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ABSTRACT

Modern data-driven systems often rely on complex pipelines to
process and transform data for downstream machine learning (ML)
tasks. Extracting these pipelines and understanding their struc-
ture is critical for ensuring transparency, performance optimiza-
tion, and maintainability, especially in large-scale projects. In this
work, we introduce a novel system, APEX-DAG (Automating Pipeline
EXtraction with Dataflow, Static Code Analysis, and Graph Atten-
tion Networks), which automates the extraction of data pipelines
from computational notebooks or scripts. Unlike execution-based
methods, APEX-DAG leverages static code analysis to identify the
dataflow, transformations, and dependencies within ML workflows
without executing the code or the need to alter the code. Further,
after an initial training phase, our system can identify pipelines
that built with previously unseen libraries.
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1 INTRODUCTION

Machine learning (ML) pipelines in production are complex, of-
ten undocumented, and require automation for understanding and
reuse [21]. This lack of documentation complicates compliance, par-
ticularly in regulated domains like finance and healthcare [15]. Data
experts frequently face a manual and error-prone process to infer
pipeline structures and dependencies [16]. For instance, tracking
lineage in a cloud-based ecosystem with diverse technologies, such
as ETL pipelines, Python-based models in Vertex Al [1], and legacy
Java systems, requires significant efforts. Provenance tracking is
especially challenging because different tools and languages use
varying constructs for the same operations.

Recent approaches have focused on automating the tasks of
provenance tracking and pipeline extraction [9, 11, 14, 17, 18, 20].
Yet, existing approaches either rely on code execution to infer code
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Example output of APEX-DAG %

[1] import polars ag pl
from sklearn.model se import train_test_split /
from_sklearn.ensemble |import Ran tClassifier '
fron sklearn.metrics import accuracy_score

new module!]
file_path = "d —_—

df = pl.stan_csv(file_path)

environment

data import
[2]
data transform

model eval

.drop("salary")
.drop_nulls()
).collect()

model train

X = df.drop("purchased").to_pandas()
y = df["purchased"].to_pandas()

X_train, X_test,|y_train, y_test = train_test_split(X, y, test_size=e.2, random_state=42)

Figure 1: Annotated ML workflow with Polars and
scikit-learn functions via APEX-DAG

semantics or they are limited to a set of predefined library opera-
tions. Code execution is computationally expensive and infeasible
at scale [8, 11]. Additionally, due to the dynamic nature of program-
ming languages like Python, solving the problem of automating
data lineage solely with rule-based analysis is insufficient [18]. For
example, consider Figure 1. Existing approaches such as Vamsa [14]
and Geyser [18], which is bound to its predefined knowledge base,
would not be able to track the provenance in this program because
the employed libraries are not documented within their systems, as
Polars is a newer dataframe library. Such approaches would need
to continuously adapt their KB with newly developed libraries. To
overcome this limitation, we propose APEX-DAG, which is indepen-
dent of specific versions or kinds of data and ML libraries, allowing
it to generalize to unseen libraries without requiring manual up-
dates.

In this work, we demonstrate APEX-DAG, a system designed to
automatically extract data pipelines and provenance information
from code, that enables the understanding of data transformations
and dependencies within these pipelines. Our system does not
need to alter or execute the code and does not rely on apriori
defined KB or rules. To generalize across many different pipelines
and languages, APEX-DAG abstracts from the original code of a
program to its language-independent abstract syntax trees that are
then mapped to a labeled dataflow graph (DFG). This is done in
a two-step learning process. First, a self-supervised pre-training
step learns the structure of a dataflow graph representation of ML
pipelines. We pretrain a graph attention network (GAT) on three
tasks on a DFG: (1) edge existence, (2) edge type prediction, and (3)
node type classification.


https://doi.org/10.14778/3750601.3750675
https://github.com/S-Eggers/APEX-DAG
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750675
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Then a supervised fine-tuning approach learns the abstract role
of a DFG node and edge by mapping each node to relevant lineage
elements, such as dataset, data transformation function, training
and others. The lightweight design of APEX-DAG ensures scalability,
making it suitable for large code repositories and environments
with thousands of ML workflows. In this demonstration, we present
APEX-DAG and the effectiveness of its training process:

(1) We show the training process of APEX-DAG, which includes
dataflow extraction from ML workflow notebooks, pre-
training the GAT in a self-supervised manner, and fine-
tuning the GAT. In particular, it will show how static code
analysis is capable to capture the semantics of code pipelines
in a step-wise process

(2) We show and explain the features of APEX-DAG, particularly

how it helps when building a complex machine learning

pipeline in a Jupyter Notebook, and highlight how it can un-
derstand new, previously unknown libraries and functions
that serve data science tasks.

We enable participants to directly interact with APEX-DAG

by providing our Python library and a fine-tuned model as

downloadable artifacts that can be used via Jupyter note-
books and VS code.

2 RELATED WORK

Data lineage research can be categorized into the traditional view
of dataset lineage and an emerging subtopic that focuses on ML
pipeline lineage, which is directly relevant to this work. Since most
ML pipeline lineage systems extract pipelines from ML code, we
refer to this process as pipeline extraction.

2.1 Data Lineage

Data lineage, also referred to as provenance, involves tracking
the origin, transformations, and final destination of datasets [12].
It is divided into two categories: The first focuses on the origin
of datasets relative to a specific output, known as where-lineage.
The second investigates the transformations applied to an input to
produce specific outputs, referred to as how-lineage [5].
Determining data provenance within ML pipelines first requires
the extraction of the pipeline [9-11, 14, 18]. Depending on the
goal of the system, either coarse-grained or fine-grained lineage
is derived in a subsequent step. Extracting coarse-grained lineage
requires identifying the pipeline. In contrast, detecting fine-grained
lineage in ML pipelines requires replaying or executing the pipeline
also [18]. Various systems rely on a fixed set of libraries to accom-
plish this task [9-11, 13, 19]. An alternative approach, such as that
proposed by Vamsa [14], involves annotation. Vamsa, designed for
Python scripts, analyzes abstract syntax trees (ASTs) and generates
workflow graphs. These graphs are annotated using a knowledge
base and subsequently utilized by a provenance tracker to extract
lineage information. However, while Vamsa avoids reliance on a
fixed set of libraries, it remains limited by the contents of its knowl-
edge base. Additionally, it cannot handle complex dataflows like
loops or conditional execution of a pipeline. The subsequent sys-
tem, Geyser [18], extends the KB annotation approach to provide
fine-grained lineage by additionally extracting dynamic lineage
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Figure 2: APEX-DAG system overview.

information. While operating on the same data structures, the sys-
tem executes the pipeline and injects code into various parts of the
pipeline to capture dynamic provenance information. Still, Geyser
is limited by the extension of the KB. Another approach involves
pipeline execution to identify data frame objects [22]. Although the
primary goal of this work is not lineage extraction, it recommends
pipelines or related tables using data lakes in a notebook envi-
ronment. Nevertheless, this implementation is limited to pandas.
KGLiDS semantically abstracts pipelines using static code analy-
sis [11]. It operates on an AST to store the code and data flow for
each statement corresponding to a variable. However, it relies on
predefined operations, such as pandas.read_csv, to extract datasets.
Our approach does not rely on predefined libraries or knowledge
bases.

2.2 Pipeline Debugging and Understanding

Pipeline debugging and understanding depend on knowing where
to locate the actual pipeline. This requires the step of extracting
the pipeline itself. mlinspect is a tool designed to diagnose and
address data distribution bugs and bias issues in machine learning
pipelines [9], among other capabilities, the system captures dataflow
and lineage during execution. However, executing a large set of
pipelines, which might also involve training or fine-tuning large
language models, is computationally expensive and thus infeasible.
Thus, we argue that static code analysis methods are preferable,
especially when dealing with a large and heterogeneous codebase.
In a subsequent paper, the authors leverage dataflow tracking to
automatically identify issues such as data leakage or unnormalized
features in ML pipelines [20]. Notably, they avoid executing the
pipeline wherever possible. Nevertheless, their approach relies on
mlinspect to extract pipeline artifacts and lineage. Our approach
can be a useful tool for supporting pipeline debugging.

3 SYSTEM OVERVIEW

Figure 2 depicts the process of lineage tracing inside a given piece
of code by APEX-DAG. APEX-DAG comprises three main components:
@ Translator, @ Detector & Estimator , and @) Annotator:

(1) Translator: Code structures vary significantly across pro-
gramming languages, making it challenging to extract a
unified representation suitable for neural network pro-
cessing. The Translator addresses this by first converting
the program into an abstract syntax tree (AST) and then
into a dataflow graph (DFG). The DFG is further enriched
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Figure 3: Example of a mapping between input code, the corresponding DFG and the DFG labelled by the detector and estimator.

with codeflow elements for pre-training, while variable and
method names are encoded.

(2) Detector & Estimator: Once the DFG is constructed, it
must be interpreted in the context of data or ML workflows.
The Detector & Estimator processes the DFG to extract
relevant structural and semantic features, enabling a graph
attention network (GAT) to classify nodes and edges into
lineage-relevant elements. This step ensures that lineage
information is captured and structured appropriately.

(3) Annotator: Making lineage information accessible within
the code environment is crucial for usability. The Anno-
tator, implemented as a Jupyter plugin, visualizes lineage
insights live inside Jupyter Notebooks. This interactive rep-
resentation aids in pipeline development and debugging.

3.1 Translator

The input to the system can be code snippet, e.g., as a Jupyter
Notebook. The translator processes the input by tokenizing all
variable, method, and attribute names (@) and converting the code
into an abstract syntax tree (AST) via static code analysis (e) For
the demo, we use Python’s built-in ast module, which we in time
update to the TreeSitter library. Both, the AST and the tokenized
names are programming language independent.

In the subsequent step, the translator traverses the AST to gen-
erate an annotated dataflow graph (aDFG), denoted as a directed
multi-graph G = (N, E), where N refers to the nodes and E to the
edges. The nodes can be any code elements, such as variables, func-
tions, and control flow elements inside the code. The relevant ones
for tracing lineage are the variables and so-called intermediates,
that describe results of cascaded function calls. Each edge from
E depicts the estimated flow of data objects between two nodes
in N. Since, we rely solely on static code analysis to generate the
DFG, this graph is an estimation of the actual dataflow. We further
categorize the edges into different types: (1) Caller, (2) Input, (3)
Omitted, (4) Branch, (5) Loop, and (6) Function Call.

The “Function Call” edge type is introduced only for recursive
functions; otherwise, function calls are replaced by the dataflow
within the function’s context. To handle operations involving branches
and loops, we design APEX-DAG to be scope and block-aware. Note
that functions and control-flow constructs, such as loops, have

scopes. The translator is designed to maintain the state with re-
spect to the individual contexts. Each context is either linked to a
parent context or to the module context, which exists exactly once
per script. Contexts can also be merged, such as when replacing
function calls with actual dataflow or when processing branches
and loops.

After generating the dataflow graph and tokenizing function
names, the translator encodes this graph. The second box in Figure 3
shows one such result for the running example of this paper. Note
that the nodes and edges are colored according to the predefined
general types. This result is obtained without any supervision and
code execution.

3.2 Detector & Estimator

The detector & estimator component of the system (@) uses a
graph attention network (GAT) (@) that leverages node structure
and edge embeddings. This enables the network to learn from the
neighborhood of nodes and the structure surrounding each node, as
well as from method names. We design a custom forward pass that
emphasizes edges by concatenating the node embeddings, Hy,,4es,
with the average edge embeddings, Hegges ©):

Ne
Hconcat = concat (Hnodes: Nie Z He((;)ges)
i=1

Combining node and edge embeddings is crucial for inferring calls
to libraries that may not be included in the training set. While the
node embedding encode specifics about a variable or an intemediate,
the edge embedding lets us reason about the usage of the variables,
independent of the language and variable name. For instance, the
APIs of Pandas and Polars are similar in their approach to reading
a dataframe [3, 4]. This can be captured by the edge embedding.

The GAT is trained to classify nodes into different pipeline com-
ponents, such as datasets, transformations, and exploratory data
analysis parts, while also predicting edges in the graph. Additionally,
the GAT addresses a weighting task, predicting how many tuples
in a dataset are affected by an operation in the DFG or whether
any rows are impacted. This approach results in a network capa-
ble of filtering out non-pipeline-related nodes and estimating the
number of tuples affected by specific operations. This estimation
supports data practitioners in debugging specific operations within
large-scale codebases and emphasizes important transformations
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for compliance purposes. The filtered and weighted DFG as shown
in the third box of Figure 3 serves as input for the annotator part.
Note, that the colors encode lineage-relevant node and edge types.

3.3 Annotator

The generated dataflow graph also contains references to the origi-
nal code fragment locations. The annotator uses these references
to: a) highlight the relevant parts of the code (@) referring to the
different pipeline components, b) and maps it onto the input code.
For a visualization of the highlighted code see Figure 1.

The results of APEX-DAG can be utilized in various ML life cycle
management tasks, such as pipeline generation, optimization, or
code refactoring. We implemented the system in Python, and the
code is available on GitHub'. For pre-training the GAT, we created
a dataset of 100.000 aDFGs, along with a smaller, labeled fine-tuning
dataset. The labels are being obtained through a manual effort that
is assisted through a paid LLM-instruct APIL The label taxonomy is
based on the taxonomy of the Code4ML dataset [7]. We collected
scripts and code from various Kaggle [2] competitions and cleaned
and filtered the JetBrains notebook dataset [6]. Both datasets will
be published along the code once the labeling process is finished.

4 DEMONSTRATION

In this demonstration, we will showcase APEX-DAG and its appli-
cations. The first part of the demo focuses on interacting with
APEX-DAG directly. To highlight APEX-DAG’s capabilities, we ini-
tially employ a fully trained version of the system. The model and
the corresponding library can also be downloaded from our github
page 1.

Linage Visualization: The presenter will first develop a simple
data science workflow for a simple pipeline use case, consisting
multiple transformation steps on a Polars dataframe. Simultane-
ously, the file watcher of APEX-DAG will monitor the notebook for
changes and execute APEX-DAG translator-annotator pipeline when-
ever a modification is detected. The generated linage DAG will be
dynamically visualized as can be seen in Figure 3. The participants
are encouraged to create their own pipelines to see how APEX-DAG
adapts.

Generalized Linage Detection: After completing the workflow
development and observing APEX-DAG’s outputs, we switch to a
version of APEX-DAG that has never been exposed to Polars. This
way, we show that the underlying trained model is generalizable to
unseen libraries at development time.

Inspecting the training process: In the final part of the demo,
we will introduce the training process for our translator-annotator
architecture. The participants will see the self-supervised label
generation for the pre-training task and we will demonstrate how
labelling the dataflow graphs for fine-tuning works. Participants
will be able to see dataflow graphs generated directly from code,
while the GAT is learning to predict node types and edges as can
be seen in Figure 3.

Thttps://github.com/S-Eggers/APEX-DAG
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5 CONCLUSION

This paper introduces APEX-DAG, a system developed to tackle the
challenges of pipeline extraction and data lineage in machine learn-
ing workflows. Utilizing static code analysis and graph attention
networks, APEX-DAG overcomes the limitations of execution-based
methods and the reliance on predefined knowledge bases or library
annotations. This approach offers scalability, adaptability to evolv-
ing library APIs and reliable inference across diverse computational
contexts.
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