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ABSTRACT
The join order (JO) optimization problem is a key challenge in
query optimization. Classical approaches can compute the optimal
solution for smaller queries. For larger queries, some heuristic meth-
ods trade off plan quality to reduce the exponential search space.
Recently, quantum-based methods have been proposed to leverage
quantum mechanisms to accelerate exploration; however, encod-
ing problem-specific constraints as penalty terms introduces extra
overhead. Moreover, quantum-inspired methods on classical hard-
ware do not harness the true advantages of quantum computation.
Furthermore, these methods remain at the simulation stage.

In this demonstration, we present the first Quantum-augmented
Query Optimizer (Q2O) that integrates a hybrid quantum-classical
approach to solve the JO problem in a real database setup. This
demonstration allows conference attendees to interact directly with
Q2O by executing queries and viewing detailed execution results
(Scenario 1). Users can easily compare plan quality between Q2O
and PostgreSQL (Scenario 2). Additionally, they can experiment
with quantum parameters to observe their impact (Scenario 3).
Experimental results show that the query plan generated by our
approach achieves up to a 13x speedup in query execution. The
video corresponding to this demonstration is available at this link.
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1 INTRODUCTION
Query optimizers are critical components of database systems, and
one of the key challenges they address is the Join Order (JO) op-
timization. The JO problem arises during query planning, and its
resolution directly impacts the performance of query execution. The
objective is to determine the most efficient sequence for joiningmul-
tiple relations within a query. Given that the overall search space
grows exponentially with the number of relations, the JO problem
is recognized as NP-hard [3]. Dynamic programming (DP)-based
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approaches (e.g., [22]) can compute optimal results by exhaustively
enumerating all possible join sequences for queries with relatively
few relations. However, due to the exponentially expanding search
space, DP becomes impractical for larger queries. To address this,
various heuristic and classical methods (e.g., [8]) have been pro-
posed to balance solution quality and computational efficiency in
such cases. Instead of always pursuing an optimal plan, it is some-
times acceptable to adopt a sub-optimal plan to reduce search time.

Quantum computing holds significant promise for solving com-
binatorial optimization problems such as JO by leveraging its abil-
ity to explore multiple potential solutions simultaneously, unlike
the sequential nature of classical hardware. A recent line of work
(e.g., [12, 13, 15, 16, 20]), referred to as quantum-based JO, mainly
focuses on representing the JO problem as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem [14] and solving
it using quantum annealers (e.g., D-Wave [9]). While promising,
current quantum annealers are constrained by bounded qubit num-
ber and sparse connectivity (each qubit interacts with only a lim-
ited number of neighbors), restricting the size and structure of the
problems that can be represented. Additionally, problem-specific
constraints (e.g., enforcing left-deep join tree shape) must be en-
coded as penalty terms, resulting in additional resource overhead.
Similarly, quantum circuit models on NISQ (Noisy, Intermediate
Scale, Quantum) devices face challenges, including a lack of effi-
cient error correction mechanisms and the high computational cost
of parameter optimization [2], making them impractical for appli-
cations requiring rapid solution generation. As a trial to address
these limitations, another research direction (e.g., [21]), referred to
as quantum-inspired JO, has explored the use of digital annealing
hardware which is inspired by quantum processing units (QPUs) to
encode discrete optimization problems. However, quantum-inspired
hardware does not utilize actual quantum phenomena, relying en-
tirely on classical hardware and hence foregoing any potential
advantage from quantum annealing. Importantly, all existing quan-
tum and quantum-inspired JO approaches remain at the simulation
stage. None have been integrated into real-world query optimiz-
ers or evaluated within practical database systems, leaving their
effectiveness in real deployments an open question.

In this demonstration, we present Q2O, the first real Quantum-
augmentedQueryOptimizer that employs a hybrid quantum-classical
approach to solve the JO optimization problem and alleviate the lim-
itations of existing solutions. Hybrid quantum-classical solvers [7,
17] have recently gained traction in various real-world applications
(e.g., power network optimization [4], production scheduling [1])
by combining the advantages of classical and quantum computing
paradigms together. In these solvers, a classical algorithm prepro-
cesses the problem and iteratively generates QUBO instances that
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Figure 1: The Workflow of D-Wave Hybrid Solvers.

can be executed natively by the quantum annealer. This approach
circumvents hardware constraints and improves solution efficiency
for large and complex problems. Specifically, Q2O builds upon our
initial work in [19] and introduces a novel hybrid quantum-classical
solution for the JO problem that operates in a real database system
setup. Q2O explores the usage of two recent state-of-the-art D-Wave
hybrid solvers: the Constrained Quadratic Model Solver (CQM-
Solver) [7] and the Nonlinear-Program Solver (NL-Solver) [17]. Such
solvers simplify the process of representing optimization problems
and allow users to encode problem-specific constraints efficiently
without requiring a deep background in physics or quantum me-
chanics. Q2O is fully integrated within PostgreSQL [18]. During the
query planning phase, the JO of any join query is computed using
Q2O and passed to the existing query optimizer in PostgreSQL as a
“plan hint”. From there, the rest of the query planning and execu-
tion steps continue to produce the query output. Our experiments
with the JOB workload [11] shows that running queries with Q2O’s
plans can attain a 13x execution speedup over PostgreSQL.

This demonstration will enable conference attendees to interact
directly with Q2O. Users can execute queries of their choice, with
the system providing detailed query execution results, including
metrics related to quantum solver invocation (Scenario 1). Addition-
ally, attendees can compare query execution performance and plan
quality between Q2O and PostgreSQL (Scenario 2). Finally, users
can experiment with quantum parameters to observe how these
adjustments influence the behavior of the hybrid quantum-classical
solution and impact the overall performance of Q2O (Scenario 3).
A recorded video of the demonstration is available at this link.

2 HYBRID QUANTUM-CLASSICAL SOLVERS
Hybrid quantum-classical solvers combine classical heuristics with
quantum annealing [10] (QA) to improve scalability and solution
quality. In these solvers, classical algorithms are used to guide the
search process—e.g., by pre-processing, decomposing, or refining
problem instances—while QA is applied to solve subproblems or ex-
plore solution spaces that are otherwise hard to optimize efficiently
using classical methods alone. QA shares similarities with simulated
annealing (SA) in exploring the searching space by proposing ran-
dom changes to the state configuration. In SA, a proposed change is
accepted if it decreases the value of the cost function; if the cost in-
creases, acceptance is decided by a certain probability. QA explores
all states simultaneously through quantum superposition, enabling
a highly parallelized search of the configuration space. Moreover,
QA leverages quantum tunneling to facilitate exploration, thereby
reducing the likelihood of becoming trapped in local minima.

QA is used to solve problems that can be naturally formulated as
Quadratic Unconstrained Binary Optimization (QUBO) problems,

Figure 2: The Workflow of our proposed Q2O Framework.

which correspond to minimizing an energy function over binary
variables representing qubit states [19]:

𝐸 (𝑠) =
∑︂
𝑖 𝑗

𝐽𝑖 𝑗 𝑠𝑖 𝑠 𝑗 +
∑︂
𝑖

ℎ𝑖 𝑠𝑖 .

where 𝑠𝑖 is a binary variable representing the qubit’s state, ℎ𝑖 de-
notes the local bias on qubit, and 𝐽𝑖 𝑗 represents the interaction
strengths between qubits. The Quantum Processing Unit (QPU)
uses superconducting loops to represent individual qubits. During
quantum annealing, the initial superposition is transformed into the
state that minimizes the system’s energy, which, in turn, encodes
the solution to the combinatorial optimization problem.

This demonstration utilizes twoD-Wave’s hybrid quantum-classical
solvers: CQM-Solver [7] and NL-Solver [17]. Figure 1 provides an
overview of their workflow. The front end accepts user-defined
problems, represented using Constrained Quadratic Model (CQM)
or Non-linear Encoding (NL-Encoding) (detailed in Sections 3.1
and 3.2), as input. The solver then initiates multiple parallel threads,
each incorporating both a classical heuristic module and a quantum
module (QM). The classical heuristic module iteratively refines the
problem’s search space while the QM submits QUBOs to the quan-
tum processing unit (QPU). The iterative feedback from the QPU
guides the heuristic module toward more promising regions of the
solution space. Finally, the best solutions are returned to the user
after either a predefined time limit or a user-specified duration.

3 SYSTEM OVERVIEW
Figure 2 illustrates the workflow of Q2O. Upon receiving user
queries, Q2O selects the encoding method based on the number of
relations in the queries. If the number of relations is below a specific
number 1, CQM is applied to encode the JO problem; otherwise, NL-
Encoding is used. This is because of two reasons: (1) CQM allows
for a more faithful representation of the JO problem constraints
(e.g., left-deep join tree) but with increased overhead [19], making
it better suited for smaller queries, and (2) NL-Encoding enables
the direct representation of valid JO permutations (details in Sec-
tion 3.2), eliminating the need to handle these problem constraints
explicitly by encoding them as penalties that need extra qubits
to represent them. This feature allows it to process larger queries
that CQM encoding cannot handle. Both encoding methods utilize
the typical cardinality and predicate selectivity information from
the DBMS engine to build the JO optimization cost function. After
encoding the JO problem using either CQM or NL-Encoding, it is
submitted to the corresponding hybrid solver via the D-Wave Leap
platform [5]. The solver returns a join order, which is subsequently
translated into a plan hint. This hint is used to guide a classical
1We set 15 relations as the threshold based on our experiments.
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query optimizer (PostgreSQL’s optimizer in our case) in generating
a complete query plan. Finally, the execution engine follows the
generated query plan to fetch and deliver the query results.

3.1 Constraint Quadratic Model
The Constraint Quadratic Model (CQM) requires a description of
the optimization variables, an objective function (cost function),
and constraints (if necessary). To formulate the JO optimization
problem with CQM, we define two binary variables, following our
previous work [19]. roj𝑟, 𝑗 is associated with relation 𝑟 and the join
at step 𝑗 in the query, indicating whether relation 𝑟 is selected to
participate in the join at step 𝑗 . Similarly, paj𝑝,𝑗 specifies whether
predicate 𝑝 is applicable at join step 𝑗 .

Considering that CQM only accepts a QUBO-form cost func-
tion, we cannot directly use the classical cost model in traditional
database engines (e.g., PostgreSQL’s cost model). Instead, we adapt
a variation of the quadratic cost approximation method proposed
in [21], which has two steps. First, it formulates the logarithmic in-
termediate cardinality LogIntCard( 𝑗) for join 𝑗 as

∑︁R
𝑟=1 LogCard(𝑟 )·

roj𝑟 𝑗 +
∑︁P
𝑝=1 LogPredSel(𝑝) · paj𝑝 𝑗 , where LogCard(𝑟 ) is the log-

arithmic cardinality for relation 𝑟 ∈ 𝑅 and LogPredSel(𝑝) is the
logarithmic selectivity for predicate 𝑝 ∈ 𝑃 , respectively. Second,
it approximates a final cost 𝑄𝐶𝑜𝑠𝑡 as a function of LogIntCard( 𝑗)
using quadratic operations to get rid of inequality constraints [21].

To ensure that CQM generates valid join orders while using the
𝑄𝐶𝑜𝑠𝑡 function, we introduce three constraints on the variables
roj𝑟, 𝑗 and poj𝑝,𝑗 that are defined in LogIntCard( 𝑗). Constraint 1:∑︁𝑅
𝑟=1 roj𝑟, 𝑗 = 𝑗 + 1, which enforces a left-deep join tree. At each

join step 𝑗 , the total number of relations selected to participate in the
joins so far must be exactly 𝑗 + 1. Constraint 2: roj𝑟,𝑗 − roj𝑟, 𝑗+1 ≤
0, which ensures the continuity of relation selection across the
sequence of join operations. Specifically, if a relation 𝑟 is selected to
participate in the join at step 𝑗 , it must also be selected at step 𝑗 + 1.
Constraint 3: paj𝑝 (𝑟1,𝑟2 ) , 𝑗

≤ roj𝑟1, 𝑗 and paj𝑝 (𝑟1,𝑟2 ) , 𝑗
≤ roj𝑟2, 𝑗 , which

ensure that a predicate is applied to a join only if both relations
involved in the predicate are included in the join at step 𝑗 .

3.2 Non-linear Encoding
Nonlinear-Program Hybrid Solver (NL-Solver) [17] is the latest
hybrid solver from D-Wave, which redefines several classical data
structures to better manage the input of the problem. Specifically,
NL-Solver’s list(n) represents any ordered permutation of a user-
defined 𝑛. In the non-linear (NL) encoding of the JO problem, we
set 𝑛 as the number of relations, so that 𝑠 = list(𝑛) represents
any possible join order sequence. For example, if a query contains
three relations {𝐴, 𝐵,𝐶}, then 𝑠 can represent any permutation
of their indices, such as [0, 1, 2], [1, 2, 0] to specify a valid join
order. Owing to this feature, we do not need to explicitly define
additional constraints to ensure JO correctness. For example, in
CQM, additional constraints (such as Constraint 1 in Section 3.1)
must be explicitly defined to prevent invalid or incomplete join
plans at any join step 𝑗 , such as selecting only {𝐴} or {𝐵,𝐶} when
the full join of 𝐴, 𝐵, and 𝐶 is required. In contrast to CQM, NL-
Encoding inherently ensures that the three relations are included
in this join step without defining constraints.

Figure 3: Scenario 1: Query Execution in Q2O.

Additionally, NL-Solvers allow users to directly define the JO
cost function in the classical form (as in [3]). We first define the cost
of a join between two relations 𝑟𝑖 and 𝑟 𝑗 : 𝐶out (𝑛𝑖 , 𝑛 𝑗 ) = 𝑓𝑖 𝑗𝑛𝑖𝑛 𝑗 ,

where 𝑛𝑖 and 𝑛 𝑗 represent the cardinalities of the relations, and 𝑓𝑖 𝑗
denotes the join selectivity. To compute the cost for an entire join
tree, we extend 𝐶out to the join order sequence 𝑠 as follows:

𝐶 (𝑠) =
𝑛∑︂
𝑖=2

𝐶out ( |𝑠1 . . . 𝑠𝑖−1 |, |𝑠𝑖 |), (2)

where |𝑠1 . . . 𝑠𝑖−1 | represents the size of the intermediate result ob-
tained after joining 𝑠1, . . . , 𝑠𝑖−1. During execution, NL-Solver inter-
nally represents the computational flow of𝐶 (𝑠) as a directed acyclic
graph (DAG). By leveraging quantum phenomena, NL-Solver eval-
uates multiple join orders concurrently. Finally, NL-Solver returns
the best solution found based on the defined optimization target.

4 DEMONSTRATION SCENARIOS
The demonstration contains three scenarios. In Scenario 1, we show
the execution details of Q2O. In Scenario 2, we compare Q2O with
PostgreSQL. In Scenario 3, we introduce users to directly interact
with the control variable in the quantum execution workflow.

Scenario 1: Q2O Planning and Execution Details.
When users enter our demonstration, they can select a benchmark
and an SQL query to execute. Once a query is selected, it is automati-
cally loaded and displayed in a text box with syntax highlighting for
better readability. Figure 3 illustrates this user interface. After the
user clicks the "Run Query" button, the query planning is initiated.
As shown in the workflow diagram in Figure 2, the JO problem is
submitted to Q2O, which first returns a join order hint. This hint is
then used to guide the construction of the query plan. Subsequently,
the system executes the query based on the generated plan and
retrieves the results for the user.

In this scenario, we first present the query results from the data-
base system. Subsequently, we demonstrate internal details: Join
Order: Derived from the quantum annealer’s output; Hint: Gener-
ated from the join order to guide the PostgreSQL optimizer; QPU
Access Time: Duration of QPU computation; PostgreSQL Plan-
ning Time (with Hint): Time taken by the PostgreSQL optimizer
to generate a complete query plan using the provided hint (join
order); and PostgreSQL Execution Time: Time taken to execute
the quantum-augmented query plan and retrieve results.
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Figure 4: Scenario 2: Plan Comparison and Visualization.

Scenario 2: Plans Comparison and Visualization.
In this scenario, we enable users to easily compare Q2O with Post-
greSQL’s query optimizer. We first present PostgreSQL’s query
execution details (as 𝑄2 in Scenario 1) to directly compare fetched
results and query execution time. Then, a visual comparison of
the generated query plans is provided using an open-source plan
visualization tool [6]. Users can click the "Visualize Plan" button
corresponding to each optimizer to trigger a visualization panel
that offers a detailed breakdown of the execution, allowing users
to view the plan construction details step by step. Figure 4 shows
the comparison and plan visualization. The plan generated by Q2O
demonstrates significant improvements in query execution time,
achieving a 13x speedup from 3s658ms to 266ms (Q21 in JOB). The
left side of the visualization tool provides a detailed breakdown of
each operator’s contribution to the execution time. The right side
visualizes the plan construction process. This scenario helps users
better identify the differences between the optimizers.

Scenario 3: Fine-grained Control Over Q2O.
NL-Solver offers fine-grained control through adjustable parame-
ters. One key parameter is the "Quantum Annealing Time," which
specifies the maximum runtime allocated for the QPU to solve the
problem. As shown in Figure 5, users can select a quantum anneal-
ing time within a range of 0.01 seconds to 5 seconds, enabling them
to observe how varying the runtime impacts the hybrid solver’s per-
formance.With limited runtime, the solver may produce suboptimal
results due to insufficient iterations; conversely, with sufficient run-
time, it can generate more stable and higher-quality solutions. We
allow users to explore the effect of this parameter on four large-scale
synthetic workloads [21] featuring different query graph topolo-
gies, including Chain, Cycle, Star, and Tree. Users can select queries
that include between 18 and 50 relations. We provide 10 predefined
queries for each query topology, which users can select by mod-
ifying the "Query ID". After submitting their queries, the system
processes the request, executes the query, and returns execution
details, including a cost computed using Equation 2, which serves
as an indicator of join order quality. Additionally, we present timing
metrics that break down the complete NL-Solver workflow.

Figure 5: Scenario 3: Fine-grained Control Over Q2O.
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