
Systems for Scalable Graph Analytics and Machine Learning:
Trends and Methods

Da Yan
Indiana University Bloomington

yanda@iu.edu

Lyuheng Yuan
Indiana University Bloomington

lyyuan@iu.edu

Akhlaque Ahmad
Indiana University Bloomington

akahmad@iu.edu

Saugat Adhikari
Indiana University Bloomington

adhiksa@iu.edu

ABSTRACT
Graph-theoretic algorithms and graph machine learning models
are essential tools for addressing many real-life problems, such
as social network analysis and bioinformatics. To support large-
scale graph analytics, graph-parallel systems have been actively
developed for over one decade, such as Google’s Pregel and Spark’s
GraphX, which (i) promote a think-like-a-vertex computing model
and target (ii) iterative algorithms and (iii) those problems that
output a value for each vertex. However, this model is too restricted
for supporting the rich set of heterogeneous operations for graph
analytics and machine learning that many real applications demand.

In recent years, two new trends emerge in graph-parallel systems
research: (1) a novel think-like-a-task computing model that can
efficiently support the various computationally expensive problems
of subgraph search; and (2) scalable systems for learning graph neu-
ral networks. These systems effectively complement the diversity
needs of graph-parallel tools that can flexibly work together in a
comprehensive graph processing pipeline for real applications, with
the capability of capturing structural features. This tutorial will pro-
vide an effective categorization of the recent systems in these two
directions based on their computingmodels and adopted techniques,
and will review the key design ideas of these systems. Slides are
available at https://github.com/akhlaqueak/VLDB-2025-Tutorial.
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1 INTRODUCTION
Background and Motivation. Pioneered by Google’s Pregel, a
lot of graph-parallel systems have been developed that adopt a
think-like-a-vertex (TLAV) programming model and iterative com-
putation model. However, TLAV systems are dedicated to scaling
those graph problems that output a value for each vertex, such as
random walks and graph traversal, while many real problems care
about subgraph structures, such as finding functional groups in
bioinformatics, and finding social communities [14].
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Figure 1: Pipeline for Graph Analytics and Learning

Figure 1 summarizes a typical pipeline for graph processing, con-
sisting of a graph analytics phase and an optional graph machine
learning (ML) phase. The analytic tasks either concern individual
vertices (e.g., node scoring or classification), or concern substruc-
tures or even an entire graph (e.g., dense/frequent subgraph mining,
graph classification). There are four analytics paths in the pipeline:
(1) Vertex Analytics, which outputs a score for each vertex,

useful for applications such as biomolecule prioritization in
network biology, or object ranking in recommender systems.

(2) Vertex Analytics + ML, where the analytics stage outputs
vertex embeddings for downstream ML tasks. Vertex embed-
dings can be learned from the graph topology as in DeepWalk
and node2vec, or the vertex features may come directly from
the applications or be computed based on the graph topology
(e.g., in- and out-degrees, clustering coefficient).

(3) Structure Analytics, which outputs subgraph structures (pat-
terns or instances), useful for finding functional groups in
network biology, and community detection.

(4) Structure Analytics + ML, where informative structures are
extracted as features for graph classification/regression.

TLAV systems mainly address the scalability issue of vertex
analytics (+ ML), with many killer applications in recommender
systems and bioinformatics. However, many real problems concern
subgraph structures, and they are actually more computationally
challenging due to the exponential search space of subgraphs in
a graph, but cannot be effectively accelerated by TLAV systems.
For example, Chu and Cheng [9] noticed that for triangle counting,
the state-of-the-art MapReduce algorithm takes 5.33 minutes using
1636 machines, while their serial external-memory algorithm takes
only 0.5 minute. In fact, given an input graph 𝐺 = (𝑉 , 𝐸), TLAV
systems are only efficient for iterative computations where each
iteration has 𝑂 ( |𝑉 | + |𝐸 |) cost and there are 𝑂 (log |𝑉 |) iterations,
giving a time complexity upper bound of𝑂

(
( |𝑉 | + |𝐸 |) log |𝑉 |

)
[52].

In recent years, two new trends emerge in graph-parallel systems
research: (1) a lot of novel systems have been recently developed
targeting the more compute-intensive subgraph search problems,
which all adopt a subgraph-centric programming model (in contrast
to vertex-centric); (2) graph neural networks (GNN) have boomed
in various applications, and a number of scalable GNN systems
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have been developed. These two directions well cover the “Graph
Structures” and “ML” components of the pipeline shown in Figure 1,
but there currently lacks a comprehensive tutorial to survey and
introduce these exciting new system advancements.

This tutorial aims to fill this gap. We offered a tutorial on graph-
parallel systems in SIGMOD 2016 [47] but it mainly focused on
TLAV systems. There were tutorials on GNNs [2] that focused on
model design in real applications rather than GNN system design.
There was also a tutorial on training GNNs [32] in VLDB 2024 but
the focus is more on algorithmic techniques as well as the handling
of dynamic and temporal GNNs, while our tutorial component on
GNN systems will also cover other system-related techniques such
as how to effectively utilize new hardware and cloud platforms (e.g.,
NVLink, serverless computing) as well as more recent techniques
such as utilizing lossy quantization for message compression. Be-
sides, the other important and timely component on systems for
structure analytics is new and not covered by those tutorials.

We remark that the two topics we cover here are related and
important in order to fully explore the potential of various graph
analytics tools in a real application pipeline. For example, frequent
subgraph structural patterns have been found informative in con-
ventional models for graph classification and regression [28, 31]. ML
applications benefiting from having structural features include bio-
chemistry [28], bioinformatics [29], and community detection [35],
where structural features are found to outperform neural graph
embedding methods. There are also works applying GNNs for ap-
proximate subgraph search, such as neural subgraph matching [61]
and neural subgraph counting [40], where considering subgraph
structures were found essential for good performance. Finally, Sub-
graph GNNs [5, 12] which model graphs as collections of subgraphs
are found to be more expressive than regular GNNs.

2 SYSTEMS FOR STRUCTURE ANALYTICS
Programmability is important for a graph-parallel system: the sys-
tem should make it easy to implement a broad range of advanced
parallel/distributed analytics, not much more difficult (if not easier)
than their serial algorithm counterparts. TLAV systems are a good
example, where the user-specified programs are often easier to
implement than a serial algorithm from scratch.

However, TLAV systems are not suitable for subgraph search,
since computations are at individual vertices rather than subgraphs,
and TLAV systems are for iterative computations with a time com-
plexity of 𝑂

(
( |𝑉 | + |𝐸 |) log |𝑉 |

)
[52].

In this tutorial, we will review a series of new systems proposed
recently for subgraph search, which is a broad topic covering many
problems such as subgraph enumeration/matching/counting, max-
imal/maximum clique finding, and frequent subgraph pattern
mining (FSM). Notably, FSM is different from the other problems,
since FSM summarizes pattern graphs from the data graph(s), while
all the other problems find valid subgraph instances of a data graph,
which we call collectively as subgraph finding (SF).

Different from TLAV systems, the systems for subgraph search
adopt a think-like-a-graph (TLAG) computingmodel, which extends
valid small graph structures by one edge (or vertex) at a time to
grow larger valid graph structures. However, in order to support
SF and FSM under a unified programming model, most of these
systems such as Arabesque [38], RStream [41] and Pangolin [8]

Table 1: Systems for Subgraph Search: Summary of Features

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓ EG

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

SE/SM ✓

SE/SM ✓

SE/SM ✓ EG

SE/SM ✓ EG

SE/SM ✓ PT

✓ ✓ PT

✓ ✓

✓ ✓

✓ ✓

✓ ✓

Arabesque

G-Miner

RStream

G-thinker

(Pattern-to-Instance) (Instance-to-Pattern)

Problem Type Search Approach

* SE/SM = Subgraph Enumeration/Matching

Fractal

Pangolin
Peregrine

* EG = Entire Graph (Loaded to GPU)

* PT = A Partition of a Graph
(Loaded to GPU) Each Time

AutoMine

GraphPi
GraphZero

Single Machine / Distributed
Single-GPU / Multi-GPU
SE / SM / SE+SM, symmetry?
Approx? Correct?

GSI, cuTS, 
STMatch, EGSM

PBE, VSGM,
SGSI

ScaleMine
DistGraph

T-FSM
PrefixFPM

G2-AIMD

T-DFS

G-thinkerQ

adopt a breadth-first subgraph extension approachwhere subgraphs
of size (𝑖 + 1) cannot start their generation until all subgraphs
with size 𝑖 have been generated, which creates a lot of subgraph
materialization cost and restricts scalability since the number of
subgraph instances grows exponentially with the input graph size.

Some recent systems such as G-thinker [53, 54], G-Miner [7]
and Fractal [10] resolve this issue by allowing depth-first subgraph-
instance backtracking without actually materializing the instances.
While these systems target one-time offline analytics, G-thinkerQ [63]
efficiently supports interactive online querying where users contin-
ually submit subgraph queries with different query contents. Au-
toMine [26], GraphPi [33] and GraphZero [25] focus on subgraph
enumeration/matching where different vertex matching order leads
to different costs, and they adopt a compilation-based approach
to generate subgraph enumeration code with a favorable vertex
matching order. Among them, G-thinker, G-Miner, and G-thinkerQ
only supports SF but not FSM, while GraphPi and GraphZero are
dedicated to subgraph enumeration/matching. There are also sys-
tems dedicated to FSM in a single big graph, such as ScaleMine [3],
DistGraph [37] and T-FSM [65], with T-FSM being the most efficient
which decomposes the problem of pattern support evaluation into
subgraph-matching tasks for parallel computation by backtracking
search, and which supports all pruning techniques of the FSM algo-
rithm GraMi [11]. For FSM from a database of graph transactions
(rather than a big graph), PrefixFPM [56, 57] provides an efficient
parallel solution by depth-first pattern extension.

Recently, some systems begin to explore the use of GPUs to
further accelerate subgraph enumeration/matching. Since back-
tracking was deemed not beneficial on GPUs [17], most current
solutions such as GSI [67] and cuTS [45] maintain and grow the in-
termediately matched subgraphs in a BFS manner (in the subgraph
extension search tree) to allow coalesced memory access. Since
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Table 2: Techniques of Distributed GNN Training Systems

✓
✓

✓
✓
✓ ✓ ✓

✓
✓ ✓
✓ ✓
✓ ✓

✓ ✓
✓ ✓ ✓

✓ ✓
✓ ✓

Euler

DGCL

AliGraph

Graph Data 

Communication

ByteGNN

P3

DistDGL
AGL

NeutronStar

BGL
Sancus

Single Machine / Distributed
Single-GPU / Multi-GPU
SE / SM / SE+SM, symmetry?
Approx? Correct?

Dorylus

OptimizationsSystems

Operators Scheduling

Model Computation 

and Synchronization

Other Optimizations

Full-Graph GNN

DistGNN
HongTu

GPU global memory has a limited space, PBE [15], VSGM [18] and
SGSI [66] explore methods to partition a large input graph so that
only a partition needs to be loaded to a GPU for processing at each
time. G2-AIMD [62] supports general SF by BFS-based subgraph
extension, and it avoids intermediate subgraph-size explosion with
novel system designs such as adaptive chunk-size adjustment and
host-memory subgraph buffering.

More recently, DFS solutions are explored on GPUs such as
STMatch [44], T-DFS [64] and EGSM [36], where each warp con-
ducts DFS on a chunk of independent subtrees of the subgraph
extension search tree (as tasks) by maintaining its own stack, and
load balancing is achieved bywork stealing which splits heavy tasks.
While STMatch and T-DFS are pure DFS solutions, EGSM advocates
a BFS-DFS hybrid solution where the more efficient BFS is used
when device memory permits, and if memory becomes insufficient,
it falls back to DFS to match the remaining query vertices.

Table 1 summarizes the key features of existing TLAG systems
that we will cover in this tutorial.

3 SYSTEMS FOR GNN TRAINING
Graph classification and regression have been conventionally solved
by shallow-learningmodels such as support vector machines [28, 29,
31]. Recent advancement in deep learning has made graph neural
networks (GNNs) (e.g., GCN, GAT) popular as downstream mod-
els for graph machine learning. GNNs operate by collecting the
features of neighboring vertices and connected edges, and recur-
sively aggregating them and transforming them into new vertex
features. Taking the GraphSAGE model [16] as an example, where
each graph convolution layer can be expressed as follows:

h(𝑘 )N(𝑣) ← AGGREGATE𝑘
(
{h(𝑘−1)𝑢 | ∀𝑢 ⊆ N(𝑣)}

)
,

h(𝑘 )𝑣 ← 𝜎

(
W(𝑘 ) · CONCAT

(
h(𝑘−1)𝑣 , h(𝑘 )N(𝑣)

) )
,

whereN(𝑣) denotes the set of 𝑣 ’s neighboring vertices, superscript
(𝑘) denotes the GNN layer number. We can see the each layer of
GNN has two stages: Graph Data Retrieving (every vertex obtains
the feature vectors of its neighbors from the previous layer for
aggregation), and Model Computation and Synchronization.

A large number of GNN training systems have been proposed in
recent years. However, most of them are single-GPU systems, which

cannot scale to industrial-scale large graphs. In this tutorial, we will
focus on distributed GNN training systems. We will first present
the challenges and then introduce a range of representative GNN
systems with a variety of techniques designed to address the key
performance bottlenecks. These systems are from both academic
and industrial contexts, providing a comprehensive coverage.

Distributed GNN training presents unique challenges different
from traditional machine learning tasks. Unlike training tasks in
computer vision or natural language, GNN training requires ac-
cess to neighborhood information that is not independent across
training samples. As a result, the first challenge in distributed GNN
training is the need for efficient (1) Graph Data Communication.
Another challenge is (2) Operator Scheduling which needs to bal-
ance tasks among computing nodes, including subgraph sampling,
neighborhood feature aggregation, and model learning operations
such as loss computation, gradient calculation and parameter up-
dating, while making optimal use of available resources. The third
task is (3)Model Computation and Synchronization, where fre-
quent synchronizations between nodes during training are needed
to ensure consistency in model parameters, which often results in
increased synchronization delay and communication overhead.

To tackle the aforementioned major challenges, many techniques
have been proposed in recent years, which we review next.
Graph Data Communications. Several techniques have been
proposed to effectively manage the significant volumes of graph
data communications. Neighborhood sampling is one of the most
commonly employed techniques, as it limits the number of neigh-
bors of each node used for training. This technique has been widely
adopted in industrial GNN systems such as Alibaba’s Euler [4] and
AliGraph [73], and ByteGNN [71]. Graph partitioning has also been
employed to enhance the efficiency of graph data communications.
DistDGL [72] and DGCL [6] use traditional graph partitioning algo-
rithms such as METIS [19] to minimize cross-machine data commu-
nication. However, since not every vertex in the graph is used for
GNN training (GNN workload usually involves the neighborhood
of training vertices within only a few hops), a global minimum
edge-cut may not be the optimal choice for GNN training. To ad-
dress this issue, ByteGNN [71] and BGL [22] propose heuristic
algorithms to over-partition a graph into small blocks by perform-
ing BFS from train/validation/test seed vertices, till the BFS’s meet
(i.e., computing the graph Voronoi diagram of seed vertices), and
then assign these blocks to workers in a streaming style. P3’s [13]
method focuses primarily on dividing input data according to ver-
tex feature rather than graph topology, aligning with its unique
training technique that fuses model and data parallelism. Finally,
AGL [68] employs the established infrastructure, MapReduce, to
materialize the 𝑘-hop subgraphs for all training nodes before the
actual training process, which eliminates the need for graph data
communication during the training itself.
Operator Scheduling. Various systems utilize different execution
scheduling policies and adopt the pipeline mechanism to mak-
ing optimal use of available resources. Specifically, Euler [4], Ali-
Graph [73] and ByteGNN [71] leverage operator abstraction to
enable higher parallelism. ByteGNN further proposes a two-level
scheduling scheme to control operator execution within and be-
tween iterations. NeutronStar [43] offers a flexible auto-differentiation
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strategy by separating dependency management from graph op-
eration and neural network functions. BGL [22], P3 [13] and Do-
rylus [39] implement pipeline mechanisms but they differ in their
underlying task units or computing units. BGL uses a factored par-
adigm where different tasks are processed on different types of
executors. In contrast, task units in Dorylus are processed by sev-
eral Serverless Threads. P3 follows a similar model training pipeline
as traditional deep learning training, but it splits the forward (and
backward) process into two phases for model and data parallelism.
Model Computation. GNN models are relatively small compared
to DNN models, and model computation only needs to be carried
out on densely packed vectors. However, sampling a large graph
involves accessing a large amount of data from random (includ-
ing remote) locations to construct the neighborhood subgraph for
each sampled seed vertex. Several systems have been developed on
CPU clusters such as Euler [4], DistDGL [72], AliGraph [73] and
ByteGNN [71]. The training well overlaps graph data retrieving
and GNN computation by fine-grained task assignment. In con-
trast, DistGNN [27] targets full-graph training on CPU clusters, via
an efficient shared memory implementation, communication re-
duction using a minimum vertex-cut graph partitioning algorithm
and communication avoidance using a family of delayed-update
algorithms. When models become larger, GPU computing power
becomes indispensable and thus more recently GPU distributed
GNN systems have been proposed. As an example, P3 [13] proposes
a unique approach for computation, referred to as the push-pull
strategy, which combines the intra-layer model parallelism and
data parallelism on GPUs. In contrast, HongTu [42] targets full-
graph training on multiple GPUs, which stores vertex data in CPU
memory and offloads training to GPUs.
Model Synchronization. To reduce the model synchronization
overhead, several alternative asynchronous training paradigms
have been developed. One of these paradigms is the bounded stal-
eness approach, which is adopted in Dorylus [39] and P3 [13].
Bounded staleness is an asynchronous communication paradigm
that limits the use of outdated model weights in the training process.
By doing so, it allows pipelining to be fully exploited while ensur-
ing the convergence of the final model. To avoid static bounded
staleness, Sancus [30] proposes a staleness-aware communication
algorithm that dynamically adjusts the staleness based on variations
in embeddings or gradients. This approach enables more efficient
and effective asynchronous communication in the training process.
Other Techniques. Besides the aforementioned techniques, other
optimizations can be employed to effectively train distributed GNN
models. DGCL leverages high-bandwidth NVLINK hardware be-
tween GPUs to accelerate the speed of GNN training, through the
use of special communication plans that are generated based on
high link speed and topology. Dorylus [39] utilizes Lambda threads
(serverless) service offered by cloud providers for computation.
According to [39], the utilization of CPU servers and serverless
function calls from clouds is a more cost-effective option than
using GPUs. This feature allows for better scalability and cost-
effectiveness for users, demonstrating that using cloud computing
is an affordable way to achieve high-performance GNN training.

We will also introduce recent works for compressed GNN train-
ing using various quantization techniques, such as EC-Graph [34],
EXACT [23], F2CGT [24] and Sylvie [69].

4 TARGET AUDIENCE AND PREREQUISITES
The target audience for this tutorial includes anyone who are inter-
ested in large-scale graph analytics and machine learning, such as
(1) researchers and practitioners who would like to understand how
to choose the proper systems for their graph-related applications at
hand, and (2) system developers who want to learn how to design
graph-parallel systems. Our tutorial will be self-explanatory with
minimal prerequisites, including a basic understanding of graph
theory and some familiarity with GNNs.

5 PRIOR TUTORIALS AND DIFFERENCES
We have delivered this tutorial at IJCAI 2024, KDD 2024 [60], CIKM
2024 [59], and EDBT 2025 [59]. The audience is mainly from the data
mining community currently, as well as the database community
in Europe, so presenting at VLDB 2025 would expose this tutorial
to a broader audience in the database community. This tutorial will
cover more up-to-date systems not covered in previous tutorials.

6 FORMAT AND TUTORIAL LENGTH
Our tutorial will be in lecture-style format. We would like to re-
quest for two sessions (3 hours) so that we can cover each of the
two system topics (structural analytics, and GNN) in one session.
However, we are happy to reduce the scope of works covered to fit
the two topics into one session (1.5 hours).

7 PRESENTERS AND THEIR EXPERTISE
This tutorial will be delivered by Dr. Da Yan from the Depart-
ment of Computer Science at Indiana University Bloomington, and
his graph systems team members Lyuheng Yuan, Akhlaque Ah-
mad and Saugat Adhikari. Dr. Yan and his team have developed
graph-analytics systems including G-thinker [14, 20, 53, 54], G-
thinkerQ [63], PrefixFPM [56, 57], T-FSM [21, 65], G2-AIMD [62]
and T-DFS [64], and are the pioneers of the think-like-a-task com-
puting model T-thinker. Dr. Yan also has extensive experience in
developing think-like-a-vertex (TLAV) graph systems and GNN. Dr.
Yan and his team have a long history of developing graph-parallel
systems, with dozens of related publications in top conferences
such as SIGMOD, VLDB, KDD, ICDE, and top journals such as
ACM TODS, VLDB Journal, IEEE TPDS and IEEE TKDE. Dr. Yan led
the development of the BigGraph@CUHK platform [1] with many
well-known systems following the TLAV model such as Blogel [49],
Pregel+ [50], Quegel [51, 70], GraphD [55] and LWCP [48]. He has
also delivered a tutorial on TLAV systems in SIGMOD 2016 [47], and
published books on this topic with prestigious publishers [46, 58].
Dr. Yan is the sole winner of Hong Kong 2015 Young Scientist Award
in Physical/Mathematical science, and his graph systems research
was funded by the DOE Early Career Research Program in 2023.
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