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ABSTRACT

Data discovery has gained significant traction in the database com-
munity resulting in various discovery operations, index schemes,
and discovery systems. This tutorial explores the architecture and
components of data discovery systems, focusing on indexing struc-
tures and scalable algorithms for typical operations, such as join and
union discovery. While giving insights into individual algorithms,
we point out open challenges for holistic systems, data discovery
evaluation, and discovery in federated setups.
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1 INTRODUCTION

Data lakes, whether intentionally created or emerging as a byprod-
uct of organizational processes or open data initiatives, share a
common challenge: they are often underspecified and underdocu-
mented [1, 13]. Unlike curated data warehouses, where the schema
and purpose are clearly defined, data lakes typically lack prede-
fined objectives. Despite this, there is significant interest in lever-
aging these repositories for augmenting in-use datasets or pure
exploratory purposes. To support such applications, data discovery
as a process becomes essential, enabling users to interact with the
data lake not by relying on detailed schema knowledge but by using
search and matching techniques. By searching with user-provided
keywords or table artifacts, users aim to uncover datasets that are
relevant to their use cases.

Data discovery is currently an active field of research, as build-
ing scalable solutions to effectively capture user intent, such as
augmenting a given dataset fragment, presents various challenges.
A key issue is the need to index thousands to millions of tables
for fast value look-ups and efficient alignment to evaluate joinabil-
ity [9, 35] and unionability [19] with the user (query) table. After
identifying relevant tables, assessing the usefulness of the retrieved
results remains a complex problem. Often, users rely on proxy met-
rics, such as the downstream machine learning performance of the
augmented dataset, to assess its effectiveness [7, 8, 22]. Finally, in
distributed data lakes, additional constraints, such as privacy regu-
lations and pricing structures, further complicate the process. In
such cases, the usefulness and relevance of datasets must often be
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assessed based on available metadata and summaries, rather than
direct access to the full datasets.

This tutorial is based on our previous study of data discovery
use cases and our experience in building systems and algorithms
that address some of its emergent challenges. Our goal is to give a
structured overview of data discovery software components and to
dive into technical aspects that differentiate individual prototypes
and approaches. A meta-goal is to bridge the language and per-
spective differences on what is counted as data discovery and how
discovery systems in database research can be compared. Figure 1
depicts a conceptual architecture of data discovery systems that
we explore in this tutorial. The user formulates a discovery task
that typically aims at enhancing an existing table or table fragment
through additional features, rows, or individual values. Such tasks
are then typically carried our on top of common operations, such
as keyword search, join discovery, union discovery, and others that
are built on top of dedicated indexes. In our tutorial, we cover the
depicted architecture as follows. We first survey and discuss com-
mon data discovery use cases from industry and academia. We then
present a classification of data discovery systems with layers that
distinguish the locality, languages, and index structures of such
systems. Locality captures the accessibility of repositories on mono-
liths and in distributed settings. Discovery languages can differ
depending on how many different discovery tasks a system covers.
Accordingly, we then dive deep into concrete index structures and
how they serve individual discovery operations and languages.
Previous Tutorials: There have been similar tutorials in the past
that relate to ours. In particular, the tutorial by Paton and Wu at
EDBT 2024 [21] also covers various aspects of dataset search and
navigation. In contrast to their tutorial, we have a strong focus on
algorithmic details on how index structures and operations have
evolved and can be categorized with a projection on how these
approaches relate, can extend to distributed scenarios, and can be
combined inside holistic systems. There has been a tutorial from
the information retrieval perspective on web table extraction [32].
Our tutorial covers more recent advances and discusses the topic
from the database management perspective. The tutorial on data
exploration [15] is related but does not focus on data lakes.

2 TUTORIAL OUTLINE

In this tutorial, we first discuss the types of data lakes that set
the motivation for building data discovery systems. We further
categorize existing systems depending on their scope with regard
to data locality, i.e., centralized and distributed repositories. We
then detail common operations and fundamental indexing schemes
in state-of-the-art that support such operations. Finally, we will
discuss methods for evaluating and benchmarking data discovery
systems and outline open problems and potential future research.
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Figure 1: Vanilla data discovery system architecture

2.1 Data Lakes

With the awareness of how valuable data can be even without being
currently under active usage, organizations started to accumulate
datasets and make them accessible across silos. This is in contrast to
the typical data warehousing approach, where handcrafted extract-
transform-load pipelines are defined and documented to integrated
datasets into a purposeful schema. Data lakes in contrast follow the
integrate at application time paradigm. Often times the datasets
not only are heterogeneous on schema level but can be subject
to heterogenous data models or reside in heterogeneous storage
systems. For the sake of scoping, we will focus on the algorithms
and systems that have been designed for data lakes with tabular
datasets.

2.2 Overview of Data discovery settings

Data discovery is a fundamental capability for organizations that
manage large and often distributed collections of datasets. The
need for robust data discovery systems has become even more
pressing with the widespread adoption of machine learning and
Al techniques, which depend critically on access to high-quality,
relevant data. Numerous studies have explored different approaches
to data discovery, with the optimal solution often varying based on
the specific use case. This section provides an overview of the key
architectural and interaction paradigms for data discovery.
Centralized vs. Federated Settings. Traditional data discovery
systems typically assume centralized access to data, where all datasets
are consolidated into a single repository, allowing the discovery
engine to index and query them directly. However, this assumption
is often impractical. In many cases, data is often dispersed across
multiple repositories due to concerns related to data sovereignty,
privacy regulations, and the high cost of data transfer.

To address these challenges, modern data ecosystems are shifting
toward federated or decentralized discovery architectures. In such
settings, data providers retain control over their datasets and share
only metadata (or a summary of the dataset) with the discovery sys-
tem. This model is common in commercial data marketplaces (e.g.,
Datarade, Dawex) and federated infrastructure initiatives (e.g., Gaia-
X, Agora), where discovery must be performed over incomplete
information, and access to data is negotiated only after identifying
relevant resources.

Data Discovery Tasks and Use Cases. Users express their infor-
mation needs in various ways, depending on the context and their
familiarity with the data. Common interaction modalities include:
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o Keyword-based Discovery: Users input textual queries
along with optional filters. While straightforward and user-
friendly, this method is often inadequate when users have
nuanced requirements related to data semantics, coverage,
or statistical characteristics.

Query-by-Example: Users provide a small sample dataset
and search for similar datasets based on structure or content.
This approach is helpful when users struggle to verbalize
their data needs but can illustrate them via examples.
Task-based Discovery: Users specify a target task, such as
training a classifier or evaluating a model, and seek datasets
that are suitable for that purpose. This mode is especially
relevant for machine learning workflows, where factors like
class balance and feature alignment significantly impact
performance.

In many real-world scenarios, users may only have a vague or evolv-
ing notion of what constitutes a “useful" dataset. Their needs may
not be easily captured by keywords, examples, or tasks. To address
this, recent work has focused on designing more expressive query
languages that allow users to specify fine-grained predicates—such
as schema constraints, statistical distributions, or semantic crite-
ria—to better guide the discovery process.

2.3 Discovery Operations

Our tutorial will strongly focus on two major classes of operations
that are common in data discovery research: Joins and Unions.
note that each of the two can inhibit additional properties, such as
fuzziness or conditional utility functions for the correspondingly
joinable and unionable tables, as it is relevant for example for task-
based discovery tasks. In our tutorial, we will define both operations
and discuss the variations of each.

A join discovery operation aims at discovery tables that are join-
able with a given user table. In the literature, variations, such as
precalculated PK-FK relationships, single column joinability and
multi-column joinability, as well as fuzzy joins have been consid-
ered. In our tutorial, we will cover the necessary algorithmic steps
for each of the aforementioned variations, as well as their use cases
and disadvantages. Furthermore, we will dive deep into the class
of conditional join discovery approaches, where not only the join-
ability but also the utility of the obtained tables with regard to
downstream tasks have been considered.

A union discovery operation aims at vertically expanding a table
with more rows from tables inside a lake. Within this line of work,
we will distinguish approaches that check for perfect unionability
as in consistent with UNION in SQL as well as approaches that find
partially unionable tables.

2.4 Indexing Data Lakes

An efficient index structure is necessary to support any of the afore-
mentioned discovery operators. Index structures have long served
as the foundation of traditional information systems, enabling effi-
cient search and retrieval. In the era of large-scale data lakes and
advanced data discovery techniques, these structures have evolved
to meet two primary objectives: scalability and customizability. The
large size and heterogeneity of data lakes require indexes that can
efficiently scale to large volumes of data while supporting various



Table 1: Mapping between indexes and data discovery studies.

[ Index “ Papers ]
Value — Location [2, 4, 24, 29-31, 35]
Location — Value [2, 30, 35]
Value (Cell Value — Class (Domain) [24]
Value — Embedding [5]
LSH Variations [3,5, 12, 14, 19, 28, 36]
Column — Metadata [2, 14, 24, 30, 35]
Col Column Names — tables [31]
otumn Column — Domain [34]
Column — Rank [22, 23]
Column — Embedding [5, 11, 27]
Row Row — Table [2,31]
. Table — Embedding [31]
Table Table — Metadata [2]
Graph V: Columns, E: Similarities [4, 12, 16-18, 20, 26, 31, 33, 34]

custom search requirements. For instance, data discovery with the
goal of benefiting a downstream machine learning (ML) task re-
quires a task-specific similarity measure to find the most relevant
data. In this example, the relevancy of a column is measured by
how significantly the column correlates with a target column to be
predicted in the ML task. These task-specific requirements demand
customized index structures, leading to hybrid and more complex
indexes.

Index structures for data discovery in data lakes can be catego-
rized based on two key dimensions: query interface, determining
the primary way users interact with the index, and search approxi-
mation, defining whether the index allows exact or approximate
discovery.

Table 1 provides an overview of the state-of-the-art index struc-
tures, grouped into six categories based on their query interface:
Value-based indexes, column-based indexes, row-based indexes,
table-based indexes, and graph-based indexes.

Each of these index types serves a distinct purpose. Value-,
column-, row-, and table-based indexes enable querying data lakes
at different levels of granularity, from individual cell values to entire
tables. Graph-based indexes facilitate exploratory search by cap-
turing relationships between datasets, allowing users to navigate
table connections.

Index structures can also be categorized based on whether they
provide exact or approximate, i.e., fuzzy discovery. Exact indexes
guarantee exact retrieval of the most relevant tables to the task at
hand but may be computationally expensive. Examples of exact in-
dexes are traditional inverted indexes. Approaches such as Josie [35]
and MATE [9] benefit from exact indexes to find equi-joinable ta-
bles to a given key column. On the other hand, approximate indexes
prioritize efficiency by sacrificing accuracy.

Hash- and sketch-based techniques have been widely adopted to
improve scalability. For example, LSH-based indexes [6, 14, 36] are
used for efficiently finding tables based on Jaccard, containment,
and cosine similarities. However, significant research efforts focus
on improving their accuracy and scalability, leading to variations
such as LSH Ensemble [36], which reduces bias towards smaller
tables, or Lazo [14], which uses OOPH sketches [25] to reduce
the number of hashes required before constructing the LSH index.
Sketch-based indexing techniques, such as Quadrant Count Ratio
(QCR) [23], have also been employed to find correlating features to
a target column.
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High-dimensional vector indexes, such as HNSW, Inverted File
Index (IVF), and Product Quantization (PQ), have recently been used
to enable approximate data discovery based on semantic similarity
between tables [11].

2.5 Evaluating Discovery Systems

One of the major challenges in data discovery research is the appro-
priate evaluation of proposed methods. Similar to other research
problems in data integration, there is always a trade-off between
resource consumption and quality of potential techniques. While
measuring resource consumption and runtime is straightforward,
it is often hard to set the proper criteria for the expected quality of
data discovery results. In this tutorial, we want to delve into these
challenges and discuss two different approaches that are currently
carried out by researchers: 1) Close-world: A ground truth is cre-
ated, often by fragmenting larger tables and trying to resynthesize
the original tables. With this approach, metrics such as precision
and recall can be calculated. 2) Open-world: Data discovery aims
at finding serendipitous datasets that are useful for a downstream
use case. Both approaches can bring insights into the capabilities of
different techniques. In our tutorial, we want to highlight that the
implication of each is different, which in turn might favor a certain
class of techniques.

2.6 Future Directions

As our tutorial will show, research on data discovery has made
significant progress in the past decade. Nevertheless, there are
aspects that are still underexplored and impede the usage of data
discovery solutions in practice. Among those, we will discuss the
challenges in building holistic systems [10] that serve a variety
of discovery tasks, data discovery in federated setups and under
constraints as well as the expansion of existing techniques for
additional modalities beyond relational tables.

3 TUTORIAL ORGANIZATION

We plan to carry-out the tutorial as an interactive lecture with live
demonstration of discovery operations and systems. As several of
the systems have been developed and reproduced at our labs, we can
provide practical insights into several of the presented techniques.
Overall, the structure as outlined in the previous section can be
covered within 3 hours. We can trim the tutorial for a shorter session
if needed, by focusing on fewer discovery operations.

Target audience. The topic of data discovery has a broad appeal
within the data management community. We believe that anyone
who is interested in data discovery, security, and privacy of data
would be interested in this tutorial. More broadly, the tutorial is
aimed at encouraging the DB community to work on novel problems
in data discovery and make it more practical. All materials used
will be released publicly, and the attendees will be given a hands-on
experience to test the presented techniques.

Prerequisites. The background expected is that of an introductory
course on data management. The tutorial has been carefully struc-
tured to accommodate both attendees unfamiliar with the topic
and experienced participants by providing the required background
knowledge and shared terminology.
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Mahdi Esmailoghli is a Postdoctoral researcher in the Database
and Information Systems (DBIS) group at Humboldt-Universitit zu
Berlin. He holds a Ph.D. from TU Berlin. His Ph.D. research focused
on data discovery in data lakes, in particular, he developed a holistic
system to efficiently explore large data lakes to enhance the data at
hand to train more effective machine learning models.

Sainyam Galhotra is an Assistant Professor in Computer Science
at Cornell University and a field member for Computer Science,
Statistics and Data Science. Previously, he was a Computing Inno-
vation Fellow pursuing postdoctoral research at the University of
Chicago. He received his Ph.D. from the University of Massachusetts
Ambherst. His research has been published in top-tier Data Manage-
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and Software Engineering (FSE) conferences. He is a recipient of the
Best Paper Award in FSE 2017 and Most Reproducible Paper Award
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Mention Award in SIGMOD 2023. He was recognized as a Data
Science rising star, a DAAD Alnet Fellow, and as the first recipient
of the Krithi Ramamritham Award at UMass for contribution to
database research.

Ziawasch Abedjan is Full Professor in Computer Science at the
TU Berlin and Research Group Lead of the Berlin Institute for
Foundations of Learning (BIFOLD) chairing the Research Group for
Data Integration and Data Preparation. Previously, he chaired the
Database and Information systems group at the Leibniz University
Hannover. He held positions as Assistant Professor at TU Berlin,
Postdoctoral Associate at MIT, Research Associate at QCRIL, and
Visiting Academic at Amazon Search. He received his PhD from the
Hasso Plattner Institute in Potsdam and was awarded the University
of Potsdam’s best Dissertation Prize in 2014. He is a recipient of
the Most Reproducible Paper Award in SIGMOD 2019, the Best
Demo Award in SIGMOD 2015 and the Best Student Paper Award
in CIKM 2014. Ziawasch Abedjan has published several papers on
data discovery algorithms and systems that will be partially covered
in the tutorial. His research has been published in top-tier Data
Management (SIGMOD, VLDB, & ICDE) and Software Engineering
(ICSE, ASE) conferences and is funded by the DFG and the German
Ministry for Education.
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