
Demonstrating Matelda for Multi-Table Error Detection
Fatemeh Ahmadi
TU Berlin & BIFOLD
Berlin, Germany

f.ahmadi@tu-berlin.de

Julian Paulußen
TU Berlin & BIFOLD
Berlin, Germany

paulussen@tu-berlin.de

Ziawasch Abedjan
TU Berlin & BIFOLD
Berlin, Germany

abedjan@tu-berlin.de

ABSTRACT
Real-world datasets are often fragmented across multiple heteroge-
neous tables, managed by different teams or organizations. Ensuring
data quality in such environments is challenging, as traditional er-
ror detection tools typically operate on isolated tables and overlook
cross-table relationships. To address this gap, we investigate how
cleaning multiple tables simultaneously, combined with structured
user collaboration, can reduce annotation effort and enhance the
effectiveness and efficiency of error detection.

We present Matelda, an interactive system for multi-table error
detection that combines automated error detection with human-in-
the-loop refinement. Matelda guides users through Inspection &
Action, allowing them to explore system-generated insights, refine
decisions, and annotate data with contextual support. It organizes
tables using domain-based and quality-based folding and leverages
semi-supervised learning to propagate labels across related tables
efficiently. Our demonstration showcases Matelda’s capabilities for
collaborative error detection and resolution by leveraging shared
knowledge, contextual similarity, and structured user interactions
across multiple tables.

PVLDB Reference Format:
Fatemeh Ahmadi, Julian Paulußen, and Ziawasch Abedjan. Demonstrating
Matelda for Multi-Table Error Detection. PVLDB, 18(12): 5379 - 5382, 2025.
doi:10.14778/3750601.3750676

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/D2IP-TUB/Matelda-Demo.

1 INTRODUCTION
With the increasing reliance on data-driven artificial intelligence
systems, there is a growing need for data quality assurance. One
of the research branches that deals with the improvement of data
quality is data cleaning in terms of finding errors and correcting
them [1].

As of today, there is a large body of research on practical tools for
identifying and fixing errors [1]. In particular there are approaches
for rule-based cleaning [4, 11], unsupervised approaches based
on distributional patterns [10], and learning-based systems that
require labeled training data [5, 7].

A limiting factor of many of the previous systems is that they
are designed for a well-defined setup of cleaning a single relational

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750676

table. Yet, in practice, multiple datasets or even entire databases are
subject to data quality issues. In such multi-table scenarios, users
must perform the typical cleaning tasks, such as writing rules or
providing annotations for each table individually. This results in
unnecessary repetition of effort, as users might need to perform
similar tasks across tables, while the insights they generate remain
isolated and are not effectively transferred to related tables [2].

Consider a scenario where a data steward is preparing census
housing data for quality assessment. The datasets include hundreds
of different tables that are separated at district-level and contain
statistics from the Census, such as accommodation type and tenure.
Although these tables describe related aspects of the same districts,
they may differ in structure, terminology, and coverage. Some rep-
resent districts by name, others by code. Some treat missing values
differently or categorize household types inconsistently. When the
stewards attempts to curate the datasets, they have to annotate
or define quality rules for each table, even when similar patterns
or semantics might appear across datasets. This task can become
even more cumbersome, as the number of tables grows, for exam-
ple, to include historical census data, releases from other cities or
countries, or data maintained by different agencies. Annotation
without sufficient context is particularly challenging, especially
when supporting evidence or signals reside in other tables. At the
same time, many quality issues might be common across tables
and annotations could be reused. Without the appropriate system
support, users must manually rediscover these opportunities from
the fragmented knowledge or will be subject to redundant efforts.

In this demonstration, we present Matelda, a framework for
multi-table error detection that benefits from knowledge sharing
across related datasets. Matelda combines automated detection with
interactive user guidance, enabling users to inspect data, validate
system suggestions, and annotate values with contextual support.
The system helps users allocate labeling effort more efficiently
and leverage inter-table relationships to support annotation tasks.
Matelda introduces a workflow that organizes tables based on their
semantic and quality-based similarities. A user-in-the-loop interac-
tion model ensures that human expertise is effectively integrated
into the error detection process. Through Inspection & Action lay-
ers, users explore raw data and system-generated signals, provide
targeted annotations, and dynamically adjust their labeling and
grouping strategy to balance effort and effectiveness.

During the demonstration, users can explore both synthetic and
real-world datasets containing different types of errors. This allows
them to experience the difference in annotation effort and system
performance across various datasets.

As part of the demonstration, attendees will be invited to actively
engage with Matelda through a responsive, web-based interface,
accessible both via demo stations and on personal devices, for ex-
ample by scanning a QR code with their phone. Users step into the

5379

https://doi.org/10.14778/3750601.3750676
https://github.com/D2IP-TUB/Matelda-Demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750676
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Figure 1: Overview of the Matelda pipeline and user interaction components.

role of a data steward and interactively label values across multi-
ple tables within the aforementioned datasets. Matelda presents
system-generated suggestions, which users can accept, reject, or
refine, with each decision triggering updates across semantically or
structurally related data points. This hands-on experience allows
users to observe how annotations propagate across datasets, how
context from one table supports labeling in another, and how their
feedback, such as refining table groupings or annotation decisions,
can influence the overall detection results. To emphasize Matelda’s
advantages, the demo also includes a baseline comparison: users can
try a traditional one-table-at-a-time error detection workflow and
experience the difference in annotation efficiency and multi-table
context awareness.

2 SYSTEM OVERVIEW
In this demonstration, we highlight the main features of our multi-
table error detection systemMatelda. Matelda combines automated
techniques with interactive user guidance. It leverages domain-
based and quality-based folding to organize table fragments and
incorporates semi-supervised learning to propagate user annotations
and improve detection quality across related tables.

To support user-driven exploration and refinement, Matelda
introduces structured interaction components based on two com-
plementary modes: Inspection and Action. These modes guide how
users engage with the system, explore system outputs, and itera-
tively refine results.

Figure 1 presents an overview of Matelda’s architecture, orga-
nized into four aligned conceptual layers: Action Layer: An inter-
face for user-driven interventions to guide the system. Inspection
Layer: System-generated views on internal components to support
user interpretation. Process Layer: The five key pipeline stages.
Data Layer: Flow of data from raw tables to detected errors.

These layers facilitate to express Matelda’s engaging approach
for semi-supervised cleaning. In particular, we can highlight the
relationship between system produced inspection elements and
user-driven actions. We now describe this interaction and the sys-
tem pipeline in more detail.

Matelda’s pipeline consists of five main stages, each tied to the
possible Inspection & Action interfaces:

Step 1: Dataset Initialization and Budget Allocation. Users be-
gin by selecting a dataset, specifying a labeling budget, and selecting
the base error detectors. They may also resume from a previously
saved session. The prototype is able to save and reload sessions
without rerunning the intermediate steps.
Step 2: Domain-Based Folding. Matelda groups tables by seman-
tic similarity to organize tables into similar domain folds.
Inspection: Users can explore domain folds, table relationships, and
drill-downs into specific table content.
Action: Users can intervene and refine folds by merging or splitting
them and relocating tables as deemed appropriate.
Step 3: Quality-Based Folding. Within each domain, Matelda
clusters cell values based on their quality characteristics that are de-
livered via base-detectors. These detectors are based on heuristics,
such as outlier detection, inter-column relationships, and general
purpose pattern violations. For more details we refer to the under-
lying full paper [2].
Inspection: Users can again investigate the fine-grained folds to
validate their cohesiveness.
Action: Users can adjust folds to balance labeling effort and detec-
tion granularity.
Step 4: Annotation. Matelda selects representative cell values
from each fold for labeling.
Inspection: Users can view detector outputs, metadata, and confi-
dence scores to judge the proposed cells.
Action: Users can annotate values or apply bulk labels. Further the
users can turn-off individual detectors that serve as features at will.
Step 5: Error Detection.Matelda detects and highlights erroneous
cells based on user feedback.
Inspection: Users examine predicted errors and their confidence.
Action: Users can refine annotations and preserve system state.

3 DEMONSTRATION
During the demonstration, we guide users through the individual
steps of our pipeline as presented in the previous section. We built
a user interface based on the Streamlit library 1 that enables both
web-based interaction on desktops as well as phones 2.

1https://streamlit.io
2Matelda is the first cleaning tool that lets you swipe tables on your phone.

5380



Table 1: Dataset characteristics. The error types are missing
value (MV), typo (T), formatting issue (FI), violated attribute
dependency (VAD) and numeric outliers (NO).

Name Number of Size Error Rate Error Types
Tables (#Cells) (cells)

Quintet 5 199772 9% MV, T, FI, VAD
DGov-NO 96 874570 2% NO
DGov-Typo 96 874570 9% FI & T
DGov-RV 96 874570 8% VAD
WDC 100 64286 unknown unknown

Figure 2: Step 2 - Domain-Based Folding

To illustrate the user interface and the end-to-end workflow,
we will walk through an example lake constructed from multiple
tables sourced from Kaggle 3 and spanning two domains: Chess
and Pokémon. The kaggle datasets come from multiple platforms
and sources for each domain, for instance, the chess datasets come
from Lichess and Chess.com. Further, users will be able to interact
with a variety of datasets, including synthesized examples that
exhibit different types of data quality issues, such as semantic and
syntactic inconsistencies, as well as real-world data. Table 1 shows
the characteristics of these datasets. With the diverse set of datasets,
we showcase how the advantages of a multi-table approach varies
depending on the nature of the underlying errors.

3.1 Demo Setup
We guide users through Matelda’s key interaction steps.
Step 1: Initializations. The user selects the dataset or a previously
preformed pipeline. They also specify a labeling budget which can
be refined later. Also, base error detectors can be selected.
3https://www.kaggle.com/datasets

Figure 3: Step 3 - Quality-Based Folding

Step 2: Domain-Based Folding. Matelda automatically groups
tables based on their semantic content. Figure 2 shows the user
interface for this step. In our toy example, as Figure 2 shows, the
system produces three folds: two corresponding to Chess-related
tables and one containing the Pokémon-related tables. If needed,
the user can refine the groupings by merging or splitting folds, or by
reassigning tables across folds to improve semantic consistency. For
example, as shown in Figure 2, the user moves the table Lichess_2
into the Chess-A fold, resulting in two semantically coherent folds.
Step 3: Quality-Based Folding.Within each domain fold, Matelda
clusters cell values based on quality-related signals, such as format-
ting inconsistencies and violations of functional dependencies. The
user explores these quality-based folds and inspects representative
values as well as the context. Figure 3 shows the information that
the user can see for each cell in each cell fold. They can also re-
fine the folds and turn individual detectors on or off. For example,
consider two Lichess tables within the Chess domain. The system
groups cells from the Event attribute on both tables marked by the
same detectors. Suppose we observe two groups: Group 1 includes
“Rated Blitz game” and “Rated Bullet tournament”; Group 2 includes
“Rated Classic game” and “Rated Classic tournament”. No detectors
flag the values in Group 1, whereas those in Group 2 are marked
by the outlier detection tool.
Step 4: Cross-Table Annotation.Matelda selects representative
cell values for labeling based on quality-based folds. The user ex-
plores values alongsidemetadata such as column descriptions, value
frequency, and quality signals. They can also examine neighboring
values within a fold and compare similar cell values across tables
to identify shared patterns. For example, in Figure 4, the selected
cell “Rated Classic game” is marked by outlier detectors. However,
without looking into the other table from Lichess, the user would
not be able to easily detect that this cell is erroneous and the value
should be “Rated Classical game”. Based on this context, the user
labels representative values or applies bulk annotations to similar
cells within and across tables. In this case, the label will also be
propagated to “Rated Classic tournament” via the system’s propa-
gation mechanisms, as both are in the same quality fold.
Step 5: Error Detection. The system trains classifiers based on the
user’s annotations and predicts whether cell values are erroneous.
The user reviews the predicted errors along with system confidence
scores and evaluation scores. The user can compare the results with
similar pipelines on the same dataset and saves their progress for
continued analysis.

5381

https://www.kaggle.com/datasets


Figure 4: Step 4 - Context-Aware Annotation

Figure 5: Step 5 - Error Detection Results on a Mobile Screen

Outcome: This demonstration scenario highlights how Matelda
supports users in navigating the complexity of annotation in multi-
table settings. By combining semantic domain grouping, quality-
based folding, and interactive refinements, users can efficiently an-
notate related tables while leveraging cross-table patterns. Unlike
prior systems, Matelda offers structured interactions that reduce
redundancy and enhance annotation confidence.

3.2 Accessibility and Engagement
Matelda is implemented as a responsive web application, supporting
both desktop and mobile devices. Figure 5 shows that the interface
adapts to different screen sizes, ensuring that users can explore
folds, inspect metadata, and annotate values across platforms. This
flexibility enables both casual inspection on-the-go and in-depth
analysis in desktop environments.

4 RELATEDWORK
There have been several prior works on data cleaning that have
been demonstrated [3, 4, 7, 9, 11]. The primary objective of these
demonstrations was to showcase how a system can interactively
clean a single table with user assistance. While our work is inspired
by the example-driven approaches [6, 8], the focus is on multi-table

data cleaning, which introduces different challenges and require-
ments. In single-table setting, users need to be familiar with the
context of the provided table to be able to provide rules [4, 9],
validate them [3], or annotate examples [7]. Our demonstration
is innovative in the sense that it addresses error detection in a
multi-table scenario. it is based on our recently published paper [2]
and includes a wide range of interaction options tailored to the
new setup and algorithm as described in the previous section. It
enables navigation across tables and inspection and manipulation
of annotation sharing for semi-supervised cleaning.

ACKNOWLEDGMENTS
This project has been supported by the German Research Founda-
tion (DFG) under grant agreement 387872445.

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? Proceedings of
the VLDB Endowment (PVLDB) (2016).

[2] Fatemeh Ahmadi, Marc Speckmann, Malte F. Kuhlmann, and Ziawasch Abedjan.
2025. MaTElDa: Multi-Table Error Detection. In Proceedings of the International
Conference on Extending Database Technology (EDBT).

[3] Xu Chu, Mourad Ouzzani, John Morcos, Ihab F. Ilyas, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: Reliable Data Cleaning with Knowledge Bases and
Crowdsourcing. Proceedings of the VLDB Endowment (PVLDB) (2015).

[4] Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-Arnulfo
Quiané-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A Generalized Data Cleaning
System. Proceedings of the VLDB Endowment (PVLDB) (2013).

[5] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD).

[6] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-
rection via a Unified Context Representation and Transfer Learning. Proceedings
of the VLDB Endowment (PVLDB) (2020).

[7] Mohammad Mahdavi and Ziawasch Abedjan. 2021. Semi-Supervised Data Clean-
ing with Raha and Baran. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR).

[8] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[9] Sebastian Schelter, Felix Bießmann, Dustin Lange, TammoRukat, Philipp Schmidt,
Stephan Seufert, Pierre Brunelle, and Andrey Taptunov. 2019. Unit Testing Data
with Deequ. In Proceedings of the International Conference on Management of
Data (SIGMOD).

[10] PeiWang and Yeye He. 2019. Uni-Detect: A Unified Approach to Automated Error
Detection in Tables. In Proceedings of the International Conference on Management
of Data (SIGMOD).

[11] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, and Mourad Ouzzani.
2010. GDR: a system for guided data repair. In Proceedings of the International
Conference on Management of Data (SIGMOD).

5382


	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	3.1 Demo Setup
	3.2 Accessibility and Engagement

	4 Related Work
	Acknowledgments
	References

