
FedVSE: A Privacy-Preserving and Efficient Vector Search Engine
for Federated Databases

Zeheng Fan
SKLCCSE Lab,

Beihang University
fanzh@buaa.edu.cn

Yuxiang Zeng
SKLCCSE Lab,

Beihang University
yxzeng@buaa.edu.cn

Zhuanglin Zheng
SKLCCSE Lab,

Beihang University
zzlin@buaa.edu.cn

Yongxin Tong
SKLCCSE Lab,

Beihang University
yxtong@buaa.edu.cn

ABSTRACT
Efficient vector search is a foundational capability of vector databases.
However, most prior research overlooks its critical role in feder-
ated databases for applications like financial risk control and smart
healthcare. In these privacy-sensitive scenarios, a vector search
engine must not only deliver high performance but also guarantee
privacy across federated databases. Current solutions, however,
struggle with scalability for high-dimensional vectors, and offer
limited query support. To bridge this gap, this paper introduces
FedVSE, a privacy-preserving vector search engine for federated
databases. FedVSE supports both KNN and hybrid queries, match-
ing the versatility of modern vector databases. It leverages Intel
SGX for hardware-enabled security and offers highly optimized
query processing via indexing and pruning. Conference audiences
can interact with FedVSE in real time and observe how it enables
real-world services like cross-platform trajectory similarity search.
PVLDB Reference Format:
Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng and Yongxin Tong. FedVSE:
A Privacy-Preserving and Efficient Vector Search Engine for Federated
Databases. PVLDB, 18(12): 5371 - 5374, 2025. doi:10.14778/3750601.3750674

1 INTRODUCTION
Vector databases have gained growing attention in industry and
academia for their exceptional capabilities of managing data with
high dimension. A core functionality of these systems is vector
search, which enables fast retrieval of similar objects to a given
query vector from large-scale datasets. Most research on vector
search focuses on single-source vector data, overlooking the growing
demand for multi-source vector data in applications like financial
risk control, smart healthcare, and intelligent transportation.

In these privacy-sensitive scenarios, an effective vector search en-
gine over federated databases (“federated vector search” as short)
must provide both high query performance and privacy preserva-
tion across all databases. Prior work has explored federated vector
search or federated KNN search, primarily relying on Homomor-
phic Encryption (HE) [13], Secure Multi-party Computation (SMC)
[8, 11, 14], or Trusted Execution Environment (TEE) [12].
Motivation. However, these solutions suffer from two limitations:

(i) Inefficiency for High-dimensional Vector. HE based meth-
ods incur unavoidable latency during both data pre-processing (en-
cryption) and query processing (decryption). SMC and TEE based

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750674

Figure 1: Data model in vector search engine FedVSE
methods, initially designed for low-dimensional data, become inef-
ficient or inaccurate when applied to high-dimensional vectors.

(ii) Limited Query Support. These works lack support for
hybrid queries, which integrate a structured attribute filter with
KNN search and are prevalent in modern vector databases [2].
SystemScope.To address these limitations, we propose a Federated
Vector Search Engine called FedVSE. We focus on the vector data
model adopted in industrial vector databases [2, 4], where each
entity contains both a vector embedding and structured attributes
(see Fig. 1). This model necessitates support for two query types:

• KNN Queries identify the top-𝑘 most similar entities.
• Hybrid Queries combine KNN search with attribute filters.

During the query processing, FedVSE ensures two privacy require-
ments: (i) clients learn nothing beyond their query answers, and (ii)
no local vector database can infer private data from others.
SystemOverview. FedVSE comprises two keymodules: local vector
databases and a central server. Specifically, in each local vector
database, FedVSE offers a dual-indexing scheme: built-in vector
indexes and learned indexes for structured attributes. The central
server coordinates query processing across all vector databases
and is equipped with the TEE (i.e., Intel SGX) to ensure privacy.
FedVSE leverages the TEE to verify data access policies for each
vector search request and securely processes private data from
local databases. Moreover, we devise an optimized query processing
framework that reduces both communication overhead and query
latency through our indexing and pruning strategies.
Contribution. Overall, our main contributions are as follows:

(i) FedVSE is the first federated vector search engine of its kind.
(ii) FedVSE offers a privacy-preserving and efficient query pro-

cessing framework that supports mainstream vector queries.
(iii) FedVSE is built upon an industrial vector database system,

Milvus [2], and provides intuitive query interfaces for clients. To
demonstrate this, FedVSE is deployed across six cloud servers and
delivers a faster retrieval service than existing baselines [8, 11, 12]
in applications like cross-platform trajectory similarity search.

2 SYSTEM OVERVIEW
This section introduces the basic concepts, system architecture, and
query processing framework in our vector search engine.

5371

https://doi.org/10.14778/3750601.3750674
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750674


Figure 2: System architecture of FedVSE

2.1 Basic Concepts in Vector Databases
Data Model.We adopt the prevalent data model among modern
vector database systems [4]. Formally, for a data collection D
(“collection” as short), each (data) entity 𝑜𝑖 ∈ D is denoted by a
tuple (𝑖𝑑𝑖 , 𝑣𝑖 ,M𝑖 ), where 𝑣𝑖 ∈ R𝑑 is the embedding vector and M𝑖

denotes the structured attributes associated with the entity. Data
schema is composed of both the vector data field (i.e., 𝑣𝑖 ) and scalar
data fields (i.e.,M𝑖 ). A database may contain multiple collections.

Fig. 1 depicts a collection of trajectory vector data. Here, each
entity comprises: (1) an embedding vector generated by deep learn-
ing models, encoding the trajectory’s spatio-temporal patterns, and
(2) associated structured attributes (e.g., origin and destination).
Vector Queries. FedVSE supports two primary vector query types:

(i) KNN Queries: Given a query vector 𝑞 and a distance metric
𝑑𝑖𝑠 , this query type retrieves the top-𝑘 most similar vectors from a
collection D, including exact/approximate KNN and KNN join.

(ii) Hybrid Queries: This query type integrates KNN search
with an attribute filter F (M) and restricts vectors in the query
answer to satisfy the filter, such as “finding similar trajectories to 𝑞
with order fare < 20” from the dataset in Fig. 1.
Index Scheme. FedVSE adopts a dual-indexing scheme:

(i) Vector Index: three vector index families are adopted for
accelerating KNN queries: FLAT (for exact KNN), IVF and HNSW
(for approximate KNN with a high recall).

(ii)Learned Index: FedVSE also buildsmulti-dimensional learned
indexes for structured attributes using PGM-index [3].

2.2 System Architecture
As shown in Fig. 2, the system architecture of FedVSE consists of
two core modules: local vector database and central server. We also
outline how clients interact with FedVSE in this subsection.
Local Vector Database. FedVSE operates on a federation of au-
tonomous vector database systems. To enable efficient vector search,
vector indexes (e.g., HNSW [7]) are pre-built within each local data-
base. We also build auxiliary learned indexes over structured at-
tributes, which leverage machine learning models to reduce space
overhead. Together, these indexes improve the system throughput.
Central Server. To satisfy the privacy requirements, the central
server needs to be equipped with a TEE [6], Intel SGX. It processes
each query request through the following core components:

(i) Query Parser. This component extracts query parameters
from an incoming request, including the query vector, integer 𝑘 ,

Figure 3: Query processing framework in FedVSE

and attribute filter. The attribute filter is then transmitted to the
TEE for access control verification. Access policies are initially
expressed as structured attribute predicates by administrators and
securely loaded into the TEE to prevent tampering. Access is only
granted when the attribute filter in the query request fully complies
with these access policies. For example, under China’s Personal
Information Protection Law (PIPL), personally identifiable data (e.g.,
trajectories) for minors under 16 years old requires strict protection.
In this context, an attribute filter 𝑎𝑔𝑒 ≥ 12 would conflict with this
policy when applied to the dataset in Fig. 1.

(ii) Query Planner. Once access is granted, this component
decomposes each federated vector search into vector queries at
local databases and secure operations exclusively within the TEE.
KNN join is decomposed into a series of independent KNN searches.

(iii) Query Execution. Following the query plan, this compo-
nent coordinates the federated search process by (1) initiating con-
current searches at local vector databases to obtain local candidates,
and (2) use the TEE to select the final answer from candidates.
Client. To use FedVSE, clients first anonymize queries by removing
sensitive data. Then, they generate embedding vectors of anonymized
queries, submit vector search requests, and await answers.

2.3 Query Processing Framework
Fig. 3 illustrates our query processing framework [5] as follows.
(i) Index Construction. In this phase, vector indexes, such as
HNSW [7], are built inside each local database. For hybrid queries,
we also build learned indexes over structured attributes. Specifically,
we first partition vectors into multiple shards using balanced clus-
tering, and then construct a PGM-index [3] for each shard. Finally,
we also generate a distance histogramH𝑗 for each shard to track
the distances between contained vectors and their centroid 𝑐 𝑗 .
(ii) Query Processing.When executing a federated vector query,
our algorithm operates via 3 sequential stages with 9 total steps:

Steps 1–3: Candidate Pre-Allocation. This stage estimates
each local database’s contribution to the final answer and pre-
allocates the initial candidate size before performing local search.

At Step 1, each local database receives a vector query from the
server and a subset of shards C∗ is selected based on Eq. (1).

C∗ =
{︁
𝑗 | 𝑑𝑖𝑠 (𝑐 𝑗 , 𝑞) ≤ (1 + 𝛼) ·min𝑗 𝑑𝑖𝑠 (𝑐 𝑗 , 𝑞)

}︁
, 𝛼 ∈ [0, 1] (1)

Step 2 converts attribute filter into a multi-dimensional search
window and derives the filter selectivity 𝑠𝑒𝑙 𝑗 with range counting

5372



over PGM-indexes. Consequently, the top ⌈𝑘/𝑠𝑒𝑙 𝑗 ⌉ nearest neigh-
bors to the query vector 𝑞 likely contain 𝑘 entities satisfying the
filter. Since each histogram bin maintains vector counts with spe-
cific distance intervals, we can use the triangle inequality to derive
the distance upper bound for each vector 𝑣𝑖 and query vector 𝑞:

𝑑𝑖𝑠↑ (𝑞, 𝑣𝑖 ) = 𝑑𝑖𝑠 (𝑞, 𝑐 𝑗 ) + 𝑑𝑖𝑠↑ (𝑐 𝑗 , 𝑣𝑖 ) (2)

where𝑑𝑖𝑠↑ (𝑐 𝑗 , 𝑣𝑖 ) denotes the distance upper bound of histogram
bin containing 𝑣𝑖 . The minimal threshold 𝛾 is computed through
histograms, where the cumulative count of vectors across clusters
C∗, satisfying 𝑑𝑖𝑠↑ (𝑞, 𝑣𝑖 ) ≤ 𝛾 , meets or exceeds ⌈𝑘/𝑠𝑒𝑙 𝑗 ⌉.

At Step 3, the TEE receives the estimated 𝑘th nearest distance
𝛾𝑖 to 𝑞 from each local database D𝑖 , and determines the initial
candidate size as 𝑘𝑖 = 𝑘 · (min𝑖 𝛾𝑖 )/𝛾𝑖 .

Steps 4–6: Candidate Refinement. This stage performs initial
local candidate generation and refinement using the server’s TEE.

At step 4, each local database executes a local vector search with
reduced integer 𝑘𝑖 and discretizes candidates’ distances into

√
𝑘𝑖

intervals, which are then encrypted and sent to the TEE.
At Steps 5–6, the TEE decrypts the received distance intervals

and establishes an upper bound for the global 𝑘th nearest distance
to 𝑞. Then local databases are notified about refined intervals.

Steps 7–9: Top-K Selection. Local databases encrypt the refined
candidates’ distances to𝑞 and send them to the TEE. After collecting
the distances, the TEE performs a secure top-𝑘 selection over these
distances and requests the corresponding entities from each local
database to assemble the final query answer.
PrivacyGuarantee. FedVSE satisfies the two privacy requirements
in Sec. 2.1. First, a client obtains at most 𝑘 entities as the query
answer, learning nothing about other entities. Second, local vector
databases operate in complete isolation from each other, eliminating
any possibility of inter-database privacy leakage. Moreover, all
sensitive data processing is isolated within the TEE, which offers
strong security guarantee based on dedicated hardware [6, 12].

3 PROTOTYPE IMPLEMENTATION
This section introduces the detailed implementation of FedVSE,
which leverages the open-source industrial vector database system
Milvus [2] as its foundation for local databases. Client implementa-
tions are excluded as they are typically application-driven.

3.1 Local Vector Databases in Federation
FedVSE employs the high-performance vector database system
Milvus [2] to manage each local vector dataset. Milvus supports
diversified built-in vector indexes, such as FLAT, IVF, and HNSW.
By using these indexes, Milvus enables efficient processing of both
KNN queries and hybrid queries at scale. To balance query latency
and result recall, we choose HNSW [7] as the default vector index.

For structured attributes associated with vectors, we also build
learned indexes (i.e., PGM-indexes [3]) and maintain the distance
histograms outside Milvus. The number of clusters is dynamically
configured between 10 and 100 depending on the data scalability.
These auxiliary indexes incur minor memory footprints, so they
remain memory-resident during the query processing.

To facilitate collaborative search, we encapsulate Milvus’s native
query interface with a gRPC [1] service, and enable seamless remote

procedure calls from the central server. Besides, each database
maintains an in-memory cache to store local candidates.

3.2 Central Server for Query Coordination
A central server coordinates privacy-preserving query processing
using Intel SGX, and implements the following core components.
Components Outside TEE. There are three core components
outside the TEE: query parser, query planner, and query execution.
First, our FedVSE follows the format of query interfaces in Milvus
to leverage its existing parser for extracting query parameters from
client requests. Second, we use fixed strategies to generate query
plans for KNN and hybrid queries. When access policies are speci-
fied, KNN queries transform into hybrid queries and are processed
by detailed steps in Sec. 2.3. Otherwise, KNN query plans skip the
candidate pre-allocation, since they have no attribute filter. Finally,
the query execution processes each query plan sequentially.
Components Within TEE. There are two types of components
within the TEE: access policy verification and secure operations.

Access PolicyVerification.Access policies are described through
constraints on structured attributes, offering entity-level access con-
trol. The access policy manager initially loads these policies from
a configuration document. The access compliance verifier sequen-
tially evaluates whether the attribute filter in query conditions
overlaps with the preserved attribute range specified in policies.

Secure Operations. To ensure end-to-end privacy, local vector
databases apply AES-128 encryption for all data transmitted to the
TEE. Three operations are isolated within the secure enclave of
Intel SGX: candidate pre-allocation (with hyper-parameter 𝛼 = 0.5),
candidate refinement, and top-k selection. The latter two operations
utilize a min-heap data structure to compute the distance threshold.
Thus, oblivious sorting is used to maintain the min-heap.
Remark. We also implement three state-of-the-art baseline meth-
ods in our system FedVSE: HuFu [8],Mr [11], and DANN* [12].

4 DEMONSTRATION SCENARIO
This section presents our demonstration plan in the application
scenario of cross-platform trajectory similarity search. Trajec-
tory similarity search is commonly used in intelligent transporta-
tion. Recently, multiple ride-hailing platforms (e.g., Didi and T3go)
collaboratively offer this trajectory analytic service to optimize
dispatching between drivers and passengers [9, 10].
Deploying FedVSE. Five ride-hailing platforms generate the em-
bedding vectors of their trajectories and upload the vector data into
Milvus. As shown in Fig. 4, FedVSE is deployed across five cloud
servers running Milvus, along with another server as central server.
A client is implemented with anonymization methods using metric
differential privacy. A stream of query workloads is generated from
ride-sharing orders in a real platform, Didi. Moreover, we also im-
plement frontend and backend GUI in this application scenario. The
frontend GUI mainly shows the status of cross-platform trajectory
similarity search, while the backend GUI primarily displays the
status of our vector search FedVSE under this application scenario.
Interaction with Audiences. Fig. 4 (A) shows the frontend GUI.
Four corners of this GUI illustrate the distribution of the ride-hailing
orders along with each platform’s contribution to query results.
Audiences can also submit search requests via the central map

5373



Figure 4: Deploying our federated vector search engine FedVSE in cross-platform trajectory similarity search

by specifying their destinations. Our system searches the most
shareable (similar) trajectories and visualizes recommended routes.

Whenever an audience submits a trajectory search request, the
backend GUI also visualizes the query vector (see Fig. 4 (B)). Ad-
ditionally, audiences can change the default query parameters in
the backend GUI, such as integer 𝑘 and attribute filters. The result
entities for audiences’ federated vector searches will be returned in
real time. Besides, one additional chart reflects the comparisons of
our FedVSE and existing baselines (HuFu [8], Mr [11], and DANN*
[12]) in terms of query latency, which verifies our query processing
framework’s superiority. The other one depicts the comparisons
between different vector indexes, such as Flat, HNSW, and IVF.
Acknowledgments
This work was partially supported by National Key Research and
Development Program of China under Grant No. 2023YFF0725103,
National Science Foundation of China (NSFC) (Grant Nos. 62425202,
U21A20516, 62336003), the Beijing Natural Science Foundation
(Z230001), the Fundamental Research Funds for the Central Uni-
versities No. JK2024-03, the Didi Collaborative Research Program
and the State Key Laboratory of Complex & Critical Software En-
vironment (SKLCCSE). Yuxiang Zeng and Yongxin Tong are the
corresponding authors.

References
[1] 2024. gRPC. https://grpc.io/
[2] 2024. Milvus. https://milvus.io
[3] 2024. The PGM-Index. https://pgm.di.unipi.it/
[4] Sebastian Bruch. 2024. Foundations of Vector Retrieval. Springer.
[5] Zeheng Fan, Yuxiang Zeng, Zhuanglin Zheng, et al. 2025. FedVS: Towards

Federated Vector Similarity Search with Filters. In SIGKDD.
[6] Xiaoguo Li, Bowen Zhao, Guomin Yang, et al. 2023. A Survey of Secure Compu-

tation Using Trusted Execution Environments. CoRR abs/2302.12150 (2023).
[7] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[8] Yongxin Tong, Xuchen Pan, Yuxiang Zeng, et al. 2022. Hu-Fu: Efficient and
Secure Spatial Queries over Data Federation. PVLDB 15, 6 (2022), 1159–1172.

[9] Yongxin Tong, Jieying She, Bolin Ding, et al. 2016. Online mobile Micro-Task
Allocation in spatial crowdsourcing. In ICDE. 49–60.

[10] Yuxiang Wang, Yuxiang Zeng, Shuyuan Li, et al. 2024. Efficient and Private
Federated Trajectory Matching. IEEE Trans. Knowl. Data Eng. 36, 12 (2024),
8079–8092.

[11] Kaining Zhang, Yongxin Tong, Yexuan Shi, et al. 2023. Approximate k-Nearest
Neighbor Query over Spatial Data Federation. In DASFAA. 351–368.

[12] Xinyi Zhang, Qichen Wang, Cheng Xu, et al. 2024. FedKNN: Secure Federated
k-Nearest Neighbor Search. SIGMOD 2, 1 (2024), V2mod011:1–V2mod011:26.

[13] Dongfang Zhao. 2024. FRAG: Toward Federated Vector Database Management
for Secure Retrieval-Augmented Generation. CoRR abs/2410.13272 (2024).

[14] Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, et al. 2024. FedSQ: A Secure System for
Federated Vector Similarity Queries. PVLDB 17, 12 (2024), 4441–4444.

5374

https://grpc.io/
https://milvus.io
https://pgm.di.unipi.it/

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 Basic Concepts in Vector Databases
	2.2 System Architecture
	2.3 Query Processing Framework

	3 PROTOTYPE IMPLEMENTATION
	3.1 Local Vector Databases in Federation
	3.2 Central Server for Query Coordination

	4 DEMONSTRATION SCENARIO
	Acknowledgments
	References

