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ABSTRACT
This demonstration presents Polaris; a novel open-source sys-
tem infrastructure for Polar science that is highly Interactive and
Scalable. Polaris is designed based on three observations that dis-
tinguish the query workload of polar scientists, namely, all queries
are spatio-temporal, not all data are equal, and the large majority
of queries are aggregates. With this, Polaris is equipped with a hi-
erarchical spatio-temporal index structure that stores precomputed
aggregates for data of interest. Audience will be able to experience
Polaris through various scenarios that show the interactivity and
scalability as well as Polaris optimized query processes.
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1 INTRODUCTION
Polar scientists face the challenge that even though there are huge
amounts of climate and environment datasets archived online (e.g.,
ERA5 [8], CARRA [3], MERRA2 [13], ICESat-2 [10], CESM [5]),
they are not easy to access and work on. For most of such datasets,
scientists have to wait hours or days to first download the data, then
write their own scripts for their analysis needs. This is definitely
far from being an interactive user experience, which hinders the
polar scientists’ ability to perform their analysis and gain insightful
thoughts from the data. For example, ERA5 [8], a reanalysis dataset
for the global climate and atmosphere, is one of the most widely
used datasets by polar scientists for simulation, prediction, and
modeling [6, 9, 12, 18, 19]. ERA5 has 262 climate variables, including
temperature, snowfall, ice sheet, etc. Each variable is recorded at
every 0.25× 0.25 latitude longitude degree spatial area for the whole
world and for every hour from 1940 to present. With such high
spatial and temporal resolutions, one variable for the whole world
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Query Running time Result size Data download Polaris

Daily 12m46s 34 MB 20.12 GB 1.2s
Monthly 12m55s 1.2 MB 20.12 GB 0.3s

Table 1: Query Performance Metrics

consumes an annual storage of 17GB. This makes the overall ERA5
dataset size for 262 variables and 84 years approximately 374TB.

Due to its size, it is hard for polar scientists to host and manage
such data, not to mention have efficient data access and interactive
analysis. Currently, polar scientists employ one of the following
three options to work with ERA5 data: (1) The most straightforward
way for polar scientists is to call public APIs to download the parts
they need from ERA5 data to their local storage and then run their
scripts from there. This is pretty inefficient as the downloading
itself can take hours or more, then considerable efforts are needed
to write and execute the analysis modules. (2) Download and store
major parts of the data on a High Performance Computing (HPC)
environment and run computations on HPC directly. Though this
option will be the best in terms of interactive analysis, it is the least
used approach, as such an HPC environment is not available to
the large majority of polar scientists worldwide. (3) An emerging
trend from the geoscience community [14] is to transform the data
into Analysis-Ready Cloud-Optimized (ARCO) format stored in a
cloud storage [1, 17], e.g., ARCO-ERA5 [4] is an ARCO version
of ERA5 data hosted on Google Cloud. Compared with the API-
based approach, the ARCO approach integrates better with modern
data ecosystems, yet it is still far from being interactive. In partic-
ular, Table 1 gives performance measures of running two queries
on ARCO-ERA5 [4] regarding daily and monthly temperatures of
Alaska in 2020. Though the result size for the daily query is 34MB
and the monthly query is 1.2MB, both queries end up downloading
the same amount of data of 20GB. The main reason is that ARCO-
ERA5 must scan all the raw data before aggregation, making it less
interactive on aggregate queries (e.g., daily queries) that are highly
used by polar scientists. So, it takes close to 13 minutes to execute
both queries, which is not suitable for any interactive analysis.

This demo presents Polaris; a novel open-source system infras-
tructure for Polar science that is highly Interactive and Scalable.
Polaris came out as part of the iHARP project (institute for
HArnessing data and model Revolution in the Polar regions) [11],
which is a large collaboration effort between computer and polar
scientists to provide system infrastructure and data analysis tech-
niques for polar scientists. Unlike all previous approaches used
by polar scientists, Polaris is tailored to the query workload and
access patterns of polar scientists, and hence it provides a highly
interactive and scalable performance for the large majority of the
queries it receives. For example, Polaris answers the daily and
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monthly queries of the ERA5 data in Table 1 in 1.2 and 0.3 seconds,
respectively, with no data download.

Polaris is built with three main concepts in mind. (1) All polar
scientists queries are spatio-temporal. Queries are always asking
about any of the 262 variables of ERA5 within specific spatial and
temporal ranges. (2) Data Inequality. Not all data are of equal im-
portance. Some of the variables are needed in some areas of the
world more than others at higher or lower resolutions. (3) Most
queries are aggregates. Queries typically ask about an aggregate
value of a specific variable, spatio-temporal range, and spatial and
temporal resolutions, e.g., get the days (temporal resolution) of last
year (temporal range) with maximum snowfall (aggregate) in any
1-degree area (spatial resolution) of Alaska (spatial range).

The demo lets conference attendees experience Polaris in action.
Attendees will be able to issue various queries like polar scientists
through aweb-based GUI and see the visualized results at an interac-
tive response time. To help attendees understand Polaris internals,
they will be able to see the execution plan of each query.

2 POLARIS QUERY SIGNATURE AND
ARCHITECTURE

Polaris is designed to support the following query signature, which
represents the family of queries that are most popular for polar
scientists. Per the query signature, it is mandatory to have spatial
and temporal predicates in all Polaris queries, which drives the
internal index structure design and query processing of Polaris.

SELECT <Spatial Resolution>, <Temporal Resolution>,
<[<Min/Max/Avg>] variable>,

FROM Data
WHERE <Spatial Predicate> AND <Temporal Predicate>
[ GROUP BY <Spatial Resolution (0.25/0.5/1-degree)>,

<Temporal Resolution (Hour/Day/Month/Year)>,
[ HAVING <group predicate> ] ]

Following the signature, there are five representative query types
that Polaris can support, namely:
Get Variable Query. This query requests the aggregate value
within certain spatial and temporal ranges (at certain resolutions),
e.g., “Get the daily average temperature in 2020 of Alaska at 1-degree”.
Heatmap Query. This query outputs a two-dimensional array
where the average value of an area is reported, basically composing
a heatmep. For example, “Build a 1-degree heatmap of the average
temperature of Alaska during 2021/01/01 to 2023/01/31”.
Timeseries Query. This query essentially creates a time series
(i.e., one-dimensional array) indicating how the requested variable
changes within an area during a time range. For example, “Get the
daily average temperature in 2022 of Greenland”.
Find Area Query. This query finds the areas, at the given spatial
resolution, where a certain value predicate is satisfied. For example,
“Find the 0.25-degree areas in Alaska that had an average temperature
greater than 300 Kelvin in 2023”.
Find Time Query. This query finds the time periods, at a given
temporal resolution, where a certain value predicate is satisfied.
For example, “Find the days in 2023 where the average temperature
in Antarctica is greater than 300 Kelvin”.

To efficiently support each query above, Polaris has a system
architecture depicted in Figure 1 which is composed of three main
components, and will be described in the following three sections.
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Figure 1: Polaris System Architecture

3 POLARIS DATA PREPARATION
This layer is responsible for storing the most important data of
ERA5 such that the large majority of queries received by Polaris
are completely supported from local storage. This layer’s input
specifies the data of interest and comes from an admin user through
a GUI data request interface. Internally, this input is converted to
a set of APIs that download the corresponding raw data, which is
then aggregated to the requested spatial and temporal resolutions,
and sent to the local indexed storage. Thus, the following three
main components make up this layer:
Data Request Interface. This GUI map interface allows admin
users to indicate users’ interests on different variables for any spatial
and temporal ranges and resolutions. The specified user interests,
along with the ones derived from historical queries by the query
monitor (Section 5), trigger the API generator module.
API Generator. This module is triggered by the input of user
interests, where it digests all the user entries to find the minimum
set of APIs that need to be issued to ERA5 cloud services [8] to
download the requested data.
Data Aggregator. This module takes the raw data downloaded
by the API generator and performs three operations: (1) It aggre-
gates the raw data to the requested resolution while deleting the
unneeded raw data. (2) It precomputes the aggregations at coarser
resolutions to store alongside the requested resolutions. (3) It stores
a metadata table for all locally stored aggregated data, which is
used by the index structure and query processor to locate such data.

4 POLARIS LOCAL STORAGE AND INDEX
STRUCTURE

This layer is responsible for indexing the aggregated data from the
offline data preparation layer, which is then accessed by the online
query layer for interactive data analysis. Polaris designs its own in-
dex structure, as existing big data systems (e.g., TileDB [15], Apache
Sedona [16], or SpatialHadoop [7]) lack spatio-temporal support,
which is immensely needed per the query signature defined in Sec-
tion 2. In particular, the query signature calls for an index stricture
that is: (a) spatio-temporal, as spatial and temporal predicates are
mandatory, (b) hierarchical, as queries impose a natural hierarchy
of spatio-temporal resolutions, and (c) precomputed aggregates in
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Equivalent SQL
--------------
SELECT 1-degree, mean(2m_temperature)
FROM ERA5
WHERE SpatialRange=[84, 59, -10, -74]
AND TemporalRange=[2019/01/01,

2023/12/31]
GROUP BY 1-degree;

Query Plan (Execution time: 0.71s)
----------------------------------
Aggregate (time=0.07s)
function: mean (dim=time)
|->GetVaraible (time=0.53s)

s_range: 84, 59, -10, -74
s_res: 1
t_range: [2019, 2023]
t_res: year
...

Figure 2: Polaris Query Interface and Process

index entries, as most queries are requesting aggregate values. To
this end, Polaris employs a basic index unit that supports spatial
predicates, hierarchy, and aggregates; and a full index structure
that adds support temporal-wise.
Basic Spatial Indexing Unit. The basic indexing unit in Polaris
indexes a certain variable and stores its aggregated values over mul-
tiple spatial resolutions for a specific temporal interval and specific
temporal resolution. The index takes the shape of an incomplete
pyramid structure [2], as shown in Figure 1. The lowest pyramid
level basically divides the geographical space of the whole world
into non-overlapping equal-size cells. The medium and top pyramid
level stores the aggregation of every four cells of its lower level. Not
all cells are maintained, and hence the term incomplete pyramid.
Spatio-temporal Index Structure. The full spatio-temporal in-
dex structure for each indexed variable in Polaris is composed of
multiple instances of the basic incomplete pyramid unit to support
temporal aggregation and resolutions, where the basic incomplete
pyramid unit is replicated for each hour, day, month, year. Just like
not all cells of a basic pyramid unit are maintained, not all pyramids
are maintained at all temporal levels.

5 POLARIS QUERY PROCESS
This layer gets its query input through a GUI interface, and is
responsible for providing efficient query processing through the
indexed local storage. It is also equipped with a monitoring module
that monitors the system query workload to dynamically adjust
the local storage given workload changes.
Query Processor. Polaris query processor aims to fully exploit
its hierarchical index structure, described in Section 4, to efficiently
answer incoming queries from local storage. The basic strategy is
to answer the query from high-level pre-aggregation as much as
possible, which significantly reduces the data access and computing
overhead. For those queries that cannot be fully answered from local
storage, the query processor partially answers the query, and then
calls an API for the part of the query that is not locally available.
Query Monitor. The main performance promise of Polaris is
based on the idea that the large majority of queries will be answered
from local storage. To ensure such promise, Polaris employs a
query monitoring module that tracks: (1) user-issued queries in
terms of their variable and spatial/temporal range and resolution
and (2) the ratio of queries that were not completely supported

from local storage. Once the ratio exceeds a user-specified value,
this module will analyze the query history to get the real user
interests, send the interests to the API generator and trigger the
data preparation in the offline layer.

6 DEMO SCENARIOS
This section shows four demo scenarios where the conference at-
tendees can interact with Polaris to understand its operations
from the point of view of: (a) Polar scientists who need to use the
system to explore datasets and gain instant insights, and (b) Re-
searchers, developers, and practitioners who want to understand
the system internals. Since the data preparation is an offline process
that takes time, we will download, aggregate, and index the data in
advance. Attendees will mainly experience the interactive online
query process. A demo deployment of Polaris1 is available online.
Demo Scenario 1: Interactive Queries. This demo aims to show
the interactive query experience of Polaris. Figure 2(a) depicts the
user interface of Polaris, on which conference attendees can issue
queries to Polaris to explore the ERA5 datasets and gain quick in-
sights on the data. On the left sidebar, attendees can select a variable
that Polaris has downloaded and indexed offline. They can specify
the temporal range by selecting the start and end datetime, and
specify the spatial range by either typing the latitude and longitude
boundaries or drawing a box on the map, and select the desired
spatial and temporal resolution, and aggregate function. Attendees
can also set a filter for find time and find area queries by choosing
a predicate and a filter value. Query results will be rendered in the
right bottom panels. In Figure 2(a), three results for the heatmap,
time series and find time queries about the temperature for Green-
land from 2019 to 2023 are demonstrated from left to right. In the
heatmap, the spatial area of Greenland is partitioned into 1-degree
cells (spatial resolution) and the cells are colored to indicate the
average temperature (aggregate function) over the five years. In
the time series, the line shows how the average temperature of
Greenland changes day by day (temporal resolution). Lastly, the
find time query plots the days where the average temperature of
Greenland is greater than 265 Kelvin (value filter) as True.
Demo Scenario 2: Understanding Polaris Query Process. This
scenario aims to help attendees understand Polaris’ query pro-
cesses and optimizations. At the side of each query plot, there is a
1https://iharpv.cs.umn.edu/
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Figure 3: PolarisMonitoring and Preparation

red info button which, when clicked, shows the query that creates
the plot in terms of the query signature described in Section 2,
as well as the execution plan in Polaris. Figure 2(b) shows the
heatmap query, which gets the average temperature of Greenland
at 1-degree spatial resolution from 2019 to 2023 and the correspond-
ing query plan. The query plan displays the query execution time
of 0.71 second, which confirms the interactivity of Polaris. The
detailed query process is listed in a tree structure where each sub-
execution is highlighted by a → mark with parameters listed as
indented underneath. The whole plan is executed from the inner
to the outmost level. In particular, to answer this heatmap query,
Polaris issues a GetVariable query to get the temperature data
of Greenland at a yearly resolution for the five years. Then Po-
laris performs an Aggregation to compute the average over the
“time” dimension. Thus, for each 1-degree cell, Polaris computes
the average values of the five yearly temperature values.
Demo Scenario 3: Query Monitoring. In order to show how
query monitoring works in Polaris, attendees can click the red
info button next to the POLARIS header to view a log of historical
queries, as shown in Figure 3(a). The log will contain the infor-
mation of each query, including its variable name, spatial range
and resolution, temporal range and resolution, as well as the time
that the query was issued. Attendees can then click the Summarize
button at the bottom, which will summarize the query history and
generate a user interest table that can be used to guide the offline
data preparation. The bottom panel on Figure 3(b) gives an example
of the user interest table.
Demo Scenario 4: Offline Data Preparation. Although data
preparation is an offline process that is hard to demo, we mimic
the process so that attendees can have a complete understanding of
the whole lifecycle of Polaris. Attendees will play on the interface
(shown in Figure 3(b)) to indicate their data of interest. To create
a user interest, attendees can first select a variable and specify a
time period on the left sidebar. On the right, there is a map where
the whole world is partitioned into blocks. Attendees can fill the
blocks with colors chosen from the sidebar, which indicate a spe-
cific combination of spatial and temporal resolution for the spatial
area of the blocks. In this way, attendees specify their interest in a
specific variable at a spatial and temporal range of certain spatial
and temporal resolution. By clicking the Add button, they add the
interest to the user interest table. After inputting several interests,

attendees can click the Run API Generator button to simulate the
function of that module and see the set of API requests created
by the API generator. The requests will not be sent to the ERA5
repository, rather we will pretend the data is downloaded so at-
tendees can click the Run Data Aggregator button to mimic the
data aggregation process and see the results of pre-aggregation as
entries in the metadata.
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