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ABSTRACT
Continuous Queries (CQs) are designed to operate over in!nite
data streams; the paradigm gained prominence with the rise of
Stream Processing (SPs). Central to CQs are window operators as
they enforce bounded computation by partitioning streams into
!nite subsets. Although several window operators exist —e.g., slide-
by-tuple, session-window, and frames—commercial systems largely
adopt a few due to implementation complexity, theoretical opacity,
and input-dependent non-determinism. This demonstration shows
Play2Win, an interactive playground that empowers users to ex-
plore and compare various windowing strategies under a uni!ed
system semantics. Our platform o"ers three key contributions: (I) a
real-time environment for experimenting with di"erent window op-
erators; (II) a graph-based representation of the window state that
eases direct comparison; and (III) a compositional framework for
rapid prototyping of novel windowingmechanisms. The demonstra-
tion explore multiple datasets across di"erent scenarios, fostering
a deeper understanding of window operators for querying streams.
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1 INTRODUCTION
Continuous queries (CQ) monitor streaming data sources over time,
remaining active until explicitly terminated [4]. Introduced to query
in!nite data streams, CQs have recently gained popularity, given
the emergence of Stream Processing (SPs), as a principled way to
handle real-time data in various domains [1, 4].

CQs fundamental notion is continuous semantics, i.e., an in!nite
output is generated from an in!nite input [6]. Several ways to
achieve continuous semantics exist, but the most popular is the
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adoption of awindow operator, which segments in!nite data streams
into bounded subsets for processing. Although several types of
window operators exist [8], the majority of SPSs rely on a core
subset of well-established windowing strategies, including time-
based (hopping, sliding) and session-based windows, which can be
e#ciently implemented in a distributed setting [1].

One major obstacle to adopting advanced windowing techniques
is that their theoretical de!nitions are often inaccessible to non-
experts due to their mathematical complexity. Moreover, their im-
plementations usually require a custom state design that each sys-
tem’s operational semantics can in$uence. Finally, non-deterministic
window behaviour strictly depends on the input data, requiring
non-trivial experimentation to understand the best con!guration
for a given use case. All these challenges make the adoption of
advanced windowing slow in commercial SPS, leaving the cost of
their implementation to their users.

In this demonstration, we advocate for enabling users to explore
and compare di"erent windowing mechanisms within a consis-
tent system semantic. This would eliminate ambiguities introduced
by system-speci!c behaviours and enable an accurate comparison
of di!erent strategies. More speci!cally, we propose an interactive
windowing playground, providing an intuitive environment to ex-
periment with various window types, observe their behaviour in
real-time, and gain insights into their practical implications within
stream processing work$ows. In summary, this demonstration
presents the following contribution: (I) We present an interactive
playground for visualizing and experimenting with di"erent win-
dowing strategies, making their semantics more accessible to users.
(II) We give a uni!ed view of the window state based on a graph.
Such a view enables direct comparison of window types regardless
of the di"erent implementations of their state. (III) We enable fast
deployment of continuous queries with alternative window oper-
ators, allowing our users to experiment with a few use cases (i.e.,
electric grid, NYC taxi) and benchmarks, i.e., (Yahoo!, Nexkmarks
and Linear Road). Paper Outline. Section 2 provides the system
overview: it introduces the architecture and implementation of
our interactive windowing playground. It presents our observable
streaming pipeline and gives a primer on window operations. Sec-
tion 3 presents the demonstration scenario, detailing how to choose
window operators, size their parameters, and fast prototype custom
window operators by composing existing ones.
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2 SYSTEM OVERVIEW
This section introduces Play2Win. First, it presents minimal back-
ground knowledge, gives an overview of Play2Win architecture,
and !nally provides a primer on the included window operators.

2.1 Preliminaries
Continuous Queries, as Play2Win supports them, operate over

data-agnostic input streams. Nevertheless, we limit our demonstra-
tion scenario to relational data.

De"nition 2.1. A data stream is an ordered, in!nite sequence of
records (𝐿, 𝑀), where𝐿 represents a tuple in ω, and 𝑀 is a timestamp
in the time domain T , which we assume to be the natural numbers.

For query syntax and semantics, we rely on the well-known
Continuous Query Language (CQL) [2]. CQL semantics, as depicted
in Figure 1, are based on the three families of operators: Stream-To-
Relation (S2R), Relation-to-Relation (R2R), and Relation-to-Stream
(R2S). S2R operators are responsible for dealing with the unbound-
edness of the input data; R2R represents the CQ core logic, while
R2S allows the result to be streamed back. We focus on the S2R
family and, in particular, window operators:

De"nition 2.2. A window operator is a function𝑁 : T → 𝑂
mapping timestamps from T to intervals 𝑂 = T ↑ T .

We give a primer on the window functions in Section 2.3; here,
we focus on its abstract semantics. By applying thewindow function
to a relational stream, we obtain a Time-Varying Relation. TVR is a
view that can be materialized at any helpful timestamp t.

De"nition 2.3. A time-varying relation TVR: T → 𝑃 is a function
that for any time instant 𝑀 ↓ T returns a !nite bag of tuples R(𝑀).

To identify at what timestamps the TVR is materialised – we call
this set 𝑄𝑅 ↔ T as in evaluation time instants highlighted in grey in
Figure 1 (b) –we need to understand the system reporting semantics.
In practice, this is done automatically by the stream processor.
Still, we can characterise the set also using the SECRET model [5],
consisting of four primitives: Scope de!nes the time interval over
which a query is evaluated. Content maps these window intervals
to the stream elements they contain; Tick speci!es what triggers
system actions. Finally, Report determines when awindow’s content
is ready for query evaluation.
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Figure 1: (a) CQL Operator Families [2] and (b) the Time-
Varying Relation visualised. The set ET is in grey.

2.2 Architecture
Figure 2 illustrates Play2Win’s architecture, our interactive win-
dowing playground. The front (top) is divided into !ve areas, i.e.,
from left to right: Input, Window and Query, State, and Output.

The Input View 1 represents the input stream within a table,
where the most recent records are incrementally appended. We
chose this visualization to simplify comprehension for users unfa-
miliar with streaming data, as they can see it as an ever-growing
append-only table [3]. In the context of this paper, the system sup-
ports one stream as input with a single schema. Users can also check
the record attributes and values, as the system supports multiple
scenarios, each with its input stream and schema.

The Window View 2 is the control centre of the demo. The
system provides an editor menu for de!ning window policies, span-
ning multiple options, e.g., hopping, sliding, session windows [1],
or Frames [8]. Once selected, each policy can be further de!ned by
specifying the related parameters. For instance, hopping windows
have size (𝑆), and slide 𝑇 , session windows have the timeout 𝑈 .

In the Query View 3 , users input queries in SQL-like. They
can select queries from a given use case or write a new one. A
placeholder keyword leaves room for various window de!nitions
(see Listing 1). Users can select multiple window operators, each de-
ployed as an independent query. Table 1 shows a subset of window
operators and their parameters.

SELECT *
FROM <window > ON Electric_Grid
WHERE consB >= 0;

Listing 1: SQL Continuous Query with window Placeholder.

The State View 4 shows the state of each window operator.
Indeed, window operators are stateful operators, and a proper state
design is essential for the operator’s correctness and e#ciency
(throughput and latency). However, di"erent window operations
may have very di"erent state architectures. For instance, time-
based hopping windows are usually implemented with a HashMap
whose keys are the window intervals, and values are the window
content. Conversely, frames are implemented as lists, given their
non-deterministic nature.

De"nition 2.4. A Window State Graph (WSG) is a directed graph
WSG = (𝑉 , 𝑄), i.e., 𝑉 = 𝑉𝐿

𝑀 ↗𝑉ω and 𝑄 = 𝑄𝐿 ↗ 𝑄𝑀 2 , where

• 𝑉𝐿
𝑀 is the set of nodes representing window intervals, as deter-
mined by a window function𝑁 ;

• 𝑉ω is the set of nodes representing the tuples in the data stream.

Table 1: Windowing operators summary. (Dom)ains: Q ratio-
nals; N naturals, T time; 𝑊 is sum/count/avg/max/min.

Window Params. (Dom) Gaps (if) Det. State
Hopping 𝑆(T ) ,𝑇 (T ) ↑ ⊋ Map
Session 𝑈 (T ) ↑ ↑ List
SBTW 𝑆(T ),𝑋 (N) ⊋ ↑ Queue
Aggregate 𝑊 ,col(ω),↘ | ≃,𝑌 (Q) ↑ (≃) ⊋ (↘) ↑ Custom
Threshold col(ω),↘ | ≃,𝑌 (Q) ⊋ ↑ List
Delta col(ω),↘ | ≃,𝑌 (Q) ↑ (↘) ⊋ (≃) ↑ List
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• 𝑄𝐿 ⇐ 𝑉ω ↑𝑉𝐿
𝑀 is a set of edges indicating which tuples belong

to which window intervals (i.e., membership edges);
• 𝑄𝑀 2 ⇐ 𝑉𝐿

𝑀 ↑𝑉𝐿
𝑀 is a set of edges representing dependencies or

transitions between window intervals (i.e., transition edges).

Play2Win leverages such graph-based state representation (cf.
De!nition 2.4) and visualisation to make di"erent window opera-
tors comparable. Records (blue/squares) are connected to the cor-
responding window instances via membership edges; window in-
stances (circles/colour depends on the operator) are connected via
transition edges (labelled according to their temporal relations,
e.g., Overlaps/After). Records in red do not belong to any window
instance (for those operators that allow gaps).

The Output View 5 shows the result of the deployed queries.
We have a di"erent tab showing the results for each query, named ac-
cording to the window operator. As we follow CQL, we must choose
an R2S operator. For simplicity, we limit our view to the RStream
operator [2], represented in grey in Figure 2. In addition to the
query result, the Output View also shows a tabular view of the win-
dow state. By selecting record nodes, we trigger a comparative tab,
showing each selected record which window instances they belong
to for each de!ned policy. The Backend of Play2Win is designed
using a new version of RSP4J [7] (Poly$ow). This allows implement-
ing an observable continuous query execution. Indeed, Poly$ow’s
query model maps one-to-one to CQL. In particular, Poly$ow ex-
plicitly includes the programming abstractions for DataStream (cf
De!nition 2.1) and Time-Varying Object (cf De!nition 2.3), allowing
to lift their control to the user via Play2Win UI. Moreover, for query-
ing, Poly$ow contains the corresponding classes for CQL operator
families. We could indeed easily implement several stat-of-the-art
window operators while maintaining the same high-level API.

Figure 2 shows the design of our observable CQ execution pipeline.
A user-de!ned query consists of an S2R operator, a set of R2R op-
erators organised in a Directed Acyclic Graph (DAG) (the R2S for
outputting the result is !xed to the RStream). Such operators are
registered upon click, organised into Tasks 6 , and globally coordi-
nated by the Poly$ow library. Applying the S2R to the input stream
instantiates a Time-Varying Relation 7 that is accessible to the
R2R for canonical query execution and to the UI for observing the
content of the windows. In such cases, the TVR is materialised ac-
cording to the set of evaluation time instant 𝑄𝑅 , which is the result
of the reporting condition [5]. On the UI, we materialise TVR into

S2R R2S StreamStream
R2R R2R R2R

  
(1) (2) (3) (4) (5)

SELECT * 
FROM <window>  
WHERE ...

REGISTER NEXT

Input Query State

(7)

(6)

OutputWindow

TVR

Task

DAG

Figure 2: Play2Win Architecture and Flow.

the window state at every incoming event (When clicking the next
button). Notably, the window state is mapped to our graph-based
representation for better inspection via visualisation.

2.3 Window Operators Primer
We included windowing operators from [8], e.g., deterministic !xed-
size time windows, data-driven windows, and session. Below, we
present the selected window operators’ features (cf Table 1)

Time-Based Hopping Windows (TW) divide the stream into
!xed-size time segments. TW require three parameters: an initial
timestamp 𝑀 , the window size 𝑆 , and the slide 𝑇 . We can de!ne the
set of sliding windows overlapping at 𝑀 as the collection of windows
with time intervals: [𝑍𝑁𝑂𝑃𝑄𝑅⇒𝑆, 𝑍𝑁𝑂𝑃𝑄𝑅 ) where 𝑍𝑁𝑂𝑃𝑄𝑅 = 𝑎𝑄𝑆𝑇+𝑏 ·𝑇⇑𝑏 ↓
N0, with 0 ↘ 𝑏 < 𝑈

𝑉 , and 𝑎𝑄𝑆𝑇 = ⇓𝑀 ÷ 𝑇⇔ · 𝑇 .
Slide-by-Tuple Windows (SBTW) are characterised by a du-

ration parameter 𝑆 like TW, but the slide 𝑋 ↓ N determines the
number of tuples, after which a new window starts. Because SBTW
slides when a new tuple arrives, it is impossible to determine the
stream segmentation before the computation starts.

Session Windows (SW) capture periods of activity in a data
stream. A session starts with the arrival of a tuple and remains open
as long as subsequent tuples arrive within a given timeout 𝑈 . SWs
are non-deterministic and do not have a !xed duration since they
expand until new tuples arrive before the timeout period.

Frames are non-deterministic data-driven windows where seg-
mentation depends on tuple attributes rather than timestamps and
a condition predicate. When the condition is met, the current frame
ends, and a new one starts. This demo includes: (i) Threshold : the
value of a speci!ed attribute (col) of subsequent tuples is above (or
below) a given threshold (𝑌 ↓ Q). (ii) Delta: the di"erence between
the attribute’s !rst and last tuple value is above (or below) a given
threshold (𝑌 ↓ Q). (iii) Aggregate: the result of an aggregation over
the tuple’s attribute is above (or below) a given threshold (𝑌 ↓ Q).
Where Q is the set of rational numbers.

3 DEMONSTRATION SCENARIOS
Our demonstration will include several datasets and queries from
di"erent application domains, i.e., the DEBS challenge 20151 (NYC
Taxi), the data from the benchmarks Nexmark2 (auctions) and Lin-
ear Road3 (transportation), and an example of electric grid monitor-
ing. We develop two scenarios: selecting the window operator and
setting the operator parameters. Below, we explore such scenarios
using an electric grid monitoring using Figure 3 for reference.
Choosing the Window Operator. This scenario demonstrates
how to select an appropriate window operator for electricity con-
sumption monitoring (Figure 3, 1 ). We will present two cases
needing di"erent window operators: a camping site with an energy-
based billing model and an apartment with a time-based tari" sys-
tem. Users will interact with Play2Win, selecting multiple windows
and deploying the query (cf Listing 1) with di"erent S2R.

Figure 3 shows that a Frame is the most appropriate choice for
analyzing the camping site data rather than a time-based window;
electricity is sold in 15 kWh increments, and a new 15 kWh block

1https://chriswhong.com/open-data/foil_nyc_taxi/
2https://github.com/nexmark/nexmark
3https://www.cs.brandeis.edu/~linearroad/
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Figure 3: The user interface of the Play2Win system.

is supplied when the previous one is exhausted. Since time is not a
factor, we need a window operator considering excess consumption.
The users will see what Frames to consider, e.g., Threshold, Delta, or
Aggregate. The !rst two are inadequate as they are too !ne-grained
(a single tuple or max/min). Finally, the Aggregate is selected for
the case (Figure 3, 2 ). Similarly, we interact with the users to select
the appropriate window operator for the apartment billing case.
Here, electricity is charged on two 12-hour tari" periods, and a
time-based window is best. Hence, either a hopping, a sliding, or a
session window. We opt for the !rst (Figure 3, 2 ) as we are neither
interested in inactivity nor tuple-level sliding. Again, we can deploy
di"erent examples and show the di"erences.
Sizing the Window Parameters. Once the appropriate window
operator is selected, the user must con!gure its parameters to align
with the billing requirements. Play2Win provides options for setting
window sizes and aggregation functions, which the user will adjust
for the camping site and apartment scenarios.

The user con!gures the aggregate frame function and threshold
for the camping site. Albeit simple in the example, we will show
what happens when the Aggregate is miscon!gured, e.g., the wrong
threshold or wrong function. Indeed, Play2Win provides di"erent
aggregation functions, and the user can compare their e"ects.

For the apartment case, our users can observe that a hopping
window with overlapping time segments would lead to incorrect
billing by counting energy in multiple windows (Figure 3, 4 and
5 ). Thus, we need to set the slide equal to the width to obtain a
Tumbling Window of 12 hours. This will ensure that each window
corresponds to a billing phase. Play2Win allows the user to experi-
ment with di"erent sizes; for instance, we will try out a 24-hour
window to merge the two tari" periods, preventing correct di"er-
entiation between day and night rates. A 6-hour window would
introduce unnecessary complexity by creating unaligned segments.

4 CONCLUSION
In this demonstration, we presented Play2Win, an interactive play-
ground that exposes the semantics of window operators through
a uni!ed system, real-time visualization, and graph-based state
inspection. Play2Win lowers the barrier to understanding, com-
paring, and prototyping continuous query behaviour involving
various window operators. Ultimately, Play2Win fosters a deeper
understanding of windowing behaviour using the graph-based state
representation, which helps users make informed decisions when
deploying continuous queries.
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