
DBPecker: A Graph-Based Compound Anomaly Diagnosis System
for Distributed RDBMSs

Qingliu Wu∗
Beijing University of Posts and

Telecommunications
wql@bupt.edu.cn

Qingfeng Xiang∗
Beijing University of Posts and

Telecommunications
xiangqingfeng@bupt.edu.cn

Yingxia Shao†
Beijing University of Posts and

Telecommunications
shaoyx@bupt.edu.cn

Qiyao Luo
Independent Researcher
sixsiebenuno@gmail.com

Quanqing Xu
Independent Researcher
xuquanqing@gmail.com

ABSTRACT
This demonstration introduces DBPecker, an integrated diagnostic
platform tailored for distributed relational database systems.
DBPecker leverages a graph-based anomaly modeling approach to
capture inter-node dependencies and effectively localize compound
anomalies, while a causality-aware metric prioritization module
automatically isolates critical performance indicators. By unifying
anomaly detection with a comprehensive root cause analysis
pipeline, the system facilitates rapid and precise diagnosis
in distributed database environments. Evaluated on a multi-
node OceanBase cluster, DBPecker not only accelerates the
identification of underlying anomalies but also substantially
improves operational reliability, offering practical insights and
actionable recommendations for real-world distributed database
management.

PVLDB Reference Format:
Qingliu Wu, Qingfeng Xiang, Yingxia Shao, Qiyao Luo, and Quanqing Xu.
DBPecker: A Graph-Based Compound Anomaly Diagnosis System for
Distributed RDBMSs. PVLDB, 18(12): 5383 - 5386, 2025.
doi:10.14778/3750601.3750677

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Micuks/DBPecker.

1 INTRODUCTION
Accurately identifying the root cause of an incident is important
to maintain the distributed database function normally in the
production environment, especially since anomalies often occur in
compounded ways. Compound anomalies in centralized database
systems refer to coordinated combinations of multiple fundamental
anomalies from OS-level or database-level that exist at the same
time, combine infrastructure-level (CPU/Memory) and database-
layer anomalies (excessive indexing), and create complex failure
∗Qingliu Wu and Qingfeng Xiang contributed equally to this paper.
†The corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750677

modes through multiple anomalies superimposed [2]. For instance,
a database node may simultaneously experience insufficient cache
capacity and I/O saturation, which together cause performance
degradation through their synergistic interaction. In distributed
database systems, the pattern of compound anomalies is even more
complex, potentially involving multiple types of failures across
various nodes [9].

Diagnosing compound anomaly in a distributed database
system is not an easy task. The proliferation of distributed
database system architectures has exponentially increased the
complexity of distributed system observability [7]. However,
current database diagnostic tools are either primarily designed
for centralized databases, such as DBSherlock [8], ADDM [1],
AutoMonitor [3], D-Bot [12], or only focus on a specific issue within
the whole diagnostic process, such as iSQUAD [4] for slow query
detection, DBCatcher [10] for anomaly detection. They exhibit
significant limitations when applied to the diagnosis of distributed
databases: 1) Failure of Compound Anomaly Diagnosis for
Distributed Databases. Current approaches analyze anomalies
in isolation, failing to address the complexity of multiple co-
occurring anomalies across different system layers (OS/database)
and nodes. The simultaneous occurrence of infrastructure-level
(CPU/Memory) and database-layer anomalies creates non-linear
interactions that existing holistic analysis methods cannot decouple.
This necessitates node-level metric correlation analysis combined
with cross-node dependency tracking to identify compound
failure patterns. 2) Labor-intensive Metrics Ranking of Root
Cause Analysis. While systems like DBSherlock [8] can detect
anomalies, they lack automated metric prioritization mechanisms
for root cause identification. The multi-node architecture of
distributed databases introduces a significantly larger number
of monitoring metrics compared to traditional single-node
environments. Database administrators must manually inspect
hundreds of correlated metrics and logs [11] through trial and error,
as current approaches provide neither causal priority ranking nor
interpretable metric influence quantification. This manual process
leads to prolonged diagnosis times (as long as hours per incident)
and inconsistent results.

To address the shortcomings of existing approaches, we argue
that an effective diagnostic tool should be capable of completing
the entire diagnostic pipeline, from anomaly detection to root cause
analysis, and should be adaptable to distributed environments.

5383

https://doi.org/10.14778/3750601.3750677
https://github.com/Micuks/DBPecker
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750677
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Figure 1: DBPecker system architecture for distributed
database anomaly diagnosis.

In this demonstration, we introduce DBPecker, which is capable
of comprehensively assisting DBAs in diagnosing distributed
databases. Specifically, it possesses the following technologies:

(1) Graph-Based Compound Anomaly Localization. Our
diagnosis system utilizes a graph-based anomaly modeling method
namedDistDiagnosis [6] that constructs compound anomaly graphs
from runtime metrics across cluster nodes. Our approach achieves
multi-level system observability by simultaneously capturing
inter-node dependencies through graph topology. It introduces
correlation-aware anomaly diagnosis using weighted PageRank
to quantify node influence, systematically identifying critical fault
propagation paths through the dual evaluation of topological impact
and anomaly probability distributions, generating prioritized
anomaly sequences.

(2) Causality-Aware Metric Prioritization. After anomaly
localization (determining affected nodes and anomaly types),
DBPecker performs root cause metric prioritization to help DBAs
better understand the reasons behind the anomalies. In this step,
we employ a causality-aware metric analysis method, referred to as
DBRooter. It leverages causal graph tomodel the metric dependency
of the current database and utilizes structural causal models
to identify the most critical anomalous metrics. By leveraging
DBRooter, DBAs can directly focus on the most important root
cause metrics of the current database, avoiding inefficient analysis
of numerous irrelevant metrics

In summary, DBPecker makes the following contributions:
• An end-to-end diagnostic framework that can effectively

identify compound anomalies in distributed relational
database systems.

• An efficient root cause analysis tool that assists DBAs in
analyzing the vast amount of monitoring metrics.

• A suite of auxiliary components that provide data collection,
anomaly simulation, and cluster metrics monitoring that
helps users analyze the current operational status of the
database.

2 SYSTEM ARCHITECTURE
DBPecker’s architecture comprises four specialized layers. The
Anomaly Graph Layer forms the analytical core, constructing
compound anomaly graphs that model metric relationships and

anomaly propagation patterns. This layer employs a distributed
diagnosis engine that processes metric streams using temporal
pattern recognition and feature analysis techniques. It performs
DistDiagnosis to diagnose compound anomalies and leverages
DBRooter to identify root cause metrics.

The Metric Layer handles real-time data refinement through
stream processing pipelines that filter, normalize, and transform
incoming metrics. This layer identifies counter metrics and
converts them into differential values through window-based
differentiation (𝑥𝑡 − 𝑥𝑡−Δ𝑡 ) to handle monotonically increasing
counters. It incorporates window-based temporal feature extraction
for pattern detection and statistical analysis, while maintaining
continuous model adaptation via exponential smoothing (𝛼 = 0.2)
to accommodate evolving system behaviors.

The Application Layer provides operational interfaces fea-
turing real-time cluster metric visualization, and interactive root
cause analysis with metric prioritization displays. It incorporates an
alert management system that triggers real-time notifications for
detected fluctuations, enabling administrators to monitor system
health and investigate issues through unified diagnostic dashboards.

The Data Sources Layer orchestrates a comprehensive data
lifecycle management pipeline, initiating with distributed metric
collection using SQL interfaces and monitoring tools like OBDiag,
Prometheus, etc. The pipeline progresses through temporal feature
extraction, identifying trend patterns, seasonal variations, and
statistical outliers through window-based analysis. The layer
implements automated curation of labeled datasets from both
operational telemetry and injected failure scenarios, enabling
incremental model updates with concept drift detection.

3 METHODOLOGY
3.1 Graph-Based Anomaly Localization
In our previous work [6], we introduce DistDiagnosis, a graph-
based approach for diagnosing compound anomalies in distributed
database systems. Let 𝐺 = (𝑉 , 𝐸,𝐴,𝑊 ) represent the compound
anomaly graph where 𝑉 = {𝑣𝑖 }𝑁𝑖=1 denotes the set of nodes
corresponding to database nodes, 𝐸 ⊆ 𝑉 × 𝑉 represents inter-
node relationships, 𝐴 = {𝑎𝑖 }𝑁𝑖=1 contains node attributes where
𝑎𝑖 ∈ [0, 1]𝐿 is the anomaly probability vector for node 𝑣𝑖 , and
𝑊 = {𝑤𝑖 𝑗 } defines edge weights that captures pairwise node
correlations.

In the compound anomaly graph, node attributes 𝑎𝑖 are derived
through multi-label classification using temporal metric patterns:

𝑎𝑙𝑖 = 𝑓XGBoost (𝜙 (𝑀𝑡
𝑖 ))

where 𝑀𝑡
𝑖
= {𝑚 (𝑖 )

1 , ...,𝑚
(𝑖 )
𝑑

} represents the 𝑑-dimensional metric
time series for node 𝑣𝑖 over window 𝑡 , 𝜙 denotes temporal feature
extraction, and 𝑎𝑙

𝑖
indicates the probability of anomaly type 𝑙 at node

𝑣𝑖 . Edge weight𝑤𝑖 𝑗 is calculated by the average Pearson correlation
across database nodes. For anomaly diagnosis, DistDiagnosis uses
a modified PageRank algorithm that weights correlations more
heavily. For node 𝑣𝑖 , its influence score 𝑝𝑖 is computed iteratively:

𝑝
(𝑘+1)
𝑖

=
1 − 𝑑

𝑁
+ 𝑑

∑︂
𝑗≠𝑖

𝑝
(𝑘 )
𝑗

· (𝑤𝑖 𝑗 )2,

5384



where 𝑑 is the damping factor and the squared weights (𝑤𝑖 𝑗 )2
amplify the effect of strong correlations while diminishing weak
ones.

The final anomaly score combines the influence and anomaly
probabilities with power transformations to enhance differentia-
tion:

𝑠𝑙𝑖 = 𝛽 · (𝑝𝑖 )𝛾1 · (𝑎𝑙𝑖 )
𝛾2

where 𝑝𝑖 is the node’s PageRank score, 𝑎𝑙
𝑖
is the probability of

anomaly type 𝑙 at node 𝑣𝑖 , 𝛽 is a scaling factor, and 𝛾1 and 𝛾2
are power exponents. The power transformations provide better
discrimination between scores, with a stronger emphasis on the
anomaly probability compared to the node importance.

The final output of DBPecker is a sequence of <node, anomaly>
pairs sorted by anomaly scores. This allows DBAs to identify
the most impactful anomalies and gain insights into the current
state of database operations. In cases where compound anomalies
occur, all types of anomalies across all affected nodes will be
displayed, enabling DBAs to understand all co-occurring anomalies
comprehensively.

3.2 Causality-Aware Metric Prioritization
After identifying the types of anomalies that occur in the database,
DBAs need to further analyze metrics to understand root causes and
recovery strategies. To reduce manual analysis workload, DBPecker
utilizes a metric prioritization technique, which is based on the
Structural Causal Model [5]. Traditional causal approaches leverage
the Dependency Graph to model the relationship across metrics.
However, there are several shortcomings in Dependency Graph.
First, it cannot explicitly represent the causal relationships between
nodes. Second, constructing a Dependency Graph with a large
number of metrics is time-consuming.

To handle the above issues, DBPecker employs a new metric
prioritization approach, named DBRooter. It constructs a directed
causal graph of distributed metrics. In this graph, the nodes
represent specific metrics on a database node, and the directed
edges represent causal relationships. Its construction process can
be completed in parallel across multiple nodes. To identify root
cause metrics in the distributed metric causal graph, DBPecker
leverages the Structural Causal Model, which provides a formal
way to model the causal dependencies between metrics, allowing
for a deep understanding of how changes in one metric can affect
others. Each node is associated with a structural equation that
describes how the value of the node is determined by its parent
nodes and possibly some exogenous (external) factors. For example,
if metric Y is influenced by its parent metric X and metric Z, the
structural equation of Y is written as:

𝑌 = 𝑓 (𝑋,𝑍, 𝜖𝑌 ),

where 𝑓 is a regression function and 𝜖𝑌 is an exogenous error term.
Finally, DBPecker identifies the metrics with the highest anomaly
scores as the root cause metrics through intervention identification.

4 DEMONSTRATION SCENARIOS
The demonstration highlights DBPecker’s capability to rapidly and
accurately localize compound anomalies, effectively pinpointing the
metrics most closely associated with the anomalies. This facilitates

Figure 2: Compound anomaly diagnosis workflow showing
anomaly injection controls, real-time metric correlations,
and root cause ranking visualization.

a data-driven diagnosis process, empowering DBAs to efficiently
target remediation efforts.

DBPecker is deployed on a three-node OceanBase(Community
Edition 4.2.5.1) test cluster. Benchmark workloads are generated
using industry-standard tools such as TPCC and Sysbench, thereby
replicating the dynamic load characteristics observed in real-world
distributed environments. Concurrently, system-level and database-
specific anomalies are methodically introduced via fault injection
tools such as Chaos Mesh.

4.1 Demonstration Scenario 1: Compound
Anomaly Localization

This demonstration showcases DBPecker’s diagnostic capabilities
for compound anomalies in distributed database environments. In
this scenario, demo attendees can select specific types of compound
anomalies occurring in the database and observe DBPecker’s
anomaly diagnosis results.

As shown in Figure 2, DBPecker accelerates the diagnostic
process by automatically distinguishing between primary anomaly
sources and secondary symptom nodes through its weighted
PageRank analysis. This capability enables database administrators
to quickly understand anomaly patterns and recognize abnormal
nodes.

This demonstration emphasizes how DBPecker’s graph-based
approach handles the complexity of distributed systems where
symptoms often manifest differently than causes, significantly
reducing the time required for anomaly identification.

5385



Figure 3: Metric prioritization dashboard displaying tempo-
ral outlier scores, causal influence networks, and permuta-
tion importance rankings.

4.2 Demonstration Scenario 2: Metric
Prioritization

This demonstration showcases DBPecker’s metric analysis capa-
bilities through its DBRooter component. After identifying the
affected nodes and anomaly types, we can interact with the "Metric
Analysis" module to investigate the specific metrics contributing
to the observed anomalies.

As shown in Figure 3, the demonstration interface contains
two primary sections: metric ranking by DBRooter and LLM-
generated suggestions. This summary articulates the relationships
between high-rankingmetrics and provides actionable optimization
recommendations tailored to the specific situation. Furthermore, as
shown in Figure 4, DBPecker will display the critical metric change
curves on the monitoring dashboard to further assist DBAs in root
cause analysis. This demonstration highlights DBPecker’s ability to
bridge the gap between anomaly detection and practical resolution
steps, significantly reducing the time required to repair distributed
database incidents.

4.3 Demonstration Scenario 3: Auxility
Functions

This demonstration illustrates the system’s auxiliary capabilities,
which integrate a comprehensive performance monitoring frame-
work with systematic data collection processes. The platform
consolidates metrics from both cluster-level and node-specific
observations, enabling rigorous analysis of operational trends and
precise performance diagnostics.

In addition, the system encompasses functionalities for training
data curation and dataset management, ensuring the balanced
collection of operational and anomaly datasets for continuous
calibration of diagnostic methodologies. By fostering dataset
management, these auxiliary functions enhance the overall
resilience and strategic management of distributed database
systems.

Figure 4: The ‘Nodemetrics panel’ displays real-time resource
usage. The lower section shows tools for the pipeline,
including data collection, training, and viewing statistics.

5 CONCLUSION
This paper introduces DBPecker, an end-to-end distributed database
diagnosis platform. It effectively identifies compound anomalies,
provides analysis of root cause metrics, and offers comprehensive
diagnostic management features. This demonstration highlights
DBPecker’s effectiveness in supporting anomaly diagnosis in
distributed databases.

ACKNOWLEDGMENTS
This work is supported by the National Science and Technology
Major Project (No. 2022ZD0116315), National Natural Science
Foundation of China (Nos. 62272054, 62192784), Beijing Nova Pro-
gram (No. 20230484319), and State Key Laboratory of Multimedia
Information Processing Open Fund (No. SKLMIP-KF-2025-07).

REFERENCES
[1] Karl Dias et al. 2005. Automatic Performance Diagnosis and Tuning in Oracle..

In CIdR. 84–94.
[2] Shiyue Huang et al. 2023. DBPA: A Benchmark for Transactional Database

Performance Anomalies. Proceedings of the ACM on Management of Data (2023),
1–26.

[3] Lianyuan Jin et al. 2021. AI-based Database Performance Diagnosis. Journal of
Software 32, 3 (2021).

[4] Minghua Ma et al. 2020. Diagnosing root causes of intermittent slow queries in
cloud databases. Proceedings of the VLDB Endowment 13, 8 (2020), 1176–1189.

[5] Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.).
[6] Qingfeng Xiang et al. 2025. Distributed Database Diagnosis Method for

Compound Anomalies. Journal of Software 36, 3 (2025), 1022.
[7] Zhenkun Yang et al. 2022. OceanBase: a 707 million tpmC distributed relational

database system. Proc. VLDB Endow. 15, 12 (2022), 3385–3397.
[8] Dong Young Yoon et al. 2016. DBSherlock: A Performance Diagnostic Tool for

Transactional Databases. In Proceedings of the 2016 International Conference on
Management of Data. 1599–1614.

[9] Chunxi Zhang et al. 2023. Scalable and quantitative contention generation for
performance evaluation on OLTP databases. Frontiers of Computer Science 17, 2
(2023), 172202.

[10] Guangyu Zhang et al. 2023. Dbcatcher: A cloud database online anomaly
detection system based on indicator correlation. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 1126–1139.

[11] Huan Zhou et al. 2023. Scalable and adaptive log manager in distributed systems.
Frontiers of Computer Science 17, 2 (2023), 172205.

[12] Xuanhe Zhou et al. 2024. D-Bot: Database Diagnosis System using Large
Language Models. Proceedings of the VLDB Endowment 17, 10 (2024), 2514–2527.

5386


	Abstract
	1 Introduction
	2 System Architecture
	3 Methodology
	3.1 Graph-Based Anomaly Localization
	3.2 Causality-Aware Metric Prioritization

	4 Demonstration Scenarios
	4.1 Demonstration Scenario 1: Compound Anomaly Localization
	4.2 Demonstration Scenario 2: Metric Prioritization
	4.3 Demonstration Scenario 3: Auxility Functions

	5 Conclusion
	Acknowledgments
	References

