Arkatkar, John D. Owens, Alok N. Choudhary, and Nagiza F.
Samatova. 2011. Lessons Learned from Exploring the Backtracking Paradigm
on the GPU. In Euro-Par 2011 Parallel Processing - 17th International Conference,
Euro-Par 2011, Bordeaux, France, August 29 - September 2, 2011, Proceedings, Part
II (Lecture Notes in Computer Science), Vol. 6853. Springer, 425–437.

[18] Guanxian Jiang, China Qihui Zhou, Tatiana Jin, Boyang Li, Yunjian Zhao, Yichao
Li, and James Cheng. 2022. VSGM: View-Based GPU-Accelerated Subgraph
Matching on Large Graphs. In SC. IEEE Computer Society, 739–753.

[19] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392. https://doi.org/10.1137/S1064827595287997

[20] Jalal Khalil, Da Yan, Guimu Guo, and Lyuheng Yuan. 2022. Parallel mining of
large maximal quasi-cliques. VLDB J. 31, 4 (2022), 649–674.

[21] Jalal Khalil, Da Yan, Lyuheng Yuan, Jiao Han, Saugat Adhikari, Cheng Long, and
Yang Zhou. 2024. FSM-Explorer: An Interactive Tool for Frequent Subgraph
Pattern Mining From a Big Graph. In ICDE. IEEE, 5405–5408.

[22] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua
Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2021. BGL: GPU-
Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing. CoRR
abs/2112.08541 (2021). arXiv:2112.08541 https://arxiv.org/abs/2112.08541

[23] Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. 2022. EXACT:
Scalable Graph Neural Networks Training via Extreme Activation Compression.
In ICLR. OpenReview.net.

[24] Yuxin Ma, Ping Gong, Tianming Wu, Jiawei Yi, Chengru Yang, Cheng Li, Qirong
Peng, Guiming Xie, Yongcheng Bao, Haifeng Liu, and Yinlong Xu. 2024. Elim-
inating Data Processing Bottlenecks in GNN Training over Large Graphs via
Two-level Feature Compression. Proc. VLDB Endow. 17, 11 (2024), 2854–2866.

[25] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and BoWu. 2021.
GraphZero: A High-Performance Subgraph Matching System. ACM SIGOPS Oper.
Syst. Rev. 55, 1 (2021), 21–37.

[26] Daniel Mawhirter and Bo Wu. 2019. AutoMine: harmonizing high-level abstrac-
tion and high performance for graph mining. In SOSP. ACM, 509–523.

[27] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos
Georganas, Alexander Heinecke, Dhiraj D. Kalamkar, Nesreen K. Ahmed, and
Sasikanth Avancha. 2021. DistGNN: scalable distributed training for large-scale
graph neural networks. In SC. ACM, 76.

[28] Shirui Pan and Xingquan Zhu. 2013. Graph Classification with Imbalanced Class
Distributions and Noise. In IJCAI, Francesca Rossi (Ed.). IJCAI/AAAI, 1586–1592.

[29] Martin S. R. Paradesi, Doina Caragea, and William H. Hsu. 2007. Structural
Prediction of Protein-Protein Interactions in Saccharomyces cerevisiae. In IEEE
BIBE. IEEE Computer Society, 1270–1274.

[30] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. SANCUS: Staleness-Aware Communication-Avoiding Full-Graph
Decentralized Training in Large-Scale Graph Neural Networks. Proc. VLDB
Endow. 15, 9 (2022), 1937–1950. https://www.vldb.org/pvldb/vol15/p1937-peng.
pdf

[31] Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, and Koji Tsuda.
2009. gBoost: a mathematical programming approach to graph classification and
regression. Mach. Learn. 75, 1 (2009), 69–89.

[32] Yanyan Shen, Lei Chen, Jingzhi Fang, Xin Zhang, Shihong Gao, and Hongbo Yin.
2024. Efficient Training of Graph Neural Networks on Large Graphs. Proc. VLDB
Endow. 17, 12 (2024), 4237–4240.

[33] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020. GraphPi: high perfor-
mance graph pattern matching through effective redundancy elimination. In SC.
IEEE/ACM, 100.

[34] Zhen Song, Yu Gu, Jianzhong Qi, Zhigang Wang, and Ge Yu. 2022. EC-Graph: A
Distributed Graph Neural Network System with Error-Compensated Compres-
sion. In ICDE. IEEE, 648–660.

[35] Andrew Stolman, Caleb Levy, C. Seshadhri, and Aneesh Sharma. 2022. Classic
Graph Structural Features Outperform Factorization-Based Graph Embedding
Methods on Community Labeling. In SDM. SIAM, 388–396.

[36] Xibo Sun and Qiong Luo. 2023. Efficient GPU-Accelerated Subgraph Matching.
Proc. ACM Manag. Data 1, 2 (2023), 181:1–181:26.

[37] Nilothpal Talukder and Mohammed J. Zaki. 2016. A distributed approach for
graph mining in massive networks. Data Min. Knowl. Discov. 30, 5 (2016), 1024–
1052.

[38] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos,
Mohammed J. Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a system for
distributed graph mining. In SOSP. ACM, 425–440.

[39] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Dis-
tributed CPU Servers and Serverless Threads. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2021, July 14-16, 2021. USENIX
Association, 495–514. https://www.usenix.org/conference/osdi21/presentation/
thorpe

[40] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang.
2022. Neural Subgraph Counting with Wasserstein Estimator. In SIGMOD. ACM,
160–175.

[41] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. 2018. RStream: Marrying Relational Algebra with Streaming for Efficient
Graph Mining on a Single Machine. In OSDI. USENIX Association, 763–782.

[42] Qiange Wang, Yao Chen, Weng-Fai Wong, and Bingsheng He. 2023. HongTu:
Scalable Full-Graph GNN Training on Multiple GPUs. Proc. ACM Manag. Data 1,
4 (2023), 246:1–246:27.

[43] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency
Management. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1301–1315. https://doi.org/10.
1145/3514221.3526134

[44] Yihua Wei and Peng Jiang. 2022. STMatch: Accelerating Graph Pattern Matching
on GPU with Stack-Based Loop Optimizations. In SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis, Dallas, TX,
USA, November 13-18, 2022, FelixWolf, Sameer Shende, Candace Culhane, Sadaf R.
Alam, and Heike Jagode (Eds.). IEEE, 53:1–53:13.

[45] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed
multi-GPU systems using trie based data structure. In SC. ACM, 69.

[46] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big Graph
Analytics Platforms. Found. Trends Databases 7, 1-2 (2017), 1–195.

[47] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. 2016.
Big Graph Analytics Systems. In SIGMOD, Fatma Özcan, Georgia Koutrika, and
Sam Madden (Eds.). ACM, 2241–2243.

[48] Da Yan, James Cheng, Hongzhi Chen, Cheng Long, and Purushotham V. Banga-
lore. 2019. Lightweight Fault Tolerance in Pregel-Like Systems. In ICPP. ACM,
69:1–69:10.

[49] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric
Framework for Distributed Computation on Real-World Graphs. Proc. VLDB
Endow. 7, 14 (2014), 1981–1992.

5464

http://www.cse.cuhk.edu.hk/systems/graph/
https://graph-neural-networks.github.io/
https://github.com/alibaba/euler
https://doi.org/10.1145/3447786.3456233
https://doi.org/10.1145/3447786.3456233
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1137/S1064827595287997
https://arxiv.org/abs/2112.08541
https://www.vldb.org/pvldb/vol15/p1937-peng.pdf
https://www.vldb.org/pvldb/vol15/p1937-peng.pdf
https://www.usenix.org/conference/osdi21/presentation/thorpe
https://www.usenix.org/conference/osdi21/presentation/thorpe
https://doi.org/10.1145/3514221.3526134
https://doi.org/10.1145/3514221.3526134

[50] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2015. Effective Techniques for
Message Reduction and Load Balancing in Distributed Graph Computation. In
WWW, Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi (Eds.). ACM,
1307–1317.

[51] Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen
Zhang, and Wilfred Ng. 2016. A General-Purpose Query-Centric Framework for
Querying Big Graphs. Proc. VLDB Endow. 9, 7 (2016), 564–575.

[52] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. Pregel
Algorithms for Graph Connectivity Problems with Performance Guarantees.
Proc. VLDB Endow. 7, 14 (2014), 1821–1832.

[53] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M. Tamer Özsu, Wei-
Shinn Ku, and John C. S. Lui. 2020. G-thinker: A Distributed Framework for
Mining Subgraphs in a Big Graph. In ICDE 2020. IEEE, 1369–1380.

[54] Da Yan, Guimu Guo, Jalal Khalil, M. Tamer Özsu, Wei-Shinn Ku, and John C. S.
Lui. 2022. G-thinker: a general distributed framework for finding qualified
subgraphs in a big graph with load balancing. VLDB J. 31, 2 (2022), 287–320.

[55] Da Yan, Yuzhen Huang, Miao Liu, Hongzhi Chen, James Cheng, Huanhuan
Wu, and Chengcui Zhang. 2018. GraphD: Distributed Vertex-Centric Graph
Processing Beyond the Memory Limit. IEEE Trans. Parallel Distributed Syst. 29, 1
(2018), 99–114.

[56] Da Yan, Wenwen Qu, Guimu Guo, and Xiaoling Wang. 2020. PrefixFPM: A
Parallel Framework for General-Purpose Frequent Pattern Mining. In ICDE 2020.
IEEE, 1938–1941.

[57] Da Yan, Wenwen Qu, Guimu Guo, Xiaoling Wang, and Yang Zhou. 2022. Pre-
fixFPM: a parallel framework for general-purpose mining of frequent and closed
patterns. VLDB J. 31, 2 (2022), 253–286.

[58] Da Yan, Yuanyuan Tian, and James Cheng. 2017. Systems for Big Graph Analytics.
Springer. https://doi.org/10.1007/978-3-319-58217-7

[59] Da Yan, Lyuheng Yuan, Akhlaque Ahmad, and Saugat Adhikari. 2024. Systems
for Scalable Graph Analytics and Machine Learning: Trends and Methods. In
CIKM. ACM, 5547–5550.

[60] Da Yan, Lyuheng Yuan, Akhlaque Ahmad, Chenguang Zheng, Hongzhi Chen,
and James Cheng. 2024. Systems for Scalable Graph Analytics and Machine
Learning: Trends and Methods. In KDD. ACM, 6627–6632.

[61] Rex Ying, Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, and
Jure Leskovec. 2020. Neural Subgraph Matching. CoRR abs/2007.03092 (2020).
arXiv:2007.03092 https://arxiv.org/abs/2007.03092

[62] Lyuheng Yuan, Akhlaque Ahmad, Da Yan, Jiao Han, Saugat Adhikari, Xiaodong
Yu, and Yang Zhou. 2024. G2-AIMD: A Memory-Efficient Subgraph-Centric

Framework for Efficient Subgraph Finding on GPUs. In ICDE. IEEE, 3164–3177.
[63] Lyuheng Yuan, Guimu Guo, Da Yan, Saugat Adhikari, Jalal Khalil, Cheng Long,

and Lei Zou. 2025. G-thinkerQ: A General Subgraph Querying System with a
Unified Task-Based Programming Model. IEEE Trans. Knowl. Data Eng., accepted
and to appear (2025).

[64] Lyuheng Yuan, Da Yan, Jiao Han, Akhlaque Ahmad, Yang Zhou, and Zhe Jiang.
2024. Faster Depth-First Subgraph Matching on GPUs. In ICDE. IEEE, 3151–3163.

[65] Lyuheng Yuan, Da Yan, Wenwen Qu, Saugat Adhikari, Jalal Khalil, Cheng Long,
and Xiaoling Wang. 2023. T-FSM: A Task-Based System for Massively Parallel
Frequent Subgraph Pattern Mining from a Big Graph. Proc. ACM Manag. Data 1,
1, 74:1–74:26.

[66] Li Zeng, Lei Zou, and M Tamer Özsu. 2022. SGSI–A Scalable GPU-friendly
Subgraph Isomorphism Algorithm. IEEE Transactions on Knowledge and Data
Engineering (2022).

[67] Li Zeng, Lei Zou, M. Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-friendly
Subgraph Isomorphism. In ICDE. IEEE, 1249–1260.

[68] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-purpose Graph Machine Learning. Proc. VLDB Endow. 13,
12 (2020), 3125–3137. https://doi.org/10.14778/3415478.3415539

[69] Meng Zhang, Qinghao Hu, Cheng Wan, Haozhao Wang, Peng Sun, Yonggang
Wen, and Tianwei Zhang. 2024. Sylvie: 3D-Adaptive and Universal System for
Large-Scale Graph Neural Network Training. In ICDE. IEEE, 3823–3836.

[70] Qizhen Zhang, Da Yan, and James Cheng. 2016. Quegel: A General-Purpose
System for Querying Big Graphs. In SIGMOD. ACM, 2189–2192.

[71] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: Efficient
Graph Neural Network Training at Large Scale. Proc. VLDB Endow. 15, 6 (2022),
1228–1242. https://www.vldb.org/pvldb/vol15/p1228-zheng.pdf

[72] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. CoRR abs/2010.05337 (2020).
arXiv:2010.05337 https://arxiv.org/abs/2010.05337

[73] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proc. VLDB Endow. 12, 12 (2019), 2094–2105. https://doi.org/10.14778/
3352063.3352127

5465

https://doi.org/10.1007/978-3-319-58217-7
https://arxiv.org/abs/2007.03092
https://doi.org/10.14778/3415478.3415539
https://www.vldb.org/pvldb/vol15/p1228-zheng.pdf
https://arxiv.org/abs/2010.05337
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127

	Abstract
	1 Introduction
	2 Systems for Structure Analytics
	3 Systems for GNN Training
	4 Target Audience and Prerequisites
	5 Prior Tutorials and Differences
	6 Format and Tutorial Length
	7 Presenters and Their Expertise
	Acknowledgments
	References

