
Simulating a Transactional Server for Multi-Model Systems
Zenon Zacouris

zenon.zacouris@tum.de
Technical University of Munich

Munich, Germany

Maribel Acosta
maribel.acosta@tum.de

Technical University of Munich
Munich, Germany

ABSTRACT
Multi-model systems integrate heterogeneous models, making con-
sistency management a critical challenge. We present M2TS, a trans-
actional server simulator for multi-model environments, enabling
users to analyze the impact of consistency-preserving transactions
on system performance. Unlike traditional transactional models
that focus on ACID consistency, M2TS ensures multi-model con-
sistency via bookkeepers, which propagate updates across models.
The simulator supports various concurrency and consistency set-
tings, allowing users to explore trade-offs in real-time. Through
this demonstration, we provide insights into managing transactions
in complex, interconnected environments.

PVLDB Reference Format:
Zenon Zacouris and Maribel Acosta. Simulating a Transactional Server for
Multi-Model Systems. PVLDB, 18(12): 5395 - 5398, 2025.
doi:10.14778/3750601.3750680

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://purl.org/m2ts.

1 INTRODUCTION
Transactions have been extensively studied in the context of rela-
tional databases, with a strong focus on ensuring atomicity, consis-
tency, isolation, and durability (ACID). However, modern systems
increasingly incorporate multiple heterogeneous models, leading
to more complex transaction scenarios.

A prominent example of such a scenario arises in the develop-
ment of Cyber-Physical Systems (CPS), where multiple engineering
disciplines collaborate using heterogeneous models. In CPS de-
velopment, data models and models from mechanical, electrical,
and software engineering must remain consistent despite frequent
updates. This consistency is enforced through consistency specifi-
cations (CS), which define rules for propagating changes between
interconnected models [4]. A real-world example from electric ve-
hicle development is shown in Figure 1 (adapted from [1]).

A change in tire diameter in the CAD model must propagate to
E/E and Simulink models for calibration and braking analysis.

Despite the increasing adoption of multi-model systems, the
impact of consistency preservation mechanisms on transaction
performance remains understudied. Existing research has focused
on transactional performance in single-model systems, such as

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750680

Automotive
CAD Model

Simulink
Model

Relational
Model

E/E Model

CS

CSCS CS

Figure 1: A multi-model system for CPS development with
consistency specifications (CS)

relational databases. However, in CPS and other complex system
domains, transactions must handle multiple interdependent models,
each with different representations and constraints.

We tackle this challenge by presenting the M2TS simulator for
consistency-preserving transactions in multi-model systems. Our
simulator allows users to analyze the effects of consistency specifi-
cations and multi-model interactions on transaction performance.
By simulating concurrent transactions across heterogeneous mod-
els, M2TS provides insights into the main performance factors, such
as transaction size, the number of processors, and the effects of
consistency-preserving mechanisms. Our findings contribute to
the broader understanding of transaction management in heteroge-
neous systems, bridging the gap between database foundations and
emerging multi-model environments. The M2TS demo is available
online.1

2 RELATED SYSTEMS AND NOVELTY
Simulators are widely used to minimize costs while offering a safe
testing environment and faster feedback. In the context of transac-
tions, existing works focus on single-schema or federated systems.

Ries et al. [6] present a single-model transaction simulator and
highlight the importance of locking granularity. Locking granu-
larity refers to the lock size used, which is crucial for balancing
concurrency and performance. The authors simulated a system
in equilibrium (in terms of transaction volume) to investigate the
impact of locking granularity. Their findings emphasize the trade-
off between fine and coarse granularity: fine granularity allows
for more concurrency but increases lock overhead, while coarse
granularity reduces overhead but lowers overall performance. They
concluded that coarse granularity is preferred, except in scenarios
where transactions randomly access small portions of the database.

Dandamudi et al. [2] extended this concept by considering mul-
tiprocessor database systems using a shared-nothing architecture.
Their simulation of a distributed database system reinforced the
conclusions of Ries et al. [6], showing that fine granularity is opti-
mal for random access patterns and a small number of transactions,
whereas coarse granularity is generally more efficient in other cases.
1M2TS Demo: https://purl.org/m2ts

5395

https://doi.org/10.14778/3750601.3750680
https://purl.org/m2ts
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750680
https://purl.org/m2ts
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Multiprocessor system

I/O
 q

ue
ue

C
PU

 q
ue

ue

Bookkeeper
subroutine 

Lock
request Granted

Denied

Release
locks

Failure

Waiting area
Success

Pe
nd

in
g 

qu
eu

e

B
lo

ck
ed

 q
ue

ue

...

...

Figure 2: The M2TS main routine

Lee et al. [5] examine how updates are propagated in feder-
ated database systems (FDBS), ensuring inter-schema consistency
through careful mapping of updates across schema layers. A key dis-
tinction is that FDBS enforces strict conditions for when federated
schema objects are updatable. In contrast, multi-model systems, like
the one we simulate, allow updates across different models without
such limitations, followed by consistency-preserving operations
to maintain inter-model consistency. This demonstrates the more
flexible update approach in multi-model systems compared to the
rigid process in FDBS.

We deviate from existingworks by simulating transactions across
multiplemodels within a unified system. Unlike federated databases,
where each component is autonomous and update propagation can-
not be part of an atomic transaction, our system assumes central
control. This allows consistency-preserving updates to be executed
transactionally, ensuring cross-model consistency without requir-
ing external coordination.

3 OUR APPROACH: A MULTI-MODEL
TRANSACTION SIMULATOR (M2TS)

The goal of our work is to study the effects of various settings
on transactional servers in multi-model environments, providing
researchers and practitioners with a flexible tool to understand
the performance of transactions under different scenarios. For this,
M2TS consists of the server simulator (§3.1) implemented in Java SE-
17, and the user interface (§3.2) to set up the simulator parameters
and visualize the results, which is implemented in Vue.js 5.0.8. The
user interface and the server simulator are integrated via an API
developed using Spring Boot 3.3.4.

3.1 Transactional server simulator
In this work, we devise a transaction server that ensures consistency.
For this, the system employs two complementary mechanisms.
ACID Isolation and Multi-Model Consistency. Isolation in
ACID ensures that transactions execute independently, prevent-
ing anomalies such as dirty reads, non-repeatable reads, and phan-
tom reads. Our system enforces strong strict two-phase locking
(SS2PL), which guarantees serializability, the strongest form of
isolation. This ensures that transactions execute as if they were se-
rialized, eliminating interference between concurrent transactions.

Multiprocessor system

I/O
 q

ue
ue

C
PU

 q
ue

ue

Return success

Granted

B
lo

ck
ed

bo
ok

ke
ep

er
 q

ue
ue

...

...

Return failure

DeniedSoft denied

Hard denied

Bookkeeper
lock request

Release
locks

Wait queue

Figure 3: The M2TS bookkeeper routine

ACID consistency ensures that a transaction transitions the data-
base from one valid state to another by enforcing predefined in-
tegrity constraints. However, in multi-model environments, addi-
tional mechanisms are required to ensure consistency across hetero-
geneous models. To address this, M2TS employs bookkeepers, dy-
namic consistency-preserving transactions that propagate updates
across models according to predefined consistency specifications.
Since bookkeepers execute alongside primary transactions, they
introduce challenges related to lock management and concurrency
control. To prevent deadlocks under SS2PL, our system follows a
cautious waiting protocol. If a bookkeeper cannot acquire a lock, the
system checks whether the blocking transaction is itself waiting.
If it is, the parent transaction and all its bookkeepers are reverted;
otherwise, the bookkeeper is placed in the blocked bookkeeper
queue. This ensures that multi-model consistency is maintained
efficiently while avoiding deadlocks.

Together, the locking mechanism and bookkeepers, implemented
via specialized queues in the main and bookkeeper routines, ensure
the overall consistency of the system.
Queues. The system relies on several types of queues:
• Pending queue: Initially, transactions are placed in this queue.

They await processing and are moved based on lock acquisition.
• Blocked transaction queue: Transactions that cannot acquire

necessary locks are moved here until they are unblocked.
• Wait queue: If updates trigger the creation of bookkeepers,

these are placed in a wait queue, ensuring they are processed
in the correct order.

• Blocked bookkeeper queue: If a bookkeeper is soft-denied a
lock it is placed in a blocked bookkeeper queue.

• I/O queue: Once transactions are ready to proceed, they are
moved to the I/O queue. Transactions are distributed across
multiple I/O queues to balance the load.

• CPU queue: After I/O operations, transactions are processed
in the CPU queue, where computational tasks are performed.

These queues ensure efficient and deadlock-free processing by pri-
oritizing bookkeepers and ensuring synchronization across models.
Main routine. The simulator starts with initializing the transac-
tions and models. As shown in Figure 2, the transactions are put in
a pending queue and try to obtain locks one by one. If granted a
lock, the transaction is passed on to one of the 𝑛 I/O queues – where

5396



Figure 4: The M2TS user interface. The left panel includes the simulator parameters. The simulation results are plotted in the
main panel, showing the throughput (fraction of transactions executed per unit time) w.r.t. the number of models in the system.

n is the number of processors. If they cannot be granted a lock, the
transaction is appended to the blocked queue, where they remain
until the transaction blocking them has finished execution. This
mimics the SS2PL protocol, where a transaction does not acquire
any further locks after it has released its first lock. To achieve this,
we enforce that a transaction needs to have all necessary locks
before starting execution. The transactions in the I/O queue are
processed in parallel. After processing, they are put into one of the
𝑛 CPU queues, and once they are finished, potential bookkeepers
are started to ensure consistency after all updates. If no bookkeep-
ers are started, the transaction automatically finishes, and a new
one will start. If bookkeepers have been generated, the so-called
bookkeeper routine starts.
Bookkeeper routine. Figure 3 shows that the bookkeepers follow
the same processing steps as transactions; they first try to get
locks and then process the locked entities. A novelty compared
to the main routine is the locking protocol: In the main routine,
we use a SS2PL protocol. Bookkeepers are dynamically started
"sub-transactions" that must be in the same atomic unit as the
parent transaction. When a bookkeeper tries to get a lock, and
it fails, one of two cases can occur: (1) soft denial: the blocking
transaction is not waiting, so the bookkeeper is put in the waiting
queue, or (2) hard denial: the blocking transaction is waiting, and the
bookkeeper, its parent transactions, and all the other bookkeepers
belonging to it are reverted and restarted. Once a bookkeeper has
finished execution, it signals to its parent transaction that it is done.
Once all bookkeepers of a transaction have finished executing, the
transaction finishes and a new transaction is started.

3.2 User interface and simulator parameters
M2TS includes a user interface (Figure 4), that enables the configura-
tion of simulator parameters and the simulation results. Since multi-
model transactions are a key novelty of our work, the simulation

results show the impact of different model counts on throughput.
The simulator parameters include:

Transaction settings. These include the number of transactions
simultaneously executed in the simulation. The system is in an equi-
librium state, keeping the total number of transactions constant.
The maximum transaction size can be set, limiting the uniform
distribution sampled to get the transaction size for a particular
transaction. The user can also set the number of models a transac-
tion affects to simulate multi-model environments.

Model settings. The user can set the number of models the sys-
tem consists of, which is also the upper bound of the number of
models per transaction. Industrial MBSE projects can involve over
one hundred interconnected models distributed across teams and
tools [3]. These parameters also include the I/O and CPU time to
execute updates over an element of a model.

Consistency preservation settings. The user can change the
number of bookkeepers started during a simulation run. The user
can select if bookkeepers can trigger other bookkeepers (transitive
CP). Next, the maximum number of bookkeepers triggered by a
single transaction can be set - this can be varied to simulate the
effects of many bookkeepers on the system performance.

Lock settings. The number of locks determines what portion of a
model is covered by each lock. If we have 5000 elements in a model
and 200 locks, then every lock covers 25 elements. In short, this
determines the lock granularity. Next, the user can set the I/O and
CPU time to lock a single element.

System settings. The system size defines the number of elements
in the system. The number of steps taken in the simulation can also
be varied. Lastly, the number of processors allows the user to look
at the impact of dividing the work over more cores.

5397



(a) High Latency

(b) In-Memory Database

(c) Heavy Load

Figure 5: Three distinct scenarios illustrating system behav-
ior, with the x-axis displayed on a logarithmic scale.

4 DEMONSTRATION
In this section, we describe how users can interact with the M2TS
simulator (see Figure 4). This will be the first public demonstration
of M2TS. Attendees will have the opportunity to interact with the
system, configure simulation parameters, and analyze multi-model
transaction performance live. We report throughput as it reflects
the system’s ability to process transactions under concurrency and
consistency constraints, and serves as a key indicator of how well
model synchronization scales under load.

The number of models and the number of processors are varied
over the experiments and are hence indicated with variable names
n and m. For this demonstration, we provide in the online tool a
predefined set of parameter values that allow users for exploring
different system behaviors, such as high-latency environments, in-
memory storage, and heavy workloads.

High-latency system. For this scenario, we use the default pa-
rameters from the M2TS Demo1 and increase the I/O lock and
processing time (IOLockTime, IOProcessTime = 10). We analyze

how multi-model transactions behave under varying processor
and model counts. Results in Figure 5a show that at low processor
counts, latency severely impacts throughput, while at higher proces-
sor counts, parallelism offsets some of the delay. However, as model
count increases, performance declines rapidly due to the overhead
of spawning multiple bookkeepers to maintain consistency. Fig-
ure 5a shows that processor count does not positively correlate
with throughput, confirming that locking time, not processing time,
is the main bottleneck.

System with in-memory storage. To analyze a low-latency system,
we take the same default parameters and set IOLockTime and IOPro-
cessTime to 0, simulating an in-memory database. Results indicate
that for a single-model system, throughput is higher for all pro-
cessor counts except a single processor. However, as model count
increases, performance deteriorates similarly to the high-latency
case. Figure 5b confirms that in both scenarios, the bottleneck re-
mains lock acquisition, not processing time.

System under heavy load. To simulate a system flooded with
many small transactions, we use the same default parameters and
increase the numberOfTransactions to 1000. As expected, through-
put drops significantly due to higher lock contention. However, at
higher model counts, throughput converges to a similar degraded
state as in previous scenarios, reinforcing that lock contention
dominates in multi-model transaction performance.

4.1 User Interaction Walkthrough
Attendees interact with M2TS through a web interface offering
configurable parameters and predefined presets. Each parameter
has bounded input ranges with fixed steps. After configuration or
preset selection, clicking Run Simulation executes the scenario. The
output visualizes throughput for 1, 2, 5, 10, 20, and 30 processors,
reflecting system performance impacts.
Across all three scenarios, we observe that as the number of models
increases, throughput rapidly degrades toward zero. This makes the
performance impact of concurrent transactions in multi-model sys-
tems explicit, motivating future work on relaxing ACID constraints
to ensure scalability.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – SFB 1608 – 501798263.

REFERENCES
[1] Maribel Acosta, Sebastian Hahner, Anne Koziolek, Thomas Kühn, Raffaela Miran-

dola, and Ralf Reussner. 2022. Uncertainty in coupled models of cyber-physical
systems. In Proceedings of the 25th International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings. 569–578.

[2] S Dandamudi and S-L Au. 1991. Locking granularity in multiprocessor database
systems. In Proceedings of the Seventh International Conference on Data Engineering.
IEEE, 268–269.

[3] Jeff A Estefan. 2007. Survey of model-based systems engineering (MBSE) method-
ologies. INCOSE MBSE Initiative 25, 8 (2007), 1–12.

[4] Heiko Klare, Max E Kramer, Michael Langhammer, Dominik Werle, Erik Burger,
and Ralf Reussner. 2021. Enabling consistency in view-based system develop-
ment—the vitruvius approach. Journal of Systems and Software 171 (2021), 110815.

[5] Mong Li Lee, Sin Yeung Lee, and Tok Wang Ling. 2001. Updatability in federated
database systems. In Proceedings of the 12th International Conference on Database
and Expert Systems Applications. Springer, 2–11.

[6] Daniel R Ries and Michael R Stonebraker. 1979. Locking granularity revisited.
ACM Transactions on Database Systems 4, 2 (1979), 210–227.

5398


	Abstract
	1 Introduction
	2 Related Systems and Novelty
	3 Our Approach: A Multi-Model Transaction Simulator (M2TS) 
	3.1 Transactional server simulator
	3.2 User interface and simulator parameters

	4 Demonstration
	4.1 User Interaction Walkthrough

	Acknowledgments
	References

