VADACODE: A Logician-friendly IDE for Datalog™®

Luigi Bellomarini
Bank of Italy
luigi.bellomarini@bancaditalia.it

Davide Magnanimi
Bank of Italy & Politecnico di Milano
davide.magnanimi@bancaditalia.it

ABSTRACT

Languages, namely, fragments, of the Datalog+/- family are at-
tracting interest in both academia and industry because of their
possibility to balance high expressive power and computational
complexity. However, understanding the differences among the frag-
ments, mastering them to achieve scalable industrial applications,
and communicating their peculiarities to a non-expert audience is
challenging for researchers, developers, logicians, and educators.

In this demo, we introduce Vadacode, an IDE for Datalog+/-
designed to support a broad category of users. The tool offers ad-
vanced features, including fragment detection, syntax highlighting,
code completion, error diagnostics, schema inference, debugging
support, and Al-assisted coding capabilities. Thanks to our expe-
rience in the financial context, our demo will guide the audience
in modeling financial Datalog+/- programs, showcasing a seamless
and effective coding experience.

PVLDB Reference Format:

Luigi Bellomarini, Andrea Gentili, Davide Magnanimi, and Emanuel
Sallinger. VADACODE: A Logician-friendly IDE for Datalog®. PVLDB, 18(12):
5411 - 5414, 2025.

doi:10.14778/3750601.3750684

PVLDB Artifact Availability:

An accompanying video is available at https://youtu.be/5GrkwAv409A. The
source code is in the process of being released as open source and will be
made available at https://github.com/bancaditalia/vadacode. The browsable
documentation is available at https://vadalog.org.

1 INTRODUCTION AND DEMO OVERVIEW

Conceived as a declarative query language [1, 17], Datalog has be-
come a reference in deductive systems [16], logic programming [23],
and Knowledge Representation and Reasoning (KRR). Applications
of ontological reasoning [19], ontology-based data access [12], and
Knowledge Graphs [20] call for extensions to Datalog, culminating
in the Datalog® [14] family of languages (or fragments), which sup-
ports existential quantification for the creation of new “discourse
elements” or variable data items, that is, labeled nulls.

Existentials, together with other relevant characteristics such as
full recursion, a mild form of negation, algebraic and aggregation

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
do0i:10.14778/3750601.3750684

5411

Andrea Gentili
Bank of Italy
andrea.gentili@bancaditalia.it

Emanuel Sallinger
TU Wien & University of Oxford
sallinger@dbai.tuwien.ac.at
Datalog with 3

ea\‘w Frontier Gua"o’é [
Wardeqy A

© UNDECIDABLE
wwoeee-@ EXPTIME

W

* PTIME

o NL

AC

Figure 1: Some relevant fragments of Datalog®.

functions, and utility libraries [9, 19, 24] made Datalog* a reference
tool for deductive Al as witnessed by the rise of dedicated venues [3],
systems [4, 5, 11, 15, 21, 22, 25], and applications [3, 7, 10, 18].

Since, in general, Datalog is undecidable in the presence of ex-
istential quantification, the restrictions to the interplay between
recursion and existential quantification distinguishes the various
fragments of Datalog®. Each of them adopts a different strategy
to constrain such interaction and thus strike a balance between
expressive power and computational complexity. An overview of
the main fragments of Datalog® is shown in Figure 1. Some frag-
ments, such as Linear Datalo,gi are scalable and simple, others like
Weakly Frontier Guarded have high expressive power at the cost
of exponential time in data complexity. Others like Warded are a
good tradeoff for practical use, being PTIME in data complexity.

The Vapacopke IDE. We intercept the need for a general-purpose
Integrated Development Environment (IDE) for Datalog®, which
can serve enterprise developers, researchers, experienced logicians,
and educators alike. From developers, we can expect proficiency in
translating business requirements into logical languages. However,
they are typically unfamiliar with the various fragments—whose
recognition and use rely on sometimes intricate syntactic condi-
tions—and require technical support to write fit-for-purpose code.
Conversely, researchers and logicians may possess in-depth knowl-
edge of all fragments and seek tools that clearly highlight their
syntactic properties while detecting potential violations. Their ob-
jectives might include creating research examples, exploring the

https://doi.org/10.14778/3750601.3750684
https://youtu.be/5GrkwAv4o9A
https://github.com/bancaditalia/vadacode
https://vadalog.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750684
https://www.acm.org/publications/policies/artifact-review-and-badging-current

intricacies of these languages, or even developing new ones. Educa-
tors teaching databases, logic, KRR, and Al courses would benefit
from a didactic tool akin to the didactic compilers used in computer
architecture classes. Such a tool would allow students to experiment
with these languages, understand their underlying principles, and
gain familiarity with query languages and first-order-like logic.

In this demo, we introduce VADACODE, a Datalog* IDE that
caters to the needs of various user categories while offering a wide
range of advanced programming features previously unseen in
Datalog-based languages. These include detection of the most rel-
evant fragments found in the literature, syntax highlighting, code
auto-completion, error explanation, schema inference, and natural
language coding. The IDE has been designed with a focus on the
VADALOG language [11], an extended version of Warded Datalog®,
used in a variety of applications, particularly in the financial do-
main, but is deliberately broader than that in terms of supported
language fragments (see Fig. 1).

Goal of the Demo. The demo purpose is twofold: first, to showcase
and experiment with features that benefit our target user groups,
demonstrating that a high-level coding experience is achievable
even with seemingly intricate languages originating from the aca-
demic community; second, to share our experience in applying
Datalog® to the development of complex real-world financial tasks,
which have successfully led to production systems.

This demo aims to foster the exchange of ideas, patterns, best
practices, and use cases from industrial applications. More broadly,
we seek to inspire the deductive Al community to bridge the gap
between research and industry, highlighting domains where well-
defined business logic can be effectively leveraged through declara-
tive approaches. Ultimately, our goal is to take another step toward
integrating decades of advancements in logic-based Al with indus-
trial practices, facilitating its transition into mainstream solutions.

Scope of the Demo. Inspired by our work with the Central Bank
of Ttaly, we will guide the audience through the process of encoding
financial tasks in Datalog®. Our demonstration will provide partic-
ipants with hands-on experience in developing programs within
VADACODE, leveraging its suite of features and learning from fi-
nancial use cases. We will engage both developers and logicians:
developers with a rich showcase of VADACODE capabilities, and
logicians with an in-depth look at the language features.

The audience will: (i) select a financial scenario from a curated
set and engage in a guided discussion to achieve a logic modeling;
(ii) step into the role of a developer, iteratively coding a Datalog*
program that captures the scenario while exploring VADACODE
features along the way. A specific focus will be on fragment-detec-
tion, demonstrating how developers can leverage it for informed
coding, researchers and logicians can analyze its syntactic intrica-
cies, and educators can communicate its concepts to students.

Overview. The remainder of the paper is organized as follows. In
Section 2, we lay out, by example, some of the technical background
captured by VADACODE. In Section 3, we describe the system. Fi-
nally, in Section 4, we illustrate the organization of the demo. An
accompanying video is available.!

Thttps://youtu.be/5GrkwAv409A

5412

2 A DATALOG* JOURNEY

Consider a database D of companies (company), their sector of eco-
nomic activity (activity), and their NACE code (NACE)—the official
European classification of such sector of activity. Our Datalog*
developer seeks to identify all the pairs of competitors, with the
following set of rules X.

Example 2.1.

company(x) — Jdactivity(d, x) (1)
activity(d, x), activity(d, y) — competitor(x,y,d) (2)
®3)

)

competitor(x, z, d), competitor(z, y, d) — competitor(x,y,a) (3

activity(d, x), activity(l;, y), NACE(n, x),
NACE(n,y) > a="»

4

Every company is involved in one activity (Rule (1)), which some-
times is provided in D. Companies involved in the same activities are
competitors (Rule (2)), which is a transitive relation (Rule (3)). Compa-
nies sharing the NACE are involved in the same activity (Rule (4)).m

Can our developer achieve her business goal by using the rules
in £? In more technical terms, the questions we want to answer
are: (i) is she using a suitable fragment of Datalog*? (ii) if so, what
is the expected data complexity of the reasoning task?

First of all, we observe that Rule (1) uses an existential quantifier,
which places us in the Datalog* space, confirming that ¥ is not in
plain Datalog. Next, we observe that Rule (2) joins two atoms, mean-
ing that ¥ is not in Linear Datalog®, since such fragment allows
only single-atom bodies. In fact, according to some definitions [2],
Linear Datalog® may admit joins, but only if at most one of the
join operands is intensional, i.e., it appears in any rule head. This
condition is not met in our example, as activity appears in the head
of Rule (1). We can now consider whether ¥ belongs to Guarded
Datalog* [13]. For this to hold, every join in ¥ must have a “guard”,
an atom that contains all the variables appearing in the body. How-
ever, this requirement is violated by Rule (3), since x appears in the
first occurrence of competitor, but not in the second. Therefore, >
is not even in the guarded fragment.

We are now ready to check whether X is in the more expressive,
yet still tractable, Warded Datalog™ fragment [19]. This task is more
challenging and, towards it, we must introduce some supplementary
definitions. Given a predicate p, we call p[i], where i > 0 is the i-th
term of p, a position. Position activity[1] is affected since variable a
in Rule (1) is existentially quantified—and we use the hat (@) symbol
to denote it. Whenever a variable always appears in the body of
a rule only in affected positions, then it is harmful. It is the case
of variable 4 in Rule (2). Harmful variables propagating into the
head, called dangerous, recursively produce new affected positions,
like in the case of competitor[3] in Rule (2). Non-harmful variables
are called harmless, like x, y, or z in Rule (3). For ¥ to be warded,
all the dangerous variables of every rule should appear within one
single body atom, the “ward”, which can join with other atoms only
through harmless variables. This condition is violated by Rules (2)
and (3), given that the dangerous variable d appears in two atoms.
Therefore X is not warded. Walking up the complexity lines, we can
check whether X is Frontier-Guarded or Weakly Frontier-Guarded [6].

https://youtu.be/5GrkwAv4o9A

For the former, each body must have an atom containing all the
variables of the frontier (those shared between the body and the
head); for the latter, it should contain at least the affected ones of
the frontier. Neither the conditions are fulfilled by Rules (2) and (3).
In summary, without even considering Rule (4), we understand that
there are no complexity guarantees for 3.

Our developer then reformulates ¥ as a simpler program.

Example 2.2.
company(x) — Jaactivity(d, x) (5)
activity(d, x), activity(d, y) — competitor(x, y) 6)
activity(d, x), activity(bA, y), NACE(n, x), 7)

NACE(n,y) > a="b

Rule (6) here is modified and does not consider the specific activ-
ity, which is in fact irrelevant. Rule (3) has been removed, since the
transitivity naturally derives from Rule (6). []

Now, in Rule (6), the variable d is not dangerous anymore, but
simply harmful. Thus, the absence of a body ward does not prevent
wardedness. Therefore, we can preliminarily conclude that ¥ in
Example 2.2 is warded. Regarding Rule (7), some further considera-
tions are needed. In Datalog®, we call the rules where the head is an
equality as equality-generating dependencies (EGDs). In general, the
presence of such conditions can alter complexity and even decidabil-
ity of . In this case, we name the EGD as harmful [8]. Still, our devel-
oper can try a final rewriting in plain Datalog, by replacing Rule (7)
with NACE(n, x), NACE(n,y) — competitor(x,y), and Rule (5)
with competitor(x, z), competitor(z, y) — competitor(x, y).

We are at the end of our coding experience, which provided at
the same time a glimpse on the technical intricacies of Datalog*
fragments, delving into some background, and the intuition that a
specific IDE is of extreme help for many categories of users. VADA-
CODE, among its multiple characteristics, streamlines the process
we have discussed in this section.

3 THE SYSTEM

VADACODE originates from our experience in designing complex
logic-based reasoning tasks in the economic and financial domains
for the Central Bank of Italy. Our goal is to provide internal users
with a fast-track path to learning, applying, and enjoying the pro-
cess of writing logic programs in their respective fields. The team
that developed VapAcODE followed the practice of dogfooding, us-
ing the product to discover new and exciting ways to utilize and
enhance it. At its core, VADACODE is a full-featured IDE, developed
as an extension of Visual Studio Code (VSCobE). Visual Studio
Code was chosen for its broad platform support, rich set of features,
open-source nature, and the largest user base among IDEs.

System architecture. VADACODE consists of two components of
VADACODE: a client extension and a language server, which imple-
ments the open standard Language Server Protocol (LSP). The lan-
guage server encapsulates all language tooling within its process
to avoid impacting editor performance, despite the complexity of
the background analysis. A small subset of features (e.g., projects)
is implemented on the client side.

5413

System features. To support modern development and welcome
traditional developers, VADACODE mimics the typical IDE experience
by embedding all the features in the mainstream VSCopE workflow.
Semantic highlighting. VADACODE offers a form of highlighting that

is aware of the internals of the fragments, like those we have de-
scribed in Section 2. For example, affected positions as well as
harmless, harmful, and dangerous variables are pointed out.

Code diagnostics and Fragment detection. Programs are analyzed to

identify syntactic and semantic errors, providing fragment-aware
suggestions: for example, violations of the fragment limitations
are shown in-context with a squiggly line aesthetic (e.g., Figure 2).
The tool features full Datalog® fragment detection, with additional
fragment-related information provided through hover tooltips.

Definitions and Code navigation. Even the simple scenario of Sec-

tion 2 requires the developer to track atoms and variables through-
out the program. VADACODE offers source code navigation thanks
to an outline of used symbols and atom signatures, which can then
be used to find references and definitions in one click.

Code documentation. VADACODE fosters good development practices
and features code-level documentation of Datalog® programs, in
the style of Javapoc or Jspoc. Documentation comments can be
added directly to programs. VADACODE scans the program source
and generates code hints to enhance the developer’s experience.
Other features. VADACODE supports several other features to ease the

developer’s life, such as: (i) code actions, which provide in-context
refactoring options, (ii) atom renaming, which allows to globally
change an atom name, (iii) and code completion, which provides
suggestions based on semantics such as automatic bindings.

Program and notebook support. VADACODE offers two modes of
use. In program mode, developers can submit Datalog* programs
to the reasoner via an HTTP endpoint. The results are then dis-
played in a dedicated VSCoDE tab. In notebook mode, data scientists
can iterate on small programs and interleave them with images,
equations, and explanatory text, similarly to Jupyter notebooks.

Al-aided programming. VADACODE integrates with the GitHub
Copilot extension to enable natural language interaction with Data-
log* programs. A dedicated ChatBot is included in VADACODE to
boost the productivity of experienced developers and accelerate the
learning curve for newcomers. Through the chat interface, users
can describe code snippets, modify programs, fix issues, scaffold
code, and ask a wide range of questions.

4 DEMONSTRATION PLAN

Our presentation script captures the needs of expert and novel users
interested in Datalog®. After a very brief focus on the development
setup, the demonstration will start.

Feature tour. First, we introduce VADACODE and give a brief expla-
nation of its architecture, pointing to the online documentation.?
We will let participants freely explore VADACODE to creatively learn
its features through carefully developed educational Datalog® pro-
grams, designed to stimulate discussion over specific features in
real-world settings. VADACODE will support novel users and intro-
duce them to the Datalog family of languages using tool capabilities

https://vadalog.org

https://vadalog.org

<

EXPLORER V/ vidb2025-warded.vada 9+, U ® = Settings

“ OPEN EDITORS 1 unsaved

> walk

> scripts
@output ("competitor").

~ server an

P vadacode

oy BOOm

>R d--

samples > vidb2025 > V/ vidb Variable 'A' is dangerous and involved in a join; the program is not Warded Datalog:.

® \/ vldb2025-warded.vada sample... 9+, U 1 einput("company"). vyariable 'A' is in a tainted position and used in join or filter operation. The program does not
= Settings 2 @bind(“company", “c satisfy the EGDs harmless sufficient condition.
VADACODE 3 @input("nace").
4 4 @bind("nace”, "csyr (variable) A
7 s 5 Variable is in a position which contains marked nulls.
B 6 activity(A, X) :- c
> project04-modules 7 4 A is harmful, because it appears in an atom position which may contain nulls.
2 single 8 competitor(X, Y, A) Ais dangerous, because it's harmful and appears in the head of the rule.
v vidb2025 9 activity(A, X),
A Als in a tainted position and used in join or filter operation, hence the program does not satisfy the EGDs harmless sufficient
@ vldb2025-control-chains.png u 10 activity(&, ¥). | iition
V/ Vidb2025-control-chains.vada 3U u TS CIEGmE G ———
iew Problem (I uick Fix... ix using opilot
"/ Vidb2025-control-chains.vadanb v 12 competitor(X, Y, 4) dkop
13 competitor(X, Z,JA),
vidb2025-warded.datalog u 14 competitor(z, Y, A)-
\/ vidb2025-warded.vada 9+,U 15

A = B :- activity(A, X), activity(B, Y), nace(X, N), nace(Y, N).

Figure 2: Warded Datalog* fragment detection in VADACODE at a glance.

like syntax support and code navigation, along with safe experimen-
tation with thorough code diagnostics. Experienced Datalog users
will enjoy the support for more advanced logic features such as
fragment detection.

Corporate knowledge graph scenario. Participants will live the
development experience by writing a Datalog* program support-
ing the ownership knowledge graph of the Bank of Italy. Without
leaving VADACODE, participants will explore the input database and
learn how to perform data ingestion and schema inference. They will
then play the role of a business analyst, implementing two problems
in the corporate economics realm. Using fragment snippets, they
will implement a solution that combines full recursion, aggregation,
and stratified negation. Technical users will appreciate VADACODE
for its ability to help them understand, modify, and debug reasoning
programs, while enjoying a state-of-the-art development experi-
ence. Business-oriented participants will benefit from seeing, in an
interactive way, how real-world scenarios can be modeled using
logic statements to derive valuable insights.

Fragment debugging. Participants will act as educators, using
VADACODE to teach advanced concepts in the Datalog® family
through novel explanation metaphors. They will analyze complex
programs and explore literature examples with the help of features
such as inline diagnostics, semantic tagging, and hover insights.

ACKNOWLEDGMENTS

This work was supported by the Vienna Science and Technology
Fund [10.47379/VRG18013, 10.47379/NXT22018, 10.47379/ ICT2201]
and the Austrian Science Fund [10.55776/COE12].

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[2] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. 2003. Linearisability
on datalog programs. Theor. Comput. Sci. 308, 1-3 (2003), 199-226.

[3] Mario Alviano and Matthias Lanzinger (Eds.). 2024. Datalog-2.0. CEUR Workshop

Proceedings, Vol. 3801. CEUR-WS.org.

[4] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In SIGMOD. ACM, 1371-1382.

Jean-Francois Baget, Michel Leclére, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML (LNCS), Vol. 9202. Springer, 328-344.

(5]

5414

[10

[11

(12]
(13]

[14

[16

(17

[18

[19]

[20]

[21

[22

[23

[24

™
2

Jean-Frangois Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaél
Thomazo. 2011. Walking the Complexity Lines for Generalized Guarded Existen-
tial Rules. In IJCAL IJCAI/AAAI, 712-717.

Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger. 2023. Reasoning
over Financial Scenarios with the Vadalog System. In EDBT. 782-791.

Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel Sallinger.
2022. Exploiting the Power of Equality-generating Dependencies in Ontological
Reasoning. Proc. VLDB Endow. 15, 13 (2022), 3976-3988.

Luigi Bellomarini, Davide Benedetto, Georg Gottlob, and Emanuel Sallinger. 2022.
Vadalog: A modern architecture for automated reasoning with large knowledge
graphs. Inf. Syst. 105 (2022), 101528.

Luigi Bellomarini, Marco Favorito, Eleonora Laurenza, Markus Nissl, and
Emanuel Sallinger. 2024. Towards FATEful Smart Contracts. In DLT (CEUR),
Vol. 3791. CEUR-WS.org.

Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. VLDB 11, 9 (2018),
975-987.

Meghyn Bienvenu, Diego Figueira, and Pierre Lafourcade. 2024. Shapley Value
Computation in Ontology-Mediated Query Answering. In KR.

Marco Calautti, Georg Gottlob, and Andreas Pieris. 2015. Chase Termination for
Guarded Existential Rules. In AMW (CEUR), Vol. 1378. CEUR-WS.org.

Andrea Cali, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris. 2010.
Datalog+/-: A Family of Languages for Ontology Querying. In Datalog (LNCS),
Vol. 6702. Springer, 351-368.

David Carral, Irina Dragoste, Larry Gonzalez, Ceriel J. H. Jacobs, Markus Krétzsch,
and Jacopo Urbani. 2019. VLog: A Rule Engine for Knowledge Graphs. In ISWC
(2) (LNCS), Vol. 11779. Springer, 19-35.

Stefano Ceri, Anna Bernasconi, Alessia Gagliardi, Davide Martinenghi, Luigi
Bellomarini, and Davide Magnanimi. 2024. PG-Triggers: Triggers for Property
Graphs. In SIGMOD Conference Companion. ACM, 373-385.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). KDE 1, 1 (1989), 146-166.
Georg Gottlob. 2022. Adventures with Datalog: Walking the Thin Line Between
Theory and Practice. In AI*IA (LNCS), Vol. 13796. Springer, 489-500.

Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL
Entailment Regime: Rules to the Rescue. In IJCAL AAAI Press, 2999-3007.
Aidan Hogan, Eva Blomqyvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,
Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine
Zimmermann. 2020. Knowledge Graphs. CoRR abs/2003.02320 (2020).

Alex Ivliev, Lukas Gerlach, Simon Meusel, Jakob Steinberg, and Markus Krotzsch.
2024. Nemo: A Scalable and Versatile Datalog Engine. In Datalog (CEUR),
Vol. 3801. CEUR-WS.org, 43-47.

Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis
of Program Analyzers. In CAV (2) (LNCS), Vol. 9780. Springer, 422-430.

Philipp Kérner, Michael Leuschel, Jodo Barbosa, Vitor Santos Costa, Verénica
Dahl, Manuel V. Hermenegildo, José F. Morales, Jan Wielemaker, Daniel Diaz,
and Salvador Abreu. 2022. Fifty Years of Prolog and Beyond. Theory Pract. Log.
Program. 22, 6 (2022), 776-858.

Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Optimizing recursive
queries with monotonic aggregates in DeALS. In ICDE. IEEE, 867-878.

Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov, Mark Kaminski, and Ian
Horrocks. 2015. PAGOdA: Pay-As-You-Go Ontology Query Answering Using a
Datalog Reasoner. J. Artif. Intell. Res. 54 (2015), 309-367.

	Abstract
	1 Introduction and Demo Overview
	2 A Datalog Journey
	3 The system
	4 Demonstration Plan
	Acknowledgments
	References

