DocDB: A Database for Unstructured Document Analysis

Zequn Li’ Yuanhao Zhong* Chengliang Chai
zqli@bit.edu.cn zyh04@bit.edu.cn ccl@bit.edu.cn
Beijing Institute of Technology Beijing Institute of Technology Beijing Institute of Technology
Beijing, China Beijing, China Beijing, China
Zhaoze Sun Ye Yuan Lei Cao
Yuhao Deng Guoren Wang caolei@arizona.edu
sunzhaoze@bit.edu.cn yuan-ye@bit.edu.cn University of Arizona
dyh18@bit.edu.cn wanggr@bit.edu.cn Tucson, United States

Beijing Institute of Technology
Beijing, China

ABSTRACT

Recent studies have developed LLM-powered data systems that en-
able database-like analysis of unstructured text documents. While
LLMs excel at attribute extraction from documents, their high com-
putational costs and latency make extraction operations the pri-
mary performance bottleneck. Existing systems typically adopt
traditional relational database query optimization strategies, which
prove ineffective in minimizing LLM-related expenses. To fill this
gap, we propose DocDB, a prototype system that features a bunch of
novel optimization strategies designated to unstructured document
analysis. First, we employ a two-level index to reduce LLM extrac-
tion costs by selectively retrieving and processing only text seg-
ments relevant to target attributes. Second, DocDB employs adaptive
execution, generating document-specific plans to minimize LLM
extraction frequency based on varying per-document attribute ex-
traction costs. With a real-life scenario, we demonstrate that DocDB
allows users to analyze unstructured documents accurately and
affordably using SQL-like queries. The corresponding video is avail-
able at https://youtu.be/8yDIKOBHIOg.

PVLDB Reference Format:

Zequn Li, Yuanhao Zhong, Chengliang Chai, Zhaoze Sun, Yuhao Deng, Ye
Yuan, Guoren Wang, and Lei Cao. DocDB: A Database for Unstructured
Document Analysis . PVLDB, 18(12): 5387 - 5390, 2025.
doi:10.14778/3750601.3750678

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/wisdomzq/DocDB.

1 INTRODUCTION

Modern corporations host a large amount of unstructured data.
Recent Large Language Model (LLM)-powered systems, such as

“Both authors contributed equally to this research. Chengliang Chai and Yuhao Deng
are corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
do0i:10.14778/3750601.3750678

5387

Beijing Institute of Technology
Beijing, China

ZenDB [4], Lotus [3], and Palimpzest(PZ) [2] , enable structured
analysis by employing LLMs to extract user-specified attributes and
applying database operations (e.g., filter, join, etc.). If successful,
these efforts could transform unstructured data into actionable
insights, such as enabling lawyers to quickly identify murder cases
with at least three charges and 15-year sentences.

As opposed to query optimization in relational database that aim
to minimize query execution time, query optimization in such LLM-
centric data systems faces unique challenges, and hence raising
research opportunities. LLM inferences are much more expensive
in both execution time and monetary cost than traditional data-
base operations, making attribute extraction the critical bottleneck.
Therefore, the key optimization objective in this scenario is to min-
imize the LLM cost incurred during extraction, equivalent to: (1)
minimizing the LLM cost of each extraction operation, which de-
pends on the number of input tokens to an LLM; and (2) minimizing
the frequency of invoking the data extraction operations. However,
existing systems [2—4], focusing on improving the prompting strate-
gies and selecting LLMs appropriate for a query, or directly applying
existing optimizations in databases to reduce query latency, largely
overlook these unique optimization opportunities.

Our Proposal. To achieve the above optimization objective, we
propose a novel system, DocDB, which reduces LLM costs via index-
driven attribute retrieval and adaptive document-specific optimiza-
tion, enabling scalable analysis of unstructured data with diverse
attributes. Overall, DocDB first executes an index-based attribute
extraction strategy to minimize the number of input tokens per
extraction and then applies an instance-optimized query execution
strategy to minimize the frequency of attribute extraction. Specifi-
cally, DocDB consists of the following key modules.

Index-based Attribute Extraction. DocDB improves LLM efficiency
and accuracy for attribute extraction using a two-level indexing
strategy inspired by RAG. It first discards irrelevant documents
entirely before locating specific text segments, a more accurate
approach than segment-only systems. Furthermore, it overcomes
weak queries by automatically learning the features of relevant
segments from a document sample, which eliminates the need for
manual prompt engineering and boosts retrieval performance.
Instance-optimized Query Execution. DocDB utilizes a dynamic,

instance-optimized strategy that interleaves data extraction with

https://youtu.be/8yDIKOBHIOg
https://doi.org/10.14778/3750601.3750678
https://github.com/wisdomzq/DocDB
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750678
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Two-Level Index Offline Building
L H ! — 7] H H L
T @ : e(d) (00 00) : BEI Document & @ ; e(s) (600) : f Segment
ped) (0 TeT) PS5 Index L e(sy) : 2l Index
...................... I e
— Summarization & Embedding ion & Embeddi
SELECT 7o oo Evidence-Augmented Segment Retrieval
FROM Players e - Relevant
v % |‘ 4 Attribute: age Documents
WHERE age>35 AND all-stars> 12 =] % 6 s T)]| Attribute 1: age
<Description> x| 4] amdi:m 21 i’bum March 14,1988 ..
Attribute -stc
Players : Basic info of NBA players. Doc-Index LM Seg-Index cUn:;.;mEe 1.q, MHSBA All-Star Game
name : Player's full name. L I:> Ve MVP...
team: Player's current team. Sample Candidate 2:... a fen-time NBA All-Star
...... Relevant
Query O Documents Evidence Collection
Query Optimization
Statistics | | |Z Order | SELECT P.name, T.coach 11 Pi“ame' T.coach I Pl.name, T.coach
fiter | Cost | Sel [age | FROM Players P, Teams T PIP-team = T.t_name DX{ P.team=T.t_name
age 30 02 WHERE T.championships>6 11 team I1 t_name ot rdert
allstars | 100 | 0.1 allstars_| AND P.age> 35 AND Pall-stars> 12 | 5 > team Gt name IN ..
: all- | "
il = O champ.>6 O champ.>6
Filter Cost [Sel AND P.team = T.t name (G all-stars>12 G all-stars>12
age 35 0.2 <Description> O age>35 G age>35
all-stars 25 | 041 age Query Q' -
Doc-level Filter Reordering Join Transformation

Figure 1: DocDB Framework

query operations to minimize costly extractions. Instead of creat-
ing a static plan, it generates an optimal, per-document execution
plan at runtime, enabling adaptive techniques like instance-specific
filter and join ordering. This approach is particularly effective for
joins, where DocDB transforms them into specialized filters and
dynamically reorders multi-way joins during execution.

Demonstration Scenarios. We propose to showcase DocDB’s abil-
ity to effectively conduct unstructured data analysis with minimized
LLM costs. Users can upload unstructured documents and write
a SQL-like query that describes the analysis requirement. Then
DocDB processes these documents to extract structured data, with
the goal of minimizing the LLM costs and ensuring analysis quality.

2 SYSTEM ARCHITECTURE

2.1 User Queries

DocDB enables SQL-like queries, allowing users to select docu-
ments, extract attributes and perform analytical operations like fil-
tering and joining. Specifically, DocDB targets optimizing Selection-
Projection-Join (SPJ) queries over unstructured document set D =
{d1,dz, -+ ,dp}. In this paper, A is the set of attributes in query Q,
with each attribute denoted as a;. The WHERE clause expression is J,
comprising multiple filters, each represented as 6. DocDB supports
a broad range of filters. (1) DocDB supports queries that are conjunc-
tions or disjunctions of any number of filters. (2) Any single filter
for an attribute can be an equality filter or an open/close range
filter. Furthermore, DocDB also supports join operations.

2.2 Overview

As shown in Figure 1, DocDB first constructs a two-level index.
In response to a user’s query and attribute selection, it samples
documents to gather statistics for cost-based optimization. Unlike
traditional databases that generate a static plan beforehand, DocDB
dynamically optimizes the query plan for each document during ex-
ecution, adapting to real-time statistics and varying LLM extraction

5388

costs. To achieve this, it employs lightweight yet effective strategies
and an execution engine that integrates index-based extraction
with analytical operations like joins for efficient query processing.

2.3 Stage 1: Index-based Attribute Extraction

Two-level Index Construction. Given a document set 9, DocDB
first generates document summaries using NLTK, which are then
embedded with a pre-trained model (e.g., ESModel). DocDB then dy-
namically divides documents into semantically coherent segments
using LangChain’s SemanticChunker function, ensuring each at-
tribute is extracted from a single segment. These segments are then
embedded and both document and segment embeddings are stored
in high-dimensional vector indexes for efficient retrieval.

Searching the Index. For a given query Q, DocDB employs a two-
level retrieval process, first returning a relevant document set Do
and then identifying relevant segments. However, recognizing that
simple embeddings for attributes in Q’s attribute set A are often too
uninformative to find key content, DocDB introduces an evidence-
augmented strategy. It samples from D¢ and uses an LLM to extract
actual attribute values and their corresponding text segments for the
attributes in A. These segments, which capture common contextual
patterns, are then used as "evidence" to enrich the original query.
Subsequently, DocDB leverages this evidence to conduct a more
accurate retrieval, combines the results, and uses an LLM to perform
the final attribute extraction from the refined segments.

2.4 Stage 2: Query Optimization

As discussed in Section 1, LLM-based attribute extraction is DocDB’s
primary and most variable cost bottleneck, requiring a novel opti-
mization strategy. Since the high costs of LLM inferences, traditional
assumptions that joins are always more expensive than filters no
longer hold. Therefore, we propose a unified approach to minimize

unnecessary extractions through both instance-specific filter or-
dering and re-optimizing joins to function as efficient filters. More
details are discussed in the full version paper [1].

Filter Ordering. In Figure 1, taking query Q as an example, al-
though all-stars has lower selectivity than age, LLM costs vary
across documents. For dj, DocDB prioritizes age due to the high
extraction cost of all-stars. Conversely, for dz, where all-stars
is cheaper to extract, it takes priority over age. Therefore, DocDB
optimizes filter ordering by dynamically adapting to per-document
LLM token costs and filter selectivities(estimated during sampling
the subset), prioritizing efficient extraction for conjunctive, disjunc-
tive, and mixed queries. Formally, let Co (o) represent the total cost
of executing query Q on a document with a given filter order o. The
objective is to find the optimal order o* that minimizes this cost:

1

Next, we present our filter ordering method and analyze its optimal-
ity across conjunctive, disjunctive, and mixed filter combinations.
Conjunctions. Consider a query Q that includes a WHERE clause con-
taining a conjunction of filters. Let A¢ C A, A,, C A denote the set
of attributes that appear in the SELECT and WHERE clause respec-
tively. For the i-th filter o[i] in an order, the cost associated with
extracting its relevant attribute is represented as cF[i], and its se-

lectivity is given by pli]. For each attribute a; € As, the generation

0" =arg géig Co (o)

cost is denoted by cE. Therefore, the expected query cost for a given
order o can be represented as follows:

lo| |As | o]

Colo) =), Fm]_[p[m AL

i=1 Jj=1 i=1

@

To find the optimal order with respect to each document, we
prove that sorting filters in descending order based on the following
priority score minimizes the expected query cost.

1-pk
ck

priority(6) = L0 €8 3)

Therefore, for each filter 6, € J, DocDB retrieves attribute-
specific segments via indexing, estimates its extraction cost cg
(proportional to token count) and selectivity p (estimated on the
sampled table), computes a priority score (Eq. 3), and sorts filters
by descending score to determine the optimal execution sequence.
Disjunctions. For conjunctive queries, optimal filter ordering priori-
tizes conditions that are more likely to return False, whereas, for
disjunctive queries, the strategy reverses to favor filters more likely
to return True. Accordingly, we modify the cost model as below:

|As]

—pliD+ () ef)

Jj=1

o]

[1-]]a-rliD] @
i=1

lo] i-1

Colo) = "l Ja

i=1 Jj=1
Similarly, DocDB achieves optimal ordering by sorting filters in

descending order using a slightly adjusted priority score from Eq. 3.

priority(6y) = Qk e (5)

Conjunctions and Disjunctions. To handle mixed AND/OR queries,

DocDB models the WHERE clause as an expression tree which is
executed via a post-order traversal. The optimization strategy first
decomposes this tree into order-invariant sub-expressions. It then

5389

uses dynamic programming to find the globally optimal execution
order for these independent sub-expressions.

Query Optimization For Join. Next, we introduce the optimiza-
tion techniques with respect to join queries.
Single Join: Joining Two Tables. Consider a query that joins two ta-

bles T; and T; on attribute a while applying filters 6; on T and 62 on
T,. Taking a concrete query as an example, 61 filters Teams (T;) with
championships > 8, and 0 filters Players (Tz) with age > 35. A
traditional optimizer applies these filters separately before joining
the results. DocDB, however, transforms the join into an IN filter on
Ty, restricting team_name in [Lakers, Celtics]. It then updates
0, to ég, which includes both conditions. This early filtering prunes
most documents before applying age > 35, reducing LLM costs.

We establish a cost model to compute the expected cost under this
optimization. Ci denotes the expected cost of executing operation
0; on the i-th document in table T1, p; represents the conditional
probability of extracting attribute a after 6, and cl, corresponds to
the attribute extraction cost for the i-th document. The expected
cost of 02(T») is calculated in the same manner. The traditional
relational method pushes 6; to Ti, 6, to Tz and joins, so the expected
cost under the optimal order can be calculated as below:

|Th) |Th| |13 |13
Cost(01(T1) = 05(Ty)) = Y Ci +p1) ch+). Ch+pa Y chy (6)
i1 i1 i1 i1
As discussed above, DocDB’s optimal plan is to sort join and
filters together. Since the join can be converted into an IN filter on
either T or T,, DocDB establishes two cost models to determine the
optimal choice. Specifically, if we push 6; to Ty and transform the
join to filter on Tp(Plan @), the cost is estimated as below:

|7 |7 |T3)

Costwl(n)eezm))—zcwmzc +Zcz)

where Cé represents the optimal expected cost obtained by sorting
02 with join on the i-th document in T. Similarly, we compute the
cost that pushes 6, to T, and transforms the join to filter on T; (Plan
®@). As the selectivity of 8(IN) is low, the third term remains small.
Therefore, if a plan minimizes the first two terms, its overall cost is
likely lower, i.e., 1fZ|T1 C’ +p1 Zm ch < Zszl C’ +p2 ZlTZl

we choose Plan @, otherw1se we choose Plan @

Adaptive Join Ordering. DocDB dynamically orders multiple joins

by iteratively building a left-deep plan. At each stage, it executes
only the single, lowest-cost join, which it identifies by efficiently
estimating costs through IN-filter conversion.

3 DEMONSTRATION SCENARIOS

The demonstration scenarios target showcasing the key functional-
ity of our DocDB system: extracting structured tables under different
SQL statements with minimal LLM cost.

(1) Single Table Query. DocDB supports SQL statements with
SELECT, FROM and WHERE clauses for a single table. The user can
first upload document set and write an SQL-like query that specifies
some attributes and the combinations of filters. Then, DocDB con-
structs the two-level index, samples some documents, extracts at-
tribute values and collects query optimizer statistics. Subsequently,

Input Documents

Lm Ratio

GPT-03-mini

2. Operator-order optimization

(P-Fiela)—+(P.Career_duration)—(W.viewed)—(P.Lifespan) —(

< Query Execution Plan > doc-3

DocDB

Result: Statistic

Lifespan Field Birthplace
Doc-(D
Doc-@

Doc-@

Doc @

Philip Guston

Doc-@

Download Excel

Figure 2: A Running Example of DocDB

DocDB produces query plans to order the filters at a document by
document base. Figure 2 shows the details of our demonstration.
i). Dataset. The user can provide different types of documents. These
documents are typically unstructured or semi-structured. Specifi-
cally, the user can click the “plus” button to upload new documents
and previews the documents before uploading.

ii). Write SQL-like query. As shown in Figure 2 - (2) , the user can
first write a query with multiple filters. Then, she can describe each
attribute, which will be used as prompts for subsequent extraction.
The user interface allows for the selection of an LLM and a sam-
pling rate. Upon clicking START, DocDB first samples a subset of
documents at the specified rate. This sample is crucial for two pur-
poses: collecting statistics for the query optimizer and gathering
evidence for retrieval. The system then proceeds to extract and
analyze attributes based on its instance-specific query plans.

iii). Filter ordering for optimization. The user can clearly view the

optimal query plan in Figure 2 - 3 . For each document, DocDB
generates an expression tree from the WHERE clause filters. It then
uses collected statistics to recursively compute a priority score for
each node, which dictates the execution sequence during a post-
order traversal. This dynamic ordering, visualized by a color code
(e.g., purple before blue), ensures higher-priority operations run
first, with the final optimal execution order displayed to the user.

(2) Join Query. DocDB also allows the user to write a join query.
After reconfiguring settings and clicking on START, DocDB will au-
tomatically produce query plans and transform joins into filters
to further minimize the execution cost. The user can click on join
operation nodes (i.e., the corresponding non-leaf node) in Figure 2
- @ to explore the detailed join optimization process.

Result. In Figure 2 - @ , the interface provides a comprehensive
view of execution statistics. Key metrics such as extraction accu-
racy, total cost, and LLM calls are displayed, alongside a line chart
that contrasts the cumulative cost of the optimized plan with the
original order. Other visualizations break down the execution by
tracking the frequency and time of filter, join, and reorder opera-
tions, and showing the distribution of extracted document types.
The extracted attributes are presented in a structured table (Figure 2

5390

- (®). Users can click on any value to trace it back to its source, which
highlights the relevant text segment in the original document. The
entire table of extracted values can also be downloaded.

Pz ZenDB | Lotus | DocDB

Accuracy 0.43 0.45 0.45 0.63
Latency(s) 2.85 | 273 3.36 2.68
#-Token Cost 2610 | 2530 | 12480 | 2030

Table 1: Performance Comparison of Different Systems

We evaluate DocDB against three LLM-driven systems (PZ, ZenDB
and Lotus) using the LCR dataset, which contains 3,000 Australian
court cases. The comparison focuses on three key metrics: accuracy
(average precision), cost (tokens consumed per document), and
latency (execution time per document). As shown in Table 1, DocDB
outperforms all baseline systems across all three metrics.

ACKNOWLEDGMENTS

Chengliang Chai is supported by the NSF of China (62472031),
the National Key Research and Development Program of China
(2024YFC3308200), Beijing Nova Program, CCF-Baidu Open Fund
(CCF-Baidu202402), and Huawei. Yuhao Deng is supported by the
NSFC (624B2023) and the BIT Research and Innovation Promoting
Project (2024YCXZ004). Ye Yuan is supported by the Beijing Natu-
ral Science Foundation (L241010), the National Key Research and
Development Program of China (2022YFB2702100), and the NSFC
(61932004, 62225203, U21A20516). Guoren Wang is supported by
the NSFC (62427808, U2001211), and the Liaoning Revitalization
Talents Program (XLYC2204005). Lei Cao is supported by the NSF
(DBI-2327954) and Amazon Research Awards.

REFERENCES

[n.d.]. https://anonymous.4open.science/r/QUEST/Full_version.pdf

Chunwei Liu, Matthew Russo, and Michael J. et al. 2025. Palimpzest: Optimizing
Al-Powered Analytics with Declarative Query Processing. CIDR (2025).

Liana Patel and Siddharth Jha et al. 2024. LOTUS: Enabling Semantic Queries
with LLMs Over Tables of Unstructured and Structured Data. CoRR (2024).
Deng Zheye and Chan Chunkit et al. 2024. Text-tuple-table: Towards information
integration in text-to-table generation via global tuple extraction. EMNLP (2024).

=

https://anonymous.4open.science/r/QUEST/Full_version.pdf

	Abstract
	1 Introduction
	2 System Architecture
	2.1 User Queries
	2.2 Overview
	2.3 Stage 1: Index-based Attribute Extraction
	2.4 Stage 2: Query Optimization

	3 demonstration scenarios
	Acknowledgments
	References

