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ABSTRACT
This tutorial provides a comprehensive overview of the research
landscape of employing Large Language Models (LLMs) to spatial
analysis queries. The tutorial categorizes the research in this area
based on how LLMs are employed to serve such queries. This goes
from employing LLMs as is, to fine-tuning LLMs, to completely
retrain LLM architectures, to modifying the LLM internals to fit
spatial queries. The tutorial concludes by a set of benchmarks and
pointing out to research gaps and future research directions.
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1 INTRODUCTION
Spatial analysis queries aiming to provide insights and efficient
retrieval of large spatial data have been an active research area in the
database community over the last few decades [3, 8, 10, 59, 74]. Such
queries have been a cornerstone for enabling a wide range of widely
used applications, including location-based services, trajectory data
analysis, transportation, and urban planning. Meanwhile, the recent
tremendous success andwide deployment of Large LanguageModels
(LLMs), e.g., BERT [16], GPT [58], and Llama [63], as large-scale
deep learning architectures trained on vast amounts of data, have
triggered the database community to exploit the use of LLMs in
various data management problems [13, 18, 20, 54, 56, 57, 65].

This tutorial provides a comprehensive overview of the research
landscape of the rapidly evolving area of employing Large Language
Models (LLMs) to support spatial analysis queries. Figure 1 gives an
overview of the approaches that will be covered in this tutorial. The
vertical axis of the figure represents spatial analysis tasks that have
exploited the usage of LLMs. These tasks are grouped into four sub-
categories based on the type of spatial query they address: (1) traffic-
related queries, (2) multi-modal queries, (3) trajectory-related queries,
and (4) PoI-related queries. The horizontal axis of the figure catego-
rizes existing work into four categories based on their use of LLMs.
In the first category, LLMs are used as is to support spatial analysis
tasks. The second category goes one step further and fine-tunes
LLMs to fit spatial analysis. The third category goes one step further
by using an LLM solely as an architecture, and completely retrain it
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from scratch with spatial data. The fourth category does the same
as the third category, yet in addition, the techniques in this category
change the model internals to fit various spatial analysis tasks. Each
approach in Figure 1 is labeled by the LLM model it is based on.

2 TUTORIAL OUTLINE
Figure 2 gives the detailed outline and timing of this 90-minutes
Tutorial. The tutorial is mainly composed of six parts. The first
part serves as a background and introduction. The next four parts
correspond to the four categories in the horizontal axis of Figure 1.
The last part concludes the tutorial by covering various evaluation
and benchmarking papers, while pointing out to future research
directions. This section briefly discusses the contents of each part.

2.1 Part 1: LLMs and Spatial Queries: Why?
This part of the tutorial starts with a necessary background about
Large Language Models (LLMs) and their architectures. It also
presents how LLMs fit under the wider umbrella of Foundation
Models (FMs) along with various visions that laid out the founda-
tion and needs for exploiting LLMs and FMs for various spatial
analysis queries [5, 14, 43, 44, 52, 53]. This part will also explain
Figure 1 in details pointing out to the rationale of categorizing
existing work based on their underlying LLMs and the tasks they
aim to support. This would require going a bit deeper into LLMs
architecture as it will help in explaining the differences among the
various categories that will be discussed later.

2.2 Part 2: Using an LLM As Is
This part of the tutorial covers the techniques in the third column of
Figure 1. Such techniques use pre-trained Large Language Models
(LLMs) as is without altering any of its trained data, parameters,
or loss function. Yet, the techniques in this category still involve
crafting several iterations of input prompts to guide the LLMs to-
wards specific output types that fit spatial analysis tasks; a process
known as prompt-engineering. Though such category of techniques
is somehow straightforward in terms of using LLMs as is, it was
shown that it is still powerful for many spatial analysis tasks. Exam-
ples of work in this category that will be covered in this tutorial is
designed for traffic-related queries such as traffic analysis [67, 73],
traffic signal control [15, 42, 75], and traffic and trip prediction [38]
and for trajectory-related queries as trajectory generation [66].

2.3 Part 3: Fine-Tuning an LLM
This part of the tutorial covers the techniques that appear in the
fourth column of Figure 1. Aswith the previous category, techniques
in this category start from an already trained LLM. Yet, techniques
in this category go one step further by modifying various param-
eters and weights in the LLMs internals to make them better fit
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Traffic
Related
Queries

Traffic Analysis ♣TransGPT [67] ♣Trafficgpt [73]

Traffic Signal Control
♣Open-TI [15] ♣GeoGPT[75]

♣PromptGAT [42]
♣LLMLight[30]

Traffic & Trip Prediction ♣LLM-MPE [38]
⋆♣AuxMobLCast [68]

□LLM-COD [70] ♣UrbanGPT [36]
◇PromptST [77]

♣ST-LLM [40] ◇ UniST [71]

⋆BERT-Trip [2]⋆MultiCast [11]

Multi-
Modal
Queries

Street Navigation ♣VELMA [60]

Urban Region Profiling □UrbanCLIP [69]

Trajectory
Related
Queries

Trajectory Generation ♣LLMob [66] □Geo-Llama [34] ♣UMA-LM [7] ◇TrajGPT [25]

Trajectory Imputation
⋆KAMEL [50, 51]

◇RNTrajRec [12]⋆TrajBERT [62]

Anomaly Detection □CLARA [29] ♣LM-TAD [47] ◇TranAD [61] ◇GADFormer [41]

Generic Trajectory Models ◇STPT [26] ◇CTLE [39]

POI
Related
Queries

Next PoI Recommendation □LLM4POI [33]

Query-POI Matching ♣MGeo [17] ◇FIR-PT [48]

Generic PoI Models □ UrbanKGent [55] ⋆SpaBERT [35]⋆GeoBERT [72]
◇ERNIE-GeoL [27]⋆ CityFM [5]

⋆GeoLM [37]

Using an LLM As Is Fine-Tuning An LLM Using Architecture-Only LLMs New Loss Function
Base Model: ◇ Transformer ♣ GPT ⋆ BERT □ Llama

Figure 1: Overview of Generic and Task-Specific Models in Spatial Analysis Queries

for various spatial analysis tasks; a process known as fine-tuning.
Such supervised fine-tuning process allows the employed LLM to
learn task-specific patterns, and hence significantly enhances its
performance. Apparently, this is a bit more complicated than just
using LLMs as is, and hence it gives more power in boosting the
performance of various spatial analysis tasks. Examples of work in
this category that will be covered in this tutorial are either designed
for traffic-related queries as traffic signal control [30], and traffic
and trip prediction [36, 68, 70], in multi-modal queries as street
navigation [60], in trajectory-related queries as trajectory genera-
tion [7, 34] and anomaly detection [29], or in PoI-related queries as
next PoI recommendation [33] and generic PoI models [55].

2.4 Part 4: Using Architecture-Only LLMs
This part covers the techniques that appear in the fifth column of
Figure 1. Unlike the previous two categories, these techniques do
not employ any trained models. Instead, they use the vanilla archi-
tecture of LLMs without any training. Then, they completely train
the employed architecture using some form of spatial data. This
makes the employed models fully trained on spatial data, and hence
they becomemore suitable to spatial analysis tasks. As this category
is more complicated than the previous category, where retraining
an LLM form scratch would also require fine-tuning, techniques
in this category are able to natively support spatial analysis tasks
as they are trained on spatial data, and hence results in a much
higher accuracy. Examples of existing work in this category that
will be covered in this tutorial are either designed for traffic related
queries as traffic and trip prediction [77], trajectory-related queries
as trajectory imputation [12, 51, 62] and anomaly detection [47], or
in PoI-related queries as generic PoI models [35, 72].

2.5 Part 5: New Loss Function
This part of the tutorial covers the techniques that appear in the last
column of Figure 1. In addition to only using the LLM architecture

as in the previous category, techniques in this category go one
step further and modify the loss function of the LLM architecture
to fit spatial analysis tasks. LLMs employ a loss function to assess
the difference between their actual output and either the target
output or the ground truth. Modifying such loss function gives the
techniques in this category an edge in adapting the behaviour of
LLMs to fit spatial applications. This is in addition to adapting the
prompt, parameters, and data, which took place in our first, second,
and third categories, respectively. Apparently, this provides more
native support for spatial applications, and hence better control
on the efficiency and accuracy of such applications. Examples of
existing work in this category covered in this tutorial is either
designed for traffic-related queries as traffic and trip prediction [2,
11, 40, 71]„ multi-modal queries as urban profiling [69], trajectory-
related queries as anomaly detection [41, 61] and generic trajectory
models [26, 39], or PoI-related queries as query PoI matching [17,
48] and generic PoI models [5, 27, 37].

2.6 Part 6: Benchmarking and Open Problems
This part of the tutorial discusses the work that benchmarks the use
of LLMs in various spatial analysis tasks, which include: (a) bench-
marking LLMs for path planning [1], time-series data generation [4],
and geospatial knowledge [6], (b) evaluating LLMs ability for gen-
erating code in geospatial applications [22], representing spatial
relations and geometries as text [28], and supporting spatial queries
in dynamic graphs [76], and (c) evaluating LLMs’ bias in spatial
domain and its impact to various tasks [45, 46] and LLMs repre-
sentation of space and time in various spatial datasets [24]. The
tutorial concludes by pointing out to several research gaps, open
problems, and future directions in the research landscape of LLMs
for spatial analysis queries, which will help in guiding the future
research agenda for the VLDB community.
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Part 1: LLMs and Spatial Data: why? (20 minutes)
– Introduction to LLMs and FMs (6 minutes)
– The Vision of LLM and FM for Spatial Analysis Queries (7 minutes)
– Explaining Figure 1 (7 minutes)

Part 2: Using an LLMs As Is (15 minutes)
– What does this category mean (5 minutes)
– Employing LLMs as is for traffic queries (5 minutes)
– Employing LLMs as is for trajectory queries (5 minutes)

Part 3: Fine-Tuning an LLM (15 minutes)
– What does this category mean (5 minutes)
– Fine tuning LLMs for traffic queries and multi-modal queries (5 minutes)
– Fine tuning LLMs for trajectory and PoI queries(5 minutes)

Part 4: Using Architecture-Only LLMs (15 minutes)
– What does this category mean (5 minutes)
– Architecture-Only LLMs for traffic queries (5 minutes)
– Architecture-Only LLMs for trajectory and PoI queries (5 minutes)

Part 5: New Loss Function (15 minutes)
– What does this category mean (5 minutes)
– New Loss Function for traffic and multi-modal queries (5 minutes)
– New Loss Function for trajectory and PoI queries (5 minutes)

Part 6: Benchmarking, Evaluation, Open Problems (10 minutes)
– Benchmarking and Evaluating LLMs for Spatial Analysis Queries (5 minutes)
– Research Gaps and Open Problems (5 minutes)

Figure 2: Outline & Timing of the 90-minute Tutorial.

3 TARGET AUDIENCE AND BACKGROUND
This tutorial targets researchers, developers, and practitioners, who
are interested in understanding and assessing the impact of Large
Language Models on spatial analysis queries. The tutorial will have
enough introductory material to ensure that the audience get the
necessary background needed to understand its contents, hence
no prior knowledge is required to understand the techniques and
approaches presented in this tutorial. The tutorial will also be very
beneficial for graduate students as it will help them in identifying
various challenges for PhD topics. Practitioners will get to know
the state-of-the-art techniques to exploit the use of LLMs in spatial
analysis queries. Finally, the tutorial will act as an invitation to the
data management community to exploit the rapidly evolving field
of Large Language Models as a means of boosting the accuracy and
efficiency of spatial analysis queries.

4 RELATED RECENT TUTORIALS
Over the last three years, there were five tutorials presented in
VLDB and SIGMOD about LLMs [21, 23, 31, 49, 64]. These tutorials
have either discussed the role that LLMs can play in boosting the
performance of various database components or the role that data-
base systems can do in scaling up the computations of LLMs. None
of these five tutorials have discussed the topic of spatial analysis
queries. Meanwhile, over the last three years, there were four tu-
torials in VLDB and SIGMOD addressing various challenges and
innovations in spatial data analysis [9, 19, 32, 74], however, none of
them discussed LLM topics. Our tutorial will be the first to bridge
the two areas of LLMs and spatial data analysis.
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