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ABSTRACT

Missing data prevalent in information systems impacts data diver-

sity and �delity, which systematically degrade clustering perfor-

mance through biased similarity measures and unstable cluster

boundaries. Current large-scale environments lack standardized

imputation-clustering pipelines, as existing methods operate in-

dependently of downstream tasks without analyzing error prop-

agation e�ects, leading to unreliable results. To address this, we

propose TARImpute, a Task-Aware auto-Recommender system for

missing value imputation for clustering. It owns three integrated

features: Imputation Impact Profiler for quantitative evalua-

tion of imputation-clustering interactions, Error Propagation

Interpreter enabling explainable modeling of imputation error

di�usion, and Adaptive Strategy Optimizer for dynamic selec-

tion of optimal imputation methods. TARImpute provides state-of-

the-art imputation methods to evaluate their e�ects on clustering

tasks. TARImpute also provides robust, interpretable solutions for

low-quality data and shows extensibility to other analytical tasks.
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1 INTRODUCTION

The proliferation of data-driven paradigms has exponentially in-

creased demand for reliable data analysis, where complete and high-

quality data is a fundamental requirement. However, the pervasive

issue of systematic data missingness in real-world information

systems has emerged as a bottleneck constraining analytical ef-

�cacy [3]. Such gaps not only cause sample information loss but

also induce distribution distortions that fundamentally compromise

similarity measurement reliability.

In clustering tasks, missing values compromise feature space

integrity, biasing distance metrics and distorting cluster boundaries.

High-dimensional spaces exacerbate these issues, causing feature

collapse (>45% information loss) and metric distortion (2.7× error

ampli�cation), frequently leading to suboptimal convergence. This

has driven imputation method development into three paradigms
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(see [7, 9] as recent surveys): (1) Statistical approaches (mean/median)

o�er e�ciency but ignore feature interactions; (2) Machine learning

methods (e.g., random forests) model complex dependencies for

robust imputation; and (3) Deep generative models (VAEs, GANs)

leverage expressive architectures for pattern learning, with VAEs

optimizing explicit distributions and GANs learning implicit data

manifolds. However, current imputation approaches exhibit two

fundamental limitations: 1 objective misalignment between impu-

tation and downstream task losses, introducing cluster-distorting

artifacts, and 2 unquanti�ed error propagation through feature

interactions and distance metrics, causing compounding errors.

These limitations motivate our task-aware missing value im-

putation paradigm that emphasizes tight integration between im-

putation and downstream objectives. For clustering, developing an

adaptive imputation framework faces two key challenges: (1) Non-

identi�able error propagation routes: Traditional assumptions fail to

capture how imputation errors nonlinearly a�ect clustering via fea-

ture coupling, distribution shifts, and noise. Existing methods lack

systematic ways to track error paths and assess their impact on clus-

ter stability. (2) Limited adaptability: Static imputation-clustering

pairs (e.g., MICE+DBSCAN [10]) cannot model interactions be-

tween data traits, imputation strategies, and clustering goals (e.g.,

precision). Fixed strategies under varying missingness patterns

often degrade performance, hindering cross-scenario adaptability.

Building upon our previous research in data cleaning and miss-

ing value imputation [1, 2, 4], we propose TARImpute, a task-aware

adaptive imputation system that co-optimizes imputation strategies

with clustering tasks. It signi�cantly improves clustering stability

on incomplete data while demonstrating extensibility to other an-

alytical tasks (e.g., time series classi�cation and prediction). The

contributions of TARImpute are threefold:

1 Modeling imputation’s impact on clustering result: By re-

formulating clustering algorithms as di�erentiable operators, we

enable end-to-end error topology modeling through gradient path-

ways. DAGs explicitly map imputation error propagation, quantify-

ing path-speci�c contributions via feature interactions and shifts.

This reveals error network properties and provides topological crite-

ria for strategy selection, giving TARImpute the theoretical capacity

to interpret imputation e�ects.

2 Quantitative tolerance analysis of clustering methods:

Using the propagation model, we derive Lipschitz continuity con-

ditions for imputation, setting upper bounds on cluster quality

degradation. Quanti�es error sensitivity and guides decision mak-

ing through tolerance thresholds. Experiments show its e�cacy

in predicting stability limits across MCAR/MAR/MNAR scenarios,

preventing performance drops from poor imputation choices.
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Figure 1: TARImpute system overview.

3 Task-aware adaptive recommendation: TARImpute integrates

a library of SOTA imputation methods (e.g., DeepMVI, IIM, MIWAE

[9]) with several clustering algorithms (K-Means, DBSCAN, Ag-

glomerative) for dynamic recommendations. It evaluates propaga-

tion paths to create an adaptive space using task-speci�c metrics,

employing dynamic tuning for MCAR/MAR and deep learning (e.g.,

GANs, VAEs) for MNAR to automate optimal pair selection.

TARImpute revolutionizes missing imputation for clustering by

integrating feature awareness, mechanism insight, and optimal

recommendations. It o�ers robust, interpretable solutions for low-

quality data and exhibits modular scalability for task expansion.

2 SYSTEM OVERVIEW
As illustrated in Figure 1, TARImpute comprises four integrated

modules: (1) Imputation Impact Profiler for quantitative evalu-

ation of imputation-clustering interactions, (2) Error Propagation

Interpreter enabling explainable modeling of imputation error

di�usion, (3) Adaptive Strategy Optimizer for dynamic selec-

tion of optimal imputation methods, and (4) an Interactive User

Interface facilitating system operation.

• Imputation Impact Profiler. It o�ers a framework to eval-

uate imputation-clustering performance via con�gurable missing

data simulations and multi-faceted assessments. It features a multi-

mechanism missingness injector for dynamic con�guration of miss-

ingness types, rates (0-90%), scales, and distributions (normal/non-

normal) on clean data. Integrating SOTA imputation methods and

classical clustering algorithms, it auto-selects suitable clustering

methods based on data characteristics, generating interactive re-

ports with metrics like silhouette coe�cient and adjusted rand in-

dex (ARI). Users can adjust settings to view performance heatmaps,

identify sensitive features, and critical thresholds (e.g., KNN impu-

tation reduces DBSCAN silhouette by 42% over 35% missingness in

MNAR), establishing a baseline for subsequent modules.

• Imputation Error Propagation Interpreter. This mod-

ule analyzes how data imputation a�ects clustering by modeling

its impact mechanistically. It reformulates pre-selected clustering

methods as di�erentiable operators for gradient backpropagation,

assessing factors driving performance changes. Conditional inde-

pendence tests identify key error propagation pathways, integrated

with an enhanced PC algorithm [6] to determine pathway direc-

tionality, forming a DAG (features-errors-clustering performance) for

gradient and error analysis. The module derives the upper bound of

imputation error propagation under Lipschitz continuity [8], eval-

uating clustering robustness and sensitivity to imputation errors.

This theoretical framework supports optimization modules and

clari�es clustering method against imputation errors.

• Adaptive Imputation Strategy Optimizer. This module

optimizes imputation-clustering strategies by dynamically adjust-

ing methods based on missingness mechanisms and sensitive fea-

ture weights. ForMCAR/MAR patterns, it uses HyperImpute to min-

imize errors and clustering degradation. For MNAR patterns, it em-

ploys MIRACLE causal inference with Sinkhorn optimal transport.

TARImpute constructs an imputation-clustering strategy library,

and, through an adaptive adjustment mechanism, recommends the

optimal imputation strategy, providing users with �exible imputa-

tion method options for clustering tasks in complex data scenarios.

3 IMPLEMENTATION DETAILS

This section details the technical implementation of TARImpute.

3.1 Interpretable evaluation of imputation
impact on clustering

In clustering tasks with missing values, imputation errors propa-

gate and accumulate, impacting result stability and e�ectiveness.

Traditional methods overlook error di�usion during clustering,

worsening similarity and partitioning errors. Thus, quantifying

error pathways is key to optimizing imputation and improving

clustering robustness and accuracy, central to TARImpute.

(1) Establishment of gradient backpropagation equations.

Classic clustering methods employ hard assignments causing dis-

continuous gradients unsuitable for backpropagation. TARImpute

makes them di�erentiable by introducing a temperature coe�cient

V to soften the assignment, de�ning the probability distribution of

a data point Gğ belonging to cluster 9 as Prğ Ġ =
exp(−ÿ | |Įğ−Ć Ġ | |

2 )
∑

ġ exp(−ÿ | |Įğ−Ć Ġ | |2 )
.

This allows cluster centers ` Ġ =
∑

ğ Prğ Ġ Įğ
∑

ğ Prğ Ġ
to be expressed asweighted

averages of data points, constructing a di�erentiable relationship be-

tween data points and cluster centers.We design amulti-dimensional
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imputation error function

n = W1�AARMSE + W2�AAKL + W3�AASWD

to capture error propagation e�ects, where �AARMSE assesses numer-

ical imputation error, �AAKL constrains imputed data distribution,

�AASWD quanti�es the distribution di�erences.

Accordingly, to build an end-to-end di�erentiable computational

framework for data imputation-data clustering, we systematically

establish a backward gradient propagation link from clustering

decisions to data imputation: ĉĈclusterĉĊ =
ĉĈ
ĉĮğ Ġ˜
·
ĉĮğ Ġ˜
ĉĊ , where Gğ Ġ˜ repre-

sents the imputed data point, !cluster re�ects changes in clustering

structure post-imputation, ĉĈclusterĉĊ re�ects the in�uence of changes

in data point positions on clustering results, and ĉĈ
ĉĮğ Ġ˜

is imputation

sensitivity, i.e., the impact of the imputation method on imputa-

tion errors. This transforms the “imputation-feature space-clustering”

causality into a computable equation, enabling transparent decision-

making in the imputation-clustering.

(2) Propagation path graph construction. To visualize how im-

putation errors a�ect clustering, we construct a directed acyclic

graph (DAG) where nodes represent data features -ğ , and edges

represent the direction and strength of error in�uence. First, con-

ditional independence tests identify critical error paths: edges be-

tween features (-ğ , - Ġ ) are removed if d > U (signi�cance level),

forming an undirected graph. Next, we determine the direction of

the edges by improving the traditional PC algorithm in conjunc-

tion with gradient relationships. If
|ĉĈcluster/ĉĔğ |

|ĉĈcluster/ĉĔ Ġ |
> 2, the direction

-ğ → - Ġ is established. For complex structures like -ğ − -ġ − - Ġ ,

if the gradient propagation paths of -ğ and - Ġ independently a�ect

-ġ , the structure -ğ → -ġ ← - Ġ is formed. Additionally, edges

with path weights exceeding a threshold are retained. The path

weight is de�ned as:lğ Ġ =
|ĉĈcluster/ĉĔ Ġ |
∑

ġ

|ĉĈcluster/ĉĔġ |
(: represents all features).

This constructs a DAG of the error propagation paths.

(3) Path sensitivity quanti�cation: For each propagation path ? ,

we can calculate its contribution as

Contribution(?) =
∏

(ğ→Ġ ) ∈Ħ

(

qğ ·
m!cluster
m- Ġ

)

,

where qğ is the Shapley value of each node 8 quantifying its in�u-

ence on the model output. Using the weights, we derive the global

sensitivity of imputed feature -ğ , measuring its importance. This

quanti�es feature sensitivity, identi�es critical features impacting

results, and optimizes model performance.

(4)Upper bound derivation for imputation error tolerance: To

gauge the maximal impact of imputation errors on clustering, we

derive an upper bound for clustering tasks’ tolerance to errors. This

bound o�ers a rigorous quantitative framework for analyzing error

propagation and assessing clustering algorithm robustness. It iden-

ti�es the tolerance range, guiding adaptive imputation optimization

to reduce performance degradation and ensure robust clustering.

Given an incomplete data matrix - ∈ RĤ×Ě with complete ground

truth -com, and an imputation function 5 : RĤ×Ě → R
Ĥ×Ě , we de-

�ne the imputation error as n = ∥ 5 (- ) − -com∥. Our objective

is to derive the upper bound for clustering quality degradation

�& =

�

�& (5 (- )) −& (-com)
�

�, where& (·) is a clustering quality met-

ric (e.g., silhouette, ARI). Due to the non-di�erentiability of metrics

like ARI and silhouette, we approximate error propagation via:

�& = sup
ÿ

�

�& (5 (- )) −& (-com)
�

�.

This seeks the worst-case upper bound of clustering quality change

due to imputation errors. We analyze imputation errors’ impact

on clustering quality, focusing on the worst-case upper bound.

Experiments characterize the error-quality relationship, �t the data,

explore tolerance, and provide an approximate upper bound.

3.2 Adaptive imputation method selection

(1) MAR and MCAR patterns. For MCAR and MAR, where miss-

ingness depends on observed data.We adoptHyperImpute’s column-

wise iterative imputation, selecting appropriate strategies and dy-

namically assessing imputation adaptability to minimize errors and

clustering degradation.

HyperImpute imputes features column by column, considering

inter-feature relationships for accuracy. However, its reliance on

RMSE as a static threshold limits adaptability to complex patterns.

We extend its strategies for �exibility in MCAR and MAR scenarios.

We incorporate clustering metrics (e.g., silhouette coe�cient, ARI)

alongside imputation errors (RMSE, MAE) to ensure imputed data

bene�ts clustering. Using HyperImpute’s column-wise approach,

we evaluate imputation errors and clustering performance after

each round C . If the evaluation score falls below a threshold \ , we

adjust the strategy 5Ī+1 = �3 9DBC (5Ī ). After each imputation round,

the proposed TARImpute uses a new threshold function

"∗Ġ = arg min
ĉ∈M

(_1

∑

ġ

( Ġġ · n Ġġ + _2!cluster (-ğģĦ ))

to check for negative impacts on clustering. If errors accumulate on

key features or degrade performance, it adaptively adjusts strate-

gies. This mechanism allows �exible handling of complex missing

patterns and data characteristics in MCAR and MAR scenarios.

(2)MNAR patterns. For MNAR, where missingness depends on

unobserved variables or the missing components themselves, impu-

tation is more challenging. Traditional methods struggle to recover

MNAR characteristics accurately, potentially causing signi�cant

imputation errors and clustering degradation. Thus, complex im-

putation methods and dynamic adaptive strategies are needed in

MNAR scenarios to improve imputation and reduce error impacts

on clustering. We apply MIRACLE framework [5] to address MNAR

distribution shift and error propagation through a three-stage op-

timization: generative models, multi-task learning, and Sinkhorn

regularization, enabling adaptive MNAR imputation. A VAE models

the underlying data distribution in its latent space, supporting prob-

abilistic MNAR modeling. Jointly optimizing reconstruction and

clustering losses balances imputation quality and task performance:

L = WLrec (-̂ , - ) + XLclu (5 (-̂ ), . ),

where Lrec and Lclu are reconstruction and clustering losses, and

W and X adjust their weights. Sinkhorn optimal transport regular-

izes global similarity between imputed and real data, mitigating

MNAR distribution shift by minimizing entropy-regularized trans-

port costs. These components form a closed loop: the generative

model imputes initially, multi-task learning balances objectives, and

Sinkhorn corrects distribution, enhancing imputation precision and

clustering robustness. This provides an end-to-end MNAR solution

from local to global and generation to optimization.
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Figure 2: Pages demonstration of TARImpute.

4 DEMONSTRATION

As illustrated in Figure 2, TARImpute o�ers an operationally concise

and user-friendly demonstration interface. The process primarily

consists of the following steps:

Step 1: Data uploading and preprocessing. Users upload raw

datasets to TARImpute, which o�ers a dual-mode analysis frame-

work: (1) Simulated Missingness: The system analyzes global

features and recommends clustering algorithms based on data dis-

tribution.(2) Real Missing Data: This mode skips missing value

generation and directly analyzes feature deviations. Users adjust

parameters via an interactive interface: a slider sets missingness

rates, and a numeric input speci�es dataset size. Clicking “Start

Simulation” generates a statistical atlas of missingness patterns,

quantifying impacts on covariance matrices and feature correla-

tions to help users understand data characteristics e�ciently.

Step 2: Multi-dimensional evaluation and visualization of

clustering strategies. Upon clicking “Perform Imputation”,our sys-

tem imputes missing data and quanti�es errors using RMSE/MAE

metrics. A dynamic table compares imputation algorithm perfor-

mance across scenarios (e.g., 20% MAR vs. 10% MNAR). During

“Perform Clustering”, it evaluates combined imputation-clustering

outcomes using silhouette coe�cient and ARI. The report recom-

mends optimal cluster counts and uses heatmaps to visualize strat-

egy e�ectiveness variability. An interactive dashboard allows users

to �lter parameters for real-time performance analysis, aiding in

imputation method suitability assessment.

Step 3: Construction of imputation error propagation path-

way diagrams. To elucidate how imputation errors a�ect cluster-

ing outcomes, TARImpute introduces error propagation pathway

diagrams. Using the error matrix, it builds a feature-level network,

where directed edge weights (error ampli�cation factors) and node

color gradients (error accumulation) visualize error propagation,

cumulative e�ects, and potential impacts on clustering. Users can

view error contribution rates and downstream in�uences, enabling

analysis of error dissemination mechanisms. For sensitive features,

TARImpute allows manual prioritization. If users identify critical

features via the diagram, it adjusts imputation strategies based on

user annotations to improve clustering accuracy and stability.

Step 4: Optimization and dynamic adjustment of imputation-

clustering combinations. TARImpute’s adaptive imputation op-

timization module automatically adjusts imputation strategies to

minimize both imputation errors and clustering degradation. Lever-

aging the imputation error propagation pathway diagram, users

can �exibly modify imputation approaches based on the weights

of sensitive features and error propagation patterns, prioritizing

corrections for critical features and mitigating error impacts.

Upon clicking “Data Imputation”, the proposed TARImpute rec-

ommends optimal imputation strategies for each feature. Clicking

“Performance Analysis” activates the imputation-clustering optimiza-

tion module, displaying the best combination strategy and enables

real-time observation of strategy on clustering outcomes. This dy-

namic adjustment lets users promptly re�ne strategies based on

real conditions, achieving superior clustering performance.
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