
BeyondQuacking: Deep Integration of Language Models and
RAG into DuckDB

Anas Dorbani
1

Sunny Yasser
1

Jimmy Lin
2

Amine Mhedhbi
1

1
Polytechnique Montréal,

2
University of Waterloo

anas.dorbani@polymtl.ca,sunny.yasser@polymtl.ca,jimmylin@uwaterloo.ca,amine.mhedhbi@polymtl.ca

ABSTRACT

Knowledge-intensive analytical applications retrieve context from

both structured tabular data and unstructured free text documents

for effective decision-making. Large language models (LLMs) have

significantly simplified the prototyping of such retrieval and reason-

ing data pipelines. However, implementing them efficiently remains

challenging and demands significant effort. Developers must often

orchestrate heterogeneous systems, manage data movement, and

handle low-level concerns such as LLM context management.

To address these challenges, we introduce FlockMTL: an ex-

tension for DBMSs that integrates LLM capabilities and enables

retrieval-augmented generation (RAG) within SQL. FlockMTL pro-

vides LLM-powered scalar and aggregate functions, enabling chained

predictions over tuples. It further provides data fusion functions

to support hybrid search. Drawing inspiration from the relational

model, FlockMTL incorporates: (i) seamless optimizations such

as batching and meta-prompting; and (ii) resource independence

through novel SQL DDL abstractions: PROMPT and MODEL, intro-

duced as first-class schema objects alongside TABLE.

PVLDB Reference Format:

Anas Dorbani, Sunny Yasser, Jimmy Lin, and Amine Mhedhbi. Beyond

Quacking: Deep Integration of LMs and RAG into DuckDB. PVLDB, 18(12):

5415 - 5418, 2025.

doi:10.14778/3750601.3750685

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dais-polymtl/flockmtl.

1 INTRODUCTION

Complexity of Workflows. A variety of workflows take the form

of knowledge-intensive analytical applications, i.e., they rely on

integrating relevant context from both structured and unstructured

datasets to support data-driven decision-making. They further rely

on analytics, semantic analysis, or a combination of both for further

processing. For example, consider an investigative analyst reporting

on an inquiry regarding a new vessel offence. The analyst might:

i) consult tabular data to obtain specific vessel details; ii) interpret

legal documents to assess the severity of the reported offence; iii) ag-

gregate the vessel’s history of similar prior offences; and iv) identify

and rank potential interventions.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.

doi:10.14778/3750601.3750685

Novel Data Pipelines. The advent of LLMs has led to a technolog-

ical step change. Their commoditization, starting with the release

of GPT-3 [6], enabled the implementation of pipelines that inter-

leave: (i) analytics; (ii) retrieval; and (iii) semantic analysis using

LLM predictions. These pipelines use heterogeneous systems, e.g.,
DBMSs and search engines, follow the RAG framework [5], and

may also include tool calling functionality.

Implementation Challenges. The development of such pipelines

is reminiscent of the data management practices prior to the era of

the relational model. Data engineers currently makemany low-level

execution decisions, e.g., choosing specific models for predictions,

adapting prompts, managing LLM context, caching predictions for

reuse, and deciding when and how to incorporate newly released

optimizations. Adding to this burden, any change in application

requirements in terms of expected quality, latency, or cost requires

substantial re-engineering. Beyond these execution decisions, rely-

ing on heterogeneous systems results in significant data shuffling

and missed co-optimization opportunities. Often, users rely on

DBMSs for initial simple querying and resort to re-implementing

complex operations within an orchestration layer.

Our Approach.We propose FlockMTL, an open-source extension

for DuckDB [8] that can be adapted to other RDBMSs. FlockMTL

enables the use of LLMs within scalar and aggregate SQL functions.

Users can construct powerful pipelines by leveraging common

table expressions (CTEs) to interleave analytics with LLM-chained

predictions. Building on the declarative principles of the relational

model, FlockMTL applies seamless optimizations to alleviate the

burden of execution details for developers and non-experts.

Core Insights.We summarize the design and implementation of

FlockMTL (currently v0.3.0) through a set of core ideas:

• Flexible paradigm: FlockMTL supports a broad range of se-

mantic operations. These are implemented as LLM-powered

scalar and aggregate SQL functions that enable tasks such as

classification and summarization within RDBMSs. Additionally,

FlockMTL introduces some specialized built-in functions, e.g.,
reranking (first, last) and fusion (rrf, combanz, combmed,

combmnz, combsum) to enable full hybrid search. Table 1 con-

tains a summary of all functions.

• Resource-independence: Functions accept model and prompt speci-

fications as inputs. FlockMTL introduces two new DDL resource

types: MODELs and PROMPTs, treated as first-class schema objects

akin to TABLEs. This abstraction allows SQL queries to remain

fixed within application code while enabling versioned adminis-

trative updates to both models and prompts.

• Seamless optimizations: Lower-level execution tasks such as LLM

context management and batching of multiple input tuples into

a single LLM call are handled seamlessly by FlockMTL. This

reduces the complexity of integrating semantic operations for

developers and data engineers.

5415

https://doi.org/10.14778/3750601.3750685
https://github.com/dais-polymtl/flockmtl
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750685
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Scalar Functions: Map an input tuple to an output value using chat completion API or embedding API.

Generic

llm_complete uses an LLM and a user prompt to generate text or structured output from an input tuple.

llm_embedding uses an LLM to generate an embedding vector (fixed-length array) from an input text value.

data_fusion fuses 𝑁 scores from 𝑁 retrievers — choices: rrf / combanz / combmed / combmnz / combsum.

Specialized llm_filter uses an LLM and a prompt to return True/False given an input tuple.

Aggregate Functions: Reduce multiple input tuples to a single output value using the chat completion API.

Generic llm_reduce uses an LLM and a prompt to generate text or structured output from multiple input tuples.

Specialized

llm_rerank uses an LLM and a prompt to rank input tuples based on relevance.

llm_first/last uses an LLM and a prompt to return the most/least relevant tuple.

Table 1: Summary of the scalar and aggregate functions supported by FlockMTL.

2 SYSTEM OVERVIEW

LLMs and prompting align well with SQL’s goal of making data

querying accessible to non-experts. Since the majority of enter-

prise data is stored in RDBMSs, FlockMTL introduces semantic

operations and retrieval augmented generation (RAG) within SQL.

FlockMTL is built on top of DuckDB’s extension module [8].

DuckDB implements a state-of-the-art analytics engine and

makes the DBMS internals easily extensible. Its extension mod-

ule allows changes to SQL parsing, to the optimizer and execution

engine, as well as the addition of new data types. DuckDB already

has a rich ecosystem of extensions that can be complementary. For

instance, its extensions enable the querying of file formats such as

Parquet and CSV as well as attaching to DBMSs such as PostgreSQL
and MySQL. As such, users can write federated queries over multiple

data formats and databases. As a DBMS of choice, the capabili-

ties we add within FlockMTL become instantly available across

a variety of file formats and databases. FlockMTL also provides

an ASK functionality to turn a natural language query into SQL

augmented with FlockMTL’s functions. It is easy to INSTALL and
LOAD FlockMTL as a community extension using:

INSTALL flockmtl FROM community; LOAD flockmtl;

In the remainder of this section, we provide an overview of

FlockMTL’s new schema object resources (MODEL and PROMPT),
functions, and optimizations. To illustrate resources and functions,

we consider a simple use case involving the following table:

research_papers: (id, title, abstract, content)
In this scenario, the user is a researcher aiming to identify relevant

papers, extract key insights, and generate summaries using SQL.

2.1 Models and Prompts

Users can define reusable resources: MODELs and PROMPTs. These
resources can be scoped to the current database using the Local
setting, which is the default, or configured as Global, i.e., accessi-
ble across all databases on a given machine. FlockMTL v0.3.0
supports locally hosted open-source models via Ollama, cloud-

based models deployed through Azure, and OpenAI or any OpenAI-

compatible providers, e.g., Groq. Inference requests are dispatched
to the servers using libcurl.

-- 1 Define a model to use
CREATE GLOBAL MODEL('model-relevance-check', 'gpt-4o-mini', 'openai')

-- 2 Define a prompt to check if the paper is a join algorithm
CREATE PROMPT('joins-prompt', 'is related to join algos given abstract')

Query 1: Prompt and Model Definitions

Query 1 shows how to define a global model named model-
relevance-check, configured to point to GPT-4o-mini by the provider
OpenAI. It also includes a local user-defined prompt for identify-

ing papers relevant to join algorithms. Users have the flexibility

to modify or delete these resources. When a resource is modified,

FlockMTL automatically creates a new version. Previous versions

remain available for inspection and use, while the most recent

version is applied by default unless specified otherwise.

2.2 Functions

FlockMTL enables semantic analysis through a combination of

generic and specialized functions. The generic functions allow

users to define operations that map or reduce tuples to text or

structured output using LLMs. These are summarized in Table 1.

The specialized functions are for common use cases. For exam-

ple, llm_filter predicts boolean values using structured output,

and llm_first/llm_last are an optimized llm_rerank to find

the most or least relevant tuple. Finally, data fusion functions such

as rrf and combanz enable hybrid search and when used with

llm_rerank and llm_complete enable RAG within SQL.

Scalar Functions. These map each input tuple to a new attribute.

We showcase in Query 2 below an example of semantic filtering,

summarization, and extraction. Query 2 identifies papers relevant
to join algorithms using llm_filter. Then, for each, it summarizes

its abstract in a sentence using llm_complete, i.e., text prediction,
and also extracts keywords (structured output prediction using

response_format). In summary, the query uses three semantic

operations: llm_filter, which produces a boolean value; a first

llm_complete returning a string; and a second returning a JSON-

structured object via the chat completion APIs.

-- 1 Select papers related to join algorithms
WITH relevant_papers AS (

SELECT id, title, abstract, content
FROM research_papers P
WHERE llm_filter({'model_name': 'model-relevance-check'},

{'prompt_name': 'joins-prompt'},
{'title': P.title, 'abstract': P.abstract})

),

-- 2 Summarize the paper's abstract
SELECT RP.id, RP.title, llm_complete({'model': 'gpt-4o'},

{'prompt': 'Summarize the abstract in 1 sentence'},
{'abstract': RP.abstract}) AS summarized_abstract,

llm_complete({'model_name': 'gpt-4o',
'model_parameters': '{"response_format": {...}}'},
{'prompt':'Extract the keywords and paper type.'},
{'title': P.title, 'abstract': P.abstract})

FROM relevant_papers RP

Query 2: Finding relevant join algo papers.

5416



Figure 1: Prompt construction example for llm_complete.

Notably, only llm_filter uses the predefinedmodel and prompt:

model-relevance-check and joins-prompt; the remaining func-

tions specify these parameters directly within the query. While the

use of CTEs in Query 2 is not required, it illustrates how to chain

LLM predictions in SQL.

Aggregate Functions and Full Hybrid Search. We showcase in

the next query an example of a full hybrid search pipeline within

FlockMTL. To our knowledge, this is the first such implementation

within SQL. Query 3 aims to find passages from research papers

relevant to join algorithms in databases. Among those, it further

reranks the results to prioritize passages related specifically to cyclic
join queries. We consider a table containing previously chunked

passages from publications: research_passages: (id, text).

-- 1 BM25 retriever over chunked text contents of papers
WITH BM25_Chunks AS (

SELECT id, text, score_normalized ... LIMIT 100
)

-- 2 Vector similarity search over chunks of paper content
VS_Chunks AS (

SELECT id, text, score_normalized ... LIMIT 100
)

-- 3 Vector similarity search over chunks of paper content
SELECT COALESCE(bm.content, vs.content) AS passage
FROM BM25_Chunks BM FULL OUTER JOIN VS_Chunks VS ON BM.idx = VS.idx
ORDER BY flockmtl_fusion_func(BM.score_normalized, VS.score_normalized)
LIMIT 10

-- 4 Rerank top 10 elements if they are relevant to cyclic join queries
SELECT llm_rerank({'model_name':'gpt-4o'},

{'prompt':'studies cyclic join algorithms'}, {'passage': passage});

Query 3: Hybrid search to find top 10 passages on cyclic joins

Query 3 is split into multiple steps: (i) retrieve the top-100 rele-

vant passages using BM25, implemented via DuckDB’s Full-Text

Search extension; (ii) retrieve the top-100 relevant passages using

vector similarity search, either through DuckDB’s VSS Extension

or via a full scan using FlockMTL’s llm_embedding; (iii) merge

the two result sets using a FULL OUTER JOIN to align normalized

scores, followed by fusion using one of FlockMTL’s data fusion

methods (e.g., rrf); and finally (iv) rerank the fused results using an
LLM-based list-wise aggregation method [7]. Note that llm_rerank
returns a single value containing a ranked list of tuples within a

JSON, which must be unpacked for further SQL processing. We

omit these details for simplicity of presentation.

2.3 Optimizations

FlockMTL introduces several key optimizations aimed at improv-

ing both efficiency and usability, including: (i) meta-prompting for

more robust predictions and simplified user queries; (ii) both asyn-

chronous and synchronous function variants; and (iii) batching of

tuples into a single prediction to reduce latency.

Meta-prompt. In FlockMTL, users provide prompts intended for

a single tuple (for map functions) or for multiple tuple (for reduce

functions). The system then constructs a full prompt by embedding

the user-defined prompt within a structured meta-prompt template,

illustrated in Fig. 1. This template enriches the user input with

formatting guidelines, output constraints, and serialized representa-

tions of tabular input. The meta-prompt is designed to be KV-cache

friendly for efficient LLM inference.

Batching. Although FlockMTL’s scalar functions are written as

if operating on individual tuples, executing one API call per tuple

is inefficient. To address this, FlockMTL automatically batches

multiple tuples into a single prompt for inference. The system

determines the batch size dynamically, based on the size of the

input tuples and the available context window of the LLM. It fills

the prompt with as many tuples as possible, then sends a single

batched request. If the LLM returns an error due to exceeding the

context window, FlockMTL automatically reduces the batch size

by 10% and retries. This process continues iteratively until the

call succeeds. If even a single tuple causes overflow, its result is

set to NULL. Users can manually control batching by setting the

batch_size parameter; setting it to 1 disables batching, which may

help mitigate model inaccuracies.

Async/sync variants. If the number of working threads is small,

batching can lead to bottlenecks since autoregressive LLMs suffer

from high decoding latency due to their sequential token generation.

To mitigate this, FlockMTL functions are asynchronous by default,

issuing small batches of non-blocking calls within a single thread

and blocking per vector of ∼ 2048. For cases where synchronous ex-

ecution is required, each function provides a sync variant, accessible

by appending _s to the function name (i.e., llm_function_s).
Next, we give a general sense of performance. On Kaggle’s bank-

ing reviews dataset and anM4 ProMacmachine (modelMX2H3LL/A),

5417



(a). Data application with NL interface. (b). The plan inspection interface.

Figure 2: Screens of Prepared Demonstration for Users to Get Started.

asynchronous execution using a single thread and OpenAI services,

FlockMTLprocesses ∼ 17,000 tuples in 121.27 seconds. In this setup,

the LLM simply reproduces attributes in a concatenated format. In

contrast, using four threads with dynamic batching takes 2047.26

seconds. Finally, no batching leads to over 100× slowdown in per-

formance before a timeout occurs.

3 DEMONSTRATION SCENARIOS

Goal. Our demo has two main goals. First, we aim to showcase

how easily users can build data applications using the ASK function-
ality, which combines analytics and semantic operations without

requiring the orchestration of multiple external systems. Second, we

highlight the importance of FlockMTL’s low-level optimizations

through an interactive challenge involving the audience.

Interaction. The landing page of the demonstration presents a

data application where users can explore and interact with multiple

tabular datasets sourced from Kaggle and spanning domains such as

biomedical, academic, and product reviews. In this demonstration,

we use three kaggle datasets: (i) Online Banking Review Dataset; (ii)
arXiv Dataset; and (iii) GENIA Biomedical Event Dataset.

Users begin by viewing a preview of the dataset made of one or

more tables. To explore the dataset, attendees can issue a natural lan-

guage query, e.g., “list reviews mentioning technical issues
and assign a severity score to each issue” as done in Fig. 2a
on for instance the banking review dataset, and FlockMTL’s ASK
functionality automatically generates a SQL query augmented with

FlockMTL’s functions. Users can inspect the generated SQL query

and its output. This part of the demonstration illustrates the power

of integrating semantic operations directly into SQL.

Following this, we introduce a challenge to the audience. By

clicking on Inspect Plan for the generated query shown in Fig. 2a,

users are taken to a separate interface for plan debugging and anal-

ysis. The separate interface shows the plan of our example query in

Fig. 2b. This query plan is produced through a multi-stage process

in which our query plan generator analyzes both the original

query and the plan generated by DuckDB, synthesizing this infor-

mation to construct a new and editable plan for making detailed

changes and optimizations. This query plan includes: (i) standard

SQL operations such as scans and filters, and (ii) FlockMTL specific

functions, such as llm_filter as well as llm_complete_json. The
FlockMTL function box on the UI contains additional system-level

details, such as access to the full meta-prompt used, the serialization

format, and the batch size chosen automatically by the system. At

this stage, any issues in the generated query, e.g., , in the prompt,

can be manually fixed.

In this challenge, users are first presented with the default setting

where batch size is set to Auto, hiding the one FlockMTL used.

They can change it manually and select a different batch size that

might match the system’s performance and accuracy. The default

serialization format shown by default is XML, but users may modify

it to JSON or Markdown. For instance, if a user sets the batch size

to 30 and reruns the query, they might observe a latency increase

from ∼3 to ∼12 secs, resulting in a 4× slower execution. Each user

is given attempts to match the performance and quality achieved

by FlockMTL’s seamless optimizations. This exercise highlights

the trade-offs in latency and prediction accuracy with different

parameters. Finally, users are asked to replace the full prompt using

a Jinja template, and then compare their version in both structure

and output with the meta-prompt used by FlockMTL.

Related work. There is a recent shift from monomodal to multi-

modal query processing. Prior work includes LOTUS [1], focused

on dataframe-APIs and Palimpzest [2], introducing cost-based op-

timizations. Our work is closest to TAG [4] and Galois [3] and

has similar approaches to optimization. FlockMTL introduces new

DDL resource types, asynchronous variants of function execution,

and its own specific implementation for these optimizations such

as batching within the constraints of an RDBMS. We hope it serves

as a foundation for further research and system development.

REFERENCES

[1] Asim Biswal et al. 2025. Text2SQL is Not Enough: Unifying AI and Databases

with TAG. CIDR (2025).

[2] Chunwei Liu et al. 2025. Palimpzest: Optimizing AI-Powered Analytics with

Declarative Query Processing. CIDR (2025).

[3] Dario Satriani et al. 2025. Logical and Physical Optimizations for SQL Query

Execution over Large Language Models. SIGMOD (2025).

[4] Liana Patel et al. 2024. LOTUS: Enabling Semantic Queries with LLMs Over Tables

of Unstructured and Structured Data. CoRR abs/2407.11418 (2024).

[5] Patrick Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks. NeurIPS (2020).
[6] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners. NeurIPS

(2020).

[7] Xueguang Ma et al. 2023. Zero-Shot Listwise Document Reranking with a Large

Language Model. CoRR abs/2305.02156 (2023).

[8] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical

Database. SIGMOD (2019).

5418

https://www.kaggle.com/datasets/yanmaksi/reviews-data-for-classification-model
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/nishanthsalian/genia-biomedical-event-dataset?select=dev_data.csv

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 Models and Prompts
	2.2 Functions
	2.3 Optimizations

	3 Demonstration Scenarios
	References

